trigonometry trigonometric identities trigonometric

92
Trigonometry Trigonometric Identities Trigonometric Equations A Level Maths Boost - Trigonometry Dr Rhian Taylor 5 May 2021

Upload: others

Post on 27-Nov-2021

28 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

A Level Maths Boost - Trigonometry

Dr Rhian Taylor

5 May 2021

Page 2: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 3: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 4: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x

1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 5: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 6: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 7: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 x

tan2 x + 1 = sec2 x

Page 8: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We know thatsin2 x + cos2 x = 1

We can derive the following identities:

sin2 x

sin2 x+

cos2 x

sin2 x=

1

sin2 x

1 +1

tan2 x=

1

sin2 x1 + cot2 x = cosec2x

sin2 x

cos2 x+

cos2 x

cos2 x=

1

cos2 x

tan2 x + 1 =1

cos2 xtan2 x + 1 = sec2 x

Page 9: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We are given that

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB

tan(A± B) =tanA± tanB

1 ∓ tanA tanB

We can derive the following double angle identities:

sin(2θ) = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ

Page 10: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We are given that

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB

tan(A± B) =tanA± tanB

1 ∓ tanA tanB

We can derive the following double angle identities:

sin(2θ) = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ

Page 11: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We are given that

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB

tan(A± B) =tanA± tanB

1 ∓ tanA tanB

We can derive the following double angle identities:

sin(2θ) = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ

Page 12: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

We are given that

sin(A± B) = sinA cosB ± cosA sinB

cos(A± B) = cosA cosB ∓ sinA sinB

tan(A± B) =tanA± tanB

1 ∓ tanA tanB

We can derive the following double angle identities:

sin(2θ) = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ

Page 13: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 14: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 15: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 16: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 17: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 18: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 19: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 20: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

cos(2θ) = cos(θ + θ)

= cos θ cos θ − sin θ sin θ

= cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1 − 2 sin2 θ

tan(2θ) = tan(θ + θ)

=tan θ + tan θ

1 − tan θ tan θ

=2 tan θ

1 − tan2 θ

Page 21: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

1 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x= 2 tan x

Page 22: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

2 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x= 2 tan x

Page 23: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

3 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x= 2 tan x

Page 24: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

4 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x= 2 tan x

Page 25: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

5 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x

= 2 tan x

Page 26: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

6 Show thatcos x

1 − sin x− cos x

1 + sin x= 2 tan x

cos x

1 − sin x− cos x

1 + sin x=

cos x(1 + sin x) − cos x(1 − sin x)

(1 − sin x)(1 + sin x)

=cos x + cos x sin x − cos x + cos x sin x

1 − sin2 x

=2 sin x cos x

cos2 x

=2 sin x

cos x= 2 tan x

Page 27: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

7 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 28: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

8 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 29: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

9 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)

=cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 30: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

10 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)

=cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 31: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

11 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)

=cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 32: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

12 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)

=cos2 x sin x

sin x= cos2 x

Page 33: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

13 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x

= cos2 x

Page 34: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

14 Show thatcos2 x =

cosecx cos x

tan x + cot x

cosecx cos x

tan x + cot x=

1sin x cos x

sin xcos x + cos x

sin x

=cos x

sin x÷(

sin x

cos x+

cos x

sin x

)=

cos x

sin x÷(

sin2 x + cos2 x

sin x cos x

)=

cos x

sin x÷(

1

sin x cos x

)=

cos x

sin x×(

sin x cos x

1

)=

cos2 x sin x

sin x= cos2 x

Page 35: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

15 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 36: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

16 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 37: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

17 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 38: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

18 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 39: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

19 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 40: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

20 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 41: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

21 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x

= cos x cot x

Page 42: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

22 Show that

(1 − sin x)(1 + cosecx) = cos x cot x

(1 − sin x)(1 + cosecx) = 1 + cosecx − sin x − sin xcosecx

= 1 +1

sin x− sin x − sin x

1

sin x

=1

sin x− sin x

=1 − sin2 x

sin x

=cos2 x

sin x

=cos x cos x

sin x= cos x cot x

Page 43: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

1 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 44: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

2 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 45: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

3 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 46: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

4 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 47: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

5 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 48: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

6 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 49: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

7 Solve 2 tan2 θ + 4 sec θ + sec2 θ = 2 for 0 ≤ θ < 360.

2 tan2 θ + 4 sec θ + sec2 θ = 2

2(sec2 θ − 1)θ + 4 sec θ + sec2 θ = 2

2 sec2 θ − 2θ + 4 sec θ + sec2 θ = 2

3 sec2 θ + 4 sec θ − 4 = 0

(sec θ + 2)(3 sec θ − 2) = 0

We have two possible solutions

sec θ = 2 and sec θ =2

3

Page 50: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

1

cos θ= 2 and

1

cos θ=

2

3

cos θ =1

2and cos θ =

3

2

θ = 120

We also have another solution between 0 and 360, which is360 − 120 = 240.

θ = 120, 240

Page 51: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

1

cos θ= 2 and

1

cos θ=

2

3

cos θ =1

2and cos θ =

3

2

θ = 120

We also have another solution between 0 and 360, which is360 − 120 = 240.

θ = 120, 240

Page 52: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

1

cos θ= 2 and

1

cos θ=

2

3

cos θ =1

2and cos θ =

3

2

θ = 120

We also have another solution between 0 and 360, which is360 − 120 = 240.

θ = 120, 240

Page 53: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations8 • Show that the equation 4 cos2 x + 9 sin x − 6 = 0 can be written as

4 sin2 x − 9 sin x + 2 = 0.

4 cos2 x + 9 sin x − 6 = 0

4(1 − sin2 x) + 9 sin x − 6 = 0

4 sin2 x − 9 sin x + 2 = 0

Page 54: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations Show that the equation 4 cos2 x + 9 sin x − 6 = 0 can be written as

4 sin2 x − 9 sin x + 2 = 0.

4 cos2 x + 9 sin x − 6 = 0

4(1 − sin2 x) + 9 sin x − 6 = 0

4 sin2 x − 9 sin x + 2 = 0

Page 55: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations Show that the equation 4 cos2 x + 9 sin x − 6 = 0 can be written as

4 sin2 x − 9 sin x + 2 = 0.

4 cos2 x + 9 sin x − 6 = 0

4(1 − sin2 x) + 9 sin x − 6 = 0

4 sin2 x − 9 sin x + 2 = 0

Page 56: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations Show that the equation 4 cos2 x + 9 sin x − 6 = 0 can be written as

4 sin2 x − 9 sin x + 2 = 0.

4 cos2 x + 9 sin x − 6 = 0

4(1 − sin2 x) + 9 sin x − 6 = 0

4 sin2 x − 9 sin x + 2 = 0

Page 57: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be• • • •• 180− 14.5 = 165.5,

• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 58: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 59: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 60: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 61: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 62: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be

•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 63: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,

• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 64: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,

• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 65: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 66: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Hence solve 4 cos2 x + 9 sin x − 6 = 0 for 0 ≤ x ≤ 720, giving youranswers to one decimal place.

4 sin2 x − 9 sin x + 2 = 0

(4 sin x − 1)(sin x − 2) = 0

We have two possible solutions,

sin x =1

4and sin x = 2

Solving for x , we havex = 14.5

Our next solutions between 0 and 720 will be•• 180− 14.5 = 165.5,• 360 + 14.5 = 374.5,• 360 + 165.5 = 525.5,

We havex = 14.5, 165.5, 374.5, 525.5

Page 67: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

9 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 68: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

10 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 69: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

11 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos x

cos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 70: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

12 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 71: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

13 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 72: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

14 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 73: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

15 Solve cos x = 3 tan x for 0 ≤ x ≤ 3π, giving your answers to 3significant figures.

cos x = 3 tan x

cos x = 3sin x

cos xcos2 x = 3 sin x

1 − sin2 x = 3 sin x

sin2 x + 3 sin x − 1 = 0

We have two possible solutions

sin x = 0.30278 and sin x = −3.30278

Page 74: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Our first solution for x is

x = 0.3076

Our next solutions will be• π − 0.3076 = 2.83,• 2π + 0.3076 = 6.59,• 2π + 2.83 = 9.12

Our solutions are

x = 0.308, 2.83, 6.59, 9.12

Page 75: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Our first solution for x is

x = 0.3076

Our next solutions will be• π − 0.3076 = 2.83,

• 2π + 0.3076 = 6.59,• 2π + 2.83 = 9.12

Our solutions are

x = 0.308, 2.83, 6.59, 9.12

Page 76: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Our first solution for x is

x = 0.3076

Our next solutions will be• π − 0.3076 = 2.83,• 2π + 0.3076 = 6.59,

• 2π + 2.83 = 9.12

Our solutions are

x = 0.308, 2.83, 6.59, 9.12

Page 77: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Our first solution for x is

x = 0.3076

Our next solutions will be• π − 0.3076 = 2.83,• 2π + 0.3076 = 6.59,• 2π + 2.83 = 9.12

Our solutions are

x = 0.308, 2.83, 6.59, 9.12

Page 78: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

Our first solution for x is

x = 0.3076

Our next solutions will be• π − 0.3076 = 2.83,• 2π + 0.3076 = 6.59,• 2π + 2.83 = 9.12

Our solutions are

x = 0.308, 2.83, 6.59, 9.12

Page 79: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

16 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 80: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

17 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 81: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

18 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 82: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

19 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 83: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

20 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 84: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

21 Solve 5 + 2 cot2 α = 7(1 + cosecα), where α = 2x + π3 , in the

interval 0 ≤ x ≤ 2π. Give your answers to 2 decimal places.

5 + 2(cosec2α− 1) = 7(1 + cosecα)

5 + 2cosec2α− 2 = 7 + 7cosecα

2cosec2α− 7cosecα− 4 = 0

(2cosecα + 1)(cosecα− 4) = 0

We have two possible solutions

cosecα = −1

2and cosecα = 4

Page 85: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 86: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 87: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614.

Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 88: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,

• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 89: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,

• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 90: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,

• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 91: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89

Page 92: Trigonometry Trigonometric Identities Trigonometric

Trigonometry

TrigonometricIdentities

TrigonometricEquations

sinα = −2 and sinα =1

4

α = 0.25268

Note that since 0 ≤ x ≤ 2π, our limits for α areπ3 ≤ α ≤ 4π + π

3 or 1.047 ≤ α ≤ 13.614. Our next solutionswill be

• π − 0.25268 = 2.8889,• 2π + 0.25268 = 6.53587,• 2π + 2.8889 = 9.172,• 2π + 6.53587 = 12.819,

Since α = 2x + π3 , our final solutions for x are

0.92, 2.74, 4.06, 5.89