trigonometry one mark questions

52
TRIGONOMETRY One mark questions 1. Define an angle. Solution: An angle is an amount of rotation of a half-line in a plane about its end from its initial position to a terminal position. 2. What do you mean by measure of an angle? Solution: The amount of rotation from initial position to terminal position is called measure of an angle. 3. Define one radian. Solution: A Radian is the angle subtended at the centre of a circle by an arc, whose length is equal to its radius. 1 radian is denoted by 1 . One radian is also called one circular measure. 4. Convert the following into radian measure: a) 18Β° b) 7.5Β° c) 105Β° d) 1 2 Β° e) 36Β°32 β€² 34 β€²β€² Solution: a) 1Β° = Ο€ 180 c ∴ 18Β° = Ο€ 180 Γ— 18 c = Ο€ 10 c b) 7.5Β° = Ο€ 180 Γ— 7.5 c = Ο€ 180 Γ— 15 2 c = Ο€ 24 c c) 105Β° = Ο€ 180 Γ— 105 c = 7Ο€ 12 c d) 1 2 Β° = Ο€ 180 Γ— 1 2 c = Ο€ 360 c e) 36Β°32 β€² 34 β€²β€² = 36 + 32 60 + 34 3600 Β° = 36.5427 Β° = 36.5427 Γ— 0.0174 c (since 1Β° = 0.0174 c ) ∴ 36Β°32 β€² 34 β€²β€² β‰ˆ 0.6358 radian. 5. Express the following in degree measure: a) 36 b) 7 6 c) 23 4 d) 7 24 e) 5 12

Upload: others

Post on 22-Feb-2022

14 views

Category:

Documents


0 download

TRANSCRIPT

TRIGONOMETRY

One mark questions

1. Define an angle.

Solution: An angle is an amount of rotation of a half-line in a

plane about its end from its initial position to a terminal

position.

2. What do you mean by measure of an angle?

Solution: The amount of rotation from initial position to

terminal position is called measure of an angle.

3. Define one radian.

Solution: A Radian is the angle subtended at the centre of a

circle by an arc, whose length is equal to its radius. 1 radian is

denoted by 1𝑐. One radian is also called one circular measure.

4. Convert the following into radian measure:

a) 18Β° b) 7.5Β° c) 105Β° d) 1

2

Β° e) 36Β°32β€²34β€²β€²

Solution:

a) 1Β° = Ο€

180

c ∴ 18° =

Ο€

180Γ— 18

c=

Ο€

10

c

b) 7.5Β° = Ο€

180Γ— 7.5

c=

Ο€

180Γ—

15

2

c=

Ο€

24

c

c) 105Β° = Ο€

180Γ— 105

c=

7Ο€

12

c

d) 1

2

Β°=

Ο€

180Γ—

1

2

c=

Ο€

360

c

e) 36Β°32β€²34β€²β€² = 36 +32

60+

34

3600 Β°

= 36.5427 Β° = 36.5427 Γ— 0.0174 c

(since 1Β° = 0.0174 c) ∴ 36Β°32β€²34β€²β€² β‰ˆ 0.6358 radian.

5. Express the following in degree measure:

a) πœ‹

36 b)

7πœ‹

6 c)

23πœ‹

4 d)

7πœ‹

24 e)

5πœ‹

12

Solution:

a) 1𝑐 = 180

πœ‹ Β° ∴

πœ‹

36=

180

πœ‹Γ—

πœ‹

36 Β°

= 5Β°

b) 7πœ‹

6=

180

πœ‹Γ—

7πœ‹

6 Β°

= 210Β°

c) 23πœ‹

4=

180

πœ‹Γ—

23πœ‹

4 Β°

= 1035Β°

d) 7πœ‹

24=

180

πœ‹Γ—

7πœ‹

24 Β°

= 105

2 ∘

= 52.5 Β°

e) 5πœ‹

12=

180

πœ‹Γ—

5πœ‹

12 Β°

= 75∘.

6. Prove that 𝑠𝑖𝑛 𝐴 βˆ™ π‘π‘œπ‘‘ 𝐴 = π‘π‘œπ‘  𝐴

Solution: 𝐿𝐻𝑆 = 𝑠𝑖𝑛 𝐴 βˆ™ π‘π‘œπ‘  𝐴

𝑠𝑖𝑛 𝐴= π‘π‘œπ‘  𝐴 = 𝑅𝐻𝑆.

7. Prove that π‘π‘œπ‘‘ 𝐴 βˆ™ 𝑠𝑒𝑐 𝐴 βˆ™ sin 𝐴 = 1

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘  𝐴

𝑠𝑖𝑛 π΄βˆ™

1

cos π΄βˆ™ 𝑠𝑖𝑛 𝐴 = 1 = 𝑅𝐻𝑆.

8. Prove that π‘π‘œπ‘‘2 πœƒ βˆ™ 1 βˆ’ π‘π‘œπ‘ 2 πœƒ = π‘π‘œπ‘ 2 πœƒ

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘  2 πœƒ

𝑠𝑖𝑛 2 πœƒβˆ™ 𝑠𝑖𝑛2 πœƒ = π‘π‘œπ‘ 2 πœƒ.

9. Prove that π‘π‘œπ‘ π‘’π‘ 𝛼 βˆ™ 1 βˆ’ 𝑠𝑖𝑛2 𝛼 = cot 𝛼

Solution: 𝐿𝐻𝑆 = 1

𝑠𝑖𝑛 π›Όβˆ™ π‘π‘œπ‘  𝛼 = π‘π‘œπ‘‘ 𝛼 = 𝑅𝐻𝑆.

10. Prove that (1 + π‘‘π‘Žπ‘›2 πœƒ). 1 βˆ’ π‘π‘œπ‘ 2 πœƒ = π‘‘π‘Žπ‘›2 πœƒ

Solution: 𝐿𝐻𝑆 = 𝑠𝑒𝑐2 πœƒ βˆ™ 𝑠𝑖𝑛2 πœƒ = 1

π‘π‘œπ‘  2 πœƒβˆ™ 𝑠𝑖𝑛2 πœƒ = π‘‘π‘Žπ‘›2 πœƒ = 𝑅𝐻𝑆.

11. Prove that (1 + π‘π‘œπ‘‘2 𝐴) βˆ™ 𝑠𝑖𝑛2 𝐴 = 1

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘ π‘’π‘2 𝐴 βˆ™ 𝑠𝑖𝑛2 𝐴

= π‘π‘œπ‘ π‘’π‘ 𝐴 βˆ™ 𝑠𝑖𝑛 𝐴 2 = 12 = 1 = 𝑅𝐻𝑆.

12. Prove that π‘π‘œπ‘  𝛼 βˆ™ π‘π‘œπ‘ π‘’π‘ 𝛼 βˆ™ 𝑠𝑒𝑐2 𝛼 βˆ’ 1 = 1.

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘  𝛼 βˆ™1

𝑠𝑖𝑛 π›Όβˆ™ π‘‘π‘Žπ‘›2 𝛼

= π‘π‘œπ‘  𝛼 βˆ™1

𝑠𝑖𝑛 π›Όβˆ™ π‘‘π‘Žπ‘› 𝛼 =

π‘π‘œπ‘  𝛼

𝑠𝑖𝑛 π›Όβˆ™π‘ π‘–π‘› 𝛼

π‘π‘œπ‘  𝛼 = 1 = 𝑅𝐻𝑆.

13. Prove that π‘π‘œπ‘  πœƒ βˆ™ π‘π‘œπ‘‘2 πœƒ βˆ’ 1 = π‘π‘œπ‘ π‘’π‘2 πœƒ βˆ’ 1.

Solution: 𝐿𝐻𝑆 = cos πœƒ βˆ™ π‘π‘œπ‘ π‘’π‘ πœƒ

= cos πœƒ βˆ™1

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘‘ πœƒ = π‘π‘œπ‘ π‘’π‘2 πœƒ βˆ’ 1 = 𝑅𝐻𝑆.

14. Prove that 𝑠𝑖𝑛2 𝐴 βˆ™ π‘π‘œπ‘‘2 𝐴 + 𝑠𝑖𝑛2 𝐴 = 1.

Solution: 𝐿𝐻𝑆 = 𝑠𝑖𝑛2 𝐴 βˆ™π‘π‘œπ‘  2 𝐴

𝑠𝑖𝑛 2 𝐴 + 𝑠𝑖𝑛2 𝐴

= π‘π‘œπ‘ 2 𝐴 + 𝑠𝑖𝑛2 𝐴 = 1 = 𝑅𝐻𝑆.

15. Define coterminal angles. Give two examples.

Solution: If the initial and terminal sides of two angles are

equal then the angles are called coterminal angles.

16. Prove that π‘π‘œπ‘ π‘’π‘ (180Β° βˆ’ πœƒ) = π‘π‘œπ‘ π‘’π‘ πœƒ.

Solution: π‘π‘œπ‘ π‘’π‘ (180Β° βˆ’ πœƒ) = 1

𝑠𝑖𝑛 (180Β° βˆ’ πœƒ) =

1

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘ π‘’π‘ πœƒ.

17. Prove that 𝑠𝑒𝑐 (180Β° βˆ’ πœƒ) = βˆ’ 𝑠𝑒𝑐 πœƒ.

Solution: 𝑠𝑒𝑐 (180Β° βˆ’ πœƒ) = 1

π‘π‘œπ‘  (180Β° βˆ’ πœƒ) =

1

βˆ’ π‘π‘œπ‘  πœƒ = βˆ’ 𝑠𝑒𝑐 πœƒ.

18. Prove that π‘π‘œπ‘‘ (180Β° βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘‘ πœƒ.

Solution:π‘π‘œπ‘‘ (180Β° βˆ’ πœƒ) = 1

π‘‘π‘Žπ‘› (180Β° βˆ’ πœƒ) =

1

βˆ’ π‘‘π‘Žπ‘› πœƒ = βˆ’ π‘π‘œπ‘‘ πœƒ.

19. Prove that π‘π‘œπ‘ π‘’π‘ (180Β° + πœƒ) = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ.

Solution: π‘π‘œπ‘ π‘’π‘ (180Β° + πœƒ) = 1

𝑠𝑖𝑛 (180Β° + πœƒ) =

1

βˆ’ 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ.

20. Prove that 𝑠𝑒𝑐 (180Β° + πœƒ) = βˆ’ 𝑠𝑒𝑐 πœƒ.

Solution: 𝑠𝑒𝑐 (180Β° + πœƒ) = 1

π‘π‘œπ‘  (180Β° + πœƒ) =

1

βˆ’ π‘π‘œπ‘  πœƒ = βˆ’ 𝑠𝑒𝑐 πœƒ.

21. Prove that π‘π‘œπ‘‘ (180Β° + πœƒ) = βˆ’ π‘π‘œπ‘‘ πœƒ.

Solution: π‘π‘œπ‘‘ (180Β° + πœƒ) = 1

π‘‘π‘Žπ‘› (180Β° + πœƒ) =

1

βˆ’ π‘‘π‘Žπ‘› πœƒ = βˆ’ π‘π‘œπ‘‘ πœƒ.

22. Prove that π‘π‘œπ‘ π‘’π‘ (270Β° βˆ’ πœƒ) = βˆ’ 𝑠𝑒𝑐 πœƒ.

Solution: π‘π‘œπ‘ π‘’π‘ (270Β° βˆ’ πœƒ) = 1

𝑠𝑖𝑛 (270Β° βˆ’ πœƒ) =

1

βˆ’ π‘π‘œπ‘  πœƒ = βˆ’ 𝑠𝑒𝑐 πœƒ.

23. Prove that 𝑠𝑒𝑐 (270Β° βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ.

Solution: 𝑠𝑒𝑐 (270Β° βˆ’ πœƒ) = 1

π‘π‘œπ‘  (270Β° βˆ’ πœƒ) =

1

βˆ’ 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ.

24. Prove that π‘π‘œπ‘‘ (270Β° βˆ’ πœƒ) = π‘‘π‘Žπ‘› πœƒ.

Solution: π‘π‘œπ‘‘ (270Β° βˆ’ πœƒ) = π‘π‘œπ‘‘ (180Β° + 90Β° βˆ’ πœƒ)

= π‘π‘œπ‘‘ (90Β° βˆ’ πœƒ) = π‘‘π‘Žπ‘› πœƒ.

25. Prove that π‘π‘œπ‘ π‘’π‘ (270Β° + πœƒ) = βˆ’ 𝑠𝑒𝑐 πœƒ.

Solution: π‘π‘œπ‘ π‘’π‘ (270Β° + πœƒ) = 1

𝑠𝑖𝑛 (270Β° + πœƒ) =

1

βˆ’ π‘π‘œπ‘  πœƒ = βˆ’ 𝑠𝑒𝑐 πœƒ.

26. Prove that 𝑠𝑒𝑐 (270Β° + πœƒ) = π‘π‘œπ‘ π‘’π‘ πœƒ.

Solution: 𝑠𝑒𝑐 (270Β° + πœƒ) = 1

π‘π‘œπ‘  (270Β° + πœƒ) =

1

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘ π‘’π‘ πœƒ.

27. Prove that π‘π‘œπ‘‘ (270Β° + πœƒ) = βˆ’ π‘‘π‘Žπ‘› πœƒ.

Solution: π‘π‘œπ‘‘ (270Β° + πœƒ) = π‘π‘œπ‘‘ (180Β° + 90Β° + πœƒ)

= π‘π‘œπ‘‘ (90Β° + πœƒ) = βˆ’ π‘‘π‘Žπ‘› πœƒ.

28. Define periodic function.

Solution: A function 𝑓(π‘₯) is said to be periodic if

𝑓( π‘₯ + 𝑇) = 𝑓(π‘₯)

for some real number 𝑇.

If 𝑇 is the smallest positive real number satisfying

𝑓( π‘₯ + 𝑇) = 𝑓(π‘₯) then 𝑇 is called the period of 𝑓(π‘₯).

29. Write the period of all the trigonometric functions (1 mark

each).

Solution:

Period of 𝑠𝑖𝑛 π‘₯ is 2πœ‹ ; Period of π‘π‘œπ‘  π‘₯ is 2πœ‹ ;

Period of π‘‘π‘Žπ‘› π‘₯ is πœ‹ ; Period of π‘π‘œπ‘‘ π‘₯ is πœ‹ ;

Period of π‘π‘œπ‘ π‘’π‘ π‘₯ is πœ‹ ; Period of 𝑠𝑒𝑐 π‘₯ is πœ‹.

30. Prove that 𝑠𝑖𝑛 45Β° + 𝐴 =1

2(𝑠𝑖𝑛 𝐴 + π‘π‘œπ‘  𝐴)

Solution: 𝑠𝑖𝑛 45Β° + 𝐴 = 𝑠𝑖𝑛 45Β°. π‘π‘œπ‘  𝐴 + π‘π‘œπ‘  45Β°. 𝑠𝑖𝑛 𝐴

= 1

2π‘π‘œπ‘  𝐴 +

1

2𝑠𝑖𝑛 𝐴) =

1

2(𝑠𝑖𝑛 𝐴 + π‘π‘œπ‘  𝐴).

31. Find the value of 𝑠𝑖𝑛 54Β°

Solution: 𝑠𝑖𝑛 54Β° = 𝑠𝑖𝑛 (90Β° βˆ’ 36Β°) = π‘π‘œπ‘  36Β° = 5 + 1

4.

32. Find the value of π‘π‘œπ‘  72Β°

Solution: π‘π‘œπ‘  72Β° = π‘π‘œπ‘  (90Β° βˆ’ 18Β°) = 𝑠𝑖𝑛 18Β° = 5 βˆ’ 1

4.

33. Prove that 2 𝑠𝑖𝑛 15Β° π‘π‘œπ‘ 15Β° =1

2.

Solution: 2 𝑠𝑖𝑛 15Β° π‘π‘œπ‘ 15Β° = 𝑠𝑖𝑛 2 βˆ™ 15Β° = 𝑠𝑖𝑛30Β° =1

2

34. Prove that 𝑠𝑖𝑛 πœ‹

8π‘π‘œπ‘ 

πœ‹

8=

1

2 2

Solution: 𝐿𝐻𝑆 = 2

2. 𝑠𝑖𝑛

πœ‹

8. π‘π‘œπ‘ 

πœ‹

8 =

1

2 2𝑠𝑖𝑛

πœ‹

8. π‘π‘œπ‘ 

πœ‹

8

= 1

2𝑠𝑖𝑛 2 βˆ™

πœ‹

8 =

1

2𝑠𝑖𝑛

πœ‹

4 =

1

2Γ—

1

2 =

1

2 2.

35. Prove that 𝑠𝑖𝑛 π‘₯

1 + π‘π‘œπ‘  π‘₯= π‘‘π‘Žπ‘›

π‘₯

2

Solution: 𝑠𝑖𝑛 π‘₯

1 + π‘π‘œπ‘  π‘₯ =

2𝑠𝑖𝑛 π‘₯

2.π‘π‘œπ‘ 

π‘₯

2

2π‘π‘œπ‘  2 π‘₯

2

= 𝑠𝑖𝑛

π‘₯

2

π‘π‘œπ‘  π‘₯

2

= π‘‘π‘Žπ‘› π‘₯

2.

36. Prove that 1 + π‘π‘œπ‘  2π‘₯

1 βˆ’ π‘π‘œπ‘  2π‘₯ = π‘π‘œπ‘‘ π‘₯

Solution: 1 + π‘π‘œπ‘  2π‘₯

1 βˆ’ π‘π‘œπ‘  2π‘₯ =

2π‘π‘œπ‘  2 π‘₯

2𝑠𝑖𝑛 2 π‘₯ =

π‘π‘œπ‘  π‘₯

𝑠𝑖𝑛 π‘₯ = π‘π‘œπ‘‘ π‘₯.

37. Express 2 𝑠𝑖𝑛2𝐴 βˆ™ π‘π‘œπ‘ π΄ as a sum.

Solution: 2 𝑠𝑖𝑛 2𝐴. π‘π‘œπ‘  𝐴 = 𝑠𝑖𝑛 2𝐴 + 𝐴 + 𝑠𝑖𝑛 2𝐴 βˆ’ 𝐴

= 𝑠𝑖𝑛 3𝐴 + 𝑠𝑖𝑛 𝐴.

38. Express π‘π‘œπ‘  7πœƒ βˆ™ π‘π‘œπ‘  5πœƒ as a sum.

Solution: π‘π‘œπ‘  7πœƒ βˆ™ π‘π‘œπ‘  5πœƒ = 1

2 π‘π‘œπ‘  7πœƒ + 5πœƒ + π‘π‘œπ‘  7πœƒ βˆ’ 5πœƒ

= 1

2 π‘π‘œπ‘  12πœƒ + π‘π‘œπ‘  2πœƒ .

39. Express 𝑠𝑖𝑛 4𝐴 + 𝑠𝑖𝑛 2𝐴 as product.

Solution: 𝑠𝑖𝑛 4𝐴 + 𝑠𝑖𝑛 2𝐴 = 2 𝑠𝑖𝑛 4𝐴 + 2𝐴

2 . π‘π‘œπ‘ 

4𝐴 βˆ’ 2𝐴

2

= 2 𝑠𝑖𝑛 3𝐴 . π‘π‘œπ‘  𝐴.

40. Express π‘π‘œπ‘  60Β° βˆ’ π‘π‘œπ‘  20Β° as a product.

Solution: π‘π‘œπ‘  60Β° βˆ’ π‘π‘œπ‘  20Β° = βˆ’ 2 𝑠𝑖𝑛 60 Β° + 20 Β°

2 . 𝑠𝑖𝑛

60Β° βˆ’ 20Β°

2

= βˆ’ 2 𝑠𝑖𝑛 40Β° βˆ™ 𝑠𝑖𝑛 20Β°.

41. Express π‘π‘œπ‘  55Β° + 𝑠𝑖𝑛 55Β° as a product.

Solution: π‘π‘œπ‘  55Β° + 𝑠𝑖𝑛 55Β° = π‘π‘œπ‘  55Β° + π‘π‘œπ‘  90Β° βˆ’ 55Β°

= π‘π‘œπ‘  55Β° + π‘π‘œπ‘  35Β° = 2 π‘π‘œπ‘  55 Β° βˆ’ 35 Β°

2 . π‘π‘œπ‘ 

55Β° βˆ’ 35Β°

2

= 2 π‘π‘œπ‘  45Β° . π‘π‘œπ‘  10Β° = 2.1

2. π‘π‘œπ‘  10Β° = 2. π‘π‘œπ‘  10Β°.

42. Define a trigonometric equation.

Solution: An equation involving one or more trigonometric

functions are called trigonometric equation.

43. What do you mean by general solution of a trigonometric

equation.

Solution: The set of all values of the angle, πœƒ (involved in a

trigonometric equation) satisfying the trigonometric equation,

𝑓(πœƒ) = 0 is called general solution of the trigonometric

equation.

44. Find the general solution of 𝑠𝑖𝑛 πœƒ = 0.

Solution: When = 0 , Β± πœ‹ , Β± 2πœ‹ , Β± 3πœ‹, … 𝑠𝑖𝑛 πœƒ = 0.

∴ the general solution of 𝑠𝑖𝑛 πœƒ = 0 is πœƒ = π‘›πœ‹, 𝑛 ∈ 𝑍.

45. Find the general solution of π‘π‘œπ‘  πœƒ = 0.

Solution: When πœƒ = Β± πœ‹

2, Β±

3πœ‹

2, Β±

5πœ‹

2 ,… π‘π‘œπ‘  πœƒ = 0.

∴ the general solution of π‘π‘œπ‘  πœƒ = 0 is πœƒ = (2𝑛 + 1)πœ‹

2 , 𝑛 ∈ 𝑍.

46. Find the general solution of π‘‘π‘Žπ‘› πœƒ = 0.

Solution: When πœƒ = 0 , Β± πœ‹ , Β± 2πœ‹ , Β± 3πœ‹, … π‘‘π‘Žπ‘› πœƒ = 0.

∴ the general solution of π‘‘π‘Žπ‘› πœƒ = 0 is πœƒ = π‘›πœ‹, 𝑛 ∈ 𝑍.

47. Find the principal value of π‘π‘œπ‘  π‘₯ = 3

2

Solution: π‘π‘œπ‘  π‘₯ = 3

2> 0 ∴ π‘₯ lies in the I or IV quadrant.

Principal value of π‘₯ ∈ 0, πœ‹ . Since π‘π‘œπ‘ π‘₯ is positive, the principal

value is in the I quadrant.

π‘π‘œπ‘  π‘₯ = 3

2= π‘π‘œπ‘ 

πœ‹

6 and

πœ‹

6∈ 0, πœ‹ . ∴ principal value of π‘₯ is

πœ‹

6.

48. Find the principal value of 𝑠𝑖𝑛 π‘₯ =1

2.

Solution: 𝑠𝑖𝑛 π‘₯ =1

2> 0 ∴ π‘₯ lies in the I or II quadrant.

Principal value of π‘₯ ∈ βˆ’πœ‹

2,

πœ‹

2 . Since 𝑠𝑖𝑛π‘₯ is positive the

principal value is in the I quadrant.

𝑠𝑖𝑛π‘₯ =1

2= 𝑠𝑖𝑛

πœ‹

6 and

πœ‹

6∈ βˆ’

πœ‹

2,

πœ‹

2 . ∴ principal value of π‘₯ is

πœ‹

6.

49. Find the principal value of π‘π‘œπ‘ π‘’π‘ πœƒ = βˆ’2

3.

Solution: π‘π‘œπ‘ π‘’π‘ πœƒ = βˆ’ 2

3 ⟹ 𝑠𝑖𝑛 πœƒ = βˆ’

3

2< 0

∴ π‘₯ lies in the III or IV quadrant.

Principal value of πœƒ ∈ βˆ’πœ‹

2,

πœ‹

2 . Since π‘ π‘–π‘›πœƒ is negative the

principal value is in the IV quadrant.

𝑠𝑖𝑛 πœƒ = βˆ’ 3

2= 𝑠𝑖𝑛 βˆ’

πœ‹

3 and βˆ’

πœ‹

3 ∈ βˆ’

πœ‹

2,

πœ‹

2 .

∴ principal value of π‘₯ is βˆ’πœ‹

3.

50. Find the principal value of π‘π‘œπ‘  π‘₯ = βˆ’ 3

2.

Solution: π‘π‘œπ‘  π‘₯ = βˆ’ 3

2< 0 ∴ π‘₯ lies in the II or III quadrant.

Principal value of π‘₯ ∈ 0, πœ‹ . Since π‘π‘œπ‘ π‘₯ is negative the

principal value is in the II quadrant.

π‘π‘œπ‘ π‘₯ = βˆ’ 3

2= βˆ’ π‘π‘œπ‘ 

πœ‹

6= π‘π‘œπ‘  180Β° βˆ’ 30Β°

= π‘π‘œπ‘ 150Β° = π‘π‘œπ‘ 5πœ‹

6 and

5πœ‹

6∈ 0, πœ‹ .

∴ principal value of π‘₯ 𝑖𝑠 5πœ‹

6.

Two mark questions

1. Define sexagesimal system.

Solution: In this system, a right angle is divided into 90 equal

parts. Each part is equal to one degree. One degree is divided

into 60 equal parts. Each part is called one minute. One minute

is divided into 60 equal parts. Each part is called one second.

One right angle = 90 degrees, written as 90Β° ;

one degree, 1Β° = 60 minutes, written as 60β€² ;

one minute, 1β€² = 60 seconds, written as 60β€²β€²;

2. Prove that one radian is a constant angle.

Solution: Since the angle subtended at the center of a circle of

unit radius, by an arc of length one unit is one radian, the

angle subtended at the center by the circumference of the

circle is 2πœ‹ radian. Thus 2πœ‹π‘ = 360Β°.

∴ πœ‹π‘ = 180Β°.

∴ 1𝑐 =180

πœ‹.

This gives the conclusion, 1𝑐 is a constant angle.

3. With usual notations prove that 𝑙 = π‘Ÿπœƒ.

Solution: We know that in a circle of radius π‘Ÿ, an arc of

length π‘Ÿ, subtends an angle of one radian at the center of the

circle. Since the angle subtended at the center by an arc of

length π‘Ÿ is one radian, the angle subtended by an arc of length

𝑙 has the measure = 𝑙

π‘Ÿ. Thus if πœƒ is the angle subtended at the

center by an arc of length 𝑙 then 𝑙

π‘Ÿ = πœƒ ∴ 𝑙 = π‘Ÿπœƒ.

4. With usual notations prove that the area of a sector of a

circle is given by 1

2π‘Ÿ2πœƒ or

1

2π‘Ÿπ‘™

Solution: We know that in a circle of radius π‘Ÿ, the angle 2πœ‹

radian traces the area πœ‹π‘Ÿ2. Therefore the area of the sector

tracing an angle πœƒ radian at the center is 𝐴 =πœ‹π‘Ÿ2

2πœ‹Γ— πœƒ =

1

2π‘Ÿ2πœƒ.

Since 𝑙 = π‘Ÿπœƒ we get 𝐴 =1

2π‘Ÿ2πœƒ =

1

2π‘Ÿ. π‘Ÿπœƒ =

1

2π‘Ÿπ‘™.

5. An arc of a circle subtends 15Β° at the centre. If the radius is

4 cm, find the length of the arc and area of the sector formed.

Solution: Here π‘Ÿ = 4 π‘π‘š and πœƒ = 15Β° = 15 Γ—πœ‹

180=

πœ‹

12

∴ 𝑙 = π‘Ÿπœƒ ⟹ 𝑙 = 4 Γ—22

7Γ—

1

12=

22

21 π‘π‘š.

Area of the sector =1

2π‘Ÿπ‘™ =

1

2 Γ— 4 Γ—

22

21 =

44

21 π‘ π‘ž. π‘π‘š.

6. An arc of length 11

3 cm subtends an angle of 30Β° at the

centre of a circle. Find the area of the sector of the circle so

formed.

Solution: Given =11

3 , πœƒ = 30Β° =

πœ‹

6.

We have 𝑙 = π‘Ÿπœƒ ⟹ π‘Ÿ =𝑙

πœƒ=

11

3Γ—

6

πœ‹=

11

3Γ—

6

22Γ— 7 = 7π‘π‘š

𝐴 =1

2 π‘Ÿ2πœƒ =

1

2 7 2 πœ‹

6=

1

2 Γ— 49 Γ—

22

7Γ—

1

6=

77

6 π‘ π‘ž. π‘π‘š.

7. If, in two circles arcs of the same length subtend angles of

60Β° π‘Žπ‘›π‘‘ 75Β° at the centre, find the ratio of their radii.

Solution: Let π‘Ÿ1 and π‘Ÿ2 be the radii of the two circles.

Given πœƒ1 = 60Β° = πœ‹

180Γ— 60 =

πœ‹

3 and πœƒ2 = 75Β° =

πœ‹

180Γ— 75 =

5πœ‹

12

Now the length of each of the arc, 𝑙 = π‘Ÿ1πœƒ1 = π‘Ÿ2πœƒ2, which gives

π‘Ÿ1 Γ—πœ‹

3= π‘Ÿ2 Γ—

5πœ‹

12⟹

π‘Ÿ1

π‘Ÿ2=

5

4. Hence π‘Ÿ1: π‘Ÿ2 = 5: 4.

8. Prove the following:

a) 𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘ π‘’π‘ πœƒ = 1, π‘π‘œπ‘ π‘’π‘ πœƒ = 1

𝑠𝑖𝑛 πœƒ ;

b) π‘π‘œπ‘  πœƒ. 𝑠𝑒𝑐 πœƒ = 1, 𝑠𝑒𝑐 πœƒ = 1

π‘π‘œπ‘  πœƒ ;

c) π‘‘π‘Žπ‘› πœƒ. π‘π‘œπ‘‘ πœƒ = 1, π‘π‘œπ‘‘ πœƒ = 1

π‘‘π‘Žπ‘› πœƒ ;

d) 𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒ = π‘‘π‘Žπ‘› πœƒ; e)

π‘π‘œπ‘  πœƒ

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘‘ πœƒ.

f) 𝑠𝑖𝑛2πœƒ + π‘π‘œπ‘ 2πœƒ = 1;

g) 1 + π‘‘π‘Žπ‘›2πœƒ = 𝑠𝑒𝑐2πœƒ ; h) 1 + π‘π‘œπ‘‘2πœƒ = π‘π‘œπ‘ π‘’π‘2πœƒ.

Solution: Consider a circle of

radius π‘Ÿ centered at the origin of

the Cartesian coordinate system. Let

𝑃(π‘₯, 𝑦) be a point on the circle. Join

𝑂𝑃. Define angle πœƒ having 𝑂𝑋 has

the initial direction and 𝑂𝑃 as the

terminal direction. Consider a circle

of radius π‘Ÿ centered at the origin of

the Cartesian coordinate system. Let 𝑃(π‘₯, 𝑦) be a point on the

circle. Join 𝑂𝑃. Define angle πœƒ having 𝑂𝑋 has the initial

direction and 𝑂𝑃 as the terminal direction. Then

𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ , π‘œπ‘  πœƒ =

π‘₯

π‘Ÿ , π‘‘π‘Žπ‘› πœƒ =

𝑦

π‘₯ ,

π‘π‘œπ‘‘ πœƒ = π‘₯

𝑦, 𝑠𝑒𝑐 πœƒ =

π‘Ÿ

π‘₯, π‘π‘œπ‘ π‘’π‘ πœƒ =

π‘Ÿ

𝑦.

a) 𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘ π‘’π‘ πœƒ = 𝑦

π‘Ÿ.π‘Ÿ

𝑦 = 1. ∴ π‘π‘œπ‘ π‘’π‘ πœƒ =

1

𝑠𝑖𝑛 πœƒ ;

b) π‘π‘œπ‘  πœƒ. 𝑠𝑒𝑐 πœƒ = π‘₯

π‘Ÿ. π‘Ÿ

π‘₯ = 1. ∴ 𝑠𝑒𝑐 πœƒ =

1

π‘π‘œπ‘  πœƒ ;

c) π‘‘π‘Žπ‘› πœƒ. π‘π‘œπ‘‘ πœƒ = 𝑦

π‘₯.π‘₯

𝑦 = 1. ∴ π‘π‘œπ‘‘ πœƒ =

1

π‘‘π‘Žπ‘› πœƒ ;

d) 𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒ =

𝑦 π‘Ÿ

π‘₯ π‘Ÿ =

𝑦

π‘₯ = π‘‘π‘Žπ‘› πœƒ ;

e) π‘π‘œπ‘  πœƒ

𝑠𝑖𝑛 πœƒ =

π‘₯ π‘Ÿ

𝑦 π‘Ÿ =

π‘₯

𝑦 = π‘π‘œπ‘‘ πœƒ ;

f) 𝑠𝑖𝑛2 πœƒ + π‘π‘œπ‘ 2 πœƒ = 𝑦

π‘Ÿ

2+

π‘₯

π‘Ÿ

2 =

𝑦2

π‘Ÿ2 +

π‘₯2

π‘Ÿ2 =

𝑦2 + π‘₯2

π‘Ÿ2 =

π‘Ÿ2

π‘Ÿ2 = 1 ;

g) 1 + π‘‘π‘Žπ‘›2 πœƒ = 1 + 𝑦

π‘₯

2 = 1 +

𝑦2

π‘₯2 =

π‘₯2 + 𝑦2

π‘₯2 =

π‘Ÿ2

π‘₯2 = 𝑠𝑒𝑐2 πœƒ ;

h) 1 + π‘π‘œπ‘‘ 2πœƒ = 1 + π‘₯

𝑦

2 = 1 +

π‘₯2

𝑦2 =

𝑦 2 + π‘₯2

𝑦2 =

π‘Ÿ2

𝑦2 = π‘π‘œπ‘ π‘’π‘2 πœƒ.

9. Prove that π‘π‘œπ‘ π‘’π‘2 𝐴 βˆ™ π‘‘π‘Žπ‘›2 𝐴 βˆ’ 1 = π‘‘π‘Žπ‘›2 𝐴.

Solution: 𝐿𝐻𝑆 = 1 + π‘π‘œπ‘‘2𝐴 βˆ™ π‘‘π‘Žπ‘›2 𝐴 βˆ’ 1

= π‘‘π‘Žπ‘›2 𝐴 + π‘π‘œπ‘‘2 𝐴 βˆ™ π‘‘π‘Žπ‘›2 𝐴 βˆ’ 1

= π‘‘π‘Žπ‘›2 𝐴 + π‘π‘œπ‘‘ 𝐴 βˆ™ π‘‘π‘Žπ‘› 𝐴 2 βˆ’ 1

= π‘‘π‘Žπ‘›2 𝐴 + 1 βˆ’ 1 = π‘‘π‘Žπ‘›2 𝐴 = 𝑅𝐻𝑆.

10. Prove that π‘π‘œπ‘  𝛼

𝑠𝑒𝑐 𝛼+

𝑠𝑖𝑛 𝛼

π‘π‘œπ‘ π‘’π‘ 𝛼= 1.

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘  𝛼

1

π‘π‘œπ‘  𝛼

+ 𝑠𝑖𝑛 𝛼

1

𝑠𝑖𝑛 𝛼

= π‘π‘œπ‘ 2 𝛼 + 𝑠𝑖𝑛2 𝛼 = 1 = 𝑅𝐻𝑆.

11. Prove that π‘π‘œπ‘ 4 𝐴 βˆ’ 𝑠𝑖𝑛4 𝐴 = 2 π‘π‘œπ‘ 2 𝐴 βˆ’ 1.

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘ 2 𝐴 2 βˆ’ 𝑠𝑖𝑛2 𝐴 2

= π‘π‘œπ‘ 2 𝐴 + 𝑠𝑖𝑛2 𝐴 π‘π‘œπ‘ 2 𝐴 βˆ’ 𝑠𝑖𝑛2 𝐴

= 1 βˆ™ π‘π‘œπ‘ 2 𝐴 βˆ’ 𝑠𝑖𝑛2 𝐴

= π‘π‘œπ‘ 2 𝐴 βˆ’ 1 βˆ’ π‘π‘œπ‘ 2 𝐴

= π‘π‘œπ‘ 2 𝐴 βˆ’ 1 + π‘π‘œπ‘ 2 𝐴 = 2π‘π‘œπ‘ 2 𝐴 βˆ’ 1 = 𝑅𝐻𝑆 .

12. Prove that 𝑠𝑒𝑐 πœƒ βˆ™ π‘π‘œπ‘‘ πœƒ 2 βˆ’ π‘π‘œπ‘  πœƒ βˆ™ π‘π‘œπ‘ π‘’π‘ πœƒ 2 = 1.

Solution: 𝐿𝐻𝑆 = 1

cos πœƒβˆ™

cos πœƒ

sin πœƒ

2βˆ’ cos πœƒ βˆ™

1

sin πœƒ

2

= 1

sin πœƒ

2βˆ’

cos πœƒ

sin πœƒ

2 = cosec πœƒ 2 βˆ’ cot πœƒ 2 = 1 = 𝑅𝐻𝑆.

13. Prove that 𝑠𝑒𝑐 πœƒ βˆ’ π‘‘π‘Žπ‘› πœƒ βˆ™ 𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘  πœƒ.

Solution: 𝐿𝐻𝑆 = 1

π‘π‘œπ‘  πœƒ βˆ’

𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒβˆ™ 𝑠𝑖𝑛 πœƒ

= 1

π‘π‘œπ‘  πœƒβˆ’

𝑠𝑖𝑛 2 πœƒ

π‘π‘œπ‘  πœƒ=

1βˆ’π‘ π‘–π‘› 2 πœƒ

π‘π‘œπ‘  πœƒ =

π‘π‘œπ‘  πœƒ 2

π‘π‘œπ‘  πœƒ= π‘π‘œπ‘  πœƒ = 𝑅𝐻𝑆.

14. Prove that π‘‘π‘Žπ‘› πœƒ + π‘π‘œπ‘‘ πœƒ = 𝑠𝑒𝑐 πœƒ βˆ™ π‘π‘œπ‘ π‘’π‘ πœƒ.

Solution: 𝐿𝐻𝑆 = 𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒ +

π‘π‘œπ‘  πœƒ

𝑠𝑖𝑛 πœƒ

= 𝑠𝑖𝑛 2 πœƒ + π‘π‘œπ‘  2 πœƒ

π‘π‘œπ‘  πœƒβˆ™ 𝑠𝑖𝑛 πœƒ

= 1

π‘π‘œπ‘  πœƒ βˆ™

1

𝑠𝑖𝑛 πœƒ = 𝑠𝑒𝑐 πœƒ βˆ™ π‘π‘œπ‘ π‘’π‘ πœƒ = 𝑅𝐻𝑆.

15. Prove that π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 πœƒ 2 + π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 πœƒ 2 = 2.

Solution:

𝐿𝐻𝑆 = π‘π‘œπ‘ 2 πœƒ + 𝑠𝑖𝑛2 πœƒ + 2 π‘π‘œπ‘  πœƒ . 𝑠𝑖𝑛 πœƒ

+ π‘π‘œπ‘ 2 πœƒ + 𝑠𝑖𝑛2 πœƒ βˆ’ 2 cos πœƒ . sin πœƒ = 1 + 1 = 2 = 𝑅𝐻𝑆.

16. Prove that π‘‘π‘Žπ‘›2𝛼 + π‘‘π‘Žπ‘›4𝛼 = 𝑠𝑒𝑐4𝛼 βˆ’ 𝑠𝑒𝑐2𝛼.

Solution: 𝐿𝐻𝑆 = π‘‘π‘Žπ‘›2𝛼 + π‘‘π‘Žπ‘›4𝛼 = π‘‘π‘Žπ‘›2𝛼 1 + π‘‘π‘Žπ‘›2𝛼

= 𝑠𝑒𝑐2𝛼 βˆ’ 1 𝑠𝑒𝑐2𝛼 = 𝑠𝑒𝑐4𝛼 βˆ’ 𝑠𝑒𝑐2𝛼 = 𝑅𝐻𝑆.

17. Prove that 1

1 βˆ’ π‘π‘œπ‘  𝛼+

1

1 + π‘π‘œπ‘  𝛼= 2 π‘π‘œπ‘ π‘’π‘2𝛼

Solution: 𝐿𝐻𝑆 = 1 + π‘π‘œπ‘  𝛼 + 1 βˆ’ π‘π‘œπ‘  𝛼

1 βˆ’ π‘π‘œπ‘  𝛼 1 βˆ’ π‘π‘œπ‘  𝛼

=2

1 βˆ’ π‘π‘œπ‘  2 𝛼 =

2

𝑠𝑖𝑛 2 𝛼 = 2 π‘π‘œπ‘ π‘’π‘2𝛼 = 𝑅𝐻𝑆.

18. Prove that 1

1 + π‘π‘œπ‘  2 𝛼+

1

1 + 𝑠𝑒𝑐 2 𝛼 = 1.

Solution: 𝐿𝐻𝑆 = 1

1 + π‘π‘œπ‘  2 𝛼 +

1

1 + 1

π‘π‘œπ‘  2 𝛼

=1

1+ π‘π‘œπ‘  2 𝛼 +

π‘π‘œπ‘  2 𝛼

1+ π‘π‘œπ‘  2 𝛼 =

1 + π‘π‘œπ‘  2 𝛼

1 + π‘π‘œπ‘  2 𝛼= 1 = 𝑅𝐻𝑆.

19. Prove that 𝑠𝑖𝑛290Β° + π‘π‘œπ‘ 260Β° βˆ’ 2 𝑠𝑖𝑛245Β° +3

2𝑠𝑖𝑛230Β° =

5

8.

Solution: 𝐿𝐻𝑆 = 12 + 1

2

2βˆ’ 2

1

2

2+

3

2

1

2

2

= 1 + 1

4 βˆ’ 1 +

3

8 =

1

4 +

3

8 =

5

8 = 𝑅𝐻𝑆.

20. Prove that π‘π‘œπ‘‘2 πœ‹

6 βˆ’ 2π‘π‘œπ‘ 2 πœ‹

3 βˆ’

3

4𝑠𝑒𝑐2 πœ‹

4 βˆ’ 4𝑠𝑖𝑛2 πœ‹

6 = 0.

Solution: 𝐿𝐻𝑆 = 3 2βˆ’ 2

1

2

2βˆ’

3

4 2

2+ 4

1

2

2

= 3 βˆ’ 1

2 βˆ’

3

2 βˆ’ 1 = 0 = 𝑅𝐻𝑆.

21. Prove that π‘π‘œπ‘ π‘’π‘245Β° βˆ™ π‘π‘œπ‘ 60Β° βˆ™ sin90Β° βˆ™ 𝑠𝑒𝑐230Β° =4

3.

Solution: 𝐿𝐻𝑆 = 2 2βˆ™

1

2βˆ™ 1 βˆ™

2

3

2= 2 βˆ™

1

2βˆ™ 1 βˆ™

4

3 =

4

3 = 𝑅𝐻𝑆.

22. Prove that π‘‘π‘Žπ‘›260Β° + 2 π‘‘π‘Žπ‘›245Β° = 5.

Solution: 𝐿𝐻𝑆 = 3 2

+ 2 = 3 + 2 = 5 = 𝑅𝐻𝑆.

23. Prove that π‘‘π‘Žπ‘›2 πœ‹

6+ π‘‘π‘Žπ‘›2 πœ‹

4+ π‘‘π‘Žπ‘›2 πœ‹

3=

13

3 .

Solution: 𝐿𝐻𝑆 = 1

3

2+ 1 2 + 3

2

= 1

3 + 1 + 3 =

1 + 3 + 9

3 =

13

3= 𝑅𝐻𝑆.

24. Prove that 1 βˆ’ π‘π‘œπ‘ 30Β°

1 + π‘π‘œπ‘ 30Β° =

2 βˆ’ 3

2 + 3

Solution: 𝐿𝐻𝑆 =1 βˆ’

3

2

1 + 3

2

= 2 βˆ’ 3

2

2 + 3

2

=2 βˆ’ 3

2 + 3= 𝑅𝐻𝑆.

25. Find π‘₯, π‘₯ 𝑠𝑖𝑛2 πœ‹

4 . π‘π‘œπ‘ 2 πœ‹

4= π‘‘π‘Žπ‘›2 πœ‹

3

Solution: π‘₯ 1

2

2βˆ™

1

2

2= 3

2 ⟹

π‘₯

4= 3 ∴ π‘₯ = 12.

26. Prove that trigonometric ratios of 2πœ‹π‘› + πœƒ are same as the

trigonometric ratio of πœƒ.

Solution: πœƒ, 2πœ‹ + πœƒ, 4πœ‹ + πœƒ, ... are co-terminal angles. In

general πœƒ is co-terminal with the angle 2πœ‹π‘› + πœƒ, βˆ€ 𝑛 ∈ 𝑍.

Since the points corresponding to the coterminal angles are the

same, the trigonometric ratios of coterminal angles are the

same. Thus 𝑠𝑖𝑛 (2πœ‹π‘› + πœƒ) = 𝑠𝑖𝑛 πœƒ, π‘π‘œπ‘  (2πœ‹π‘› + πœƒ) = π‘π‘œπ‘  πœƒ and

π‘‘π‘Žπ‘› (2πœ‹π‘› + πœƒ) = π‘‘π‘Žπ‘› πœƒ, βˆ€ 𝑛 ∈ 𝑍.

27. Prove that trigonometric ratios of 2πœ‹π‘› βˆ’ πœƒ, βˆ€ 𝑛 ∈ 𝑍 are

same as the trigonometric ratio of βˆ’ πœƒ.

Solution: βˆ’ πœƒ, 2πœ‹ βˆ’ πœƒ, 4πœ‹ βˆ’ πœƒ, ... are co-terminal angles. In

general βˆ’ πœƒ is co-terminal with the angle 2πœ‹π‘› βˆ’ πœƒ, βˆ€ 𝑛 ∈ 𝑍.

Since the points corresponding to the coterminal angles are the

same, the trigonometric ratios of coterminal angles are the

same. Thus 𝑠𝑖𝑛 (2πœ‹π‘› βˆ’ πœƒ) = 𝑠𝑖𝑛 (βˆ’ πœƒ), π‘π‘œπ‘  (2πœ‹π‘› βˆ’ πœƒ) = π‘π‘œπ‘  ( βˆ’ πœƒ)

and π‘‘π‘Žπ‘› (2πœ‹π‘› βˆ’ πœƒ) = π‘‘π‘Žπ‘› ( βˆ’ πœƒ), βˆ€ 𝑛 ∈ 𝑍.

28. Prove that 𝑠𝑖𝑛 (180Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 πœƒ.

Solution: 𝑠𝑖𝑛 (180Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 180Β°. π‘π‘œπ‘  πœƒ βˆ’ π‘π‘œπ‘  180Β°. 𝑠𝑖𝑛 πœƒ

= 0. π‘π‘œπ‘  πœƒ βˆ’ (βˆ’ 1). 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 πœƒ.

29. Prove that π‘π‘œπ‘  (180Β° βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘  πœƒ.

Solution: π‘π‘œπ‘  (180Β° βˆ’ πœƒ) = π‘π‘œπ‘  180Β°. π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 180Β°. 𝑠𝑖𝑛 πœƒ

= (βˆ’ 1). π‘π‘œπ‘  πœƒ + 0. 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘  πœƒ.

30. Prove that π‘‘π‘Žπ‘› (180Β° βˆ’ πœƒ) = βˆ’ π‘‘π‘Žπ‘› πœƒ.

Solution: π‘‘π‘Žπ‘› (180Β° βˆ’ πœƒ) = π‘‘π‘Žπ‘› 180Β° βˆ’ π‘‘π‘Žπ‘› πœƒ

1 + π‘‘π‘Žπ‘› 180Β°.π‘‘π‘Žπ‘› πœƒ

= 0 βˆ’ π‘‘π‘Žπ‘› πœƒ

1 + 0.π‘‘π‘Žπ‘› πœƒ = βˆ’ π‘‘π‘Žπ‘› πœƒ.

31. Prove that 𝑠𝑖𝑛 (180Β° + πœƒ) = βˆ’ 𝑠𝑖𝑛 πœƒ.

Solution: 𝑠𝑖𝑛 (180Β° + πœƒ) = 𝑠𝑖𝑛 180Β°. π‘π‘œπ‘  πœƒ + π‘π‘œπ‘  180Β°. 𝑠𝑖𝑛 πœƒ

= 0. π‘π‘œπ‘  πœƒ + (βˆ’ 1). 𝑠𝑖𝑛 πœƒ = βˆ’ 𝑠𝑖𝑛 πœƒ.

32. Prove that π‘π‘œπ‘  (180Β° + πœƒ) = βˆ’ π‘π‘œπ‘  πœƒ.

Solution: π‘π‘œπ‘  (180Β° + πœƒ) = π‘π‘œπ‘  180Β°. π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 180Β°. 𝑠𝑖𝑛 πœƒ

= (βˆ’ 1). π‘π‘œπ‘  πœƒ βˆ’ 0. 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘  πœƒ.

33. Prove that π‘‘π‘Žπ‘› (180Β° + πœƒ) = π‘‘π‘Žπ‘› πœƒ.

Solution: π‘‘π‘Žπ‘› (180Β° + πœƒ) = π‘‘π‘Žπ‘› 180Β° + π‘‘π‘Žπ‘› πœƒ

1 βˆ’ π‘‘π‘Žπ‘› 180Β°.π‘‘π‘Žπ‘› πœƒ

= 0 + π‘‘π‘Žπ‘› πœƒ

1 βˆ’ 0.π‘‘π‘Žπ‘› πœƒ = π‘‘π‘Žπ‘› πœƒ.

34. Prove that 𝑠𝑖𝑛 (270Β° βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘  πœƒ.

Solution: 𝑠𝑖𝑛 (270Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 270Β°. π‘π‘œπ‘  πœƒ βˆ’ π‘π‘œπ‘  270Β°. 𝑠𝑖𝑛 πœƒ

= βˆ’ 1. π‘π‘œπ‘  πœƒ βˆ’ 0. 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘  πœƒ.

35. Prove that π‘π‘œπ‘  (270Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 πœƒ.

Solution: π‘π‘œπ‘  (270Β° βˆ’ πœƒ) = π‘π‘œπ‘  270Β°. π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 270Β°. 𝑠𝑖𝑛 πœƒ

= 0. π‘π‘œπ‘  πœƒ + (βˆ’ 1). 𝑠𝑖𝑛 πœƒ = βˆ’ 𝑠𝑖𝑛 πœƒ.

36. Prove that π‘‘π‘Žπ‘› (270Β° βˆ’ πœƒ) = π‘π‘œπ‘‘ πœƒ.

Solution: π‘‘π‘Žπ‘› (270Β° βˆ’ πœƒ) = π‘‘π‘Žπ‘› (180Β° + 90Β° βˆ’ πœƒ)

= π‘‘π‘Žπ‘› ( 90Β° βˆ’ πœƒ) = π‘π‘œπ‘‘ πœƒ.

37. Prove that 𝑠𝑖𝑛 (270Β° + πœƒ) = βˆ’ π‘π‘œπ‘  πœƒ.

Solution: 𝑠𝑖𝑛 (270Β° + πœƒ) = 𝑠𝑖𝑛 270Β°. π‘π‘œπ‘  πœƒ + π‘π‘œπ‘  270Β°. 𝑠𝑖𝑛 πœƒ

= βˆ’ 1. π‘π‘œπ‘  πœƒ + 0. 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘  πœƒ.

38. Prove that π‘π‘œπ‘  (270Β° + πœƒ) = 𝑠𝑖𝑛 πœƒ.

Solution: π‘π‘œπ‘  (270Β° + πœƒ) = π‘π‘œπ‘  270Β°. π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 270Β°. 𝑠𝑖𝑛 πœƒ

= 0. π‘π‘œπ‘  πœƒ βˆ’ (βˆ’ 1). 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 πœƒ.

39. Prove that π‘‘π‘Žπ‘› (270Β° + πœƒ) = βˆ’ π‘π‘œπ‘‘ πœƒ.

Solution: π‘‘π‘Žπ‘› (270Β° + πœƒ) = π‘‘π‘Žπ‘› (180Β° + 90Β° + πœƒ)

= π‘‘π‘Žπ‘› ( 90Β° + πœƒ) = βˆ’ π‘π‘œπ‘‘ πœƒ.

40. Prove that π‘‘π‘Žπ‘› (π‘₯ + 𝑦) = π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦

1 βˆ’ π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦

Solution: π‘‘π‘Žπ‘› (π‘₯ + 𝑦) = 𝑠𝑖𝑛 (π‘₯ + 𝑦)

π‘π‘œπ‘  (π‘₯ + 𝑦) =

𝑠𝑖𝑛 π‘₯ .π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯ .𝑠𝑖𝑛 𝑦.

Dividing the numerator and the denominator by π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 we

get, π‘‘π‘Žπ‘› (π‘₯ + 𝑦) =

𝑠𝑖𝑛 π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 +

π‘π‘œπ‘  π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 βˆ’

𝑠𝑖𝑛 π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

= π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦

1 βˆ’ π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦 .

41. Prove that π‘‘π‘Žπ‘› (π‘₯ βˆ’ 𝑦) = π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 𝑦

1 + π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦

Solution: π‘‘π‘Žπ‘› (π‘₯ βˆ’ 𝑦) = 𝑠𝑖𝑛 (π‘₯ βˆ’ 𝑦)

π‘π‘œπ‘  (π‘₯ βˆ’ 𝑦) =

𝑠𝑖𝑛 π‘₯ .π‘π‘œπ‘  𝑦 βˆ’ π‘π‘œπ‘  π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛 π‘₯ .𝑠𝑖𝑛 𝑦.

Dividing the numerator and the denominator by π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 we

get, π‘‘π‘Žπ‘› (π‘₯ βˆ’ 𝑦) =

𝑠𝑖𝑛 π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 βˆ’

π‘π‘œπ‘  π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦 +

𝑠𝑖𝑛 π‘₯ .𝑠𝑖𝑛 𝑦

π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  𝑦

= π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 𝑦

1 + π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦 .

42. Prove that π‘π‘œπ‘‘ (π‘₯ + 𝑦) = π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 βˆ’ 1

π‘π‘œπ‘‘ π‘₯ + π‘π‘œπ‘‘ 𝑦

Solution: We know that π‘‘π‘Žπ‘› (π‘₯ + 𝑦) =π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦

1 βˆ’ π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦 .

∴ π‘π‘œπ‘‘ (π‘₯ + 𝑦) =1 βˆ’ π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦

π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦

=1 βˆ’

1

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦1

π‘π‘œπ‘‘ π‘₯ +

1

π‘π‘œπ‘‘ 𝑦

=

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 βˆ’ 1

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ π‘¦π‘π‘œπ‘‘ 𝑦 + π‘π‘œπ‘‘ π‘₯

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦

= π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 βˆ’ 1

π‘π‘œπ‘‘ π‘₯ + π‘π‘œπ‘‘ 𝑦

43. Prove that π‘π‘œπ‘‘ (π‘₯ βˆ’ 𝑦) = π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 + 1

π‘π‘œπ‘‘ 𝑦 βˆ’ π‘π‘œπ‘‘ π‘₯.

Solution: We know that π‘‘π‘Žπ‘› (π‘₯ βˆ’ 𝑦) =π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 𝑦

1 + π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦 .

∴ π‘π‘œπ‘‘ (π‘₯ βˆ’ 𝑦) =1 + π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦

π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 𝑦

= 1 +

1

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦1

π‘π‘œπ‘‘ π‘₯ βˆ’

1

π‘π‘œπ‘‘ 𝑦

=

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 + 1

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ π‘¦π‘π‘œπ‘‘ 𝑦 βˆ’ π‘π‘œπ‘‘ π‘₯

π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦

=π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 𝑦 + 1

π‘π‘œπ‘‘ 𝑦 βˆ’ π‘π‘œπ‘‘ π‘₯.

44. Prove that 𝑠𝑖𝑛 (π‘₯ + 𝑦). 𝑠𝑖𝑛 (π‘₯ βˆ’ 𝑦) = 𝑠𝑖𝑛2 π‘₯ βˆ’ 𝑠𝑖𝑛2 𝑦

Solution: 𝑠𝑖𝑛 (π‘₯ + 𝑦). 𝑠𝑖𝑛 (π‘₯ βˆ’ 𝑦)

= (𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦). (𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 βˆ’ π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦)

= 𝑠𝑖𝑛2 π‘₯. π‘π‘œπ‘ 2𝑦 βˆ’ π‘π‘œπ‘ 2 π‘₯. 𝑠𝑖𝑛2 𝑦

= 𝑠𝑖𝑛2 π‘₯(1 βˆ’ 𝑠𝑖𝑛2𝑦) βˆ’ (1 βˆ’ 𝑠𝑖𝑛2 π‘₯)𝑠𝑖𝑛2 𝑦

= 𝑠𝑖𝑛2 π‘₯ βˆ’ 𝑠𝑖𝑛2 π‘₯. 𝑠𝑖𝑛2 𝑦 βˆ’ 𝑠𝑖𝑛2 𝑦 + 𝑠𝑖𝑛2 π‘₯. 𝑠𝑖𝑛2 𝑦

= 𝑠𝑖𝑛2 π‘₯ βˆ’ 𝑠𝑖𝑛2 𝑦.

45. Prove that π‘π‘œπ‘  (π‘₯ + 𝑦). π‘π‘œπ‘  (π‘₯ βˆ’ 𝑦) = π‘π‘œπ‘ 2 π‘₯ βˆ’ 𝑠𝑖𝑛2 𝑦

Solution: π‘π‘œπ‘  (π‘₯ + 𝑦). π‘π‘œπ‘  (π‘₯ βˆ’ 𝑦)

= (π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦).(π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦)

= π‘π‘œπ‘ 2 π‘₯. π‘π‘œπ‘ 2𝑦 βˆ’ 𝑠𝑖𝑛2 π‘₯. 𝑠𝑖𝑛2 𝑦

= π‘π‘œπ‘ 2 π‘₯(1 βˆ’ 𝑠𝑖𝑛2𝑦) βˆ’ (1 βˆ’ π‘π‘œπ‘ 2 π‘₯)𝑠𝑖𝑛2 𝑦

= π‘π‘œπ‘ 2 π‘₯ βˆ’ π‘π‘œπ‘ 2 π‘₯. 𝑠𝑖𝑛2 𝑦 βˆ’ 𝑠𝑖𝑛2 𝑦 + π‘π‘œπ‘ 2 π‘₯. 𝑠𝑖𝑛2 𝑦

= π‘π‘œπ‘ 2 π‘₯ βˆ’ 𝑠𝑖𝑛2 𝑦.

46. Find the values of the following

a) 𝑠𝑖𝑛 15Β° ; b) π‘π‘œπ‘  15Β° ; c) π‘‘π‘Žπ‘› 15Β° ;

d) 𝑠𝑖𝑛 75Β° ; e) π‘π‘œπ‘  75Β° ; f) π‘‘π‘Žπ‘› 75Β°.

Solution: a) 𝑠𝑖𝑛 15Β° = 𝑠𝑖𝑛 (45Β° βˆ’ 30Β°)

= 𝑠𝑖𝑛 45Β°. π‘π‘œπ‘  30Β° βˆ’ π‘π‘œπ‘  45Β°. 𝑠𝑖𝑛 30Β°

= 1

2. 3

2 βˆ’

1

2.

1

2 =

3 βˆ’ 1

2 2.

b) π‘π‘œπ‘  15Β° = π‘π‘œπ‘  (45Β° βˆ’ 30Β°)

= π‘π‘œπ‘  45Β°. π‘π‘œπ‘  30Β° + 𝑠𝑖𝑛 45Β°. 𝑠𝑖𝑛 30Β°

= 1

2. 3

2 +

1

2.

1

2 =

3 + 1

2 2

c) π‘‘π‘Žπ‘› 15Β° = π‘‘π‘Žπ‘› (45Β° βˆ’ 30Β°)

= π‘‘π‘Žπ‘› 45Β° βˆ’ π‘‘π‘Žπ‘› 30Β°

1 + π‘‘π‘Žπ‘› 45Β°.π‘‘π‘Žπ‘› 30Β° =

1 βˆ’ 1

3

1 + 1.1

3

= 3 βˆ’ 1

3 + 1

= 3 βˆ’ 1

3 + 1. 3 βˆ’ 1

3 βˆ’ 1 =

3 βˆ’ 1 2

32

βˆ’ 1 =

3 + 1 βˆ’ 2 3

2

= 4 βˆ’ 2 3

2 = 2 βˆ’ 3.

d) 𝑠𝑖𝑛 75Β° = 𝑠𝑖𝑛 (45Β° + 30Β°)

= 𝑠𝑖𝑛 45Β°. π‘π‘œπ‘  30Β° + π‘π‘œπ‘  45Β°. 𝑠𝑖𝑛 30Β°

= 1

2. 3

2 +

1

2.

1

2 =

3 + 1

2 2.

e) π‘π‘œπ‘  75Β° = π‘π‘œπ‘  (45Β° + 30Β°)

= π‘π‘œπ‘  45Β°. π‘π‘œπ‘  30Β° βˆ’ 𝑠𝑖𝑛 45Β°. 𝑠𝑖𝑛 30Β°

= 1

2. 3

2 βˆ’

1

2.

1

2 =

3 βˆ’ 1

2 2

f) π‘‘π‘Žπ‘› 75Β° = π‘‘π‘Žπ‘› (45Β° + 30Β°)

= π‘‘π‘Žπ‘› 45Β° + π‘‘π‘Žπ‘› 30Β°

1 βˆ’ π‘‘π‘Žπ‘› 45Β°.π‘‘π‘Žπ‘› 30Β° =

1 + 1

3

1 βˆ’ 1.1

3

= 3 + 1

3 βˆ’ 1

= 3 + 1

3 βˆ’ 1. 3 + 1

3 + 1 =

3 + 1 2

32

βˆ’ 1 =

3 + 1 + 2 3

2

= 4 + 2 3

2 = 2 + 3.

47. Find the values of the following

a) π‘π‘œπ‘ π‘’π‘ 15Β° ; b) 𝑠𝑒𝑐 15Β° ; c) π‘π‘œπ‘‘ 15Β°;

d) π‘π‘œπ‘ π‘’π‘ 75Β° ; e) 𝑠𝑒𝑐 75Β° ; f) π‘π‘œπ‘‘ 75Β°.

Solution: a) π‘π‘œπ‘ π‘’π‘ 15Β° = 1

𝑠𝑖𝑛 15Β° =

2 2

3 βˆ’ 1 =

2 2

3 βˆ’ 1. 3 + 1

3 + 1

= 2 2( 3 + 1)

3 βˆ’ 1 = 2( 3 + 1) = 6 + 2.

b) 𝑠𝑒𝑐 15Β° = 1

π‘π‘œπ‘  15Β° =

2 2

3 + 1 =

2 2

3 + 1. 3 βˆ’ 1

3 βˆ’ 1 =

2 2( 3 βˆ’ 1)

3 βˆ’ 1

= 2( 3 βˆ’ 1) = 6 βˆ’ 2.

c) π‘π‘œπ‘‘ 15Β° = 1

π‘‘π‘Žπ‘› 15Β° =

1

2 βˆ’ 3 =

1

2 βˆ’ 3.

2 + 3

2 + 3 =

2 + 3

4 βˆ’ 3 = 2 + 3.

d) π‘π‘œπ‘ π‘’π‘ 75Β° = 1

𝑠𝑖𝑛 75Β° =

2 2

3 + 1 =

2 2

3 + 1. 3 βˆ’ 1

3 βˆ’ 1 =

2 2( 3 βˆ’ 1)

3 βˆ’ 1

= 2( 3 βˆ’ 1) = 6 βˆ’ 2.

e) 𝑠𝑒𝑐 75Β° = 1

π‘π‘œπ‘  75Β° =

2 2

3 βˆ’ 1 =

2 2

3 βˆ’ 1. 3 + 1

3 + 1 =

2 2( 3 + 1)

3 βˆ’ 1

= 2( 3 + 1) = 6 + 2.

f) π‘π‘œπ‘‘ 75Β° = 1

π‘‘π‘Žπ‘› 75Β° =

1

2 + 3 =

1

2 + 3.

2 βˆ’ 3

2 βˆ’ 3 =

2 + 3

4 βˆ’ 3 = 2 + 3.

48. Show that

π‘π‘œπ‘  45Β° βˆ’ πœƒ . π‘π‘œπ‘  45Β° + πœƒ βˆ’ 𝑠𝑖𝑛 45Β° βˆ’ πœƒ . 𝑠𝑖𝑛 45Β° + πœƒ = 0

Solution:

𝐿𝐻𝑆 = π‘π‘œπ‘  45Β° βˆ’ πœƒ . π‘π‘œπ‘  45Β° + πœƒ βˆ’ 𝑠𝑖𝑛 45Β° βˆ’ πœƒ . 𝑠𝑖𝑛 45Β° + πœƒ

= π‘π‘œπ‘  45Β° βˆ’ πœƒ + 45Β° + πœƒ

= π‘π‘œπ‘  45Β° βˆ’ πœƒ + 45Β° + πœƒ = cos 90Β° = 0.

49. Show that π‘‘π‘Žπ‘› πœ‹

4+ πœƒ βˆ™ π‘‘π‘Žπ‘›

πœ‹

4βˆ’ πœƒ = 1.

Solution: 𝐿𝐻𝑆 = π‘‘π‘Žπ‘› πœ‹

4 + πœƒ . π‘‘π‘Žπ‘›

πœ‹

4βˆ’ πœƒ

= π‘‘π‘Žπ‘›

πœ‹

4 + π‘‘π‘Žπ‘›πœƒ

1 βˆ’ π‘‘π‘Žπ‘› πœ‹

4.π‘‘π‘Žπ‘›πœƒ

π‘‘π‘Žπ‘›

πœ‹

4 βˆ’ π‘‘π‘Žπ‘›πœƒ

1 + π‘‘π‘Žπ‘› πœ‹

4.π‘‘π‘Žπ‘›πœƒ

= 1 + π‘‘π‘Žπ‘›πœƒ

1 βˆ’ π‘‘π‘Žπ‘›πœƒ

1 βˆ’ π‘‘π‘Žπ‘›πœƒ

1 + π‘‘π‘Žπ‘›πœƒ = 1 = RHS.

50. Show that 𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛 π‘₯ + 𝑦

π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘  π‘₯ + 𝑦 = π‘‘π‘Žπ‘› π‘₯.

Solution: LHS =𝑠𝑖𝑛 π‘₯ + 𝑦 + 𝑠𝑖𝑛 π‘₯ βˆ’ 𝑦

π‘π‘œπ‘  π‘₯ + 𝑦 + π‘π‘œπ‘  π‘₯ βˆ’ 𝑦

=𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘¦ + π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛𝑦 + 𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘¦ βˆ’ π‘π‘œπ‘ π‘₯ 𝑠𝑖𝑛𝑦

π‘π‘œπ‘ π‘₯ π‘π‘œπ‘ π‘¦ βˆ’ 𝑠𝑖𝑛π‘₯ 𝑠𝑖𝑛𝑦 + π‘π‘œπ‘ π‘₯ π‘π‘œπ‘ π‘¦ + 𝑠𝑖𝑛π‘₯ 𝑠𝑖𝑛𝑦 =

2𝑠𝑖𝑛π‘₯ π‘π‘œπ‘ π‘¦

2π‘π‘œπ‘ π‘₯ π‘π‘œπ‘ π‘¦= tan π‘₯.

51. If π‘‘π‘Žπ‘›π΄ = 1

2 , π‘‘π‘Žπ‘›π΅ =

1

3 show that 𝐴 + 𝐡 =

πœ‹

4

Solution: π‘‘π‘Žπ‘› 𝐴 + 𝐡 =π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡

1 βˆ’ π‘‘π‘Žπ‘› 𝐴 π‘‘π‘Žπ‘› 𝐡 =

1

2 +

1

3

1 βˆ’ 1

2 Γ—

1

3

= 5 6

1 βˆ’ 1 6 =

5 6

5 6 = 1 = tan

Ο€

4 ∴ 𝐴 + 𝐡 =

πœ‹

4

52. Prove that π‘‘π‘Žπ‘› 85Β° βˆ’ π‘‘π‘Žπ‘› 25Β° = 3(1 + π‘‘π‘Žπ‘› 85Β° βˆ™ π‘‘π‘Žπ‘› 25Β°

Solution:

π‘‘π‘Žπ‘› 60Β° = 3 ⟹ π‘‘π‘Žπ‘› 85Β° βˆ’ 25Β° = 3

βŸΉπ‘‘π‘Žπ‘› 85Β° βˆ’ π‘‘π‘Žπ‘› 25Β°

1 + π‘‘π‘Žπ‘› 85Β°βˆ™π‘‘π‘Žπ‘› 25Β° = 3

⟹ π‘‘π‘Žπ‘› 85Β° βˆ’ π‘‘π‘Žπ‘› 25Β° = 3(1 + π‘‘π‘Žπ‘› 85Β° βˆ™ π‘‘π‘Žπ‘› 25Β°)

53. Prove that a) π‘‘π‘Žπ‘› 69Β° + π‘‘π‘Žπ‘› 66Β°

1 βˆ’ π‘‘π‘Žπ‘› 69Β°βˆ™ π‘‘π‘Žπ‘› 66Β° = βˆ’ 1 ; b)

π‘π‘œπ‘  17Β° + 𝑠𝑖𝑛17Β°

π‘π‘œπ‘  17Β°βˆ’ 𝑠𝑖𝑛17Β°= π‘‘π‘Žπ‘›62Β°

Solution:

a) 𝐿𝐻𝑆 =π‘‘π‘Žπ‘› 69Β° + π‘‘π‘Žπ‘› 66Β°

1 βˆ’ π‘‘π‘Žπ‘› 69Β°βˆ™ π‘‘π‘Žπ‘› 66Β° = π‘‘π‘Žπ‘› 69Β° + 66Β° = π‘‘π‘Žπ‘› 135Β°

= π‘‘π‘Žπ‘› 90Β° + 45Β° = βˆ’ π‘π‘œπ‘‘ 45Β° = βˆ’ 1 = 𝑅𝐻𝑆 .

b) Dividing the numerator and denominator by π‘π‘œπ‘  17Β°, we get,

𝐿𝐻𝑆 =π‘π‘œπ‘  17Β° + 𝑠𝑖𝑛 17Β°

π‘π‘œπ‘  17Β° βˆ’ 𝑠𝑖𝑛 17Β° =

1 + π‘‘π‘Ž 𝑛17Β°

1 βˆ’ π‘‘π‘Žπ‘› 17Β°

= π‘‘π‘Žπ‘› 45Β° + π‘‘π‘Žπ‘› 17Β°

1 βˆ’ π‘‘π‘Žπ‘› 45Β°βˆ™ π‘‘π‘Žπ‘› 17Β° = π‘‘π‘Žπ‘› 45Β° + 17Β° = π‘‘π‘Žπ‘› 62Β° = 𝑅𝐻𝑆.

54. Prove that π‘‘π‘Žπ‘› 3𝐴 βˆ’ π‘‘π‘Žπ‘› 2𝐴 βˆ’ π‘‘π‘Žπ‘› 𝐴 = π‘‘π‘Žπ‘› 𝐴 βˆ™ π‘‘π‘Žπ‘› 2𝐴 βˆ™ π‘‘π‘Žπ‘› 3𝐴

Solution: π‘‘π‘Žπ‘› 3𝐴 = π‘‘π‘Žπ‘› 𝐴 + 2𝐴 =π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 2𝐴

1 βˆ’ π‘‘π‘Žπ‘› 𝐴 π‘‘π‘Žπ‘› 2𝐴

⟹ π‘‘π‘Žπ‘› 3𝐴 1 βˆ’ π‘‘π‘Žπ‘› 𝐴 π‘‘π‘Žπ‘› 2𝐴 = π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 2𝐴

⟹ π‘‘π‘Žπ‘› 3𝐴 βˆ’ π‘‘π‘Žπ‘› 𝐴. π‘‘π‘Žπ‘› 2𝐴. π‘‘π‘Žπ‘› 3𝐴 = π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 2𝐴

⟹ π‘‘π‘Žπ‘› 3𝐴 βˆ’ π‘‘π‘Žπ‘› 2𝐴 βˆ’ π‘‘π‘Žπ‘› 𝐴 = π‘‘π‘Žπ‘› 𝐴 βˆ™ π‘‘π‘Žπ‘› 2𝐴 βˆ™ π‘‘π‘Žπ‘› 3𝐴.

55. Prove that 𝑠𝑖𝑛 2𝐴 = 2𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴.

Solution: We know that 𝑠𝑖𝑛 (π‘₯ + 𝑦) = 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦.

By taking π‘₯ = 𝑦 = 𝐴, we get,

𝑠𝑖𝑛 (𝐴 + 𝐴) = 𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴 + π‘π‘œπ‘  𝐴. 𝑠𝑖𝑛 𝐴

β‡’ 𝑠𝑖𝑛 2𝐴 = 2𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴.

56. Prove that π‘π‘œπ‘  2𝐴 = π‘π‘œπ‘ 2𝐴 βˆ’ 𝑠𝑖𝑛2 𝐴.

Solution: We know that π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

By taking π‘₯ = 𝑦 = 𝐴, we get,

π‘π‘œπ‘  (𝐴 + 𝐴) = π‘π‘œπ‘  𝐴. π‘π‘œπ‘  𝐴 βˆ’ 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛 𝐴

β‡’ π‘π‘œπ‘  2𝐴 = π‘π‘œπ‘ 2𝐴 βˆ’ 𝑠𝑖𝑛2𝐴.

57. Prove that π‘π‘œπ‘  2𝐴 = 2. π‘π‘œπ‘ 2𝐴 βˆ’ 1

Solution: We know that π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

By taking π‘₯ = 𝑦 = 𝐴, we get,

π‘π‘œπ‘  (𝐴 + 𝐴) = π‘π‘œπ‘  𝐴. π‘π‘œπ‘  𝐴 βˆ’ 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛 𝐴

β‡’ π‘π‘œπ‘  2𝐴 = π‘π‘œπ‘ 2𝐴 βˆ’ 𝑠𝑖𝑛2𝐴

= π‘π‘œπ‘ 2𝐴 βˆ’ (1 βˆ’ π‘π‘œπ‘ 2𝐴)

= π‘π‘œπ‘ 2𝐴 βˆ’ 1 + π‘π‘œπ‘ 2𝐴 = π‘π‘œπ‘ 2𝐴 βˆ’ 1.

58. Prove that π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2. 𝑠𝑖𝑛2𝐴

Solution: We know that π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

By taking π‘₯ = 𝑦 = 𝐴, we get,

π‘π‘œπ‘  (𝐴 + 𝐴) = π‘π‘œπ‘  𝐴. π‘π‘œπ‘  𝐴 βˆ’ 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛 𝐴

β‡’ π‘π‘œπ‘  2𝐴 = π‘π‘œπ‘ 2𝐴 βˆ’ 𝑠𝑖𝑛2𝐴

= (1 βˆ’ 𝑠𝑖𝑛2𝐴) βˆ’ 𝑠𝑖𝑛2𝐴 = 1 βˆ’ 2𝑠𝑖𝑛2𝐴.

59. Prove that π‘‘π‘Žπ‘› 2𝐴 = 2π‘‘π‘Žπ‘› 𝐴

1 βˆ’ π‘‘π‘Žπ‘› 2𝐴.

Solution: We know that π‘‘π‘Žπ‘› (π‘₯ + 𝑦) = π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› 𝑦

1 βˆ’ π‘‘π‘Žπ‘› π‘₯ .π‘‘π‘Žπ‘› 𝑦 .

By taking π‘₯ = 𝑦 = 𝐴, we get, π‘‘π‘Žπ‘› (𝐴 + 𝐴) = π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐴

1 βˆ’ π‘‘π‘Žπ‘› 𝐴.π‘‘π‘Žπ‘› 𝐴

β‡’ π‘‘π‘Žπ‘› 2𝐴 = 2π‘‘π‘Žπ‘› 𝐴

1 βˆ’ π‘‘π‘Žπ‘› 2𝐴.

60. Prove that 𝑠𝑖𝑛 2𝐴 = 2π‘‘π‘Žπ‘› 𝐴

1 + π‘‘π‘Žπ‘› 2𝐴.

Solution: 2.π‘‘π‘Žπ‘› 𝐴

1 + π‘‘π‘Žπ‘› 2 𝐴 =

2.π‘‘π‘Žπ‘› 𝐴

𝑠𝑒𝑐 2 𝐴 = 2. π‘‘π‘Žπ‘› 𝐴. π‘π‘œπ‘ 2 𝐴 = 2

𝑠𝑖𝑛 𝐴

π‘π‘œπ‘  π΄π‘π‘œπ‘ 2 𝐴

= 2. 𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴 = 𝑠𝑖𝑛 2𝐴.

61. Prove that π‘π‘œπ‘  2𝐴 = 1 βˆ’ π‘‘π‘Žπ‘› 2 𝐴

1 + π‘‘π‘Žπ‘› 2 𝐴.

Solution:

1 βˆ’ π‘‘π‘Žπ‘› 2 𝐴

1 + π‘‘π‘Žπ‘› 2 𝐴 =

1 βˆ’ π‘‘π‘Žπ‘› 2 𝐴

𝑠𝑒𝑐 2 𝐴 =

1

𝑠𝑒𝑐 2 𝐴 βˆ’

π‘‘π‘Žπ‘› 2 𝐴

𝑠𝑒𝑐 2 𝐴 = π‘π‘œπ‘ 2 𝐴 βˆ’ π‘‘π‘Žπ‘›2 𝐴. π‘π‘œπ‘ 2 𝐴

= π‘π‘œπ‘ 2 𝐴 βˆ’ 𝑠𝑖𝑛2 𝐴

π‘π‘œπ‘  2 π΄π‘π‘œπ‘ 2 𝐴 = π‘π‘œπ‘ 2 𝐴 βˆ’ 𝑠𝑖𝑛2 𝐴 = π‘π‘œπ‘  2𝐴.

62. Prove that π‘‘π‘Žπ‘›2 𝐴 = 1 βˆ’ π‘π‘œπ‘  2𝐴

1 + π‘π‘œπ‘  2𝐴.

Solution:

We know that π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2. 𝑠𝑖𝑛2𝐴. ∴ 2. 𝑠𝑖𝑛2𝐴 = 1 βˆ’ π‘π‘œπ‘  2𝐴 ;

Also π‘π‘œπ‘  2𝐴 = 2. π‘π‘œπ‘ 2𝐴 βˆ’ 1 ∴ 2. π‘π‘œπ‘ 2𝐴 = 1 + π‘π‘œπ‘  2𝐴.

∴ 1 βˆ’ π‘π‘œπ‘  2𝐴

1 + π‘π‘œπ‘  2𝐴 =

2.𝑠𝑖𝑛 2𝐴

2.π‘π‘œπ‘  2𝐴 = π‘‘π‘Žπ‘›2𝐴.

63. Find the values of a. 𝑠𝑖𝑛 221

2Β° ; b. π‘π‘œπ‘  22

1

2Β° ; c. π‘‘π‘Žπ‘› 22

1

2Β°.

Solution:

a. We know that 2. 𝑠𝑖𝑛2 πœƒ

2 = 1 βˆ’ π‘π‘œπ‘  πœƒ.

By taking πœƒ = 45Β° we get

2. 𝑠𝑖𝑛2 221

2Β° = 1 βˆ’ π‘π‘œπ‘  45Β° = 1 βˆ’

1

2 =

2 βˆ’ 1

2.

∴ 𝑠𝑖𝑛2 221

2Β° =

2 βˆ’ 1

2 2 =

2( 2 βˆ’ 1)

2 2. 2 =

2 βˆ’ 2

4

∴ 𝑠𝑖𝑛 221

2Β° = 2 βˆ’ 2

4 =

2 βˆ’ 2

2

b. We know that 2. π‘π‘œπ‘ 2 πœƒ

2 = 1 + π‘π‘œπ‘  πœƒ.

By taking πœƒ = 45Β° we get

2. π‘π‘œπ‘ 2 221

2Β° = 1 + π‘π‘œπ‘  45Β° = 1 +

1

2 =

2 + 1

2.

∴ π‘π‘œπ‘ 2 221

2Β° =

2 + 1

2 2 =

2( 2 + 1)

2 2. 2 =

2 + 2

4.

∴ π‘π‘œπ‘  221

2Β° =

2 + 2

4 =

2 + 2

2.

c. We know that, π‘‘π‘Žπ‘›2 πœƒ

2 =

1 βˆ’ π‘π‘œπ‘  πœƒ

1 + π‘π‘œπ‘  πœƒ .

By taking πœƒ = 45Β° we get,

π‘‘π‘Žπ‘›2 221

2Β° =

1 βˆ’ π‘π‘œπ‘  45Β°

1 + π‘π‘œπ‘  45Β° =

1 βˆ’ 1 2

1 + 1 2 =

2 βˆ’ 1

2 + 1

= 2 βˆ’ 1

2 + 1. 2 βˆ’ 1

2 βˆ’ 1 =

2 βˆ’ 1 2

2 βˆ’ 1 = 2 βˆ’ 1

2.

∴ π‘‘π‘Žπ‘› 221

2Β° = 2 βˆ’ 1.

64. If 𝑠𝑖𝑛 𝐴 =3

8 and 𝐴 is acute angle, find 𝑠𝑖𝑛 2𝐴.

Solution: Given 𝑠𝑖𝑛 𝐴 =3

8.

Since 𝐴 is acute,

π‘π‘œπ‘  𝐴 = 1 βˆ’ 𝑠𝑖𝑛2𝐴 = 1 βˆ’ 9

64 =

64 βˆ’ 9

64 =

55

8.

∴ 𝑠𝑖𝑛 2𝐴 = 2 𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴 = 2 βˆ™3

8βˆ™ 55

8 =

3 55

32.

65. Prove that π‘π‘œπ‘ 4𝐴 βˆ’ 𝑠𝑖𝑛4𝐴 = cos 2𝐴.

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘ 2𝐴 2 βˆ’ 𝑠𝑖𝑛2𝐴 2

= π‘π‘œπ‘ 2𝐴 + 𝑠𝑖𝑛2𝐴 π‘π‘œπ‘ 2𝐴 βˆ’ 𝑠𝑖𝑛2𝐴

= 1 βˆ™ cos 2𝐴 = cos 2𝐴 = 𝑅𝐻𝑆.

66. Prove that 2 + 2 + 2 π‘π‘œπ‘  4πœƒ = 2. π‘π‘œπ‘  πœƒ

Solution: 𝐿𝐻𝑆 = 2 + 2(1 + π‘π‘œπ‘  4πœƒ) = 2 + 2.2π‘π‘œπ‘ 2 2πœƒ

= 2 + 2 π‘π‘œπ‘  2πœƒ = 2(1 + π‘π‘œπ‘  2πœƒ)

= 2 βˆ™ 2π‘π‘œπ‘ 2 2πœƒ = 2π‘π‘œπ‘  πœƒ = 𝑅𝐻𝑆.

67. Prove that 1 + π‘‘π‘Žπ‘› 2(45Β° βˆ’ πœƒ)

1 βˆ’ π‘‘π‘Žπ‘› 2(45Β° βˆ’ πœƒ) = π‘π‘œπ‘ π‘’π‘ 2πœƒ.

Solution: 1 + π‘‘π‘Žπ‘› 2(45Β° βˆ’ πœƒ)

1 βˆ’ π‘‘π‘Žπ‘› 2(45Β° βˆ’ πœƒ) =

1 + π‘‘π‘Žπ‘› 2𝑑

1 βˆ’ π‘‘π‘Žπ‘› 2𝑑 =

1

π‘π‘œπ‘  2𝑑 where 𝑑 = 45Β° βˆ’ πœƒ.

= 𝑠𝑒𝑐 2𝑑 = 𝑠𝑒𝑐 2 45Β° βˆ’ πœƒ = 𝑠𝑒𝑐 90Β° βˆ’ 2πœƒ = π‘π‘œπ‘ π‘’π‘ 2πœƒ.

68. Prove that 8 π‘π‘œπ‘ 3 πœ‹

9 βˆ’ 6 π‘π‘œπ‘ 

πœ‹

9 = 1.

Solution: 8 π‘π‘œπ‘ 3 πœ‹

9βˆ’ 6 π‘π‘œπ‘ 

πœ‹

9 = 2 4 π‘π‘œπ‘ 3

πœ‹

9 βˆ’ 3 π‘π‘œπ‘ 

πœ‹

9

= 2 π‘π‘œπ‘  3 βˆ™πœ‹

9 = 2 π‘π‘œπ‘ 

πœ‹

3 = 2 βˆ™

1

2 = 1.

69. Prove that 1 + 𝑠𝑖𝑛 πœƒ βˆ’ π‘π‘œπ‘  πœƒ

1 + 𝑠𝑖𝑛 πœƒ + π‘π‘œπ‘  πœƒ = π‘‘π‘Žπ‘›

πœƒ

2

Solution: 1 + 𝑠𝑖𝑛 πœƒ βˆ’ π‘π‘œπ‘  πœƒ

1 + 𝑠𝑖𝑛 πœƒ + π‘π‘œπ‘  πœƒ =

1 βˆ’ π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 πœƒ

1 + π‘π‘œπ‘  πœƒ + 𝑠𝑖𝑛 πœƒ

=2𝑠𝑖𝑛 2

πœƒ

2 + 2 𝑠𝑖𝑛 πœƒ

2 βˆ™π‘π‘œπ‘ 

πœƒ

2

2π‘π‘œπ‘  2 πœƒ

2 + 2 𝑠𝑖𝑛 πœƒ

2 βˆ™π‘π‘œπ‘ 

πœƒ

2

=2 𝑠𝑖𝑛 πœƒ

2 π‘π‘œπ‘ 

πœƒ2 + 𝑠𝑖𝑛

πœƒ2

2 π‘π‘œπ‘  πœƒ

2 π‘π‘œπ‘ 

πœƒ

2 + 𝑠𝑖𝑛

πœƒ

2

= π‘‘π‘Žπ‘› πœƒ

2.

70. Prove that π‘π‘œπ‘  10Β° βˆ’ π‘π‘œπ‘  50Β° = 𝑠𝑖𝑛 20Β°

Solution: 𝐿𝐻𝑆 = βˆ’ 2 𝑠𝑖𝑛 10 Β° + 50 Β°

2 𝑠𝑖𝑛

10Β° βˆ’ 50Β°

2

= βˆ’ 2 𝑠𝑖𝑛 30Β° 𝑠𝑖𝑛 βˆ’20Β° = βˆ’ (βˆ’ 2 βˆ™1

2𝑠𝑖𝑛 20Β°) = 𝑠𝑖𝑛20Β°.

71. Find the general solution of 𝑠𝑖𝑛 πœƒ =1

2

Solution: 𝑠𝑖𝑛 πœƒ =1

2= 𝑠𝑖𝑛

πœ‹

6. Principal angle 𝛼 =

πœ‹

6.

∴ the general solution is π‘₯ = π‘›πœ‹ + (βˆ’1)𝑛 βˆ™ πœ‹

6 ,𝑛 ∈ 𝑍.

72. Find the general solution of 𝑠𝑒𝑐 πœƒ = βˆ’ 2.

Solution: 𝑠𝑒𝑐 πœƒ = βˆ’ 2 ⟹ cos πœƒ = βˆ’1

2.

Principal angle 𝛼 = πœ‹ βˆ’πœ‹

4 =

3πœ‹

4

∴ general solution is πœƒ = 2π‘›πœ‹ Β± 3πœ‹

4 , 𝑛 ∈ 𝑍.

73. Find the general solution of 𝑠𝑖𝑛 2π‘₯ = 4 π‘π‘œπ‘  π‘₯.

Solution: 𝑠𝑖𝑛 2π‘₯ = 4 π‘π‘œπ‘  π‘₯ ⟹ 2𝑠𝑖𝑛 π‘₯ . π‘π‘œπ‘  π‘₯ = 4 π‘π‘œπ‘  π‘₯

⟹ 2𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  π‘₯ βˆ’ 4π‘π‘œπ‘  π‘₯ = 0 ⟹ 2π‘π‘œπ‘  π‘₯(𝑠𝑖𝑛 π‘₯ βˆ’ 2) = 0

⟹ π‘π‘œπ‘  π‘₯ = 0 π‘œπ‘Ÿ 𝑠𝑖𝑛 π‘₯ = 2.

Since 𝑠𝑖𝑛 π‘₯ = 2 > 1, the equation 𝑠𝑖𝑛 π‘₯ = 2 has no solution.

π‘π‘œπ‘  π‘₯ = 0 ⟹ π‘₯ = 2𝑛 + 1 πœ‹

2 , 𝑛 ∈ Z.

This is the general solution of the given equation.

Three mark questions

1. The angles of a triangle are in the ratio 4: 5: 6. Find them in

radian and degree.

Solution: Let A, B and C be the angles of the triangle.

Now 𝐴: 𝐡: 𝐢 = 4: 5: 6 ⟹ 𝐴 = 4πœƒ, 𝐡 = 5πœƒ,𝐢 = 6πœƒ

𝐴 + 𝐡 + 𝐢 = πœ‹ ⟹ 4πœƒ + 5πœƒ + 6πœƒ = πœ‹ ⟹ 15πœƒ = πœ‹ ∴ πœƒ =πœ‹

15

∴ 𝐴 = 4πœƒ = 4 Γ—πœ‹

15=

4πœ‹

15 , 𝐡 = 5πœƒ = 5 Γ—

πœ‹

15=

πœ‹

3, 𝐢 = 6πœƒ = 6 Γ—

πœ‹

15=

2πœ‹

3.

𝐴 + 𝐡 + 𝐢 = 180Β° ⟹ 15πœƒ = 180Β° ∴ πœƒ =180Β°

15= 12Β°

∴ 𝐴 = 4πœƒ = 4 Γ— 12Β° = 48Β°, 𝐡 = 5 Γ— 12Β° = 60Β°, 𝐢 = 6πœƒ = 6 Γ— 12Β° = 72Β°

2. Define the six trigonometric functions.

Solution: Consider a circle of radius π‘Ÿ centered at the origin

of the Cartesian coordinate system. Let

𝑃(π‘₯, 𝑦) be a point on the circle. Join 𝑂𝑃.

Define angle πœƒ having 𝑂𝑋 has the initial

direction and 𝑂𝑃 as the terminal direction.

Then for any position of the point 𝑃(π‘₯, 𝑦)

on the circle,

i. sine of the angle πœƒ is denoted by 𝑠𝑖𝑛 πœƒ and is defined by

𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ.

ii. cosine of the angle πœƒ is denoted by π‘π‘œπ‘  πœƒ and is defined by

π‘π‘œπ‘  πœƒ = π‘₯

π‘Ÿ.

iii. tangent of the angle πœƒ is denoted by π‘‘π‘Žπ‘› πœƒ and is defined by

π‘‘π‘Žπ‘› πœƒ = 𝑦

π‘₯.

iv. cotangent of the angle πœƒ is denoted by π‘π‘œπ‘‘ πœƒ and is defined

by π‘π‘œπ‘‘ πœƒ = π‘₯

𝑦.

v. secant of the angle πœƒ is denoted by 𝑠𝑒𝑐 πœƒ and is defined by

𝑠𝑒𝑐 πœƒ = π‘Ÿ

π‘₯.

vi. cosecant of the angle πœƒ is denoted by π‘π‘œπ‘ π‘’π‘ πœƒ or 𝑐𝑠𝑐 πœƒ and

is defined by π‘π‘œπ‘ π‘’π‘ πœƒ = π‘Ÿ

𝑦.

3. If sin πœƒ =3

5 and πœƒ is acute, find all the other trigonometric

ratios.

Solution: Given sin πœƒ = 3

5=

𝐴𝐡

𝑂𝐴.

Therefore 𝐴𝐡 = 3 and 𝑂𝐴 = 5

Now 𝑂𝐡2 = 𝑂𝐴2 βˆ’ 𝐴𝐡2 = 25 βˆ’ 9 = 16.

Therefore 𝑂𝐡 = 4.

We have, cosπœƒ = 1 βˆ’ 𝑠𝑖𝑛2πœƒ = 1 βˆ’ 9

25 =

25 βˆ’ 9

25 =

16

25=

4

5 ;

tan πœƒ =sin πœƒ

cos πœƒ=

35

45

=3

4 ;

cot πœƒ =cos πœƒ

sin πœƒ=

45

35

=4

3 ;

π‘ π‘’π‘πœƒ =1

cos πœƒ=

14

5 =

5

4 ;

π‘π‘œπ‘ π‘’π‘πœƒ =1

sin πœƒ=

13

5 =

5

3 .

4. Prove that 1 βˆ’ 𝑠𝑖𝑛 𝐴 + π‘π‘œπ‘ π΄ 2 = 2 1 βˆ’ 𝑠𝑖𝑛 𝐴 1 + π‘π‘œπ‘  𝐴

Solution:

𝐿𝐻𝑆 = 1 βˆ’ 𝑠𝑖𝑛 𝐴 + π‘π‘œπ‘ π΄ 2

= 1 βˆ’ 𝑠𝑖𝑛 𝐴 2 + π‘π‘œπ‘ 2 𝐴 + 2 1 βˆ’ 𝑠𝑖𝑛 𝐴 βˆ™ π‘π‘œπ‘ π΄

= 1 βˆ’ 𝑠𝑖𝑛 𝐴 2 + 1 βˆ’ 𝑠𝑖𝑛2 𝐴 + 2 1 βˆ’ 𝑠𝑖𝑛 𝐴 βˆ™ π‘π‘œπ‘ π΄

= 1 βˆ’ 𝑠𝑖𝑛 𝐴 2 + 1 βˆ’ 𝑠𝑖𝑛 𝐴 βˆ™ 1 + 𝑠𝑖𝑛 𝐴 + 2 1 βˆ’ 𝑠𝑖𝑛 𝐴 βˆ™ π‘π‘œπ‘ π΄

= 1 βˆ’ 𝑠𝑖𝑛 𝐴 1 βˆ’ 𝑠𝑖𝑛 𝐴 + 1 + 𝑠𝑖𝑛 𝐴 + 2 π‘π‘œπ‘  𝐴

= 1 βˆ’ 𝑠𝑖𝑛 𝐴 2 + 2 π‘π‘œπ‘  𝐴 = 2 1 βˆ’ 𝑠𝑖𝑛 𝐴 1 + π‘π‘œπ‘  𝐴 = 𝑅𝐻𝑆.

5. Find the trigonometric ratios of the quadrantal angles

a) 0Β° ; b) 90Β° πœ‹

2 ; c) 180Β° (πœ‹) ; d) 270Β°

3πœ‹

2 and e) 360Β° (2πœ‹).

Solution: Consider the points, 𝐴(1, 0), 𝐡(0, 1), 𝐢(βˆ’ 1, 0) and

𝐷(0, βˆ’1) corresponding to the quadrantal angles πœ‹

2 (90Β°),

πœ‹ (180Β°),3πœ‹

2 (270Β°) and 2πœ‹ (360Β°),

lying on a circle of unit radius

centered at the origin of a Cartesian

co-ordinate system. Let 𝑃(π‘Ž, 𝑏) be

the point on the circle such that

angle 𝑃𝑂𝑋 = π‘₯.

Then 𝑠𝑖𝑛 π‘₯ = 𝑏 and π‘π‘œπ‘  π‘₯ = π‘Ž.

a)When 𝑃(π‘Ž, 𝑏) coincides with the point 𝐴(1, 0), the angle π‘₯

becomes 0Β°.

∴ π‘π‘œπ‘  0 = 1 and 𝑠𝑖𝑛 0 = 0.

∴ π‘‘π‘Žπ‘› 0 = 0

1 = 0, π‘π‘œπ‘‘ 0 =

1

0 = ∞, π‘π‘œπ‘ π‘’π‘ 0 =

1

0 = ∞, 𝑠𝑒𝑐 0 =

1

1 = 1.

b) When 𝑃(π‘Ž, 𝑏) coincides with the point 𝐡(0, 1), the angle π‘₯

becomes 90Β°.

∴ π‘π‘œπ‘  90Β° = 0 and 𝑠𝑖𝑛 90Β° = 1.

∴ π‘‘π‘Žπ‘› 90Β° = 1

0 = ∞, π‘π‘œπ‘‘ 90Β° =

0

1 = 0,

π‘π‘œπ‘ π‘’π‘ 90Β° = 1

1 = 1, 𝑠𝑒𝑐 90Β° =

1

0 = ∞.

c) When 𝑃(π‘Ž, 𝑏) coincides with the point 𝐢(βˆ’ 1, 0), the angle π‘₯

becomes 180Β°.

∴ π‘π‘œπ‘  180Β° = βˆ’ 1 and 𝑠𝑖𝑛 180Β° = 0.

∴ π‘‘π‘Žπ‘› 180Β° = 0

βˆ’ 1 = 0, π‘π‘œπ‘‘ 180Β° =

βˆ’ 1

0 = ∞,

π‘π‘œπ‘ π‘’π‘ 180Β° = 1

0 = ∞, 𝑠𝑒𝑐 180Β° =

1

βˆ’ 1 = βˆ’ 1.

d) When 𝑃(π‘Ž, 𝑏) coincides with the point 𝐷(0, βˆ’1), the angle π‘₯

becomes 270Β°.

∴ π‘π‘œπ‘  270Β° = 0 and 𝑠𝑖𝑛 270Β° = βˆ’ 1.

∴ π‘‘π‘Žπ‘› 270Β° = βˆ’ 1

0 = ∞, π‘π‘œπ‘‘ 270Β° =

0

βˆ’ 1 = 0,

π‘π‘œπ‘ π‘’π‘ 270Β° = 1

βˆ’ 1 = βˆ’ 1, 𝑠𝑒𝑐 270Β° =

1

0 = ∞.

e) When 𝑃(π‘Ž, 𝑏) coincides with the point 𝐴(1, 0), after one

complete rotation, the angle π‘₯ becomes 360Β°.

∴ π‘π‘œπ‘  360Β° = 1 and 𝑠𝑖𝑛 360Β° = 0.

∴ π‘‘π‘Žπ‘› 360Β° = 0

1 = 0, π‘π‘œπ‘‘ 360Β° =

1

0 = ∞,

π‘π‘œπ‘ π‘’π‘ 360Β° = 1

0 = ∞, 𝑠𝑒𝑐 360Β° =

1

1 = 1.

6. Find the trigonometric ratios of a) 45Β°; b) 30Β° and 60Β°.

Solution:

a) The trigonometric ratios of 45Β°.

Consider a right angled triangle 𝐴𝐡𝐢, right angled

at 𝐡. Now angle 𝐴𝐢𝐡 = 45°.

Let 𝐴𝐡 = π‘₯. Then 𝐡𝐢 = π‘₯.

Now 𝐴𝐢2 = 𝐴𝐡2 + 𝐡𝐢2 = π‘₯2 + π‘₯2 = 2π‘₯2.

∴ 𝐴𝐢 = π‘₯ 2. Now,

𝑠𝑖𝑛 45Β° = 𝐴𝐡

𝐴𝐢=

π‘₯

π‘₯ 2=

1

2 ;

π‘π‘œπ‘  45Β° = 𝐡𝐢

𝐴𝐢=

π‘₯

π‘₯ 2=

1

2 ;

π‘‘π‘Žπ‘› 45Β° = 𝐴𝐡

𝐡𝐢=

π‘₯

π‘₯= 1.

Similarly, π‘π‘œπ‘‘ 45Β° = 1, π‘π‘œπ‘ π‘’π‘ 45Β° = 2, 𝑠𝑒𝑐 45Β° = 2.

b) The trigonometric ratios of 30Β° and 60Β°.

Consider an equilateral triangle 𝐴𝐡𝐢. Draw 𝐴𝐷

perpendicular to 𝐡𝐢. Then 𝐷 is the midpoint of

𝐡𝐢. Let 𝐡𝐷 = π‘₯. Then 𝐴𝐡 = 2π‘₯.

Now 𝐴𝐷2 = 𝐴𝐡2 βˆ’ 𝐡𝐷2 = (2π‘₯)2 βˆ’ π‘₯2 = 4π‘₯2 βˆ’

π‘₯2 = 3π‘₯2. ∴ 𝐴𝐷 = π‘₯ 3.

Also, ∠𝐴𝐡𝐢 = 60° and ∠𝐡𝐴𝐷 = 30°.

𝑠𝑖𝑛 60Β° = 𝐴𝐷

𝐴𝐡=

π‘₯ 3

2π‘₯=

3

2 ;

π‘π‘œπ‘  60Β° = 𝐡𝐷

𝐴𝐡=

π‘₯

2π‘₯=

1

2 ;

π‘‘π‘Žπ‘› 60Β° = 𝐴𝐷

𝐡𝐷=

π‘₯ 3

π‘₯= 3.

Similarly, π‘π‘œπ‘‘ 60Β° = 1

3, π‘π‘œπ‘ π‘’π‘ 60Β° =

2

3, 𝑠𝑒𝑐 60Β° = 2.

𝑠𝑖𝑛 30Β° = 𝐡𝐷

𝐴𝐡 =

π‘₯

2π‘₯ =

1

2 ;

π‘π‘œπ‘  30Β° = 𝐴𝐷

𝐴𝐡 =

π‘₯ 3

2π‘₯ =

3

2 ;

π‘‘π‘Žπ‘› 30Β° = 𝐡𝐷

𝐴𝐷 =

π‘₯

π‘₯ 3 =

1

3.

Similarly, π‘π‘œπ‘‘ 30Β° = 3, π‘π‘œπ‘ π‘’π‘ 30Β° = 2, 𝑠𝑒𝑐 30Β° = 2

3.

7. Prove that π‘‘π‘Žπ‘› 260Β° βˆ’ 2 π‘‘π‘Žπ‘› 245Β°

3 𝑠𝑖𝑛 245Β° βˆ™ 𝑠𝑖𝑛90Β° + π‘π‘œπ‘  260Β° βˆ™ π‘π‘œπ‘  2 0Β° =

4

7

Solution: 𝐿𝐻𝑆 = 3

2 βˆ’ 2 1 2

3 1

2

2βˆ™1 +

1

2

2βˆ™ 1 2

=3 βˆ’ 23

2 +

1

4

= 17

4

= 4

7 = 𝑅𝐻𝑆.

8. Find π‘₯, π‘₯ sin 30Β° βˆ™ π‘π‘œπ‘ 245Β° =π‘π‘œπ‘‘ 230Β°βˆ™ 𝑠𝑒𝑐60Β°βˆ™π‘‘π‘Žπ‘› 45Β°

π‘π‘œπ‘ π‘’π‘ 245Β° βˆ™ π‘π‘œπ‘ π‘’π‘ 30Β°

Solution: π‘₯ βˆ™1

2βˆ™

1

2

2=

3 2βˆ™ 2 βˆ™ 1

2 2βˆ™ 2

⟹ π‘₯ βˆ™1

4 =

6

4. ∴ π‘₯ = 6.

9. Find π‘₯, π‘₯ 𝑠𝑖𝑛230Β° + 𝑠𝑖𝑛245Β° + 𝑠𝑖𝑛260Β° βˆ’ π‘π‘œπ‘ 230Β° = 0

Solution: π‘₯ 1

2

2+

1

2

2+

3

2

2

βˆ’ 3

2

2

= 0

⟹ π‘₯ 1

4 +

1

2 +

3

4 βˆ’

3

4= 0 ⟹ π‘₯

1 + 2 + 3

4 =

3

4 ∴ π‘₯ =

3

6 =

1

2 .

10. Find the domain of 𝑓(π‘₯) = 𝑠𝑖𝑛 π‘₯ and 𝑓(π‘₯) = π‘π‘œπ‘ π‘’π‘ π‘₯.

Solution: Recall the definition, 𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ.

This is defined for any 𝑦 ∈ 𝑅.

∴ domain of the function 𝑦 = 𝑠𝑖𝑛 π‘₯ is the set of all reals, 𝑅.

We know that 𝑠𝑖𝑛 0 = 0, 𝑠𝑖𝑛 πœ‹ = 0 and 𝑠𝑖𝑛 2πœ‹ = 0.

By using 𝑠𝑖𝑛 (2πœ‹π‘› + πœƒ) = 𝑠𝑖𝑛 πœƒ we get

𝑠𝑖𝑛 (2πœ‹π‘› + πœ‹) = 0, βˆ€ 𝑛 ∈ 𝑍.

This gives 𝑠𝑖𝑛 π‘›πœ‹ = 0, βˆ€ 𝑛 ∈ 𝑍.

Thus 𝑠𝑖𝑛 π‘₯ = 0 when π‘₯ = π‘›πœ‹, 𝑛 ∈ 𝑍.

Since π‘π‘œπ‘ π‘’π‘ π‘₯ = 1

𝑠𝑖𝑛 π‘₯, the function 𝑦 = π‘π‘œπ‘ π‘’π‘ π‘₯ is defined only

when 𝑠𝑖𝑛 π‘₯ β‰  0. Thus the domain of the function,

𝑦 = π‘π‘œπ‘ π‘’π‘ π‘₯, is {π‘₯ ∢ π‘₯ β‰  π‘›πœ‹, 𝑛 ∈ 𝑍 }.

11. Find the domain of 𝑓(π‘₯) = π‘π‘œπ‘  π‘₯ and 𝑓(π‘₯) = 𝑠𝑒𝑐 π‘₯.

Solution: Recall the definition, π‘π‘œπ‘  πœƒ = π‘₯

π‘Ÿ.

This is defined for any π‘₯ ∈ 𝑅.

∴ domain of the function 𝑦 = π‘π‘œπ‘  π‘₯ is the set of all reals, 𝑅.

We know that π‘π‘œπ‘  πœ‹

2 = 0, π‘π‘œπ‘ 

3πœ‹

2 = 0.

By using π‘π‘œπ‘  (2πœ‹π‘› + πœƒ) = π‘π‘œπ‘  πœƒ we get

π‘π‘œπ‘  (2πœ‹π‘› +πœ‹

2) = 0, βˆ€ 𝑛 ∈ 𝑍.

This gives π‘π‘œπ‘  2𝑛 + 1 πœ‹

2 = 0, βˆ€ 𝑛 ∈ 𝑍.

Thus π‘π‘œπ‘  π‘₯ = 0 when π‘₯ = 2𝑛 + 1 πœ‹

2, 𝑛 ∈ 𝑍.

Since 𝑠𝑒𝑐 π‘₯ = 1

π‘π‘œπ‘  π‘₯, the function 𝑦 = 𝑠𝑒𝑐 π‘₯ is defined only when

π‘π‘œπ‘  π‘₯ β‰  0. Thus the domain of the function,

𝑦 = 𝑠𝑒𝑐 π‘₯, is {π‘₯ ∢ π‘₯ ∈ 𝑅, π‘₯ β‰  2𝑛 + 1 πœ‹

2, 𝑛 ∈ 𝑍 }.

12. Find the domain of 𝑓(π‘₯) = π‘‘π‘Žπ‘› π‘₯.

Solution: Recall the definition, π‘‘π‘Žπ‘› πœƒ = 𝑦

π‘₯. This is defined for

any π‘₯, 𝑦 ∈ 𝑅, π‘₯ β‰  0. We know that, π‘‘π‘Žπ‘› πœ‹

2 = ∞, π‘‘π‘Žπ‘›

3πœ‹

2 = ∞.

By using π‘‘π‘Žπ‘› (2πœ‹π‘› + πœƒ) = π‘‘π‘Žπ‘› πœƒ we get π‘‘π‘Žπ‘› (2πœ‹π‘› +πœ‹

2) = ∞,

βˆ€ 𝑛 ∈ 𝑍. This gives π‘‘π‘Žπ‘› 2𝑛 + 1 πœ‹

2 = ∞, βˆ€ 𝑛 ∈ 𝑍.

Thus π‘‘π‘Žπ‘› π‘₯ = ∞ when π‘₯ = 2𝑛 + 1 πœ‹

2, 𝑛 ∈ 𝑍. Thus the domain

of the function, 𝑦 = π‘‘π‘Žπ‘› π‘₯, is {π‘₯ ∢ π‘₯ ∈ 𝑅, π‘₯ β‰  2𝑛 + 1 πœ‹

2, 𝑛 ∈ 𝑍 }.

13. Find the domain of 𝑓(π‘₯) = π‘π‘œπ‘‘ π‘₯.

Solution: Recall the definition, π‘π‘œπ‘‘ πœƒ = π‘₯

𝑦. This is defined for

any π‘₯, 𝑦 ∈ 𝑅, 𝑦 β‰  0. We know that π‘π‘œπ‘‘ πœ‹ = ∞, π‘π‘œπ‘‘ 3πœ‹ = ∞.

By using π‘π‘œπ‘‘ (2πœ‹π‘› + πœƒ) = π‘π‘œπ‘‘ πœƒ we get π‘π‘œπ‘‘ (2πœ‹π‘› + πœ‹) = ∞, βˆ€ 𝑛 ∈

𝑍. This gives π‘π‘œπ‘‘ π‘›πœ‹ = ∞, βˆ€ 𝑛 ∈ 𝑍. Thus π‘π‘œπ‘‘ π‘₯ = ∞ when

π‘₯ = π‘›πœ‹, 𝑛 ∈ 𝑍. Thus the domain of the function, 𝑦 = π‘π‘œπ‘‘ π‘₯, is

{π‘₯ ∢ π‘₯ ∈ 𝑅, π‘₯ β‰  π‘›πœ‹, 𝑛 ∈ 𝑍 }.

14. Prove that 𝑠𝑖𝑛 (π‘₯ + 𝑦) = 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦. Hence prove

that 𝑠𝑖𝑛 (π‘₯ βˆ’ 𝑦) = 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 βˆ’ π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦.

Solution: 𝑠𝑖𝑛 (π‘₯ + 𝑦) = π‘π‘œπ‘  πœ‹

2 βˆ’ (π‘₯ + 𝑦)

= π‘π‘œπ‘  πœ‹

2 βˆ’ π‘₯ βˆ’ 𝑦

= π‘π‘œπ‘  πœ‹

2 βˆ’ π‘₯ . π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛

πœ‹

2 βˆ’ π‘₯ . 𝑠𝑖𝑛 𝑦

= 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦.

By replacing 𝑦 by βˆ’ 𝑦 we get,

𝑠𝑖𝑛 (π‘₯ βˆ’ 𝑦) = 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  (βˆ’ 𝑦) + π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 ( βˆ’ 𝑦)

= 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 + π‘π‘œπ‘  π‘₯. (βˆ’ 𝑠𝑖𝑛 𝑦)

= 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  𝑦 βˆ’ π‘π‘œπ‘  π‘₯. 𝑠𝑖𝑛 𝑦.

15. Draw the graph of 𝑦 = 𝑠𝑖𝑛 π‘₯.

Solution: 𝑠𝑖𝑛 0 = 0 and 𝑠𝑖𝑛 πœ‹ 2 = 1.

∴ 𝑠𝑖𝑛 π‘₯ increases from 0 to 1 as π‘₯ increases from 0 to πœ‹ 2 .

𝑠𝑖𝑛 πœ‹ 2 = 1 and 𝑠𝑖𝑛 πœ‹ = 0.

∴ 𝑠𝑖𝑛 π‘₯ decreases from 1 to 0 as π‘₯ increases from πœ‹ 2 to πœ‹.

𝑠𝑖𝑛 πœ‹ = 0 and 𝑠𝑖𝑛 3πœ‹ 2 = βˆ’ 1.

∴ 𝑠𝑖𝑛 π‘₯ decreases from 0 to βˆ’ 1 as π‘₯ increases from πœ‹ to 3πœ‹ 2 .

𝑠𝑖𝑛 3πœ‹ 2 = βˆ’1 and 𝑠𝑖𝑛 2πœ‹ = 0.

∴ 𝑠𝑖𝑛 π‘₯ increases from βˆ’ 1 to 0 as π‘₯ increases from 3πœ‹ 2 to 2πœ‹.

Since 𝑠𝑖𝑛 π‘₯ is periodic with the period 2πœ‹ we can make the

same observation in the

intervals

..., βˆ’4πœ‹,βˆ’ 2πœ‹ , βˆ’2πœ‹, 0 ,

0, 2πœ‹ , 2πœ‹, 4πœ‹ , 4πœ‹, 6πœ‹ ,

...The graph is shown in the adjacent figure.

16. Draw the graph of 𝑦 = π‘π‘œπ‘  π‘₯.

Solution: π‘π‘œπ‘  0 = 1 and π‘π‘œπ‘  πœ‹ 2 = 0.

∴ π‘π‘œπ‘  π‘₯ decreases from 1 to 0 as π‘₯ increases from 0 to πœ‹ 2 .

π‘π‘œπ‘  πœ‹ 2 = 0 and π‘π‘œπ‘  πœ‹ = βˆ’ 1.

∴ π‘π‘œπ‘  π‘₯ decreases from 0 to βˆ’ 1 as π‘₯ increases from πœ‹ 2 to πœ‹.

π‘π‘œπ‘  πœ‹ = βˆ’ 1 and π‘π‘œπ‘  3πœ‹ 2 = 0.

∴ π‘π‘œπ‘  π‘₯ increases from βˆ’ 1 to 0 as π‘₯ increases from πœ‹ to 3πœ‹ 2 .

π‘π‘œπ‘  3πœ‹ 2 = 0 and π‘π‘œπ‘  2πœ‹ = 1.

∴ π‘π‘œπ‘  π‘₯ increases from 0 to 1 as π‘₯ increases from 3πœ‹ 2 to 2πœ‹.

Since π‘π‘œπ‘  π‘₯ is periodic with the period 2πœ‹, we can make the

same observation in the

intervals

..., βˆ’4πœ‹,βˆ’ 2πœ‹ , βˆ’2πœ‹, 0 ,

0, 2πœ‹ , 2πœ‹, 4πœ‹ , 4πœ‹, 6πœ‹ ,

... The graph is shown in the adjacent figure.

17. Draw the graph of 𝑦 = π‘‘π‘Žπ‘› π‘₯.

Solution: π‘‘π‘Žπ‘› 0 = 0 and π‘‘π‘Žπ‘› πœ‹ 2 = ∞.

∴ π‘‘π‘Žπ‘› π‘₯ increases from 0 to ∞ as π‘₯ increases from 0 to πœ‹ 2 .

π‘‘π‘Žπ‘› πœ‹ 2 = ∞ and π‘‘π‘Žπ‘› πœ‹ = 0.

Between π‘₯ = πœ‹ 2 and π‘₯ = πœ‹, π‘‘π‘Žπ‘› π‘₯ is negative.

∴ π‘‘π‘Žπ‘› π‘₯ increases from βˆ’ ∞ to 0 as π‘₯ increases from πœ‹ 2 to

πœ‹.

Since π‘‘π‘Žπ‘› π‘₯ is periodic with

the period πœ‹, we can make

the same observations in

the intervals, ... βˆ’2πœ‹, βˆ’ πœ‹ ,

βˆ’πœ‹, 0 , 0, πœ‹ , πœ‹, 2πœ‹ , ...

The graph is shown in the

adjacent figure.

18. Draw the graph of 𝑦 = π‘π‘œπ‘‘ π‘₯.

Solution: π‘π‘œπ‘‘ 0 = ∞ and π‘π‘œπ‘‘ πœ‹ 2 = 0.

∴ π‘π‘œπ‘‘ π‘₯ decreases from ∞ to 0 as π‘₯ increases from 0 to πœ‹ 2 .

π‘π‘œπ‘‘ πœ‹ 2 = 0 and π‘π‘œπ‘‘ πœ‹ = ∞.

Between π‘₯ = πœ‹ 2 and π‘₯ = πœ‹ π‘π‘œπ‘‘ π‘₯ is negative.

∴ π‘π‘œπ‘‘ π‘₯ decreases from 0 to

βˆ’ ∞ as π‘₯ increases from πœ‹ 2

to πœ‹.

Since π‘π‘œπ‘‘ π‘₯ is periodic with the

period πœ‹, we can make the

same observations in the

intervals, ... βˆ’2πœ‹, βˆ’ πœ‹ , βˆ’πœ‹, 0 ,

0, πœ‹ , πœ‹, 2πœ‹ , ... The graph is shown in the adjacent figure.

19. Draw the graph of 𝑦 = π‘π‘œπ‘ π‘’π‘ π‘₯.

Solution: π‘π‘œπ‘ π‘’π‘ 0 = ∞ and π‘π‘œπ‘ π‘’π‘ πœ‹ 2 = 1.

∴ π‘π‘œπ‘ π‘’π‘ π‘₯ decreases from ∞ to 0 as π‘₯ increases from 0 to πœ‹ 2 .

π‘π‘œπ‘ π‘’π‘ πœ‹ 2 = 1 and π‘π‘œπ‘ π‘’π‘ πœ‹ = ∞.

∴ π‘π‘œπ‘ π‘’π‘ π‘₯ increases from 1 to ∞ as π‘₯ increases from πœ‹ 2 to πœ‹.

π‘π‘œπ‘ π‘’π‘ πœ‹ = ∞ and π‘π‘œπ‘ π‘’π‘ 3πœ‹ 2 = βˆ’ 1.

Between π‘₯ = πœ‹ and π‘₯ = 3πœ‹ 2 , π‘π‘œπ‘ π‘’π‘ π‘₯ is negative.

∴ π‘π‘œπ‘ π‘’π‘ π‘₯ increases from

βˆ’ ∞ to βˆ’ 1 as π‘₯ increases

from πœ‹ to 3 πœ‹ 2 .

π‘π‘œπ‘ π‘’π‘ 3πœ‹ 2 = βˆ’ 1 and

π‘π‘œπ‘ π‘’π‘ 2πœ‹ = ∞.

Between π‘₯ = 3πœ‹ 2 and

π‘₯ = 2πœ‹, π‘π‘œπ‘ π‘’π‘ π‘₯ is negative.

∴ π‘π‘œπ‘ π‘’π‘ π‘₯ decreases from βˆ’ 1 to βˆ’ ∞ as π‘₯ increases from

3 πœ‹ 2 to 2πœ‹.

Since π‘π‘œπ‘ π‘’π‘ π‘₯ is periodic with the period 2πœ‹, we can make the

same observations in the intervals, ..., βˆ’4πœ‹, βˆ’ 2πœ‹ , βˆ’ 2πœ‹, 0 ,

0, 2πœ‹ , 2πœ‹, 4πœ‹ , ... The graph is shown in the adjacent figure.

20. Draw the graph of 𝑦 = 𝑠𝑒𝑐 π‘₯.

Solution: 𝑠𝑒𝑐 0 = 1 and 𝑠𝑒𝑐 πœ‹ 2 = ∞.

∴ 𝑠𝑒𝑐 π‘₯ increases from 1 to ∞ as π‘₯ increases from 0 to πœ‹ 2 .

𝑠𝑒𝑐 πœ‹ 2 = ∞ and 𝑠𝑒𝑐 πœ‹ = βˆ’ 1.

Between π‘₯ = πœ‹ 2 and π‘₯ = πœ‹, 𝑠𝑒𝑐 π‘₯ is negative.

∴ 𝑠𝑒𝑐 π‘₯ increases from βˆ’ ∞ to βˆ’ 1 as π‘₯ increases from πœ‹ 2 to πœ‹.

𝑠𝑒𝑐 πœ‹ = βˆ’ 1 and 𝑠𝑒𝑐 3πœ‹ 2 = ∞.

Between π‘₯ = πœ‹ and π‘₯ = 3πœ‹ 2 , 𝑠𝑒𝑐 π‘₯ is negative. ∴ 𝑠𝑒𝑐 π‘₯

decreases from βˆ’ 1 to βˆ’ ∞. as π‘₯ increases from πœ‹ to 3 πœ‹ 2 .

𝑠𝑒𝑐 3πœ‹ 2 = ∞ and 𝑠𝑒𝑐 2πœ‹ = 1.

Between π‘₯ = 3πœ‹ 2 and

π‘₯ = 2πœ‹, 𝑠𝑒𝑐 π‘₯ is positive.

∴ 𝑠𝑒𝑐 π‘₯ decreases from ∞

to 1 as π‘₯ increases from

3 πœ‹ 2 to 2πœ‹.

Since 𝑠𝑒𝑐 π‘₯ is periodic with

the period 2πœ‹, we can make

the same observations in the

intervals, ..., βˆ’4πœ‹, βˆ’ 2πœ‹ , βˆ’ 2πœ‹, 0 , 0, 2πœ‹ , 2πœ‹, 4πœ‹ , ... The

graph is shown in the adjacent figure.

21. If π‘π‘œπ‘  πœƒ =4

5 and πœƒ is acute, find the value of

3π‘π‘œπ‘  πœƒ + 2π‘π‘œπ‘ π‘’π‘ πœƒ

4 𝑠𝑖𝑛 πœƒ βˆ’ π‘π‘œπ‘‘ πœƒ .

Solution: Given cos πœƒ =4

5. Let π‘Žπ‘‘π‘— = 4 and β„Žπ‘¦π‘ = 5. Then

π‘œπ‘π‘ = 3. Then π‘π‘œπ‘ π‘’π‘ πœƒ = β„Žπ‘¦π‘

π‘œπ‘π‘ =

5

3 and π‘π‘œπ‘‘ πœƒ =

π‘Žπ‘‘π‘—

π‘œπ‘π‘ =

4

3.

Therefore 3π‘π‘œπ‘  πœƒ + 2π‘π‘œπ‘ π‘’π‘ πœƒ

4 𝑠𝑖𝑛 πœƒ βˆ’ π‘π‘œπ‘‘ πœƒ =

3 4

5 + 2

5

3

4 3

5 βˆ’

4

3

= 12

5 +

10

312

5 βˆ’

4

3

= 86

1516

15

=86

16 =

43

8.

22. If 𝑠𝑒𝑐 πœƒ =13

5 and

3πœ‹

2< πœƒ < 2πœ‹, find the value of

2𝑠𝑖𝑛 πœƒ βˆ’ 3π‘π‘œπ‘  πœƒ

4 𝑠𝑖𝑛 πœƒ + 9 π‘π‘œπ‘  πœƒ .

Solution: Given 𝑠𝑒𝑐 πœƒ =13

5. Let β„Žπ‘¦π‘ = 13 and π‘Žπ‘‘π‘— = 5.

Then π‘œπ‘π‘ = 12. In the fourth quadrant 𝑠𝑖𝑛 πœƒ = βˆ’ π‘œπ‘π‘

β„Žπ‘¦π‘ = βˆ’

12

13 ;

Thus 2𝑠𝑖𝑛 πœƒ βˆ’ 3π‘π‘œπ‘  πœƒ

4 𝑠𝑖𝑛 πœƒ + 9 π‘π‘œπ‘  πœƒ =

2sin πœƒ βˆ’ 3cos πœƒ

4 sin πœƒ 9 cos πœƒ=

2 βˆ’12

13 βˆ’ 3

5

13

4 βˆ’12

13 + 9

5

13

=βˆ’24

13 βˆ’

15

13βˆ’48

13 +

45

13

=βˆ’39

βˆ’3= 13.

23. If 𝐴, 𝐡 are acute angles, 𝑠𝑖𝑛 𝐴 =3

5 ; π‘π‘œπ‘  𝐡 =

12

13, find π‘π‘œπ‘  𝐴 + 𝐡

Solution: We have π‘π‘œπ‘  𝐴 + 𝐡 = π‘π‘œπ‘ π΄ π‘π‘œπ‘ π΅ βˆ’ 𝑠𝑖𝑛𝐴 𝑠𝑖𝑛𝐡.

Given 𝑠𝑖𝑛 𝐴 =3

5 ; π‘π‘œπ‘  𝐡 =

12

13.

∴ π‘π‘œπ‘  𝐴 = 1 βˆ’ 𝑠𝑖𝑛2𝐴 = 1 βˆ’9

25 =

25 βˆ’ 9

25 =

4

5 and

𝑠𝑖𝑛𝐡 = 1 βˆ’ π‘π‘œπ‘ 2𝐡 = 1 βˆ’144

169 =

5

13.

∴ π‘π‘œπ‘  𝐴 + 𝐡 = 4

5Γ—

12

13 βˆ’

3

5Γ—

5

13 =

48 βˆ’ 15

65 =

33

65.

24. If 𝐴 + 𝐡 = 45Β° then prove that 1 + π‘‘π‘Žπ‘› 𝐴 1 + π‘‘π‘Žπ‘› 𝐡 = 2 and

hence deduce that π‘‘π‘Žπ‘› 221

2

Β°= 2 βˆ’ 1.

Solution: Given 𝐴 + 𝐡 = 45Β° ⟹ π‘‘π‘Žπ‘› 𝐴 + 𝐡 = π‘‘π‘Žπ‘› 45Β°

⟹ π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡

1 βˆ’ π‘‘π‘Žπ‘› 𝐴 π‘‘π‘Žπ‘› 𝐡 = 1 ⟹ π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡 = 1 βˆ’ π‘‘π‘Žπ‘› 𝐴. π‘‘π‘Žπ‘› 𝐡

⟹ π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡 + π‘‘π‘Žπ‘› 𝐴. π‘‘π‘Žπ‘› 𝐡 = 1 (by adding 1 to both sides)

⟹ 1 + π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡 + π‘‘π‘Žπ‘› 𝐴. π‘‘π‘Žπ‘› 𝐡 = 2

⟹ 1 + π‘‘π‘Žπ‘› 𝐴 + π‘‘π‘Žπ‘› 𝐡. 1 + π‘‘π‘Žπ‘› 𝐴 = 2

⟹ 1 + π‘‘π‘Žπ‘› 𝐴 . 1 + π‘‘π‘Žπ‘› 𝐡 = 2.

By taking 𝐴 = 𝐡 = 221

2

Β° we get,

1 + π‘‘π‘Žπ‘› 221

2

Β°

2

= 2 ⟹ 1 + π‘‘π‘Žπ‘› 221

2

Β°= Β± 2

⟹ π‘‘π‘Žπ‘› 221

2

Β°= Β± 2 βˆ’ 1.

Since 221

2

Β° is acute, π‘‘π‘Žπ‘› 221

2

Β° is positive. Therefore

π‘‘π‘Žπ‘› 221

2

Β°= 2 βˆ’ 1.

25. Prove that 𝑠𝑖𝑛 3π‘₯ = 3𝑠𝑖𝑛 π‘₯ βˆ’ 4𝑠𝑖𝑛3 π‘₯

Solution: 𝑠𝑖𝑛 3π‘₯ = 𝑠𝑖𝑛 (2π‘₯ + π‘₯) = 𝑠𝑖𝑛 2π‘₯. π‘π‘œπ‘  π‘₯ + π‘π‘œπ‘  2π‘₯. 𝑠𝑖𝑛 π‘₯

= (2𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  π‘₯)π‘π‘œπ‘  π‘₯ + (1 βˆ’ 2𝑠𝑖𝑛2 π‘₯)𝑠𝑖𝑛 π‘₯

= 2. 𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘ 2 π‘₯ + 𝑠𝑖𝑛 π‘₯ βˆ’ 2𝑠𝑖𝑛3 π‘₯

= 2. 𝑠𝑖𝑛 π‘₯(1 βˆ’ 𝑠𝑖𝑛2 π‘₯) + 𝑠𝑖𝑛 π‘₯ βˆ’ 2𝑠𝑖𝑛3 π‘₯ = 3𝑠𝑖𝑛 π‘₯ βˆ’ 4𝑠𝑖𝑛3 π‘₯.

26. Prove that π‘π‘œπ‘  3π‘₯ = 4π‘π‘œπ‘ 3 π‘₯ βˆ’ 3π‘π‘œπ‘  π‘₯

Solution: π‘π‘œπ‘  3π‘₯ = π‘π‘œπ‘  (2π‘₯ + π‘₯) = π‘π‘œπ‘  2π‘₯. π‘π‘œπ‘  π‘₯ βˆ’ 𝑠𝑖𝑛 2π‘₯. 𝑠𝑖𝑛 π‘₯

= (2π‘π‘œπ‘ 2π‘₯ βˆ’ 1)π‘π‘œπ‘  π‘₯ βˆ’ (2𝑠𝑖𝑛 π‘₯. π‘π‘œπ‘  π‘₯)𝑠𝑖𝑛 π‘₯

= 2π‘π‘œπ‘ 3 π‘₯ βˆ’ π‘π‘œπ‘  π‘₯ βˆ’ 2𝑠𝑖𝑛2 π‘₯. π‘π‘œπ‘  π‘₯

= 2π‘π‘œπ‘ 3 π‘₯ βˆ’ π‘π‘œπ‘  π‘₯ βˆ’ 2(1 βˆ’ π‘π‘œπ‘ 2 π‘₯)π‘π‘œπ‘  π‘₯

= 2π‘π‘œπ‘ 3 π‘₯ βˆ’ π‘π‘œπ‘  π‘₯ βˆ’ 2π‘π‘œπ‘  π‘₯ + 2π‘π‘œπ‘ 3 π‘₯ = 4π‘π‘œπ‘ 3 π‘₯ βˆ’ 3π‘π‘œπ‘  π‘₯.

27. Prove that π‘‘π‘Žπ‘› 3π‘₯ = 3π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 3 π‘₯

1 βˆ’ 3π‘‘π‘Žπ‘› 2 π‘₯

Solution: π‘‘π‘Žπ‘› 3π‘₯ = π‘‘π‘Žπ‘› (2π‘₯ + π‘₯) =π‘‘π‘Žπ‘› 2π‘₯ + π‘‘π‘Žπ‘› π‘₯

1 βˆ’ π‘‘π‘Žπ‘› 2π‘₯ .π‘‘π‘Žπ‘› π‘₯

= 2π‘‘π‘Žπ‘› π‘₯

1 βˆ’ π‘‘π‘Žπ‘› 2 π‘₯ + π‘‘π‘Žπ‘› π‘₯

1 βˆ’ 2π‘‘π‘Žπ‘› π‘₯

1 βˆ’ π‘‘π‘Žπ‘› 2 π‘₯ .π‘‘π‘Žπ‘› π‘₯

= 2π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› π‘₯ (1 βˆ’ π‘‘π‘Žπ‘› 2 π‘₯)

1 βˆ’ π‘‘π‘Žπ‘› 2 π‘₯ βˆ’ 2π‘‘π‘Žπ‘› 2 π‘₯

= 2π‘‘π‘Žπ‘› π‘₯ + π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 3 π‘₯)

1 βˆ’ π‘‘π‘Žπ‘› 2 π‘₯ βˆ’ 2π‘‘π‘Žπ‘› 2 π‘₯ =

3π‘‘π‘Žπ‘› π‘₯ βˆ’ π‘‘π‘Žπ‘› 3 π‘₯

1 βˆ’ 3π‘‘π‘Žπ‘› 2 π‘₯.

28. If π‘‘π‘Žπ‘› 𝐴 =1 βˆ’ π‘π‘œπ‘  𝐡

𝑠𝑖𝑛 𝐡, prove that π‘‘π‘Žπ‘› 2𝐴 = π‘‘π‘Žπ‘› 𝐡, where 𝐴 and 𝐡

are acute angles.

Solution: 𝑅𝐻𝑆 =1 βˆ’ π‘π‘œπ‘  𝐡

𝑠𝑖𝑛 𝐡 =

2𝑠𝑖𝑛 2 𝐡

2

2 𝑠𝑖𝑛 𝐡2 βˆ™π‘π‘œπ‘ 

𝐡

2

=𝑠𝑖𝑛 𝐡

2

π‘π‘œπ‘  𝐡

2

= π‘‘π‘Žπ‘› 𝐡2 .

∴ π‘‘π‘Žπ‘› 𝐴 = π‘‘π‘Žπ‘› 𝐡2 .

Since 𝐴 and 𝐡 are acute angles we get, 𝐴 = 𝐡

2 . ∴ 2𝐴 = 𝐡

∴ π‘‘π‘Žπ‘› 2𝐴 = π‘‘π‘Žπ‘› 𝐡.

29. Show that 4 𝑠𝑖𝑛 𝐴. 𝑠𝑖𝑛 60Β° + 𝐴 . 𝑠𝑖𝑛 60Β° βˆ’ 𝐴 = 𝑠𝑖𝑛 3𝐴.

Solution: 𝐿𝐻𝑆 = 4 𝑠𝑖𝑛 𝐴. {𝑠𝑖𝑛 60Β° + 𝐴 . 𝑠𝑖𝑛 60Β° βˆ’ 𝐴 }

= 4 𝑠𝑖𝑛 𝐴 {𝑠𝑖𝑛2 60Β° βˆ’ 𝑠𝑖𝑛2 𝐴} = 4 𝑠𝑖𝑛 𝐴 3

2

2

βˆ’ 𝑠𝑖𝑛2 𝐴

= 4 𝑠𝑖𝑛 𝐴 3

4βˆ’ 𝑠𝑖𝑛2𝐴 = 3𝑠𝑖𝑛 𝐴 βˆ’ 4𝑠𝑖𝑛3𝐴 = 𝑠𝑖𝑛3𝐴 = 𝑅𝐻𝑆.

30. Show that 4 π‘π‘œπ‘  𝐴. π‘π‘œπ‘  60Β° + 𝐴 . π‘π‘œπ‘  60Β° βˆ’ 𝐴 = π‘π‘œπ‘  3𝐴.

Solution: 𝐿𝐻𝑆 = 4 π‘π‘œπ‘  𝐴. π‘π‘œπ‘  60Β° + 𝐴 . π‘π‘œπ‘  60Β° βˆ’ 𝐴

= 4 π‘π‘œπ‘  𝐴 {π‘π‘œπ‘ 2 60Β° βˆ’ 𝑠𝑖𝑛2 𝐴}

= 4 π‘π‘œπ‘  𝐴 1

4βˆ’ 1 βˆ’ π‘π‘œπ‘ 2𝐴 = 4 π‘π‘œπ‘  𝐴 βˆ’

3

4+ π‘π‘œπ‘ 2𝐴

= βˆ’ 3π‘π‘œπ‘  𝐴 + 4π‘π‘œπ‘ 3𝐴 = 4π‘π‘œπ‘ 3𝐴 βˆ’ 3π‘π‘œπ‘  𝐴 = π‘π‘œπ‘ 3𝐴 = 𝑅𝐻𝑆.

31. Prove that 2 𝑠𝑖𝑛 𝐴 βˆ’ 𝑠𝑖𝑛 2𝐴

2 𝑠𝑖𝑛 𝐴 + 𝑠𝑖𝑛 2𝐴 = π‘‘π‘Žπ‘›2

𝐴

2.

Solution: 2 𝑠𝑖𝑛 𝐴 βˆ’ 𝑠𝑖𝑛 2𝐴

2 𝑠𝑖𝑛 𝐴 + 𝑠𝑖𝑛 2𝐴 =

2 𝑠𝑖𝑛 𝐴 βˆ’ 2𝑠𝑖𝑛 𝐴.π‘π‘œπ‘  𝐴

2 𝑠𝑖𝑛 𝐴 + 2𝑠𝑖𝑛 𝐴.π‘π‘œπ‘  𝐴

= 2 𝑠𝑖𝑛 𝐴(1 βˆ’ π‘π‘œπ‘  𝐴)

2 𝑠𝑖𝑛 𝐴(1 + π‘π‘œπ‘  𝐴) =

2𝑠𝑖𝑛 2 𝐴

2

2π‘π‘œπ‘  2 𝐴

2

= π‘‘π‘Žπ‘›2 𝐴

2.

32. Prove that 𝑠𝑖𝑛 4π‘₯ π‘π‘œπ‘  2π‘₯

1 + π‘π‘œπ‘  4π‘₯ 1 + π‘π‘œπ‘  2π‘₯ = π‘‘π‘Žπ‘› π‘₯

Solution: 𝑠𝑖𝑛 4π‘₯ π‘π‘œπ‘  2π‘₯

1 + π‘π‘œπ‘  4π‘₯ 1 + π‘π‘œπ‘  2π‘₯ =

2𝑠𝑖𝑛 2π‘₯ .π‘π‘œπ‘  2π‘₯ .π‘π‘œπ‘  2π‘₯

2π‘π‘œπ‘  2 2π‘₯ .2π‘π‘œπ‘  2 π‘₯ =

𝑠𝑖𝑛 2π‘₯

2π‘π‘œπ‘  2 π‘₯

= 2𝑠𝑖𝑛 π‘₯ .π‘π‘œπ‘  π‘₯

2π‘π‘œπ‘  π‘₯ .π‘π‘œπ‘  π‘₯ = π‘‘π‘Žπ‘› π‘₯.

33. If 𝑠𝑖𝑛 𝐴 = 3

5 and 𝐴 is acute angle, find the values of 𝑠𝑖𝑛 2𝐴

and π‘π‘œπ‘  2𝐴.

Solution: 𝑠𝑖𝑛 𝐴 = 3

5 β‡’ π‘œπ‘π‘ = 3 and β„Žπ‘¦π‘ = 5. ∴ π‘Žπ‘‘π‘— = 4.

∴ π‘π‘œπ‘  𝐴 = π‘Žπ‘‘π‘—

β„Žπ‘¦π‘=

4

5.

∴ 𝑠𝑖𝑛 2𝐴 = 2𝑠𝑖𝑛 𝐴. π‘π‘œπ‘  𝐴 = 23

5.

4

5 =

24

25 ;

π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2𝑠𝑖𝑛2𝐴 = 1 βˆ’ 2 3

5

2 = 1 βˆ’ 2

9

25 = 1 βˆ’

18

25 =

7

25.

34. If π‘‘π‘Žπ‘› 𝐴 = 1

3, π‘‘π‘Žπ‘› 𝐡 =

1

7 prove that 2𝐴 + 𝐡 =

πœ‹

4.

Solution: π‘‘π‘Žπ‘› 2𝐴 = 2π‘‘π‘Žπ‘› 𝐴

1 βˆ’ π‘‘π‘Žπ‘› 2 𝐴 =

2 1 3

1 βˆ’ 1 3 2 =

2 3

1 βˆ’ 1 9 =

2 3

8 9 =

3

4.

∴ π‘‘π‘Žπ‘› (2𝐴 + 𝐡) = π‘‘π‘Žπ‘› 2𝐴 + π‘‘π‘Žπ‘› 𝐡

1 βˆ’ π‘‘π‘Žπ‘› 2𝐴.π‘‘π‘Žπ‘› 𝐡 =

3

4 +

1

7

1 βˆ’ 3

4

1

7

= 21 + 4

2828 βˆ’ 3

28

= 25

25 = 1.

Since π‘‘π‘Žπ‘› 𝐴 and π‘‘π‘Žπ‘› 𝐡 are positive and since π‘‘π‘Žπ‘› (2𝐴 + 𝐡) is

positive, we get, 2𝐴 + 𝐡 = πœ‹

4.

35. Show that π‘‘π‘Žπ‘› 𝐴 =1 βˆ’ π‘π‘œπ‘  2𝐴

𝑠𝑖𝑛 2𝐴 and hence deduce the value of

π‘‘π‘Žπ‘›15Β°.

Solution: 1 βˆ’ π‘π‘œπ‘  2𝐴

𝑠𝑖𝑛 2𝐴 =

2𝑠𝑖𝑛 2 𝐴

2𝑠𝑖𝑛 𝐴.π‘π‘œπ‘  𝐴 = π‘‘π‘Žπ‘› 𝐴. ∴ π‘‘π‘Žπ‘› 𝐴 =

1 βˆ’ π‘π‘œπ‘  2𝐴

𝑠𝑖𝑛 2𝐴.

By taking 𝐴 = 15° we get,

π‘‘π‘Žπ‘› 15Β° =1 βˆ’ π‘π‘œπ‘  2(15Β°)

𝑠𝑖𝑛 2(15Β°) =

1 βˆ’ π‘π‘œπ‘  30Β°

𝑠𝑖𝑛 30Β° =

1 βˆ’ 3 2

1 2 =

2 βˆ’ 3

2

1 2 = 2 βˆ’ 3.

36. Prove that π‘π‘œπ‘  20Β° + π‘π‘œπ‘  100Β° + π‘π‘œπ‘  140Β° = 0.

Solution: 𝐿𝐻𝑆 = π‘π‘œπ‘  20Β° + π‘π‘œπ‘  100Β° + π‘π‘œπ‘  140Β°

= π‘π‘œπ‘  20Β° + 2 π‘π‘œπ‘  100 Β° + 140 Β°

2 . π‘π‘œπ‘ 

100Β° βˆ’ 140Β°

2

= π‘π‘œπ‘  20Β° + 2 π‘π‘œπ‘  120Β° . π‘π‘œπ‘  βˆ’20Β°

= π‘π‘œπ‘  20Β° + 2 βˆ’1

2 . π‘π‘œπ‘  20Β° = π‘π‘œπ‘  20Β° βˆ’ π‘π‘œπ‘  20Β° = 0.

37. Prove that 𝑠𝑖𝑛 50Β° βˆ’ 𝑠𝑖𝑛 70Β° + 𝑠𝑖𝑛 10Β° = 0

Solution: 𝐿𝐻𝑆 = 𝑠𝑖𝑛 50Β° βˆ’ 𝑠𝑖𝑛 70Β° + 𝑠𝑖𝑛 10Β°

= 2 π‘π‘œπ‘  50 Β° + 70Β°

2 . 𝑠𝑖𝑛

50Β° βˆ’ 70Β°

2 + 𝑠𝑖𝑛10Β°

= 2 π‘π‘œπ‘  60Β° βˆ™ 𝑠𝑖𝑛 βˆ’10Β° + 𝑠𝑖𝑛10Β°

= βˆ’ 2 Γ—1

2𝑠𝑖𝑛 10Β° + 𝑠𝑖𝑛 10Β° = βˆ’ 𝑠𝑖𝑛 10Β° + 𝑠𝑖𝑛 10Β° = 0.

38. Prove that 𝑠𝑖𝑛 20Β° 𝑠𝑖𝑛 40Β° 𝑠𝑖𝑛 60Β° 𝑠𝑖𝑛 80Β° =3

16

Solution: 𝐿𝐻𝑆 = 𝑠𝑖𝑛 60Β° . 𝑠𝑖𝑛 20Β° 𝑠𝑖𝑛(60Β° βˆ’ 20Β°) 𝑠𝑖𝑛(60Β° + 20Β°)

= 3

2𝑠𝑖𝑛 20Β° 𝑠𝑖𝑛 60Β° βˆ’ 20Β° 𝑠𝑖𝑛 60Β° + 20Β°

= 3

2.

1

4. sin (3 Γ— 20Β°) =

3

2.

1

4. sin 60Β°

= 3

8 𝑠𝑖𝑛 60Β° =

3

8Γ—

3

2=

3

16.

39. Show that 𝑠𝑖𝑛 5𝐴 + 𝑠𝑖𝑛 2𝐴 βˆ’ 𝑠𝑖𝑛 𝐴

π‘π‘œπ‘  5𝐴 + π‘π‘œπ‘  2𝐴 + π‘π‘œπ‘  𝐴 = π‘‘π‘Žπ‘› 2𝐴

Solution: 𝑠𝑖𝑛 5𝐴 + 𝑠𝑖𝑛 2𝐴 βˆ’ 𝑠𝑖𝑛 𝐴

π‘π‘œπ‘  5𝐴 + π‘π‘œπ‘  2𝐴 + π‘π‘œπ‘  𝐴=

𝑠𝑖𝑛 2𝐴 + 𝑠𝑖𝑛 5𝐴 βˆ’ 𝑠𝑖𝑛 𝐴

π‘π‘œπ‘  2𝐴 + π‘π‘œπ‘  5𝐴 + π‘π‘œπ‘  𝐴

=𝑠𝑖𝑛 2𝐴 + 2 π‘π‘œπ‘  5𝐴 + 𝐴

2 .𝑠𝑖𝑛

5𝐴 βˆ’ 𝐴

2

π‘π‘œπ‘  2𝐴 + 2 π‘π‘œπ‘  5𝐴 + 𝐴2

.π‘π‘œπ‘  5𝐴 βˆ’ 𝐴

2

=𝑠𝑖𝑛 2𝐴 + 2 π‘π‘œπ‘  3𝐴 . 𝑠𝑖𝑛 2𝐴

π‘π‘œπ‘  2𝐴 + 2 π‘π‘œπ‘  3𝐴 . π‘π‘œπ‘  2𝐴

=𝑠𝑖𝑛 2𝐴[1 + 2 π‘π‘œπ‘  3𝐴]

π‘π‘œπ‘  2𝐴[1 + 2 π‘π‘œπ‘  3𝐴] =

𝑠𝑖𝑛 2𝐴

π‘π‘œπ‘  2𝐴= π‘‘π‘Žπ‘› 2𝐴.

40. Find the general solution of 𝑠𝑖𝑛 πœƒ = π‘˜, βˆ’1 ≀ π‘˜ ≀ 1.

Solution: Let 𝛼 be an angle such that

𝑠𝑖𝑛 𝛼 = π‘˜, βˆ’πœ‹

2 ≀ 𝛼 ≀

πœ‹

2.

Then 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 𝛼.

Now 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 𝛼 β‡’ 𝑠𝑖𝑛 πœƒ – 𝑠𝑖𝑛 𝛼 = 0

β‡’ 2π‘π‘œπ‘  πœƒ + 𝛼

2. 𝑠𝑖𝑛

πœƒ βˆ’ 𝛼

2 = 0

β‡’ π‘π‘œπ‘  πœƒ + 𝛼

2 = 0 or 𝑠𝑖𝑛

πœƒ βˆ’ 𝛼

2 = 0.

Now π‘π‘œπ‘  πœƒ + 𝛼

2 = 0 β‡’

πœƒ + 𝛼

2 = (2𝑛 + 1)

πœ‹

2, 𝑛 ∈ 𝑍.

β‡’ πœƒ + 𝛼 = (2𝑛 + 1)πœ‹

β‡’ πœƒ = (2𝑛 + 1)πœ‹ βˆ’ 𝛼 …(1)

𝑠𝑖𝑛 πœƒ βˆ’ 𝛼

2 = 0 β‡’

πœƒ βˆ’ 𝛼

2 = π‘›πœ‹, 𝑛 ∈ 𝑍.

β‡’ πœƒ βˆ’ 𝛼 = 2π‘›πœ‹ β‡’ πœƒ = 2π‘›πœ‹ + 𝛼 …(2).

∴ combining (1) and (2),we get, πœƒ = π‘›πœ‹ + βˆ’ 1 𝑛𝛼, 𝑛 ∈ 𝑍.

This is the general solution of 𝑠𝑖𝑛 πœƒ = π‘˜, βˆ’ 1 ≀ π‘˜ ≀ 1.

41. Find the general solution of π‘π‘œπ‘  πœƒ = π‘˜, βˆ’ 1 ≀ π‘˜ ≀ 1.

Solution: Let 𝛼 be an angle such that π‘π‘œπ‘  𝛼 = π‘˜, 0 ≀ 𝛼 ≀ πœ‹

Then π‘π‘œπ‘  πœƒ = π‘π‘œπ‘  𝛼.

Now π‘π‘œπ‘  πœƒ = π‘π‘œπ‘  𝛼 β‡’ π‘π‘œπ‘  πœƒ – π‘π‘œπ‘  𝛼 = 0

β‡’ βˆ’ 2𝑠𝑖𝑛 πœƒ + 𝛼

2. 𝑠𝑖𝑛

πœƒ βˆ’ 𝛼

2 = 0

β‡’ π‘ π‘–π‘›πœƒ + 𝛼

2 = 0 or 𝑠𝑖𝑛

πœƒ βˆ’ 𝛼

2 = 0.

Now 𝑠𝑖𝑛 πœƒ + 𝛼

2 = 0 β‡’

πœƒ + 𝛼

2 = π‘›πœ‹, 𝑛 ∈ 𝑍

β‡’ πœƒ + 𝛼 = 2π‘›πœ‹ β‡’ πœƒ = 2π‘›πœ‹ βˆ’ 𝛼 …(1)

𝑠𝑖𝑛 πœƒ βˆ’ 𝛼

2 = 0 β‡’

πœƒ βˆ’ 𝛼

2 = π‘›πœ‹, 𝑛 ∈ 𝑍

β‡’ πœƒ βˆ’ 𝛼 = 2π‘›πœ‹ β‡’ πœƒ = 2π‘›πœ‹ + 𝛼 ...(2).

∴ combining (1) and (2), we get, πœƒ = 2π‘›πœ‹ Β± 𝛼 , 𝑛 ∈ 𝑍.

This is the general solution of π‘π‘œπ‘  πœƒ = π‘˜, βˆ’ 1 ≀ π‘˜ ≀ 1.

42. Find the general solution of π‘‘π‘Žπ‘› πœƒ = π‘˜, βˆ’ ∞ < π‘˜ < ∞.

Solution: Let 𝛼 be an angle such that

π‘‘π‘Žπ‘› 𝛼 = π‘˜ , βˆ’ πœ‹

2 < 𝛼 <

πœ‹

2.

Then π‘‘π‘Žπ‘› πœƒ = π‘‘π‘Žπ‘› 𝛼.

Now π‘‘π‘Žπ‘› πœƒ = π‘‘π‘Žπ‘› 𝛼 β‡’ π‘ π‘–π‘›πœƒ

π‘π‘œπ‘ πœƒ =

𝑠𝑖𝑛𝛼

π‘π‘œπ‘ π›Ό

β‡’ 𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘  𝛼 = π‘π‘œπ‘  πœƒ. 𝑠𝑖𝑛 𝛼

β‡’ 𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘  𝛼 βˆ’ π‘π‘œπ‘  πœƒ. 𝑠𝑖𝑛 𝛼 = 0

β‡’ 𝑠𝑖𝑛( πœƒ – 𝛼 ) = 0 β‡’ πœƒ – 𝛼 = π‘›πœ‹, 𝑛 ∈ 𝑍.

β‡’ πœƒ = π‘›πœ‹ + 𝛼 , 𝑛 ∈ 𝑍.

This is the general solution of π‘‘π‘Žπ‘› πœƒ = π‘˜, βˆ’ ∞ < π‘˜ < ∞.

43. Find the general solution of π‘‘π‘Žπ‘› 2πœƒ. π‘‘π‘Žπ‘› 3πœƒ = 1.

Solution: π‘‘π‘Žπ‘› 2πœƒ. π‘‘π‘Žπ‘› 3πœƒ = 1 ⟹ 𝑠𝑖𝑛 2 πœƒ

π‘π‘œπ‘  2 πœƒ.𝑠𝑖𝑛 3 πœƒ

π‘π‘œπ‘  3 πœƒ= 1

⟹ 𝑠𝑖𝑛 2πœƒ. 𝑠𝑖𝑛 3πœƒ = π‘π‘œπ‘  2πœƒ. π‘π‘œπ‘  3πœƒ

⟹ π‘π‘œπ‘  2πœƒ. π‘π‘œπ‘  3πœƒ βˆ’ 𝑠𝑖𝑛 2πœƒ. 𝑠𝑖𝑛 3πœƒ = 0

⟹ π‘π‘œπ‘  (2πœƒ + 3πœƒ) = 0 ⟹ π‘π‘œπ‘  5πœƒ = 0.

⟹ 5 πœƒ = 2𝑛 + 1 πœ‹

2, 𝑛 ∈ 𝑍 ⟹ πœƒ = 2𝑛 + 1

πœ‹

10, 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

44. Find the general solution of

π‘‘π‘Žπ‘› πœƒ + π‘‘π‘Žπ‘› 2πœƒ + 3π‘‘π‘Žπ‘› πœƒ. π‘‘π‘Žπ‘› 2πœƒ = 3.

Solution: π‘‘π‘Žπ‘› πœƒ + π‘‘π‘Žπ‘› 2πœƒ + 3π‘‘π‘Žπ‘› πœƒ. π‘‘π‘Žπ‘› 2πœƒ = 3

⟹ π‘‘π‘Žπ‘› πœƒ + π‘‘π‘Žπ‘› 2πœƒ = 3(1 βˆ’ π‘‘π‘Žπ‘› πœƒ. π‘‘π‘Žπ‘› 2πœƒ)

⟹ π‘‘π‘Žπ‘› πœƒ + π‘‘π‘Žπ‘› 2πœƒ

(1 βˆ’ π‘‘π‘Žπ‘› πœƒβˆ™π‘‘π‘Žπ‘› 2πœƒ) = 3 ⟹ π‘‘π‘Žπ‘› 3πœƒ = 3 = π‘‘π‘Žπ‘›

πœ‹

3

⟹ 3πœƒ = π‘›πœ‹ + πœ‹

3 , 𝑛 ∈ 𝑍 ⟹ πœƒ =

π‘›πœ‹

3 +

πœ‹

9 , 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

45. Find the general solution of 𝑠𝑖𝑛 2π‘₯ + 𝑠𝑖𝑛 4π‘₯ + 𝑠𝑖𝑛 6π‘₯ = 0.

Solution: 𝑠𝑖𝑛 2π‘₯ + 𝑠𝑖𝑛 4π‘₯ + 𝑠𝑖𝑛 6π‘₯ = 0

⟹ 𝑠𝑖𝑛 4π‘₯ + 𝑠𝑖𝑛 6π‘₯ + 𝑠𝑖𝑛 2π‘₯ = 0

⟹ 𝑠𝑖𝑛 4π‘₯ + 2𝑠𝑖𝑛 6π‘₯ + 2π‘₯

2 βˆ™ π‘π‘œπ‘ 

6π‘₯ βˆ’ 2π‘₯

2 = 0

⟹ 𝑠𝑖𝑛 4π‘₯ + 2𝑠𝑖𝑛 4π‘₯. π‘π‘œπ‘  2π‘₯ = 0 ⟹ 𝑠𝑖𝑛 4π‘₯(1 + 2π‘π‘œπ‘  2π‘₯) = 0

⟹ 𝑠𝑖𝑛 4π‘₯ = 0 or 1 + 2π‘π‘œπ‘  2π‘₯ = 0.

𝑠𝑖𝑛 4π‘₯ = 0 ⟹ 4π‘₯ = π‘›πœ‹ ∴ π‘₯ = π‘›πœ‹

4, 𝑛 ∈ 𝑍.

1 + 2π‘π‘œπ‘  2π‘₯ = 0 ⟹ π‘π‘œπ‘  2π‘₯ = βˆ’1

2 = π‘π‘œπ‘ 

2πœ‹

3.

∴ 2π‘₯ = 2π‘›πœ‹ Β± 2πœ‹

3, 𝑛 ∈ 𝑍. ∴ π‘₯ = π‘›πœ‹ Β±

πœ‹

3, 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

46. Find the general solution of 4𝑠𝑖𝑛2 π‘₯ βˆ’ 8π‘π‘œπ‘  π‘₯ + 1 = 0.

Solution: 4𝑠𝑖𝑛2 π‘₯ βˆ’ 8π‘π‘œπ‘  π‘₯ + 1 = 0

⟹ 4(1 βˆ’ π‘π‘œπ‘ 2 π‘₯) βˆ’ 8π‘π‘œπ‘  π‘₯ + 1 = 0

⟹ βˆ’4π‘π‘œπ‘ 2 π‘₯ βˆ’ 8π‘π‘œπ‘  π‘₯ + 5 = 0

⟹ 4π‘π‘œπ‘ 2 π‘₯ + 8π‘π‘œπ‘  π‘₯ βˆ’ 5 = 0

⟹ 4π‘π‘œπ‘ 2 π‘₯ + 10π‘π‘œπ‘  π‘₯ βˆ’ 2π‘π‘œπ‘  π‘₯ βˆ’ 5 = 0

⟹ 2π‘π‘œπ‘  π‘₯ 2π‘π‘œπ‘  π‘₯ + 5 βˆ’ 1 2π‘π‘œπ‘  π‘₯ + 5 = 0

⟹ 2π‘π‘œπ‘  π‘₯ βˆ’ 1 2π‘π‘œπ‘  π‘₯ + 5 = 0

⟹ 2π‘π‘œπ‘  π‘₯ βˆ’ 1 = 0 or 2π‘π‘œπ‘  π‘₯ + 5 = 0

⟹ π‘π‘œπ‘  π‘₯ =1

2 or π‘π‘œπ‘  π‘₯ = βˆ’

5

2

Now π‘π‘œπ‘ π‘₯ = βˆ’ 5

2< βˆ’1. This has no solution.

π‘π‘œπ‘  π‘₯ =1

2 ⟹ π‘₯ = 2π‘›πœ‹ Β±

πœ‹

3 , 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

47. Find the general solution of 2𝑠𝑖𝑛2 π‘₯ + 3π‘π‘œπ‘  π‘₯ + 1 = 0.

Solution: 2𝑠𝑖𝑛2 π‘₯ + 3π‘π‘œπ‘  π‘₯ + 1 = 0

⟹ 2(1 βˆ’ π‘π‘œπ‘ 2 π‘₯) + 3π‘π‘œπ‘  π‘₯ + 1 = 0

⟹ 2π‘π‘œπ‘ 2 π‘₯ βˆ’ 2 3π‘π‘œπ‘  π‘₯ + 3π‘π‘œπ‘  π‘₯ βˆ’ 3 = 0

⟹ 2π‘π‘œπ‘  π‘₯ π‘π‘œπ‘  π‘₯ βˆ’ 3 + 3(π‘π‘œπ‘  π‘₯ βˆ’ 3) = 0

⟹ (2π‘π‘œπ‘  π‘₯ + 3) π‘π‘œπ‘  π‘₯ βˆ’ 3 = 0

⟹ π‘π‘œπ‘  π‘₯ = βˆ’ 3

2 or π‘π‘œπ‘  π‘₯ = 3.

π‘π‘œπ‘ π‘₯ = 3 > 1. This has no solution.

Now π‘π‘œπ‘ π‘₯ = βˆ’ 3

2 = cos πœ‹ βˆ’

πœ‹

6 = π‘π‘œπ‘ 

5πœ‹

6. ∴ π‘₯ = 2π‘›πœ‹ Β±

5πœ‹

6, 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

48. Find the general solution of 2π‘π‘œπ‘ 2 π‘₯ + 3𝑠𝑖𝑛 π‘₯ = 0.

Solution: 2π‘π‘œπ‘ 2 π‘₯ + 3𝑠𝑖𝑛 π‘₯ = 0

⟹ 2 1 βˆ’ 𝑠𝑖𝑛2 π‘₯ + 3𝑠𝑖𝑛 π‘₯ = 0 ⟹ 2 βˆ’ 2𝑠𝑖𝑛2 π‘₯ + 3𝑠𝑖𝑛 π‘₯ = 0

⟹ 2𝑠𝑖𝑛2 π‘₯ βˆ’ 3 𝑠𝑖𝑛 π‘₯ βˆ’ 2 = 0 ⟹ 2𝑠𝑖𝑛 π‘₯ + 1 𝑠𝑖𝑛 π‘₯ βˆ’ 2 = 0

⟹ 2𝑠𝑖𝑛 π‘₯ + 1 = 0 or 𝑠𝑖𝑛 π‘₯ βˆ’ 2 = 0

⟹ 𝑠𝑖𝑛 π‘₯ = βˆ’ 1

2 or 𝑠𝑖𝑛 π‘₯ = 2

𝑠𝑖𝑛π‘₯ = 2 > 1 has no solution.

𝑠𝑖𝑛 π‘₯ = βˆ’ 1

2 = βˆ’π‘ π‘–π‘›

πœ‹

6= 𝑠𝑖𝑛 βˆ’

πœ‹

6 .

∴ π‘₯ = π‘›πœ‹ + (βˆ’1)𝑛 βˆ’πœ‹

6 , 𝑛 ∈ 𝑍.

This is the general solution of the given equation.

49. Find the general solution of 2π‘π‘œπ‘ 2 πœƒ + 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 2πœƒ + π‘π‘œπ‘  πœƒ.

Solution: 2π‘π‘œπ‘ 2 πœƒ + 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 2πœƒ + π‘π‘œπ‘  πœƒ

⟹ 2π‘π‘œπ‘ 2 πœƒ βˆ’ π‘π‘œπ‘  πœƒ = 2𝑠𝑖𝑛 πœƒπ‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 πœƒ

⟹ π‘π‘œπ‘  πœƒ 2π‘π‘œπ‘  πœƒ βˆ’ 1 βˆ’ 𝑠𝑖𝑛 πœƒ 2π‘π‘œπ‘  πœƒ βˆ’ 1 = 0

⟹ 2π‘π‘œπ‘  πœƒ βˆ’ 1 (π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 πœƒ) = 0

⟹ 2π‘π‘œπ‘  πœƒ βˆ’ 1 = 0 or π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 πœƒ = 0.

Now 2π‘π‘œπ‘  πœƒ βˆ’ 1 = 0 ⟹ π‘π‘œπ‘  πœƒ = 1

2 = π‘π‘œπ‘ 

πœ‹

3 ∴ πœƒ = 2π‘›πœ‹ Β±

πœ‹

3 , 𝑛 ∈ 𝑍.

π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 πœƒ = 0 ⟹ 𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘  πœƒ.

Dividing by π‘π‘œπ‘  πœƒ we get, π‘‘π‘Žπ‘› πœƒ = 1 = π‘‘π‘Žπ‘›πœ‹

4. ∴ πœƒ = π‘›πœ‹ +

πœ‹

4,

𝑛 ∈ 𝑍. ∴ the general solution is πœƒ = 2π‘›πœ‹ Β± πœ‹

3, πœƒ = π‘›πœ‹ +

πœ‹

4, 𝑛 ∈ 𝑍.

50. Find the general solution of π‘π‘œπ‘  π‘₯ + π‘π‘œπ‘  2π‘₯ + π‘π‘œπ‘  3π‘₯ = 0.

Solution: π‘π‘œπ‘  π‘₯ + π‘π‘œπ‘  2π‘₯ + π‘π‘œπ‘  3π‘₯ = 0

⟹ 2 π‘π‘œπ‘  π‘₯ + 3π‘₯

2 . π‘π‘œπ‘ 

π‘₯ βˆ’ 3π‘₯

2 + π‘π‘œπ‘  2π‘₯ = 0 ⟹ π‘π‘œπ‘  2π‘₯ 2π‘π‘œπ‘  π‘₯ + 1 = 0

⟹ π‘π‘œπ‘  2π‘₯ = 0 or 2π‘π‘œπ‘  π‘₯ + 1 = 0.

Now π‘π‘œπ‘  2π‘₯ = 0 ⟹ 2π‘₯ = (2𝑛 + 1)πœ‹

2 ∴ π‘₯ = 2𝑛 + 1

πœ‹

4 ,𝑛 ∈ 𝑍.

2π‘π‘œπ‘  π‘₯ + 1 = 0 ⟹ π‘π‘œπ‘  π‘₯ = βˆ’1

2= π‘π‘œπ‘  πœ‹ βˆ’

πœ‹

3 = π‘π‘œπ‘ 

2πœ‹

3

∴ π‘₯ = 2π‘›πœ‹ Β±2πœ‹

3 , 𝑛 ∈ 𝑍.

∴ the general solution is π‘₯ = 2𝑛 + 1 πœ‹

4, π‘₯ = 2π‘›πœ‹ Β±

2πœ‹

3 𝑛 ∈ 𝑍.

51. Prove that 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

9πœ‹

13 + π‘π‘œπ‘ 

3πœ‹

13 + π‘π‘œπ‘ 

5πœ‹

13 = 0.

Solution: 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

9πœ‹

13 + π‘π‘œπ‘ 

3πœ‹

13 + π‘π‘œπ‘ 

5πœ‹

13

= 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

9πœ‹

13 + 2π‘π‘œπ‘ 

3πœ‹

13 +

5πœ‹

13

2. π‘π‘œπ‘ 

5πœ‹

13 βˆ’

3πœ‹

13

13

= 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

9πœ‹

13 + 2π‘π‘œπ‘ 

8πœ‹

13

2. π‘π‘œπ‘ 

2πœ‹

13

2

= 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

9πœ‹

13 + 2π‘π‘œπ‘ 

4πœ‹

13. π‘π‘œπ‘ 

πœ‹

13

= 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

13πœ‹ βˆ’ 4πœ‹

13 + 2π‘π‘œπ‘ 

4πœ‹

13. π‘π‘œπ‘ 

πœ‹

13

= 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘  πœ‹ βˆ’

4πœ‹

13 + 2π‘π‘œπ‘ 

4πœ‹

13. π‘π‘œπ‘ 

πœ‹

13

= βˆ’ 2π‘π‘œπ‘  πœ‹

13. π‘π‘œπ‘ 

4πœ‹

13 + 2π‘π‘œπ‘ 

4πœ‹

13. π‘π‘œπ‘ 

πœ‹

13 = 0.

52. Prove that π‘π‘œπ‘  6π‘₯ = 32π‘π‘œπ‘ 6 π‘₯ βˆ’ 48π‘π‘œπ‘ 4 π‘₯ + 18π‘π‘œπ‘ 2 π‘₯ βˆ’ 1

Solution: π‘π‘œπ‘  6π‘₯ = 2π‘π‘œπ‘ 2 3π‘₯ βˆ’ 1

= 2 4π‘π‘œπ‘ 3 π‘₯ βˆ’ 3π‘π‘œπ‘  π‘₯ 2 βˆ’ 1

= 2 4π‘π‘œπ‘ 3 π‘₯ 2 + 3π‘π‘œπ‘  π‘₯ 2 βˆ’ 24π‘π‘œπ‘ 3 π‘₯. π‘π‘œπ‘  π‘₯ βˆ’ 1

= 2 16π‘π‘œπ‘ 6 π‘₯ + 9π‘π‘œπ‘ 2 π‘₯ βˆ’ 24π‘π‘œπ‘ 4 π‘₯ βˆ’ 1

= 32π‘π‘œπ‘ 6 π‘₯ βˆ’ 48π‘π‘œπ‘ 4 π‘₯ + 18π‘π‘œπ‘ 2 π‘₯ βˆ’ 1

53. Prove that π‘π‘œπ‘‘ π‘₯. π‘π‘œπ‘‘ 2π‘₯ βˆ’ π‘π‘œπ‘‘ 2π‘₯. π‘π‘œπ‘‘ 3π‘₯ βˆ’ π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ π‘₯ = 1.

Solution: We have π‘₯ + 2π‘₯ = 3π‘₯.

∴ π‘π‘œπ‘‘ 3π‘₯ = π‘π‘œπ‘‘ (π‘₯ + 2π‘₯) = π‘π‘œπ‘‘ π‘₯ .π‘π‘œπ‘‘ 2π‘₯ βˆ’ 1

π‘π‘œπ‘‘ 2π‘₯ + π‘π‘œπ‘‘ π‘₯.

∴ π‘π‘œπ‘‘ 3π‘₯(π‘π‘œπ‘‘ 2π‘₯ βˆ’ π‘π‘œπ‘‘ π‘₯) = π‘π‘œπ‘‘ π‘₯. π‘π‘œπ‘‘ 2π‘₯ + 1

∴ π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ 2π‘₯ + π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ π‘₯ = π‘π‘œπ‘‘ π‘₯. π‘π‘œπ‘‘ 2π‘₯ βˆ’ 1

Thus π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ 2π‘₯ + π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ π‘₯ βˆ’ π‘π‘œπ‘‘ π‘₯. π‘π‘œπ‘‘ 2π‘₯ = βˆ’ 1.

By changing the sign we get

π‘π‘œπ‘‘ π‘₯. π‘π‘œπ‘‘ 2π‘₯ βˆ’ π‘π‘œπ‘‘ 2π‘₯. π‘π‘œπ‘‘ 3π‘₯ βˆ’ π‘π‘œπ‘‘ 3π‘₯. π‘π‘œπ‘‘ π‘₯ = 1.

Five mark questions

1. Discuss the signs of trigonometric functions in the four

quadrants.

Solution: Consider a circle of radius π‘Ÿ,

centered at the origin of a Cartesian

coordinate system. Let 𝑃(π‘₯, 𝑦) be a

point on the circle. Suppose that the

angle made by the radius 𝑂𝑃 with the

positive direction of the

x-axis is πœƒ. Then

𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ, π‘π‘œπ‘  πœƒ =

π‘₯

π‘Ÿ, π‘‘π‘Žπ‘› πœƒ =

𝑦

π‘₯ .

a) If 0 < πœƒ < πœ‹

2 then 𝑃(π‘₯, 𝑦 ) is a point in the first quadrant.

Here π‘₯ > 0 and 𝑦 > 0. ∴ 𝑠𝑖𝑛 πœƒ > 0, π‘π‘œπ‘  πœƒ > 0, π‘‘π‘Žπ‘› πœƒ > 0

∴ π‘π‘œπ‘ π‘’π‘ πœƒ > 0, 𝑠𝑒𝑐 πœƒ > 0, π‘π‘œπ‘‘ πœƒ > 0.

In the first quadrant 𝒂𝒍𝒍 the trigonometric functions are

positive.

b) If πœ‹

2 < πœƒ < πœ‹ then 𝑃(π‘₯,𝑦 ) is a point in the second quadrant.

Here π‘₯ < 0 and 𝑦 > 0. ∴ 𝑠𝑖𝑛 πœƒ > 0, π‘π‘œπ‘  πœƒ < 0 , π‘‘π‘Žπ‘› πœƒ < 0

∴ π‘π‘œπ‘ π‘’π‘ πœƒ > 0, 𝑠𝑒𝑐 πœƒ < 0, π‘π‘œπ‘‘ πœƒ < 0.

In the second quadrant π’”π’Šπ’ 𝜽 (and also 𝒐𝒔𝒆𝒄 𝜽 ) is positive.

c) If πœ‹ < πœƒ < 3πœ‹

2 then 𝑃(π‘₯,𝑦 ) is a point in the third quadrant.

Here π‘₯ < 0 and 𝑦 < 0. ∴ 𝑠𝑖𝑛 πœƒ < 0, π‘π‘œπ‘  πœƒ < 0, π‘‘π‘Žπ‘› πœƒ > 0

∴ π‘π‘œπ‘ π‘’π‘ πœƒ < 0, 𝑠𝑒𝑐 πœƒ < 0, π‘π‘œπ‘‘ πœƒ > 0.

In the third quadrant 𝒕𝒂𝒏 𝜽 ( and also 𝒄𝒐𝒕 𝜽 ) is positive.

d) If 3πœ‹

2 < πœƒ < 2πœ‹ then 𝑃(π‘₯,𝑦) is a point in the

fourth quadrant. Here π‘₯ > 0 and 𝑦 < 0.

∴ 𝑠𝑖𝑛 πœƒ < 0, π‘π‘œπ‘  πœƒ > 0 and π‘‘π‘Žπ‘› πœƒ < 0.

∴ π‘π‘œπ‘ π‘’π‘ πœƒ < 0, 𝑠𝑒𝑐 πœƒ > 0 , π‘π‘œπ‘‘ πœƒ < 0.

In the fourth quadrant 𝒄𝒐𝒔 𝜽 (and also 𝒆𝒄 𝜽 ) is positive.

2. Find the range of values of the trigonometric functions

Solution: Consider a circle of radius π‘Ÿ, centered at the origin

of a Cartesian coordinate system.

Let 𝑃(π‘₯, 𝑦) be a point on the circle.

Suppose that the angle made by the

radius 𝑂𝑃 with the positive direction

of the x-axis is πœƒ.

Then 𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ , π‘π‘œπ‘  πœƒ =

π‘₯

π‘Ÿ ,

π‘‘π‘Žπ‘› πœƒ = 𝑦

π‘₯ ,

π‘π‘œπ‘ π‘’π‘ πœƒ = π‘Ÿ

𝑦 , 𝑠𝑒𝑐 πœƒ =

π‘Ÿ

π‘₯ , π‘π‘œπ‘‘ πœƒ =

π‘₯

𝑦.

For any position of the point 𝑃(π‘₯, 𝑦) on the circle,

βˆ’ π‘Ÿ ≀ 𝑦 ≀ π‘Ÿ β‡’ βˆ’ 1 ≀ 𝑦/π‘Ÿ ≀ 1 β‡’ βˆ’ 1 ≀ π‘ π‘–π‘›πœƒ ≀ 1.

Similarly

βˆ’ π‘Ÿ ≀ π‘₯ ≀ π‘Ÿ β‡’ βˆ’ 1 ≀ π‘₯/π‘Ÿ ≀ 1 β‡’ βˆ’ 1 ≀ π‘π‘œπ‘ πœƒ ≀ 1.

Since βˆ’ ∞ < 𝑦/π‘₯ < ∞ and βˆ’ ∞ < π‘₯/𝑦 < ∞, we get,

βˆ’ ∞ < π‘‘π‘Žπ‘›πœƒ < ∞ and βˆ’ ∞ < π‘π‘œπ‘‘πœƒ < ∞.

Also, – π‘Ÿ ≀ 𝑦 ≀ π‘Ÿ β‡’ π‘Ÿ/𝑦 β‰₯ 1 or π‘Ÿ/𝑦 ≀ βˆ’ 1

∴ | π‘Ÿ/𝑦 | β‰₯ 1. ∴ |π‘ π‘’π‘πœƒ | β‰₯ 1.

Similarly – π‘Ÿ ≀ π‘₯ ≀ π‘Ÿ β‡’ π‘Ÿ/π‘₯ β‰₯ 1 or π‘Ÿ/π‘₯ ≀ βˆ’ 1

∴ | π‘Ÿ/π‘₯ | β‰₯ 1. ∴ |π‘π‘œπ‘ π‘’π‘πœƒ | β‰₯ 1.

3. Express the trigonometric ratios of βˆ’ πœƒ with those of πœƒ.

Solution: Consider a circle of radius π‘Ÿ centered at the origin of

the Cartesian coordinate system. Let

𝑃( π‘₯, 𝑦 ) be a point on the circle. Suppose

that the angle made by the radius 𝑂𝑃

with the positive direction of the x-axis is

πœƒ. Then

𝑠𝑖𝑛 πœƒ = 𝑦

π‘Ÿ , π‘π‘œπ‘  πœƒ =

π‘₯

π‘Ÿ , π‘‘π‘Žπ‘› πœƒ =

𝑦

π‘₯.

Draw 𝑃𝑀 perpendicular to the x-axis and

produce to meet the circle at 𝑄.

Here 𝑄 is the image of 𝑃. ∴ 𝑄 ≑ ( π‘₯, βˆ’ 𝑦 ). Here angle 𝑄𝑂𝑋 is

βˆ’ πœƒ.

By definition,

𝑠𝑖𝑛 (βˆ’ πœƒ) = βˆ’ 𝑦

π‘Ÿ = βˆ’

𝑦

π‘Ÿ = βˆ’ 𝑠𝑖𝑛 πœƒ ;

π‘π‘œπ‘  (βˆ’ πœƒ) = π‘₯

π‘Ÿ = π‘π‘œπ‘  πœƒ ;

π‘‘π‘Žπ‘› (βˆ’ πœƒ) = βˆ’ 𝑦

π‘₯ = βˆ’

𝑦

π‘₯ = βˆ’ π‘‘π‘Žπ‘› πœƒ.

By writing the reciprocals we get π‘π‘œπ‘ π‘’π‘ (βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ ;

𝑠𝑒𝑐 (βˆ’ πœƒ) = 𝑠𝑒𝑐 πœƒ ; π‘π‘œπ‘‘ (βˆ’ πœƒ) = βˆ’ π‘π‘œπ‘‘ πœƒ.

4. Prove geometrically π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦. Hence

prove that π‘π‘œπ‘  (π‘₯ βˆ’ 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦

Solution: Consider the unit circle centered at the origin of the Cartesian

coordinate system.

Let 𝑃 and 𝑄 be points on the unit circle such that angle 𝑋 = π‘₯ , angle

𝑄𝑂𝑃 = 𝑦 and angle 𝑄𝑂𝑋 = π‘₯ + 𝑦.

Then 𝑃 ≑ (π‘π‘œπ‘  π‘₯, 𝑠𝑖𝑛 π‘₯) and 𝑄 ≑ (π‘π‘œπ‘  (π‘₯ + 𝑦), 𝑠𝑖𝑛 (π‘₯ + 𝑦)).

Let 𝑅 be a point on the unit circle such that angle 𝑄𝑂𝑋 = βˆ’ 𝑦.

Then 𝑅 ≑ (π‘π‘œπ‘  (βˆ’ 𝑦), 𝑠𝑖𝑛 (βˆ’ 𝑦)). Let 𝑆 ≑ (1, 0).

In βˆ†π‘ƒπ‘‚π‘… and βˆ†π‘„π‘‚π‘†, 𝑂𝑃 = 𝑂𝑄 = 𝑂𝑅 = 𝑂𝑆.

Also angle 𝑃𝑂𝑅 = 𝑄𝑂𝑆.

∴ triangles are congruent β‡’ 𝑃𝑅 = 𝑄𝑆 β‡’ 𝑃𝑅2 = 𝑄𝑆2.

β‡’ π‘π‘œπ‘  π‘₯ βˆ’ π‘π‘œπ‘ (βˆ’ 𝑦) 2 + 𝑠𝑖𝑛 π‘₯ βˆ’ 𝑠𝑖𝑛(βˆ’ 𝑦) 2

= π‘π‘œπ‘  (π‘₯ + 𝑦) βˆ’ 1 2 + 𝑠𝑖𝑛 (π‘₯ + 𝑦) βˆ’ 0 2

β‡’ π‘π‘œπ‘  π‘₯ βˆ’ π‘π‘œπ‘  𝑦 2 + 𝑠𝑖𝑛 π‘₯ + 𝑠𝑖𝑛 𝑦 2

= π‘π‘œπ‘  (π‘₯ + 𝑦) βˆ’ 1 2 + 𝑠𝑖𝑛 (π‘₯ + 𝑦) 2

β‡’ π‘π‘œπ‘ 2 π‘₯ + π‘π‘œπ‘ 2 𝑦 βˆ’ 2. π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛2 π‘₯ + 𝑠𝑖𝑛2 𝑦 + 2. 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦

= π‘π‘œπ‘ 2 (π‘₯ + 𝑦) + 1 βˆ’ 2. π‘π‘œπ‘  (π‘₯ + 𝑦) + 𝑠𝑖𝑛2 (π‘₯ + 𝑦)

β‡’ 2 βˆ’ 2. π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 2. 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦 = 2 βˆ’ 2. π‘π‘œπ‘  (π‘₯ + 𝑦)

β‡’ βˆ’ π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦 = βˆ’ π‘π‘œπ‘  (π‘₯ + 𝑦)

β‡’ π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

By replacing 𝑦 by βˆ’ 𝑦 we get

π‘π‘œπ‘  (π‘₯ + (βˆ’π‘¦)) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  (βˆ’π‘¦) βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 (βˆ’π‘¦)

β‡’ π‘π‘œπ‘  (π‘₯ βˆ’ 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. (βˆ’ 𝑠𝑖𝑛 𝑦)

= π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

5. Express the trigonometric ratios of 90Β° βˆ’ πœƒ with those of πœƒ

Solution: We know that π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

a) By taking π‘₯ = 90Β° and 𝑦 = βˆ’ πœƒ we get,

π‘π‘œπ‘  (90Β° βˆ’ πœƒ) = π‘π‘œπ‘  90Β°. π‘π‘œπ‘  (βˆ’ πœƒ) βˆ’ 𝑠𝑖𝑛 90Β°. 𝑠𝑖𝑛 ( βˆ’πœƒ)

= (0). π‘π‘œπ‘  πœƒ βˆ’ (1)(βˆ’π‘ π‘–π‘› πœƒ) = 𝑠𝑖𝑛 πœƒ.

∴ π‘π‘œπ‘  (90Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 πœƒ.

b) Replacing πœƒ by 90Β° βˆ’ πœƒ in 𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘  (90Β° βˆ’ πœƒ) we get,

𝑠𝑖𝑛 (90Β° βˆ’ πœƒ) = π‘π‘œπ‘  90Β° βˆ’ (90Β° βˆ’ πœƒ) = π‘π‘œπ‘  πœƒ.

c) π‘‘π‘Žπ‘› (90Β° βˆ’ πœƒ) = 𝑠𝑖𝑛 (90Β° βˆ’πœƒ)

π‘π‘œπ‘  (90Β° βˆ’ πœƒ) =

π‘π‘œπ‘  πœƒ

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘‘ πœƒ.

d) π‘π‘œπ‘‘ (90Β° βˆ’ πœƒ) = π‘π‘œπ‘  (90Β° βˆ’πœƒ)

𝑠𝑖𝑛 (90Β° βˆ’ πœƒ) =

𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒ = π‘‘π‘Žπ‘› πœƒ

e) π‘π‘œπ‘ π‘’π‘ (90Β° βˆ’ πœƒ) = 1

𝑠𝑖𝑛 (90Β° βˆ’πœƒ) =

1

π‘π‘œπ‘  πœƒ = 𝑠𝑒𝑐 πœƒ.

f) 𝑠𝑒𝑐 (90Β° βˆ’ πœƒ) = 1

π‘π‘œπ‘  (90Β° βˆ’πœƒ) =

1

𝑠𝑖𝑛 πœƒ = π‘π‘œπ‘ π‘’π‘ πœƒ.

6. Express the trigonometric ratios of 90Β° + πœƒ with those of πœƒ.

Solution: We know that π‘π‘œπ‘  (π‘₯ + 𝑦) = π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦.

By taking π‘₯ = 90Β° and 𝑦 = πœƒ we get,

a) π‘π‘œπ‘  (90Β° + πœƒ) = π‘π‘œπ‘  90Β°. π‘π‘œπ‘  πœƒ βˆ’ 𝑠𝑖𝑛 90Β°. 𝑠𝑖𝑛 πœƒ

= (0). π‘π‘œπ‘  πœƒ βˆ’ (1). 𝑠𝑖𝑛 πœƒ = βˆ’ 𝑠𝑖𝑛 πœƒ.

∴ π‘π‘œπ‘  (90Β° + πœƒ) = βˆ’ 𝑠𝑖𝑛 πœƒ.

b) 𝑠𝑖𝑛 (90Β° + πœƒ) = π‘π‘œπ‘  90Β° βˆ’ (90Β° + πœƒ) = π‘π‘œπ‘  (βˆ’ πœƒ) = π‘π‘œπ‘  πœƒ.

c) π‘‘π‘Žπ‘› (90Β° + πœƒ) = 𝑠𝑖𝑛 (90Β° + πœƒ)

π‘π‘œπ‘  (90Β° + πœƒ) =

π‘π‘œπ‘  πœƒ

βˆ’ 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘‘ πœƒ.

d) π‘π‘œπ‘‘ (90Β° + πœƒ) = π‘π‘œπ‘  (90Β° + πœƒ)

𝑠𝑖𝑛 (90Β° + πœƒ) =

βˆ’ 𝑠𝑖𝑛 πœƒ

π‘π‘œπ‘  πœƒ = βˆ’ π‘‘π‘Žπ‘› πœƒ

e) π‘π‘œπ‘ π‘’π‘ (90Β° + πœƒ) = 1

𝑠𝑖𝑛 (90Β° + πœƒ) =

1

π‘π‘œπ‘  πœƒ = 𝑠𝑒𝑐 πœƒ.

f) 𝑠𝑒𝑐 (90Β° + πœƒ) = 1

π‘π‘œπ‘  (90Β° + πœƒ) =

1

βˆ’ 𝑠𝑖𝑛 πœƒ = βˆ’ π‘π‘œπ‘ π‘’π‘ πœƒ.

7. Find the value of 𝑠𝑖𝑛 18Β°.

Hence find π‘π‘œπ‘  36Β°.

Solution: Let πœƒ = 18Β°. Then 5πœƒ = 90Β°.

∴ 3πœƒ + 2πœƒ = 90Β° or 2πœƒ = 90Β° βˆ’ 3πœƒ.

∴ 𝑠𝑖𝑛 2πœƒ = 𝑠𝑖𝑛 (90Β° βˆ’ 3πœƒ) = π‘π‘œπ‘  3πœƒ.

∴ 2𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘  πœƒ = 4π‘π‘œπ‘ 3 πœƒ βˆ’ 3π‘π‘œπ‘  πœƒ.

Dividing by π‘π‘œπ‘  πœƒ, we get, 2𝑠𝑖𝑛 πœƒ = 4π‘π‘œπ‘ 2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4(1 βˆ’ 𝑠𝑖𝑛2 πœƒ) βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4 βˆ’ 4𝑠𝑖𝑛2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 1 βˆ’ 4𝑠𝑖𝑛2 πœƒ

β‡’ 4𝑠𝑖𝑛2 πœƒ + 2𝑠𝑖𝑛 πœƒ βˆ’ 1 = 0

β‡’ 𝑠𝑖𝑛 πœƒ = βˆ’ 2 Β± 4 βˆ’ 4(4)(βˆ’ 1)

2 Γ— 4 =

βˆ’ 2 Β± 4 + 16

8 =

βˆ’ 2 Β± 20

8

= βˆ’ 2 Β± 2 5

8 =

2(βˆ’ 1 Β± 5)

8 =

βˆ’ 1 Β± 5

4.

Since πœƒ = 18Β°, 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 18Β° is positive. ∴ 𝑠𝑖𝑛 18Β° = 5 βˆ’ 1

4.

By using π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2𝑠𝑖𝑛2𝐴, we get,

π‘π‘œπ‘  36Β° = 1 βˆ’ 2𝑠𝑖𝑛2 18Β° = 1 βˆ’ 2 5 βˆ’ 1

4

2

= 1 βˆ’ 2 5 + 1 βˆ’ 2 5

16 = 1 βˆ’

6 βˆ’ 2 5

8 =

8 βˆ’ (6 βˆ’ 2 5)

8

= 2 + 2 5

8 =

1 + 5

4.

∴ π‘π‘œπ‘  36Β° = 5 + 1

4.

8. Find the value of 𝑠𝑖𝑛 18Β°.

Hence find π‘π‘œπ‘  18Β°

Solution: Let πœƒ = 18Β°. Then 5πœƒ = 90Β°.

∴ 3πœƒ + 2πœƒ = 90Β° or 2πœƒ = 90Β° βˆ’ 3πœƒ.

∴ 𝑠𝑖𝑛 2πœƒ = 𝑠𝑖𝑛 (90Β° βˆ’ 3πœƒ) = π‘π‘œπ‘  3πœƒ.

∴ 2𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘  πœƒ = 4π‘π‘œπ‘ 3 πœƒ βˆ’ 3π‘π‘œπ‘  πœƒ.

Dividing by π‘π‘œπ‘  πœƒ, we get, 2𝑠𝑖𝑛 πœƒ = 4π‘π‘œπ‘ 2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4(1 βˆ’ 𝑠𝑖𝑛2 πœƒ) βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4 βˆ’ 4𝑠𝑖𝑛2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 1 βˆ’ 4𝑠𝑖𝑛2 πœƒ

β‡’ 4𝑠𝑖𝑛2 πœƒ + 2𝑠𝑖𝑛 πœƒ βˆ’ 1 = 0

β‡’ 𝑠𝑖𝑛 πœƒ = βˆ’ 2 Β± 4 βˆ’ 4(4)(βˆ’ 1)

2 Γ— 4 =

βˆ’ 2 Β± 4 + 16

8 =

βˆ’ 2 Β± 20

8

= βˆ’ 2 Β± 2 5

8 =

2(βˆ’ 1 Β± 5)

8 =

βˆ’ 1 Β± 5

4.

Since πœƒ = 18Β°, 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 18Β° is positive. ∴ 𝑠𝑖𝑛 18Β° = 5 βˆ’ 1

4.

By using π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2𝑠𝑖𝑛2𝐴, we get,

π‘π‘œπ‘  36Β° = 1 βˆ’ 2𝑠𝑖𝑛2 18Β° = 1 βˆ’ 2 5 βˆ’ 1

4

2

= 1 βˆ’ 2 5 + 1 βˆ’ 2 5

16 = 1 βˆ’

6 βˆ’ 2 5

8 =

8 βˆ’ (6 βˆ’ 2 5)

8

= 2 + 2 5

8 =

1 + 5

4.

∴ π‘π‘œπ‘  36Β° = 5 + 1

4.

By using 2π‘π‘œπ‘ 2𝐴 = 1 + π‘π‘œπ‘  2𝐴, we get,

2π‘π‘œπ‘ 218Β° = 1 + π‘π‘œπ‘  36Β° = 1 + 5 + 1

4 =

4 + 5 + 1

4 =

5 + 5

4

∴ π‘π‘œπ‘ 218Β° = 5 + 5

8

∴ π‘π‘œπ‘  18Β° = 5 + 5

8 =

2(5 + 5)

16 =

10 + 2 5

4.

9. Find the value of 𝑠𝑖𝑛 18Β°.

Hence find 𝑠𝑖𝑛 36Β°.

Solution: Let πœƒ = 18Β°. Then 5πœƒ = 90Β°.

∴ 3πœƒ + 2πœƒ = 90Β° or 2πœƒ = 90Β° βˆ’ 3πœƒ.

∴ 𝑠𝑖𝑛 2πœƒ = 𝑠𝑖𝑛 (90Β° βˆ’ 3πœƒ) = π‘π‘œπ‘  3πœƒ.

∴ 2𝑠𝑖𝑛 πœƒ. π‘π‘œπ‘  πœƒ = 4π‘π‘œπ‘ 3 πœƒ βˆ’ 3π‘π‘œπ‘  πœƒ.

Dividing by π‘π‘œπ‘  πœƒ, we get, 2𝑠𝑖𝑛 πœƒ = 4π‘π‘œπ‘ 2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4(1 βˆ’ 𝑠𝑖𝑛2 πœƒ) βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 4 βˆ’ 4𝑠𝑖𝑛2 πœƒ βˆ’ 3

β‡’ 2𝑠𝑖𝑛 πœƒ = 1 βˆ’ 4𝑠𝑖𝑛2 πœƒ

β‡’ 4𝑠𝑖𝑛2 πœƒ + 2𝑠𝑖𝑛 πœƒ βˆ’ 1 = 0

β‡’ 𝑠𝑖𝑛 πœƒ = βˆ’ 2 Β± 4 βˆ’ 4(4)(βˆ’ 1)

2 Γ— 4 =

βˆ’ 2 Β± 4 + 16

8 =

βˆ’ 2 Β± 20

8

= βˆ’ 2 Β± 2 5

8 =

2(βˆ’ 1 Β± 5)

8 =

βˆ’ 1 Β± 5

4.

Since πœƒ = 18Β°, 𝑠𝑖𝑛 πœƒ = 𝑠𝑖𝑛 18Β° is positive. ∴ 𝑠𝑖𝑛 18Β° = 5 βˆ’ 1

4.

By using π‘π‘œπ‘  2𝐴 = 1 βˆ’ 2𝑠𝑖𝑛2𝐴, we get,

π‘π‘œπ‘  36Β° = 1 βˆ’ 2𝑠𝑖𝑛2 18Β° = 1 βˆ’ 2 5 βˆ’ 1

4

2

= 1 βˆ’ 2 5 + 1 βˆ’ 2 5

16 = 1 βˆ’

6 βˆ’ 2 5

8 =

8 βˆ’ (6 βˆ’ 2 5)

8

= 2 + 2 5

8 =

1 + 5

4.

∴ π‘π‘œπ‘  36Β° = 5 + 1

4.

∴ 𝑠𝑖𝑛2 36Β° = 1 βˆ’ π‘π‘œπ‘ 2 36Β° = 1 βˆ’ 5 + 1

4

2

= 1 βˆ’ 5 + 1 + 2 5

16

= 1 βˆ’ 6 + 2 5

16 =

16 βˆ’ 6 βˆ’ 2 5

16 =

10 βˆ’ 2 5

16

∴ 𝑠𝑖𝑛 36Β° = 10 βˆ’ 2 5

4.

10. Show that π‘π‘œπ‘  𝐴 + π‘π‘œπ‘  120Β° + 𝐴 + π‘π‘œπ‘  120Β° βˆ’ 𝐴 = 0.

Solution: We have

π‘π‘œπ‘  120Β° + 𝐴 = π‘π‘œπ‘  120Β°. π‘π‘œπ‘  𝐴 βˆ’ 𝑠𝑖𝑛 120Β°. 𝑠𝑖𝑛 𝐴 and

π‘π‘œπ‘  120Β° βˆ’ 𝐴 = π‘π‘œπ‘  120Β°. π‘π‘œπ‘  𝐴 + 𝑠𝑖𝑛 120Β°. 𝑠𝑖𝑛 𝐴

∴ π‘π‘œπ‘  120Β° + 𝐴 + π‘π‘œπ‘  120Β° βˆ’ 𝐴 = 2 π‘π‘œπ‘  120Β° π‘π‘œπ‘  𝐴

= 2 π‘π‘œπ‘  180Β° βˆ’ 60Β° π‘π‘œπ‘  𝐴

= βˆ’ 2π‘π‘œπ‘  60Β° . π‘π‘œπ‘  𝐴 = βˆ’ 2 1

2 π‘π‘œπ‘  𝐴 = βˆ’ π‘π‘œπ‘  𝐴.

∴ π‘π‘œπ‘  𝐴 + π‘π‘œπ‘  120Β° + 𝐴 + π‘π‘œπ‘  120Β° βˆ’ 𝐴

= π‘π‘œπ‘  𝐴 βˆ’ π‘π‘œπ‘  𝐴 = 0 = 𝑅𝐻𝑆.

11. Prove that π‘π‘œπ‘  20Β° π‘π‘œπ‘  40Β° π‘π‘œπ‘  60Β° π‘π‘œπ‘  80Β° = 1

16.

Solution: 𝐿𝐻𝑆 =1

2 π‘π‘œπ‘  20Β° + 40Β° + π‘π‘œπ‘  20Β° βˆ’ 40Β°

1

2. π‘π‘œπ‘  80Β°.

=1

4 π‘π‘œπ‘  60Β° + π‘π‘œπ‘  βˆ’ 20Β° . π‘π‘œπ‘  80Β°

=1

4

1

2 + π‘π‘œπ‘  20Β° . π‘π‘œπ‘  80Β° =

1

4

1 + 2 π‘π‘œπ‘  20Β°

2 . π‘π‘œπ‘  80Β°

=1

8 π‘π‘œπ‘  80Β° + 2 π‘π‘œπ‘  80Β° π‘π‘œπ‘  20Β°

=1

8 π‘π‘œπ‘  80Β° + π‘π‘œπ‘  80Β° + 20Β° + π‘π‘œπ‘  80Β° βˆ’ 20Β°

=1

8 π‘π‘œπ‘  80Β° + π‘π‘œπ‘  100Β° + π‘π‘œπ‘  60Β°

= 1

8 π‘π‘œπ‘  80Β° + π‘π‘œπ‘  180Β° βˆ’ 80Β° +

1

2

=1

8 π‘π‘œπ‘  80Β° βˆ’ π‘π‘œπ‘  80Β° +

1

2 =

1

16

II method:

π‘π‘œπ‘  20Β° π‘π‘œπ‘  40Β° π‘π‘œπ‘  60Β° π‘π‘œπ‘  80Β°

= π‘π‘œπ‘  60Β° . π‘π‘œπ‘  20Β° π‘π‘œπ‘ (60Β° βˆ’ 20Β°) π‘π‘œπ‘ (60Β° + 20Β°)

= π‘π‘œπ‘  60Β° . π‘π‘œπ‘  20Β° π‘π‘œπ‘ 2 60Β° βˆ’ 𝑠𝑖𝑛2 20Β°

=1

2. π‘π‘œπ‘  20Β°

1

2

2 βˆ’ ( 1 βˆ’ π‘π‘œπ‘ 2 20Β°)

=1

2. π‘π‘œπ‘  20Β°

1

4 βˆ’ 1 + π‘π‘œπ‘ 2 20Β°

=1

2. π‘π‘œπ‘  20Β° π‘π‘œπ‘ 2 20Β° βˆ’

3

4

=1

2. π‘π‘œπ‘  20Β°

4π‘π‘œπ‘  2 20Β° βˆ’ 3

4

=1

2.

4π‘π‘œπ‘  3 20Β° βˆ’ 3 π‘π‘œπ‘  20Β°

4

= 1

2.

1

4. π‘π‘œπ‘  (3 Γ— 20Β°) =

1

2.

1

4. π‘π‘œπ‘  60Β° =

1

8.

1

2 =

1

16.

12. Show that 𝑠𝑖𝑛 πœƒ =𝑠𝑖𝑛 3πœƒ

1 + 2π‘π‘œπ‘  2πœƒ and hence prove that

𝑠𝑖𝑛15Β° = 3 βˆ’ 1

2 2.

Solution: 𝑠𝑖𝑛 3πœƒ

1 + 2π‘π‘œπ‘  2πœƒ =

3𝑠𝑖𝑛 πœƒ βˆ’ 4𝑠𝑖𝑛 3 πœƒ

1 + 2(1 βˆ’ 2𝑠𝑖𝑛 2 πœƒ) =

𝑠𝑖𝑛 πœƒ(3 βˆ’ 4𝑠𝑖𝑛 2 πœƒ)

3 βˆ’ 4𝑠𝑖𝑛 2 πœƒ = 𝑠𝑖𝑛 πœƒ.

∴ 𝑠𝑖𝑛 πœƒ =𝑠𝑖𝑛 3πœƒ

1 + 2π‘π‘œπ‘  2πœƒ.

By taking πœƒ = 15Β° we get,

𝑠𝑖𝑛 15Β° =𝑠𝑖𝑛 3(15Β°)

1 + 2π‘π‘œπ‘  2(15Β°) =

𝑠𝑖𝑛 45Β°

1 + 2π‘π‘œπ‘  30Β° =

1 2

1 + 2 3 2 =

1

2 1 + 3

= 1

2 3 + 1 =

1

2 3 + 1 . 3 βˆ’ 1

3 βˆ’ 1 =

3 βˆ’ 1

2 3 βˆ’ 1 =

3 βˆ’ 1

2 2.

13. Show that π‘π‘œπ‘  7π‘₯ βˆ’ π‘π‘œπ‘  5π‘₯ + π‘π‘œπ‘  3π‘₯ βˆ’ π‘π‘œπ‘  π‘₯

𝑠𝑖𝑛 7π‘₯ βˆ’ 𝑠𝑖𝑛 5π‘₯ βˆ’ 𝑠𝑖𝑛 3π‘₯ + 𝑠𝑖𝑛 π‘₯ = π‘π‘œπ‘‘ 2π‘₯.

Solution: π‘π‘œπ‘  7π‘₯ βˆ’ π‘π‘œπ‘  5π‘₯ + π‘π‘œπ‘  3π‘₯ βˆ’ π‘π‘œπ‘  π‘₯

𝑠𝑖𝑛 7π‘₯ βˆ’ 𝑠𝑖𝑛 5π‘₯ βˆ’ 𝑠𝑖𝑛 3π‘₯ + 𝑠𝑖𝑛 π‘₯ =

π‘π‘œπ‘  7π‘₯ + π‘π‘œπ‘  3π‘₯ βˆ’ π‘π‘œπ‘  5π‘₯ βˆ’ π‘π‘œπ‘  π‘₯

𝑠𝑖𝑛 7π‘₯ βˆ’ 𝑠𝑖𝑛 3π‘₯ βˆ’ 𝑠𝑖𝑛 5π‘₯ + 𝑠𝑖𝑛 π‘₯

=π‘π‘œπ‘  7π‘₯ + π‘π‘œπ‘  3π‘₯ βˆ’ (π‘π‘œπ‘  5π‘₯ + π‘π‘œπ‘  π‘₯)

𝑠𝑖𝑛 7π‘₯ βˆ’ 𝑠𝑖𝑛 3π‘₯ βˆ’ (𝑠𝑖𝑛 5π‘₯ βˆ’ 𝑠𝑖𝑛 π‘₯)

=2 π‘π‘œπ‘ 

7π‘₯ + 3π‘₯2

.π‘π‘œπ‘  7π‘₯ βˆ’ 3π‘₯

2 βˆ’ 2 π‘π‘œπ‘  5π‘₯ + π‘₯

2 .π‘π‘œπ‘ 

5π‘₯ βˆ’ π‘₯

2

2 π‘π‘œπ‘  7π‘₯ + 3π‘₯

2 .𝑠𝑖𝑛

7π‘₯ βˆ’ 3π‘₯

2 βˆ’ 2 π‘π‘œπ‘ 

5π‘₯ + π‘₯2

.𝑠𝑖𝑛 5π‘₯ βˆ’ π‘₯

2

=2π‘π‘œπ‘  5π‘₯βˆ™π‘π‘œπ‘  2π‘₯ βˆ’ 2π‘π‘œπ‘  3π‘₯βˆ™π‘π‘œπ‘  2π‘₯

2π‘π‘œπ‘  5π‘₯βˆ™π‘ π‘–π‘› 2π‘₯ βˆ’ 2π‘π‘œπ‘  3π‘₯βˆ™π‘ π‘–π‘› 2π‘₯

=2π‘π‘œπ‘  2π‘₯(π‘π‘œπ‘  5π‘₯ βˆ’ π‘π‘œπ‘  3π‘₯)

2𝑠𝑖𝑛 2π‘₯(π‘π‘œπ‘  5π‘₯ βˆ’ π‘π‘œπ‘  3π‘₯) =

π‘π‘œπ‘  2π‘₯

𝑠𝑖𝑛 2π‘₯ = π‘π‘œπ‘‘ 2π‘₯.

14. Prove that π‘π‘œπ‘  π‘₯ + π‘π‘œπ‘  𝑦 2 + 𝑠𝑖𝑛 π‘₯ βˆ’ 𝑠𝑖𝑛 𝑦 2 = 4π‘π‘œπ‘ 2 π‘₯ + 𝑦

2 .

Solution: π‘π‘œπ‘  π‘₯ + π‘π‘œπ‘  𝑦 2 + 𝑠𝑖𝑛 π‘₯ βˆ’ 𝑠𝑖𝑛 𝑦 2

= π‘π‘œπ‘ 2π‘₯ + π‘π‘œπ‘ 2 𝑦 + 2π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 + 𝑠𝑖𝑛2 π‘₯ + 𝑠𝑖𝑛2 𝑦 βˆ’ 2𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦

= π‘π‘œπ‘ 2π‘₯ + 𝑠𝑖𝑛2 π‘₯ + π‘π‘œπ‘ 2 𝑦 + 𝑠𝑖𝑛2 𝑦 + 2(π‘π‘œπ‘  π‘₯. π‘π‘œπ‘  𝑦 βˆ’ 𝑠𝑖𝑛 π‘₯. 𝑠𝑖𝑛 𝑦)

= 1 + 1 + 2π‘π‘œπ‘  (π‘₯ + 𝑦)

= 2 + 2π‘π‘œπ‘  (π‘₯ + 𝑦) = 2 1 + π‘π‘œπ‘  (π‘₯ + 𝑦) = 2.2π‘π‘œπ‘ 2 π‘₯ + 𝑦

2

= 4π‘π‘œπ‘ 2 π‘₯ + 𝑦

2 .

15. If π‘‘π‘Žπ‘› π‘₯ = βˆ’ 4

3,

πœ‹

2 < π‘₯ < πœ‹ find 𝑠𝑖𝑛

π‘₯

2, π‘π‘œπ‘ 

π‘₯

2 and π‘‘π‘Žπ‘›

π‘₯

2.

Solution: Let π‘œπ‘π‘ = 4 and π‘Žπ‘‘π‘— = 3. Then β„Žπ‘¦π‘ = 5.

Since π‘₯ is an angle lying in the II quadrant, π‘π‘œπ‘  π‘₯ is negative.

∴ π‘π‘œπ‘  π‘₯ = βˆ’ π‘Žπ‘‘π‘—

β„Žπ‘¦π‘ = βˆ’

4

5.

Now 2𝑠𝑖𝑛2 π‘₯

2 = 1 βˆ’ π‘π‘œπ‘  π‘₯ = 1 βˆ’ βˆ’

4

5 =

5 + 4

5 =

9

5.

∴ 𝑠𝑖𝑛2 π‘₯

2 =

9

10. ∴ 𝑠𝑖𝑛

π‘₯

2 = Β±

3

10.

Since πœ‹

2 < π‘₯ < πœ‹ we get,

πœ‹

4 <

π‘₯

2 <

πœ‹

2.

∴ 𝑠𝑖𝑛 π‘₯

2 > 0. ∴ 𝑠𝑖𝑛

π‘₯

2 =

3

10.

Now 2π‘π‘œπ‘ 2 π‘₯

2 = 1 + π‘π‘œπ‘  π‘₯ = 1 + βˆ’

4

5 =

5 βˆ’ 4

5 =

1

5.

∴ π‘π‘œπ‘ 2 π‘₯

2 =

1

10. ∴ π‘π‘œπ‘ 

π‘₯

2 = Β±

1

10.

Since πœ‹

2 < π‘₯ < πœ‹ we get,

πœ‹

4 <

π‘₯

2 <

πœ‹

2.

∴ π‘π‘œπ‘  π‘₯

2 > 0. ∴ π‘π‘œπ‘ 

π‘₯

2 =

1

10.

Also π‘‘π‘Žπ‘› π‘₯

2 =

𝑠𝑖𝑛 π‘₯

2

π‘π‘œπ‘  π‘₯

2

= 3 10

1 10 = 3.

16. Prove that 𝑠𝑖𝑛2 π‘₯ + 𝑠𝑖𝑛2 π‘₯ + 2πœ‹

3 + 𝑠𝑖𝑛2 π‘₯ βˆ’

2πœ‹

3 =

3

2.

Solution: 𝑠𝑖𝑛2 π‘₯ + 𝑠𝑖𝑛2 π‘₯ + 2πœ‹

3 + 𝑠𝑖𝑛2 π‘₯ βˆ’

2πœ‹

3

= 1 βˆ’ π‘π‘œπ‘  2π‘₯

2 +

1 βˆ’ π‘π‘œπ‘  2 π‘₯ + 2πœ‹

3

2 +

1 βˆ’ π‘π‘œπ‘  2 π‘₯ βˆ’ 2πœ‹

3

2

= 1 βˆ’ π‘π‘œπ‘  2π‘₯

2 +

1 βˆ’ π‘π‘œπ‘  2π‘₯ + 4πœ‹

3

2 +

1 βˆ’ π‘π‘œπ‘  2π‘₯ βˆ’ 4πœ‹

3

2

= 1 βˆ’ π‘π‘œπ‘  2π‘₯ + 1 βˆ’ π‘π‘œπ‘  2π‘₯ +

4πœ‹

3 + 1 βˆ’ π‘π‘œπ‘  2π‘₯ βˆ’

4πœ‹

3

2

= 3 βˆ’ π‘π‘œπ‘  2π‘₯ + π‘π‘œπ‘  2π‘₯ +

4πœ‹

3 + π‘π‘œπ‘  2π‘₯ βˆ’

4πœ‹

3

2

= 3 βˆ’ π‘π‘œπ‘  2π‘₯ + 2 π‘π‘œπ‘  2π‘₯ .π‘π‘œπ‘ 

4πœ‹

3

2

{ π‘π‘œπ‘  4πœ‹

3 = π‘π‘œπ‘ 

3πœ‹ + πœ‹

3 = π‘π‘œπ‘  πœ‹ +

πœ‹

3 = βˆ’ π‘π‘œπ‘ 

πœ‹

3 = βˆ’

1

2 }

= 3 βˆ’ π‘π‘œπ‘  2π‘₯ + 2 π‘π‘œπ‘  2π‘₯ . βˆ’

1

2

2 =

3 βˆ’ π‘π‘œπ‘  2π‘₯ βˆ’ π‘π‘œπ‘  2π‘₯

2 =

3

2.