ttt diagram

82
TIME-TEMPERATURE- TRANSFORMATION DIAGRAM Prof. H. K. Khaira Professor in MSME Deptt. MANIT, Bhopal

Upload: rakesh-singh

Post on 07-May-2015

20.669 views

Category:

Technology


9 download

DESCRIPTION

just keep some basic in mind, its give u enough information about this topic.

TRANSCRIPT

Page 1: TTT diagram

TIME-TEMPERATURE-TRANSFORMATION DIAGRAM

Prof. H. K. KhairaProfessor in MSME Deptt.

MANIT, Bhopal

Page 2: TTT diagram

Phase Transformations in Steels

• Iron has having different crystal structures at different temperatures.

• It changes from FCC to BCC at 910o C.• This transformation results in austenite

transforming to pearlite at eutectoid temperature.

• This transformation of austenite is time dependant.

Page 3: TTT diagram

Dr. Ken Lewis ISAT 430 3

Fe-C Equilibrium Diagram

Spring 2001

Page 4: TTT diagram

Fe-C Equilibrium Diagram

• Though the Fe-C equilibrium diagram is very useful, it does not provide information about the transformation of austenite to any structure other than equilibrium structures, nor does it provide any details about the influence of cooling rates on the formation of different structures.

• In other words, Fe-C diagram does not explain the decomposition of austenite under non-equilibrium conditions or conditions involving faster rates of cooling than equilibrium cooling.

• Several structures (e.g. martensite) not appearing on the equilibrium diagram may be found in the microstructures in steels.

Page 5: TTT diagram

TTT Diagram

• On the other hand, TTT diagram is a more practical diagram.

• It shows what structures can be expected after various rates of cooling.

• It graphically describes the cooling rate required for the transformation of austenite to pearlite, bainite or martensite.

• TTT diagram also gives the temperature at which such transformations take place.

Page 6: TTT diagram

Phase diagram and TTT diagram

• Phase diagram :– Describes equilibrium

microstructural development that is obtained at extremely slow cooling or heating conditions.

– Provides no information on time taken to form phase

• TTT diagram– For a given alloy composition,

the percentage completion of a given phase transformation on temperature-time axes is described.

Which information are obtained from phase diagram or TTT diagram?

Page 7: TTT diagram

Transformation Diagrams

• There are two main types of transformation diagrams that are helpful in selecting the optimum steel and processing route to achieve a given set of properties. These are1. Time-temperature transformation (TTT) diagrams2. Continuous cooling transformation (CCT) diagrams

Page 8: TTT diagram

Transformation Diagrams

• Time-temperature transformation (TTT) diagrams1. Indicates the amount of transformation at a constant temperature.2. Samples are austenitised and then cooled rapidly to a lower temperature and held at that temperature whilst the amount of transformation is measured, for example by dilatometry.3. Obviously a large number of experiments are required to build up a complete TTT diagram.

Page 9: TTT diagram

Transformation Diagrams

• Continuous cooling transformation (CCT) diagrams1. Indicates the extent of transformation as a function of time for a continuously decreasing temperature.2. Samples are austenitised and then cooled at a predetermined rate and the degree of transformation is measured, for example by dilatometry.3. In this case also a large number of experiments are required to build up a complete CCT diagram also

Page 10: TTT diagram

Transformation Diagrams

• CCT diagrams are generally more appropriate for engineering applications as components are cooled (air cooled, furnace cooled, quenched etc.) from a processing temperature as this is more economic than transferring to a separate furnace for an isothermal treatment.

Page 11: TTT diagram

TTT Diagram

Page 12: TTT diagram

TTT diagram for an eutectoid carbon steel.

Page 13: TTT diagram

Dr. Ken Lewis ISAT 430 13

Fe-C Equilibrium Diagram• Austenite is stable above A1 temperature• Below this temperature, austenite is unstable.

Spring 2001

Eutectoid Steel

Page 14: TTT diagram

How Transformation Ocures?

• Transformation of austenite to pearlite ocures by nucleation and growth mechanism.

• This transformation requires diffusion.

Page 15: TTT diagram

Nucleation rate

• As temperature decreases below eutectoid temperature, r* (critical size of nucleus) decreases increasing the nucleation rate N.

• At very low temperature, nucleation rate decreases due to large decrease in diffusion rate.

• At intermediate temperature, nucleation rate is maximum

Page 16: TTT diagram

Growth of nuclei

– Growth of nuclei is a diffusion controlled process

Growth Rate where QD : activation energy for self diffusion

Growth rate decreases with decrease in temperature

RTQD

ceG

.

Page 17: TTT diagram

Transformation Rate

• Transformation rate of a phase :• Transformation rate first increases, reaches a maximum and then starts

decreasing with decrease in temperature

..

GN

Page 18: TTT diagram

Time for Transformation

• Time required for transformation as a function of temperature follows a reverse trend than the rate of transformation.Time required for transformation fist decreases, reaches a minimum and then starts increasing with decrease in temperature.

Page 19: TTT diagram

Let us do some experiment

Page 20: TTT diagram

Isothermal transformation of eutectoid steel

Let us take a eutectoid steel and do the following experiment– Step 1 – Heat the sample above A1 temperature for austenitisation

– Step 2 – Transfer the sample to a salt bath kept below A1 Temp.– Step 3 - Keep it at the bath temperature for a specified time– Step 4 - Quench to room temperature– Step 5 – Find out the amount of phases present

Page 21: TTT diagram

Isothermal transformation of eutectoid steel below Eutectoid Temperature

• Determine the amount of pearlite formed after holding at 7050 C for different times

Page 22: TTT diagram

Fraction of transformation Vs the logarithm of time at constant temperature (The S Curve).

Plot the result of the experiment

This is known as S curve

Page 23: TTT diagram

Fraction of transformation Vs the logarithm of time at constant temperature (The S Curve).

The transformation starts but it takes some time before we can see a precipitate. The time required for transformation required to initiate the transformation is known as Incubation Period.The rate of transformation first increases and then starts decreasing

Page 24: TTT diagram

Time required for completion of transformation

• Now repeat the experiment at different temperatures below A1 temp.• Plot the time for completion of transformation at different temperatures.

Page 25: TTT diagram
Page 26: TTT diagram
Page 27: TTT diagram
Page 28: TTT diagram
Page 29: TTT diagram

Time-Temperature-Transformation Curve

• We can plot the time required for start and completion of transformation at different temperatures or for any other amount of transformation.

Page 30: TTT diagram

Let us consider eutectoid reaction as an example

eutectoid reaction:

γ(0.8 wt% C) ↓α (0.025 wt% C) + Fe3C

Page 31: TTT diagram

Let us consider eutectoid reaction as an example

The S-shaped curves are shifted to longer times at higher T showing that the transformation is dominated by nucleation (nucleation rate increases with supercooling) and not by diffusion (which occurs faster at higher T)

Page 32: TTT diagram

Isothermal Transformation (or TTT) Diagrams (Temperature, Time, and % Transformation)

Page 33: TTT diagram

TTT Diagrams for Eutectoid Steel• We can plot the time for start and completion of transformation of

austenite to pearlite at different temperatures or for any other amount of transformation.

Page 34: TTT diagram

Transformations of austenite to Pearlite

Transformations of austenite : → + Fe3C

1) At slightly lower T below 727 : ℃ T <<• Coarse pearlite

: nucleation rate is very low.: diffusion rate is very high.

2) As the T (trans. temp.) decreases to 500 ℃

• Fine pearlite: nucleation rate increases.: diffusion rate decreases.

Strength : (MPa) = 139 + 46.4 S-1 S : inter-lamellar

spacing

655 ℃

600 ℃

534 ℃

487 ℃

pearlite

Page 35: TTT diagram

But at lower temperatures ….

• At lower temperatures, the austenite transforms to bainite.

• Bainite is also a mixture of ferrite and cementite but not in the form of alternate layers.

Page 36: TTT diagram

Transformations of austenite to Bainite3) At further lower temperatures, 250 < T℃ t < 500 , below the nose ℃

in TTT diagram.• Driving force for the transformation ( → + Fe3C) is very high.• Diffusion rate is very low.• Nucleation rate is very high.

→ + Fe3C (But not in the form of alternate layers) : Bainite ; cementite in the form of needle type.

495 ℃ 410 ℃

bainite

Page 37: TTT diagram

TTT diagram for eutectoid steel

• Plot the time for start and completion of transformation at different temperatures at still lower temperatures

Page 38: TTT diagram

On further decreasing the transformation temperature

• Below a certain temperature, the austenite changes or transforms to martensite.

• Martensite is a super saturated solid solution of carbon in iron.

• It is a diffusionless transformation.• It is also known as shear transformation as the

interface between austenite and martensite moves as a shear wave at the speed of sound.

Page 39: TTT diagram

Transformations of austenite to Martensite4. When the austenite is quenched to temp. below Ms

→ ’ (martensite): Driving force for trans. of austenite → extremely high. Diffusion rate is extremely slow. : Instead of the diffusional migration of carbon atoms to produce separate and Fe3C phases, the matensite transformation involves the sudden reorientation of C and Fe atoms from the austenite (FCC) to a body centered tetragonal (bct) solid solution.

g→ ’ (martensite), a super saturated solid solution of carbon in iron formed by shear transformation (diffusionless transformation)

→ very hard and brittle phasemartensite

Page 40: TTT diagram

Diffusionless Transformation1) Diffusionless transformation → no compositional change during

transformation.2) The temperature at which the transformation of → ’ starts is

known as at Ms temp. and finishes at Mf temp.

3) Degree of super saturation and c/a ratio increases as the carbon content increases.

Page 41: TTT diagram

Complete TTT (isothermal transformation) diagram for eutectoid steel.

Page 42: TTT diagram

Time Temperature Transformation (TTT) Diagram

• Below A1 , austenite is unstable, i.e., it can transform into pearlite, bainite or martensite.

• The phases finally formed during cooling depend upon time and temperature.

• TTT diagram shows the time required for transformation to various phases at constant temperature, and, therefore, gives a useful initial guide to likely transformations.

• In addition to the variations in the rate of transformation with temperature, there are variations in the structure of the transformation products also.

Page 43: TTT diagram

Dr. Ken Lewis ISAT 430 43Spring 2001

The Time – Temperature – Transformation Curve (TTT)

• At slow cooling rates the trajectory can pass through the Pearlite and Bainite regions

• Pearlite is formed by slow cooling– Trajectory passes through Ps

above the nose of the TTT curve

• Bainite– Produced by rapid cooling to a

temperature above Ms– Nose of cooling curve avoided.

Page 44: TTT diagram

Dr. Ken Lewis ISAT 430 44Spring 2001

The Time – Temperature – Transformation Curve (TTT)

• If cooling is rapid enough austenite is transformed into Martensite.– FCC → BCT– diffusion separation of carbon

and iron is not possible• Transformation begins at Ms and

ends at Mf.– If cooling is stopped at a

temperature between Ms and Mf , it will transform into martensite and bainite .

Page 45: TTT diagram

Full TTT Diagram

The complete TTT diagram for an iron-carbon alloy of eutectoid composition.

A: austenite

B: bainite

M: martensite

P: pearlite

Page 46: TTT diagram

TTT Diagram

• Transformations at temperatures between approximately 705°C and 550°C result in the characteristic lamellar microstructure of pearlite.

• At a temperature just below A1 line, nucleation of cementite from austenite will be very slow, but diffusion and growth of nuclei will proceed at maximum speed, so that there will be few large lamellae and the pearlite will be coarse.

• However, as the transformation temperature is lowered, i.e., it is just above the nose of the C-curve, the pearlite becomes fine.

Page 47: TTT diagram

Bainite• At temperatures between 550°C and 240°C (the approximate, Ms

temperature line), transformation becomes more sluggish as the temperature falls, for, although austenite becomes increasingly unstable, the slower rate of diffusion of carbon atoms in austenite at lower temperatures outstrips the increased urge of the austenite to transform. In this temperature range the transformation product is bainite.

• Bainite consists (like pearlite) of a ferrite matrix in which particles of cementite are embedded. The individual particles are much finer than in pearlite. The appearance of bainite may vary between– feathery mass of fine cementite and ferrite for bainite formed around 480°C

and – dark acicular (needle shaped) crystals for bainite formed in the region of

around 310°C).

Page 48: TTT diagram

Martensite• At the foot of the TTT diagram,

there are two lines Ms (240°C ) and Mf (50°C).

• Ms represents the temperature at which the formation of martensite will start and Mf the temperature at which the formation of martensite will finish during cooling of austenite through this range.

Page 49: TTT diagram

Martensite• Martensite is formed by the

diffusionless transformation of austenite on rapid cooling to a temperature below 240°C (approximately) designated as Ms temperature.

• The martensitic transformation differs from the other transformations in that it is not time dependent and occurs almost instantaneously, the proportion of austenite transformed to martensite depends only on the temperature to which it is cooled.

• For example the approximate temperatures at which 50% and 90% of the total austenite will, on quenching, transform to martensite are 166°C and 116°C respectively.

Page 50: TTT diagram

Martensite

(i) Martensite is a metastable phase of steel, formed by transformation of austenite below Ms temperature.(ii) Martensite is an interstitial supersaturated solid solution of carbon in iron having a body-centered tetragonal lattice.(iii) Martensite is normally a product of quenching. (iv) Martensite is very hard, strong and brittle.

Page 51: TTT diagram

Martensite

• Diffusionless transformation of FCC to BCT (more volume)

• Very hard & very brittle.

Page 52: TTT diagram

Possible transformation involving austenite decomposition

Page 53: TTT diagram
Page 54: TTT diagram

Dr. Ken Lewis ISAT 430 54Spring 2001

The Time – Temperature – Transformation Curve (TTT)

• Composition Specific– This curve is for 0.8%

carbon

• At different compositions, shape is different

Page 55: TTT diagram

TTT Diagram

• The TTT digrams for hypo-eutectoid steels and hyper-eutectoid steels will differ from that of eutectoid steels

• The TTT digrams for hypo-eutectoid steels will have an additional curve to show the precipitation of ferrite from martensite before transformation of remaining austenite to pearlite

Page 56: TTT diagram

TTT diagram for Hypo-eutectoid steel.

Page 57: TTT diagram

TTT Diagram

• The TTT digrams for hyper-eutectoid steels will differ from that of eutectoid steels

• The TTT diagrams for hyper-eutectoid steels will have an additional curve to show the precipitation of cementite from martensite before transformation of remaining austenite to pearlite

Page 58: TTT diagram

TTT diagram for a hypereutectoid Steel (1.13 wt% C)

Page 59: TTT diagram
Page 60: TTT diagram

©20

03 B

rook

s/C

ole,

a d

ivis

ion

of T

hom

son

Lea

rnin

g, I

nc.

Tho

mso

n L

earn

ing ™

is a

trad

emar

k us

ed h

erei

n un

der

lice

nse.

Figure 12.8 The TTT diagrams for (a) a 1050 and (b) a 10110 steel.

Page 61: TTT diagram

Contineous Cooling Transformation (CCT) Diagram

Page 62: TTT diagram

CCT Diagram

• If you don’t hold at one temperature and allow temperature to change with time, you are “Continuously Cooling”.

• In continuous cooling, the constant temperature basis of TTT diagram becomes obviously unrepresentative.

• More relevant information can, thus, be obtained from a CCT diagram in which phase changes are tracked for a variety of cooling rates.

• Therefore, a CCT diagram’s transition lines will be different than a TTT diagram.

• Plotting actual cooling curves on such a diagram will show the types of transformation product formed and their proportions.

Page 63: TTT diagram

Continuous cooling transformation diagram for eutectoid steels

• Annealing : heat the steel into region → cool it in furnace (power off) → coarse pearlite

• Normalizing : heat the steel into region → cool it in air → fine pearlite

• Hardening : heat the steel into region → quench it in water → Martensite

Page 64: TTT diagram

The CCT diagram for a low-alloy, 0.2% C Steel

Page 65: TTT diagram

Effect of Cooling Rate on the Formation of Different Reaction Products

• Very slow cooling rate (furnace cooling), typical of conventional annealing, will result in coarse pearlite with low hardness.

• Air cooling is a faster cooling rate than annealing and is known as nonmalizing. It produces fine pearlite.

• In water quenching, entire substance remains austentic until the Ms line is reached, and changes to martensite between the Ms and Mf lines.

Page 66: TTT diagram

Effect of Cooling Rate on the Formation of Different Reaction Products

• It is possible to form 100% pearlite or 100% martensite by continuous cooling, but it is not possible to form 100% Bainite.

• To obtain a bainitic structure, cool rapidly enough to miss the nose of curve and then holding in the temperature range at which bainite is formed.

Page 67: TTT diagram

Critical Cooling Rate (CCR)

• If the cooling curve is tangent to the nose of TTT curve, the cooling rate associated with this cooling curve is Critical Cooling Rate (CCR) for this steel.

• Any cooling rate equal to or faster than CCR will form only martensite.

Page 68: TTT diagram

Critical Cooling Rate and Hardness of Different Micro-Structures

Critical cooling rate

Hardness of different structures

Page 69: TTT diagram

Factors Affecting Critical Cooling Rate

• Any thing which shifts the TTT diagrm towards right will decrease the critical cooling rate

• The following factor affect the critical coolin rate– 1. Grain size– 2. Carbon content– 3. Alloying elementsIncrease in grain size, carbon content or alloying

elements shifts the TTT diagram towards right and hence reduces the critical cooling rate as shown in next slide.

Page 70: TTT diagram

Effect of Carbon Content and Grain Size on Critical Cooling Rate

Page 71: TTT diagram

Superposition of TTT and CCT Diagrams for Eutectoid Steel

Page 72: TTT diagram

The CCT diagram (solid lines) for a 1080 steel compared with the TTT diagram (dashed lines).

Page 73: TTT diagram

©20

03 B

rook

s/C

ole,

a d

ivis

ion

of T

hom

son

Lea

rnin

g, I

nc.

Tho

mso

n L

earn

ing ™

is a

trad

emar

k us

ed h

erei

n un

der

lice

nse.

(a)TTT and(b) (b) CCT curves for a 4340

steel.

Page 74: TTT diagram

Factors Affecting TTT Diagram

• 1. Grain size• 2. Carbon content• 3. Alloying elements

Page 75: TTT diagram

Effect of Grain Size

• Fine grain steels tend to promote formation of ferrite and pearlite from austenite.

• Hence decrease in grain size shifts the TTT diagram towards left.

• Therefore, critical cooling rate increases with decrease in grain size.

Page 76: TTT diagram

Effect of Carbon Content

• There is a significant influence of composition on the TTT and CCT diagrams. For the transformation diagrams we see the effect through a shift in the transformation curves. For example:– An increase in carbon content shifts the CCT and TTT

curves to the right (this corresponds to an increase in hardenability as it increases the ease of forming martensite - i.e. the cooling rate required to attain martensite is less severe).

– An increase in carbon content decreases the Ms (martensite start) temperature.

Page 77: TTT diagram

Effect of Alloying Elements

• Different alloying elements have their different effects on TTT diagram.

• An increase in alloy content shifts the CCT and TTT curves to the right and

• Alloying elements also modify the shape of the TTT diagram and separate the ferrite + pearlite region from the bainite region making the attainment of a bainitic structure more controllable.

Page 78: TTT diagram

Effect of Alloying Elements on TTT Diagram

Page 79: TTT diagram

Slow Cooling

Time in region indicates amount of microconstituent!

In attained

Formation of ferrite and pearlite

Page 80: TTT diagram

Medium Cooling

Formation of Bainite

In attained

Page 81: TTT diagram

Fast Cooling

Martensite in ~ 1 minute of cooling

In attained

Page 82: TTT diagram

THANKS