tsp in excel.pdf

Upload: juank-z-bk

Post on 28-Feb-2018

269 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 TSP IN EXCEL.pdf

    1/23

    TSPinSpreadsheetsaGuided

    Tour

    RasmusRasmussen

    Abstract

    Thetravellingsalesmanproblem(TSP)isawellknownbusinessproblem,andvariantslikethemaximum

    benefitTSPorthepricecollectingTSPmayhavenumerouseconomicapplications.Wearelookingatseveral

    differentvariantsofTSP;allsolvedinspreadsheets,notusingtailoredsolversforTSP.Astheseproblemsare

    NPhard,solvingthoseusingstandardLP/MIPsolvershasbeenregardedfeasibleonlyforverysmallsized

    problems.However,acarefulconsiderationofthespreadsheetlayoutmayfacilitateefficientsoftware

    utilisation.Forrealworldproblemsthiscanhaveconsiderableeffects,andwiththerecentadvancementsin

    solverengines,problemspreviouslyregardedasbigarenoweasilysolvableinspreadsheets.Thispaper

    showsyouhow;andhowtheflexibilityofspreadsheetsmakesitaconvenienttoolsolvingmanyvariantsof

    TSP,wheretailoredsolverssimplywouldnotfit.

    JELclassification: C61,Z00

    1. Introduction

    Afteraformalstatementoftheproblem,threedifferentspreadsheetmodelswillbeillustrated.The

    flexibilityofspreadsheetswillalsobedemonstrated,aswillhowspreadsheetlayoutmayhelpinmaking

    anefficientproblemformulation,inadditiontohelpingtoclearlycommunicateanddisplaythe

    solution.Thedirectpermutationapproachispresentedfirst,applyingintegervariablestodescribethe

    sequenceofthevisits.Thedirectpermutationapproachfitssmallproblemswell,andrequiresverylittle

    workafterdatahasbeenobtained.Noconstraintstoeliminatesubtoursareneeded,buttheproblemis

    nonlinearandnonsmooth,requiringheuristicsolvers.Second,anetworkformulationispresented,

    wherebinaryvariablesareusedtomakealinearformulationoftheproblem.Anefficientspreadsheet

    layoutispresentedfornoncompletegraphs.Thirdlyanassignmentformulationispresented,applying

    aspreadsheetlayoutmoresuitableforcompletegraphs.

    VariantsofTSPnotfittingtailoredTSPsoftwarearealsosolved.Inadditionsomeconfiningsideeffects

    ofcommonsubtoureliminatingconstraintsarediscussed,particularlywhenmultiplevisitsarerequired.

    2. ThestandardTSP

    Travellingsalesmanproblems(TSP)areeasytodescribe:asalesmanneedstovisitallhiscustomers

    locatedindifferentcitiesinhisregion,andhewouldliketofindthecheapesttourthatwillassurethat

    allcitieshavebeenvisited.UnfortunatelyTSPisnotsoeasytoformulate,andrelativelyhardtosolve.

    Whenmakingamathematicalformulationoftheseproblemswewillforthemostpartuseanetwork

    framework.Thecitiesarethencallednodes,andtheroadsconnectingthecitiesarecalledarcs.See

    GutinandPunnen(2007)forafulltreatmentofTSPanditsvariants.

    ThesetofnodestobevisitedaredefinedasN={1,2,...,n}wherenisthetotalnumberofnodes

    (referredtoasthesizeofaTSP),andthesetofarcsconnectingthenodesisdefinedasA={(i,j):i,jN,

  • 7/25/2019 TSP IN EXCEL.pdf

    2/23

    InternationalReviewofEconomicsEducation

    95

    ij},wherethepair(i,j)indicatesthearcbetweennodeiandj.AstandardassumptioninTSPisto

    assumedirectlinksbetweeneverypairofnodes,usuallyreferredtoasacompletegraph.Thegraph

    consistingofthenodesNandarcsAisthenconnected;thereisaconnectionorpathfromanynodeto

    anyothernodeinthegraph.Thebasicstandardassumptionistorestrictthenumberofvisitstoexactly

    oneforeachnode.Whythesalesmanisnotallowedtovisitanodemorethanonceisnotobvious.Onecanspeculatethatsucharequirementmakesiteasiertodevelopsolutionprocedures,therebyfitting

    theproblemtothetoolsathand.AcommondefinitionofthesetofdecisionvariablesisX{xij:i,jN,

    ij}wherexij=1ifthesalesmantravelsfromnodeitoj(nodeiisvisitedimmediatelybeforenodej),

    and0otherwise.ThecostmatrixisdefinedasC={cij:i,jN,i j}andusuallyassumedtobepositive,

    wherecijrepresentsthecostoftraversingfromnodeitonodej.InstandardTSPacommonassumption

    isthatthesquarecostmatrixissymmetric,cij=cji,thecostisthesameinbothdirections.Another

    standardassumptionistoassumethetriangleinequality;cij+cjkciki,j,kN,thedirectconnection

    betweentwonodesisalwaysthecheapest.

    OnebasicassumptioninTSPistoassumethatthesalesmanhastoreturntothenodewherehestarts

    thetour;thisnodeisusuallyreferredtoasthebasecityordepot.Thisassumptioniscalledaclosed

    tour.Foraclosedtouranynodecanbeselectedasthestartingnode,butforpracticalreasonsnode1is

    settobethestartingnode.Node1isthenthebasecityordepot.

    ForastandardTSPthereisalwaysafeasiblesolution(asacompletegraphisalwaysconnected),andwe

    canchooseanynodetostart(asthetourisclosedandallnodesarevisited).Therearealways

    alternativeoptimalsolutions;thetourcangoineitherdirection(asthecostsaresymmetric).Andinthe

    optimaltour(s)everynodeisvisitedonlyonce(becauseofthetriangleinequality,andtheobjectiveis

    alwaysminimisation).

    3. VariantsofTSP

    Quite

    a

    lot

    of

    real

    life

    problems

    do

    not

    fit

    these

    assumptions.

    Often

    we

    must

    allow

    for

    the

    set

    A

    not

    beingcomplete,incaseswheresomenodesdonothavedirectlinkstoallothernodes.Graphsthatare

    notcompletearenolongerguaranteedtobeconnected,andfordisconnectedgraphsthereisno

    feasiblesolution.Inreallifewealsohavetoallowforcijcji,thecostoftravellingfromnodeitojmay

    notbethesameastravellingfromjtonodei.Thisrepresentstheasymmetrictravellingsalesman

    problem(ATSP),andimpliesdirectedarcs.Similarlyitisnotalwayscheapesttotravelthedirectlink

    fromnodeitonodek,sometimesitmaybecheapertotravelvianodej.Thuswemustallowforthe

    triangleinequalitynottoapply.Thebasicstandardassumptiontorestrictthevisitstoexactlyonefor

    eachnodemayalsobeskipped;TSPwithmultiplevisitsisreferredtoasTSPM,asinGutinandPunnen

    (2007).

    Ofcoursethereasonforthesalesmantomakethetouristoderivesomebenefitfromvisitingthe

    nodes.ThenletB={bj:jN},wherebjisthebenefitfromvisitingnodej.Forsuchproblemswehave

    themaximumbenefittravellingsalesmanproblem(MBTSP);seeMalandrakiandDaskin(1993).Another

    variantisthepricecollectingTSP(orPCTSP),seeGutin(2007).

    Sometimesthesalesmandoesnothavetoreturntothebase,andrelaxingsucharequirementiscalled

    anopentour.Foranopentouritmaybeadvantageoustobeabletoselecttheendingnodeaspartof

    theproblemsolution,butthismayincreasetheproblemsizeforsometypesofformulations,exceptfor

    thedirectpermutationapproach.

    Thereisawideselectionofliteratureontheseproblems,andseveralvariantsofproblemformulations.

    Wewillgrouptheformulationsintwoclasses:theassignmentformulationsandtheflowformulations.

    Further,

    in

    each

    group

    the

    models

    vary

    according

    to

    which

    assumptions

    are

    made,

    most

    notably

    whetheracompletegraphisassumed.

  • 7/25/2019 TSP IN EXCEL.pdf

    3/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    96

    4. AssignmentformulationofTSP

    Fortheclosedtouranassignmentformulationcouldbeofthefollowingform:

    1 1

    n n

    ij ij

    i j

    Minimize c x= =

    (1)

    1

    1 ,n

    ij

    i

    x j N=

    = (2)

    1

    1 ,n

    ij

    j

    x i N=

    = (3)

    { }0,1 , ,ijx i j N (4)

    Inadditionsubtoureliminationconstraints(SECs)areneeded.Constraints(2)and(3)arethestandard

    assignmentconstraints.Theobjectivein(1)willminimisethetotalcostalongallthearcsusedto

    completethetour.However,aswrittenthisformulationassumesacompletegraph,andifthedataare

    beingarrangedinasquarematrixwillalsoincludethediagonal.Foracompletegraphtheonlyarcsthat

    donotexistarerelatedtotheselfloopvariablexi,i(alongthediagonal).Thereforeitusuallyismore

    convenienttoexcludethesevariablesbyanewconstraint(5),insteadofexcludingtheminthe

    definitionofthesetX.Thisconveniencecomesatthecostofincreasedproblemsize(bothintermsof

    variablesandconstraints).Foracompletegraphthefollowingconstraintwillfixthediagonalinasquare

    nmatrixofthebinaryvariablesxijequaltozero:

    , 0i ix i N=

    (5)

    Adifferentapproachtorectifythis,andallowforinstancesofnoncompletegraphs;istosetthecostcij

    sufficientlylargefornonexistingarcs,therebypreventingthemfromenteringthefinalsolution.

    Howeverthisisnotafoolprooftrick.Inaconnectedgraphthereisapathfromanynodetoanyother

    nodeinthegraph,andacompletegraphisalwaysconnected,andthushasafeasiblesolution.Non

    completegraphsmaynotbeconnected(disconnected),andwillassuchhavenofeasiblesolution.A

    highcostfornonexistingarcsisthennoguaranteeforthesesarcstobeexcludedinthefinalsolution.

    Thereforeanotherstrategyistosetanewparameter:eij=1ifnodeiisdirectlyconnectedtonodej,

    otherwise0;andreplaceconstraint(5)with(6):

    , ,ij ijx e i j N (6)

    Thisformulationdoesnotrequireacompletegraphandallowsforasymmetriccostsandalsoforthe

    triangleinequalitynottoapply,butunfortunatelyithassomeflaws.Iftheassumptionofacomplete

    graphisnotsatisfied(andthereforeconstraint(6)isrequired),thenafeasiblesolutionforaclosedtour

    mayrequiresomenodestobevisitedtwice,breakingthe=requirementinconstraint(2).

    Thelimitationofvisitingeachnodeexactlyoncemayalsocausedifficultiesevenforproblemswitha

    completegraph,ifthetriangleinequalityisnotsatisfied.Thisrequirementwilleffectivelyprohibithub

    likesolutions,evenwhensuchsolutionsarethemostcosteffective.Aproblemformulationthat

    excludessuchpossibleoptimalsolutionsisgenerallynotrecommended.

  • 7/25/2019 TSP IN EXCEL.pdf

    4/23

    InternationalReviewofEconomicsEducation

    97

    5. FlowformulationofTSP

    Aflowformulationoftheclosedtour,thatexplicitlyconsidersvalidconnectionsonly,canbemadeafter

    redefiningC={ci,j:(i,j)A}andX{xi,j:(i,j)A}.Thisformulationwillthusworkevenwhenthe

    graph

    is

    not

    complete:

    , ,

    ( , )

    i j i ji j A

    Minimize c x

    (7)

    ,

    : ( , )

    1i ji i j A

    x j N

    (8)

    , ,

    : ( , ) : ( , )

    i k k ji i k A j k j A

    x x k N

    = (9)

    { } ( ), 0,1 ,i jx i j A (10)

    OfcourseSECsarealsorequired.Theobjective(7)willminimisethetotalcostofthetour,only

    consideringvalidarcs.Constraint(8)statesthatthesalesmanhastoarriveeachnodeatleastonce.

    Constraint(9)statesthatthesalesmanhastoleaveeachnodeasmanytimesashearrivethenode.By

    usinginsteadof=in(8),weavoidthepossibilityofmakingtheprobleminfeasiblefornoncomplete

    graphswheresomenodesneedtobevisitedtwice,andwedonotexcludehublikeoptimalsolutions

    ifthetriangleinequalitydoesnotapply.

    6. FlowformulationofopentourTSP

    FortheopentourformulationweaddtheparametersD={di:iN}wherediisthenetdemandin

    nodei;anddi=1forthestartnode(thebasecityisnumberednode1);di=+1fortheendnode,forthetransitorintermediatenodesdi=0.Theopentourformulationcanthenbestatedas:

    , ,

    ( , )

    i j i ji j A

    Minimize c x

    (11)

    ,

    : ( , )

    1 1i ji i j A

    x j N

    > (12)

    , ,

    : ( , ) : ( , )

    i k k j k i i k A j k j A

    x x d k N

    =

    (13)

    { } ( ), 0,1 ,i jx i j A (14)

    WemustaddSECstocompletetheTSPformulation.Theobjectivein(11)isidenticalto(7).Constraint

    (12)issimilarto(8),exceptthatwedonotrequirethesalesmantoarrive/returntothestartingnode1.

    Constraints(13)requirethesalesmantoleavethestartingnodeonemoretimethanentering,enterthe

    stoppingnodeonemoretimethanleaving,andleaveanyintermediatenodeasoftenasarrivingthe

    node.Byremovingconstraint(12)wehavethecommonshortestpathproblem.Iftheendnodeisnot

    specified,thediparametersmaybeconvertedtobinaryvariables(exceptforthestartnode),requiring

    theirsumtoequal1.

  • 7/25/2019 TSP IN EXCEL.pdf

    5/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    98

    7. Subtoureliminatingconstraints(SECs)

    AkeypartofaTSPistomakesurethetouriscontinuous,thatthearcsarelinkedfromthebasecityall

    thewaytoeverycityvisited.Withoutsuchconstraintswequiteoftenwillgetsolutionscontaining

    degenerate

    tours

    between

    intermediate

    nodes

    and

    not

    connected

    to

    the

    base

    city.

    The

    originally

    SECs

    wasformedin1954byDantzigFulkersonJohnson(DFJ)(seeDantzig, FulkersonandJohnson,1954):

    , 1, \{1},i ji S j S

    x S S N S

    (15)

    Unfortunatelythisintroducesanexponentialnumberofconstraints,andbecomesimpracticalevenfor

    smallsizedproblems.AdifferentSECproposedin1960byMillerTuckerZemlin(MTZ)(seeMiller,

    TuckerandZemlin,1960)introducesonlyamaximum1of(n2)

    2constraints,atthedisadvantageofa

    weakLPrelaxation:

    ( )( ) ( ),1 1 1 , , : , 1

    i j i j

    u u n x i j A i j +

    (16)

    In(16)anewsetofvariablesU={ui:iN,i1}isrequired.Theuiarearbitraryrealnumbers,butcan

    berankedtononnegativeintegers,representingthesequencethenodesarebeingvisited.For

    conveniencewemayaddu11(node1isthebasecity),andlimittherangeofui,thushelpingthe

    optimisationsoftware(seealsoPataki(2003)):

    2 1iu n i N > (17)

    TheMTZSECswillbeusedinthispaper,andhavethefollowingproperties:

    node1isrequiredtobethebasecity;

    theymakesurethateverycityvisitedbelongstoatourconnectedtothebasecity,thereby

    eliminatingsubtours;

    theyallownodestobevisitedmorethanonce(unlessotherconstraintspreventsuchasolution);

    theydonotrequireallnodesbeingvisited(unlessotherconstraintsmakesuchrequirements);

    theyallowunidirectionalarcstobeutilisedinbothdirectionsonthesametour.

    Foraclosedtourvisitingallnodesthebasenodecanalwaysbechosenarbitrarily.Afundamental

    weaknessofMTZSECsisthatfeasibilityandfinalsolutionmaydependonwhichnodeisselectedasthe

    basecity.TheMTZSECsmayfailtofindafeasiblesolutionevenifsuchexists,andtheymayfailtofind

    theglobaloptimalsolution.Problemswithfeasibilitymayoccurinnoncompletegraphs,whereall

    feasiblesolutionsrequiresomenodestobevisitedtwice.Problemsfindingtheglobaloptimalsolution

    mayoccurincompletegraphswherethetriangleinequalitydoesnotapply,andwheretheglobal

    optimalsolutionrequiressomenodestobevisitedmorethanonce.Itisthereforeimportanttobe

    awareofthesetwosituationswhereapplyingtheMTZSECsmaymakethefinalsolutionsensitiveasto

    whichnodeisselectedasthestartingnode.Theywillneverfailiftheglobaloptimalsolutionvisitseach

    nodeonlyonce.

    8. ClosedTSPinacompletegraph

    AsanexampleofaTSPinacompletegraphweshallusethefollowingexample.Asupplyshipisserving

    10oilrigsatsea.Thebaseislocatedatcoordinates(0,0),andtherigsarelocatedasdisplayedinFigure

    1Inasquarennmatrix;thefirstrow,firstcolumnandthediagonalareexcluded.

  • 7/25/2019 TSP IN EXCEL.pdf

    6/23

    InternationalReviewofEconomicsEducation

    99

    1.Assumingopenseathedistancesbetweenanypairofnodes(oilrigs)canbecalculatedasstraight

    lines(ignoringthefactthatthesealevelisnotflat).ThisisastandardsymmetricTSPwithacomplete

    graphwherethetriangleinequalityapplies.DataistakenfromRagsdale(2001).

    Figure1Locationsoftheoilrigstovisit

    9. Adirectpermutationapproach

    Inthissimpleformtheproblemistofindtheorderforeachnodeinthesequenceofthetourthat

    minimisesthetotaldistance(cost).Ifthesupplyshiptakesthetourbasedontherignumbers:012...

    9100;thetotaldistanceis205.67.Weseektheorderorpermutationthatminimisesthetotal

    distance.Thisdirectapproachisveryeasytoimplementinspreadsheets,asdisplayedinFigure2.

    Figure2SpreadsheetfordirectpermutationofTSP

  • 7/25/2019 TSP IN EXCEL.pdf

    7/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    100

    Table1:FormulasforspreadsheetinFigure2

    Figure3SolversettingsforthespreadsheetinFigure2

    Thespreadsheetisorganisedintwoparts.Theupperpartholdsatableofthecoordinatesforthe

    nodes,andacorrespondingtablecalculatingthedistances.Thelowerpartholdsatableofthetour

    sequenceandthecostofeachleg,andacorrespondingtablewiththecoordinatesofeachleg,to

    facilitateaplotofthetour.Thetableofthetoursequencestartsatthebase.Notethatnodenumber0

    isusedforthedepotinthisexample,tofacilitateuseoftheAlldifferentconstraintinSolver.(Atrial

    versionofSolverisavailableatwww.solver.com.)Theproblemistoselectwhichnodetogotonextin

    thesequence(headingSequenceinFigure2).Thelastleghastoreturntothebase.Theminimum

    totaldistance/costof122.77isachievedbythetoursequence0946572810130(orreverse).To

    modelanopentoursimplydeleterow27inthesheet.Figure4displaystheoptimalopentour,which

    hasacostof103.58.

    Thescatterplotconsistsoftwoseries.Oneseriesisaplotofthenodes(C3:D13inFigure2),withmarkersbutnoline.Thesecondseriesisthetour(G13:H27inFigure2),withnomarkersandaline.

    Cell Formula Copiedto Name/Task

    G3

    =SQRT((INDEX($C$3:$D$13;$F3+1;1)

    INDEX($C$3:$D$13;G$2+1;1))^2

    +(INDEX($C$3:$D$13;$F3+1;2)

    INDEX($C$3:$D$13;G$2+1;2))^2)

    G3:Q13CalculateEuclediandistances

    betweenanypairofnodes

    D17 =INDEX($G$3:$Q$13;C16+1;C17+1) D18:D27 Costonaleg

    D28 =SUM(D17:D27) Totalcost

    C17:C26 Sequence

    G16 =INDEX($B$3:$D$13;$C16+1;2) G17:G27 Avisitednodesxcoordinate

    H16 =INDEX($B$3:$D$13;$F16+1;3) H17:H27 Avisitednodesycoordinate

  • 7/25/2019 TSP IN EXCEL.pdf

    8/23

    InternationalReviewofEconomicsEducation

    101

    Figure4TheopenTSPsolution

    BoththespreadsheetandtheSolversettingsareverysimple.Wehave10decisionvariables(numberof

    nodeslessthedepot),namedSequenceinthespreadsheet.TheobjectiveintheSolversettingsistominimisethevalueinthecellnamedTotal_cost,andtheonlyconstraintisthatthevariablesmustbe

    alldifferent.Thealldifferentconstraintsetsthevariablestointegersrangingfrom1tothenumberof

    variables,andallaredifferent.(ThistypeofconstraintisnotavailableintheStandardSolverthatships

    withExcelpriortoExcel2010,butisintroducedintheeducationalversionofSolver,includedinmany

    textbooks.)

    TheuseoftheIndexfunctioninExceltolookupthecostateachlegmakestheobjectivefunctionnon

    smooth,becausethedecisionvariablesareusedasargumentsintheIndexfunction.Anintegernon

    smoothproblemisnoteasytosolve,andisdefinitelynotthepreferredformforlargeproblems.Inthis

    casethePremiumSolverPlatform(PSP)selectstheOptQuestsolverengine,andSolverspendslessthan

    twosecondsinfindingtheoptimaltour(theAutoStopoptionforOptQuestwasincreasedfrom100to

    1000iterationstoavoidaprematureending).Asthissolverengineappliesheuristics,itcannot

    guaranteethataglobaloptimalsolutionhasbeenfound.Whensuchproblemsbecomelarge,thisnon

    linearapproachisnolongerefficient.Wewillthereforeintroducethelinearformulation,whichwillbe

    appliedintherestofthepaper.Alsonotethatthedirectpermutationapproachdoesnotallowfor

    multiplevisits.

    10.TSPinanoncompletegraph,flowformulation

    AsanintroductoryexampleforanoncompletegraphtheGridspeedpuzzlewillbeused,takenfrom

    Chlond(2008).Figure5presentsthepuzzle,basedonarectangulargridstreetplan,wherethedistance

    betweenanytwointersectionsis10kilometres.(Ihavetakenthelibertytotransformthedatatothe

    metricsystem.)Thespeedalongallnorthsouthstreetsandalleastwestavenuesisconstant.However

    thespeedonthenorthsouthstreetsishighestontheeastendofthegrid,andfortheavenueseast

    westthespeedishighestinthesouthendofthegrid.Thefastestareaisthereforeatthesoutheast

    edgesofthegrid,andslowestinnorthwest.

  • 7/25/2019 TSP IN EXCEL.pdf

    9/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    102

    Figure5Streetplan

    OnepuzzlerelatedtoFigure5istofindthefastestroutefromintersection(6,1)(northwest)to

    intersection(1,1)(southwest),butvisitingeachintersectionatleastonce.Theoriginalproblemisto

    visiteachintersectiononceandonlyonce.Howeverthisismorerestrictedthanrequired.Sinceit

    obviouslywilltakemoretimetovisitanintersectionmorethanonce,andwewanttospendasshort

    timeaspossibleonthetour,itissufficienttousetherequirementtovisiteachintersectionatleast

    once.

    Itisnecessarytotransformtheproblembynumberingtheintersectionsandcalculatethetravelling

    timebetweeneach(directlyconnectednode),tofacilitateamathematicalformulation.Thenumbered

    intersectionsarethenodes,andthelinesconnectingthenodesarethearcs.Thetravellingtime(in

    minutes)alongeacharciscalculatedasshowninFigure6.

    Figure6Relabelledstreetplan

    10 km/h

    20 km/h

    30 km/h

    40 km/h

    50 km/h

    60 km/h10 km

    10 km/h 20 km/h 30 km/h 40 km/h 50 km/h 60 km/h(6, 6)(6, 1)

    (1, 1) (1, 6)

    60 60 60 60 60

    60

    60

    60

    60

    60

    30

    30

    30

    30

    30

    30 30 30 30 30

    20

    20

    20

    20

    20

    20 20 20 20 20

    15

    15

    15

    15

    15

    15 15 15 15 15

    12

    12

    12

    12

    12

    12 12 12 12 12

    10

    10

    10

    10

    10

    10 10 10 10 10

    1 2 3 4 5 6

    7 8 9 10 11 12

    13 14 15 16 17 18

    19 20 21 22 23 24

    25 26 27 28 29 30

    31 32 33 34 35 36

  • 7/25/2019 TSP IN EXCEL.pdf

    10/23

    InternationalReviewofEconomicsEducation

    103

    Figure7SpreadsheetofopenTSP,noncompletegraph(rows66121arehidden)

  • 7/25/2019 TSP IN EXCEL.pdf

    11/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    104

    Table2FormulasforthespreadsheetinFigure7

    11.Theopentour

    Wewillfirsthavealookattheopentourvariantofthepuzzle.Anefficientlayoutofthisnetworkina

    spreadsheetwouldbetoorganisetheproblemintwotables,onetableforthearcsandthebinary

    decisionvariables,andanothertableforthenodesandthecontinuousvariables(asinRagsdale,2001).

    Thiswillfacilitatetheentryoftheequations(11)(14),(16)and(17),andalsomakeasolutioneasyto

    understand.Oncethedatahasbeenenteredinthespreadsheet,themodelcaneasilybebuiltaround

    thedata.Noticethatfornondirectedarcsitissufficienttoentertheminonedirection,andusesimple

    formulastomirrortheotherdirection.Athirdtablehasbeenaddedtothespreadsheettofacilitatea

    plotofthetour,whichofcourseisnotneededforsolvingtheproblem,buthandyfordisplayingthe

    solution.

    Anewconstrainthasbeenadded,tospeedupthesolutionprocess:

    ( ), , 1 ,i j j ix x i j A+ (18)

    Constraint(18)simplystatesthatnoarcwillbeusedinbothdirections,whichisquiteobviousforthis

    problem.Suchboundsonthevariablesareveryhelpfulfortheoptimisationprocess,particularlysofor

    binaryvariables.Howevertheyshouldbeusedwithcare,sinceaddingthemcanmakesomeproblems

    infeasible.

    InFigure7thetableforthearcsislistedfirst;thenthetableforthenodesandfinallythetablefor

    facilitatingaplotofthetour.Thefirsthalfofthearcsarelisted(allarcsinonedirection)andafewof

    therest,togetherwiththeobjective.(Therestofthearcsareinthehiddenrows66121.)Weseethat

    Cell Formula Copiedto Name/Task

    B63 =C3 B64:B122 Reversearcs:stopstart

    C63 =B3 C64:C122 Reversearcs:startstop

    D63 =D3 D64:D122 Reversearcs:copycosts

    D123 =SUMPRODUCT(D3:D122;E3:E122) Eq11

    F63 =E3+E63 F64:F122 Eq18(LHS)

    G3=IF(OR(B3=1;C3=1);0;INDEX($J$3:$J$38;B3)

    INDEX($J$3:$J$38;C3) +($I$37*E3))G4:G122 Eq16(LHS)

    K4 =SUMIF($C$3:$C$122;$I$3:$I$38;$E$3:$E$122) K5:K38 Eq12(LHS)

    L3 =SUMIF($B$3:$B$122;$I$3:$I$38;$E$3:$E$122) L4:L38 FirstpartofEq13

    M3 =K3L3 M4:M38 Eq13(LHS)

    E3:E122 Var_x

    I36 Param_n_2

    I38 Param_n

    J4:J38 Var_u

    N3:N38 Param_d

    P3 =RANK(J3;$J$3:$J$38;1) P4:P38 Therankofanode

    Q3 =MATCH(U3;$P$3:$P$38;0) Q4:Q38 Visitingsequence

    R3 =INDEX($U$3:$W$38;$Q3;2) R4:R38 Avisitednodesxcoordinate

    S3 =INDEX($U$3:$W$38;$Q3;3) S4:S38 Avisitednodesycoordinate

  • 7/25/2019 TSP IN EXCEL.pdf

    12/23

    InternationalReviewofEconomicsEducation

    105

    theoptimalvalueoftheobjective(11)is726;thefastestopentourfromnode1tonode31takesa

    minimumof726minutes.TheformulasinthespreadsheetaredisplayedinTable2,andtheSolver

    settingsarelistedinFigure8.

    ThefirstthreerowsinTable2arepurelyforeasydataentry.Theoptimisationmodelconsistsofthe

    nextsixrows.Thefollowingfiverowsareusedfornamingsomekeycells,makingthemodeleasierto

    read.Thelastfourrowsfacilitateaplotofthesolution,assumingonlynlegsinthetour(eachnodeis

    visitedonlyonce).ThescatterplotinFigure7consistsoftwodataseries.Oneseriesisthexy

    coordinatesofthenodes(incolumnVandW),withnoline,andacircle(size20)asmarker.2The

    secondseriesisthexycoordinatesofthetour(incolumnRandS),withnomarkerandaline.Fora

    closedtourafinallegisaddedattheend(byreferringtothefirstlegincolumnQ).

    Figure8SolversettingsforFigure7

    TheStandardSolverParameterDialogBoxdisplayedinFigure8hasascrollbartodisplaythe

    constraintsnotfittingthefixedsizeofthebox.Hereconstraint(14)isnotdisplayed;thisisthedeclarationofthexijvariablebeingbinary.Observethatconstraint(14)and(17)isentereddirectlyin

    Solver,involvingnoformulasinthespreadsheet.Constraints(17)arethelasttwovisibleconstraintsin

    theSolverParameterDialogBox.

    Thismodelhas120binaryvariablesand35continuousvariables,155boundsonthevariablesand191

    constraints.Thenumberofconstraintscanbereducedby4ifwegroupthefourarcsconnectedtonode

    1andlistthemfirst,thennotincludetheminconstraints(16).Inthespreadsheettheformulafor(16)

    includethesearcs,butfixtheirvalueto0,therebysatisfyingtheconstraint.

    ExcelandtheStandardSolvertakelessthanfivesecondstofindtheoptimalsolutionfortheopentour.

    (ThesolutiontimewillofcoursedependontheversionofExcel,theoperatingsystem,andthe

    computer.)Thisspreadsheetdesignisquiteversatileformanytypesofnetworkproblems.Ifwedrop

    (12),(16),(17)and(18)wehavetheshortestpathproblem.(WemaythendeletecolumnF,G,JandP

    W.)

    12.AclosedTSPinanoncompletegraph,assignmentformulation

    Wewillnowrephrasetheproblemtoaclosedtour,requiringthesalesmantoreturntothebase.We

    willimplementtheassignmentformulationandcompareitwithaflowformulation(notshown).We

    willalsodemonstrateanefficientlayoutforthespreadsheetofaTSPinacompletegraph,eventhough

    thisparticularexampleisnoncomplete.ForaTSPinacompletegraph,itismoreefficienttogroupthe

    probleminthreetables;onetableforthecostmatrixandtheobjective(1),asecondtableforthexij

    2ThelabelsofthescatterplotweremadebytheXYChartLabeleraddinforExcel,freeatwww.appspro.com.

  • 7/25/2019 TSP IN EXCEL.pdf

    13/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    106

    binarydecisionvariablesandconstraint(2)and(3),andathirdtablefortheSECsandtherelatedui

    variables.Forconvenienceatableofthecoordinatesofthenodescanbeaddedtofacilitateaplotof

    thetour.Forlargeproblemsthesematrixesmaybeenteredindifferentsheetsintheworkbook.(Itis

    moreeffectivethoughforSolvertohavetheobjective,constraintsandvariablesinonesheet.Thecost

    matrixandtheplotdatacanbestoredinaseparatesheet.)

    Amatrixlayoutofthecostsisveryefficientforacompletegraph,whentherearedirectlinksbetween

    anynodetoeveryothernode.However,itisalsoverycommontousethesameapproachfornon

    completegraphs,maybebecauseitisconsideredhandierfordataentry,atleastinthepreferred

    softwaretoolsmostcommonlyused.

    Unfortunatelythisconveniencehasatradeoff.Addingenormousamountofnonexistingvariablesand

    correctingthisbyaddinganequalamountofnonexistingconstraints,makesasubstantialburdenon

    thesoftware.Incontrast,enteringthedatainaspreadsheetmayactuallybeeasierfornoncomplete

    graphsituations,usingonlytwotablesinsteadofthree.

    Figure9MatrixofcostsforTSPnoncompletegraph,assignmentformulation

  • 7/25/2019 TSP IN EXCEL.pdf

    14/23

    InternationalReviewofEconomicsEducation

    107

    Figure10MatrixofbinaryvariablesforTSPnoncompletegraph,assignmentformulation

  • 7/25/2019 TSP IN EXCEL.pdf

    15/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    108

    Figure11MatrixofSECsandplotdataforTSPnoncompletegraph,assignmentformulation

    Figure12TheplotoftheclosedTSPinanoncompletegraph,assignmentformulation

  • 7/25/2019 TSP IN EXCEL.pdf

    16/23

    InternationalReviewofEconomicsEducation

    109

    Figure13SolversettingsforFigures9to11

    Table3:

    FormulasforspreadsheetinFigures9to11

    Cell Formula Copiedto Name/Task

    AM39 =SUMPRODUCT(C3:AL38;C42:AL77) Eq1

    AM42 =SUM(C42:AL42) AM43:AM77 Eq3(LHS)

    C78 =SUM(C42:C77) D78:AL78 Eq2(LHS)

    D83

    =INDEX($AM$82:$AM$117;$B83)

    INDEX($AM$82:$AM$117;D$81)

    +INDEX($C$42:$AL$77;$B83;D$81)*$B$37

    D83:AL117 Eq15(LHS)

    C3:AL38 Eq6(RHS)

    C42:AL77 Var_x

    B36 Param_n_2

    B38 Param_n

    AM83:AM117 Var_u

    AO82 =RANK(AM82;$AM$82:$AM$117;1) AO83:AO117 Therankofanode

    AP82 =MATCH(AT82;$AO$82:$AO$117;0) AP83:AP117 Visitingsequence

    AP118 =AP82 Lastleg,returntobase

    AQ82 =INDEX($AT$82:$AV$117;$AP82;2) AQ83:AQ118Avisitednodesx

    coordinate

    AR82 =INDEX($AT$82:$AV$117;$AP82;3) AR83:AR118 Avisitednodesycoordinate

  • 7/25/2019 TSP IN EXCEL.pdf

    17/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    110

    DuetoitssizethisformulationcannotbesolvedbytheStandardSolverinExcel,whichhasalimitof

    200variables.WeseefromFigure9thattheminimumtimetocompleteaclosedtouris834,thevalue

    fortheobjective(1).

    InTable4themodelinFigure7,aclosednetworkversion(notshown),andtheclosedassignment

    versioninFigures9to11arecompared.Thesolutiontimefortheassignmentformulationoftheclosed

    tourismorethan6.2timesthesolutiontimefortheflowformulation(usingtheGurobiSolverEnginein

    RSPV9.04forExcel).

    Table4:Keyfeaturesofthemodels

    Lessonslearnedfromthissmallexamplearethatformulationmatters.Avoidusingnonexisting

    variablesrectifiedbynonexistingconstraints.However,addingconstraintsmayhaveagreatimpact,

    evenwhennotchangingtheoptimalsolution.Constraintsthataretighteningthefeasiblespacemay

    speedupthesolutiontime(orthecontrary),butsuchconstraintsmustnoteliminateanotherwise

    optimalsolution.

    13.AclosedMBTSPinanoncompletegraph,flowformulation

    Theultimateminimumcostforanyproblemiszero;simplydonothing.Sotheremustbeareasonfor

    doingsomething(presumablythereisanullalternative).Minimisingcostscanoftenturnouttobe

    solvingthewrongproblem.Unlessanyrevenuesarecompletelyunaffectedbythedecisionsathandwe

    cannotbesurethatminimisingcostsisavalidmodelthataccuratelyrepresentstherelevant

    characteristicsoftheproblem.

    Let

    us

    assume

    there

    are

    some

    revenues

    or

    benefits

    bj

    by

    visiting

    node

    j;

    where

    j

    N.

    Also

    introduce

    the

    setY={yj:jN,j1,yj{0,1}}wherethebinarydecisionvariableyj=1ifthesalesmanvisitsnodej,

    else0.Definetheparametery1=1astherequirementtovisit/returntothedepot(node1),a

    consequenceofourSECs.

    Theobjectivenowistomaximisethetotalnetbenefit(totalbenefitsminustotalcosts):

    , ,

    ( , )

    maximizej j i j i j

    j N i j A

    b y c x

    (19)

    Thesalesmanhastoarrive(atleast)onceeachnodehedecidestovisit:

    ,

    :( , )

    i j ji i j A

    x y j N

    (20)

    ModelsofTSP Figure7 Notshown Figure911

    Type,

    model

    Open,

    network

    Closed,

    network

    Closed,

    assignment

    Integervariables 155 155 1296Continuousvariables 35 35 35

    Constraints 248 249 1297

    Boundsonvariables 70 70 1331

    Solutiontime(seconds) 0.44 3.84 24.01

    TimeStandardSolver 5 Overnight Notsolvable

  • 7/25/2019 TSP IN EXCEL.pdf

    18/23

    InternationalReviewofEconomicsEducation

    111

    Inadditionthebalanceconstraint(9)andbinaryconditions(10)apply,aswellastheSECs(16)andthe

    correspondingbounds(17).Here(19)and(20)replacetheoriginalobjective(7)andconstraint(8),

    whencomparedtotheclosedTSPflowformulation.

    TherevisedproblemispresentedinFigure14.Therevenuesareenteredwith$symbolsundereachnodenumber,indicatingtherevenueifthenodeisbeingvisited.Thecostisassumedtobe1$foreach

    minuteoftraveltime,sowehaveacommonunitofmeasurementintheobjective.Observethatnode

    10andnode28havenorevenues,andarethereforeobviouscandidatesfornovisits.

    Figure14RelabelledstreetplanforMBTSP

    ThisisavariationofthePriceCollectingTSP.Thecommonfeatureoftheseproblemsinthiscategoryis

    thecombinationoftwokindsofdecisions,theselectionofsomenodes,andtheorderingofthenodes

    selectedforthetour(seeGutin,2007).

    -$60 -$60 -$60 -$60 -$60

    -$60

    -$60

    -$60

    -$60

    -$60

    -$30

    -$30

    -$30

    -$30

    -$30

    -$30 -$30 -$30 -$30 -$30

    -$20

    -$20

    -$20

    -$20

    -$20

    -$20 -$20 -$20 -$20 -$20

    -$15

    -$15

    -$15

    -$15

    -$15

    -$15 -$15 -$15 -$15 -$15

    -$12

    -$12

    -$12

    -$12

    -$12

    -$12 -$12 -$12 -$12 -$12

    -$10

    -$10

    -$10

    -$10

    -$10

    -$10 -$10 -$10 -$10 -$10

    1$90

    2$80

    3$70

    4$60

    5$50

    6$40

    7$30

    8$20

    9$10

    10$0

    11$10

    12$20

    13$30

    14$40

    15$50

    16$60

    17$70

    18$80

    19$90

    20$80

    21$70

    22$60

    23$50

    24$40

    25$30 26$20 27$10 28$0 29$10 30$20

    31$30

    32$40

    33$50

    34$60

    35$70

    36$80

  • 7/25/2019 TSP IN EXCEL.pdf

    19/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    112

    Figure15ClosedMBTSPflowformulationinaspreadsheet,rows66119arehidden

  • 7/25/2019 TSP IN EXCEL.pdf

    20/23

    InternationalReviewofEconomicsEducation

    113

    Table5:FormulasforspreadsheetinFigure15

    Cell Formula Copiedto Name/Task

    B63 =C3 B64:B122 Reversearcs:stopstart

    C63 =B3 C64:C122 Reversearcs:startstop

    D63 =D3 D64:D122 Reversearcs:copycosts

    D123 =SUMPRODUCT(D3:D122;E3:E122) Computingcosts

    F3=IF(OR(B3=1;C3=1);0;INDEX($K$3:$K$38;B3)

    INDEX($K$3:$K$38;C3) +$H$37*E3)F4:F122 Eq16(LHS)

    I39 =SUMPRODUCT(I3:I38;J3:J38) Computingrevenues

    I40 =I39D123 Eq19

    L3 =SUMIF($C$3:$C$122;$H$3:$H$38;$E$3:$E$122) L4:L38 Eq20(LHS)

    M3 =SUMIF($B$3:$B$122;$H$3:$H$38;$E$3:$E$122) M4:M38 Eq9(RHS)

    E3:E122 Var_x

    H36 Param_n_2

    H38 Param_n

    K4:K38 Var_u

    J4:J38 Var_y

    O3 =IF(J3=0;"";RANK(K3;$K$3:$K$38;1)) O4:O38 Apreliminaryrankofnodes

    P3 =IF(J3=0;"";RANK(O3;$O$3:$O$38;1)) P4:P38 Rankofanodeinthetour

    Q3 =MATCH(U3;$P$3:$P$38;0) Q4:Q38 Visitingsequence

    Q39 =Q3 Lastleg,returntodepot

    R3 =INDEX($U$3:$W$38;$Q3;2) R4:R39 Avisitednodesxcoordinate

    S3 =INDEX($U$3:$W$38;$Q3;3) S4:S39 Avisitednodesycoordinate

    Figure16SolversettingsforspreadsheetinFigure15

    FromFigure15weseethatthesalesmanvisitsonly30ofthe36nodes,withanetprofitof$812.Notice

    thatthetouractuallyincludesnode10with$0benefits,butskipnode13with$30inbenefits.Using

    theStandardSolverittakesmorethanafullweekendtofindtheoptimalsolution.Anearlytestversion

    ofExcel2010(TechnicalPreview)withthenewStandardSolverfinishedduringanovernightrun.Again,

    anassignmentformulationapplyingafullnnmatrixofthexvariableswouldincludetoomany

    variablesfortheStandardSolver.UsingthecommercialPSPV9.04,thesolutiontimeinExcelis9.06

    secondsfortheflowformulation.Thisalsorevealsanalternativeoptimalsolution,visiting32nodes.

    Thesolutiontimewhentheassignmentformulationisimplementedis11.45seconds,onthesame

  • 7/25/2019 TSP IN EXCEL.pdf

    21/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    114

    computer.Intheassignmentformulationacompletegraphisassumed,andtheextravariablesare

    eliminatedbyextraconstraints,therebyincreasingthesolutiontime.

    UnfortunatelytheMTZSEQsused(16)(17)assumesnode1tobethedepot.Thereforewecannot

    applythistypeofSECifourgoalistofindtheoptimallocationforthedepot.

    14.PitfallsusingMTZSECs

    Foraclosedtourthestartingnodecanalwaysbechosenarbitrarily,ifallnodeshavetobevisited.

    Unfortunately,whenapplyingtheMTZSECs,thesolutionmaydependuponwhichnodehasbeen

    selectedasthestartnode.Whendoweneedtostayalert?

    15.Noncompletegraphsrequiringmultiplevisits

    TakealookatFigure17.Twoidenticalgraphsaredisplayed,exceptthatnode1and2havebeen

    renumbered.Youcaneasilyfindtheoptimalsolutionbyvisualinspection.Tryingtosolveoneofthem

    fails,

    whereas

    the

    other

    succeeds,

    if

    the

    MTZ

    SECs

    are

    applied

    in

    a

    closed

    TSP.

    There

    are

    two

    other

    nodesthatcouldberenumberedasnumber1.Noneofthemwillsucceedifwetrytosolveusingthe

    MTZSECs.

    Figure17TSPinanoncompletegraph,requiringmultiplevisitsinaclosedtour

    Sincethisisanoncompletegraph,aspreadsheetlayoutsimilartoFigure7isprobablymostefficient,

    skippingequation(18),asitishardlyneeded.

    16.Thetriangleinequalityisnotalwayssatisfied

    HavealookatthecostmatrixesinTable6.Theonlydifferenceisthatoncemorethenodes1and2

    havebeenrenumbered.Thisisacompletegraph,asthereisadirectlinkbetweenanynodetoevery

    othernode.

    3 2 1

    45

    4

    3

    2

    1

    1 2 3 4 5 6

    32

    4

    4.47

    3 1 2

    45

    4

    3

    2

    1

    1 2 3 4 5 6

    32

    44.47

  • 7/25/2019 TSP IN EXCEL.pdf

    22/23

    InternationalReviewofEconomicsEducation

    115

    Table6:Identicalcostmatrixesofacompletegraph,thetriangleinequalitydoesnotapply

    c ij 1 2 3 4 5 cij 1 2 3 4 5

    1 - 2 3 4 5 1 - 5 130 140 150

    2 5 - 130 140 150 2 2 - 3 4 5

    3 4 123 - 40 50 3 123 4 - 40 50

    4 3 124 34 - 45 4 124 3 34 - 45

    5 2 135 35 54 - 5 135 2 35 54 -

    Solvingoneofthemusingtheflowformulation(7)(10)andtheMTZSECs(16)(17)returnsa

    solutionwithaminimalcostof209,visitingeverynodeonce.Solvingtheotherreturnsaminimumcost

    of28,visitingfourofthenodesonceandvisitingonenodefourtimes.Thenumberingofthenodeshas

    thusagreatimpactonwhichsolutionisobtained.Theassignmentformulationwouldreturna

    minimumcostof209insteadof28.SeealsoLeeandRaffensperger(2006)forusingAMPLteachingTSP,

    wheretheDFJSECsarebeingimplemented.

    ForacompletegraphaspreadsheetlayoutsimilartoFigures9to11isprobablymostefficient,skipping

    columnsAOARandtheplot,sincenocoordinatesaregiveninthisexample.

    17.Conclusion

    SolvingTSPusinggeneralpurposeoptimisationtoolslikeMIPsolversinspreadsheetshasbeen

    regardedpracticalonlyforproblemsofasmallsize.Recentadvancementsinthesetypesofsoftware

    haveincreasedthislimit;problemsofsize358ofnoncompletegraphshavebeensolvedinlessthan10

    minutes.

    SuchgeneralpurposeoptimisationtoolsalsoallowforagreatervarietyoftypesofTSP,whereas

    proceduresdesignedspecificallyforTSPoftenrestricttheproblemtoalimitednumberofvariants.In

    fact,wemayoverlookthebestsolutionbyapplyingthestandardapproachusingtheassignment

    formulationorthesespecifictoolsforsolvingTSP.Wemustbeabsolutelysureourproblemformulation

    isvalidallrelevantcostsandrevenueshavetobeconsidered,andtheconstraintsmustnotbetoo

    limiting.Otherwisewemayendupsolvingthewrongproblem.Anticipatingaspecifictypeofsolution

    whenformulatingtheproblemislikestartingatthewrongend,andmayleadtoapoorresult.

    However,theSECsneededinaTSPformulationmayhaveunfortunateconsequencesandlimitations.

    WhenusingtheMTZSECs,theselectionofthebasenodecanbecritical,evenforaclosedtourina

    completegraph.Itmayalsoprohibitasolution,eveninaconnectedgraph.

    Wehavefurtherseenthatformulationmattersincludingnonexistingvariablesandeliminatingthem

    byaddingnonexistingconstraintscanbothincreasesolutiontimeandcauseproblemsinfindingthe

    optimalsolution(thenumberofvariablesorconstraintsmayevenbecometoobigforthesolver).A

    wideformulationwillalwaysincludetheoptimalsolution.Atightformulationmayhelpfindingthe

    optimalsolution,butmayalsoexcludetheoptimalsolution.Atightformulationmayreduceor

    increasethesolutiontime,thisdependsonthetypeofsolverusedandtheproblemathand.

    Toplaysafeawideformulationseemslikeagoodstrategy.Ifthegraphisnotcompleteorthetriangle

    inequalitydoesnotapply,bothimplysituationswheremultiplevisitsmayberequired,thena

    replacementofthecostmatrixmaybeadvisable.Thenthecostsshouldbereplacedbyaminimumcost

    matrix(youcanusetheshortestpathformulation(n1)2times),whichformanylinksmayinvolvea

    lengthytourvisitingmanynodesfromnodeitonodej.TheTSPmodelcanthenbetight,whichmayor

    maynotbehelpfulforsomesolvers.UnfortunatelytheTSPmodelwillthenalsobeblindeyed;ithasno

  • 7/25/2019 TSP IN EXCEL.pdf

    23/23

    Fulltitleofthepresentarticle:doubleclicktoeditthis

    realtrackofthetourorhowmanyvisitsareactuallybeingmadeateachnode.TheTSPsolutionthen

    onlyindicatesthesequenceofthevisits,andignoresanyrevisits.

    References

    Chlond,M.J.(2008).Shashasgridspeedpuzzle,INFORMSTransactionsofEducation,Vol.9(1),pp.4652.

    Availableonlineathttp://ite.pubs.informs.org/.

    Dantzig,G.,Fulkerson,D.andJohnson,S.(1954).Solutionofalargescaletravelingsalesmanproblem,

    OperationsResearch,Vol.2,pp.393410.

    Gutin,G.andPunnen,A.P.(eds)(2007).Thetravelingsalesmanproblemanditsvariations, NewYork:

    Springer.

    LeeJ.,andJ.F.Raffensperger:(2006).UsingAMPLforteachingtheTSP,INFORMSTransactionson

    Education,Vol.7(1),pp.3769.http://archive.ite.journal.informs.org/Vol7No1/LeeRaffensperger/

    Malandraki,C.andDaskin,M.S.(1993).ThemaximumbenefitChinesepostmanproblemandthemaximum

    benefittravelingsalesmanproblem,EuropeanJournalofOperationalResearch,Vol.65,pp.21834.

    Miller,C.E.,Tucker,A..W.andZemlin,R.A.(1960).Integerprogrammingformulationoftravelingsalesman

    problems,JournalofACM,Vol.7,pp.3269.

    Pataki,G(2003).Teachingintegerprogrammingformulationsusingthetravelingsalesmanproblem,SIAM

    Review,Vol.45(1),pp.11623.

    Ragsdale,C.T.(2001).SpreadsheetModelingandDecisionAnalysis, Cincinatti:SouthWesternCollege

    Publishing.

    AuthorBiography

    RasmusRasmussensteachingexperienceismostlyinthefieldsofbusinesseconomics,finance and

    managementscience.Hisresearchinterestsareinthefieldsofappliedmanagementsciencerelatedto

    problemsinbusinesseconomics,quiteoftenusingspreadsheets,thetoolfrequentlyusedalsoin

    teaching.

    Contactdetails

    RasmusRasmussen

    MoldeUniversityCollege

    P.O.Box2110

    6402Molde,Norway

    Tel:+4771214242

    Fax:+4771214100

    [email protected]