tuneli

12
TUNELI Excavation and primary support Iskop i primarna podgrada TUNNELS Mladen Hudec, Professor Emeritus of Civil Engineering, BSCE, MSCE, PhD, University of Zagreb, Croatia built a distinctive opus of scientific, professional and educational work in 50 years of his professional career as the engineer and the university professor. Born in Slunj in 1924, graduated in Civil Engineering from University of Zagreb. Worked as the assistant lecturer at the University of Sarajevo, and as the university professor at the Faculty of Mining, Geology and Petroleum Engineering (RGN), University of Zagreb. Between the years 1970 and 1971 he worked as visiting professor at the Henry Krumb School of Mines of Columbia University, New York. He was the author of more than eighty professional and scientific works in various fields of construction engineering and biomechanics, of a number of textbooks and also coauthor of a number of textbooks and guidelines. He was active in the fields of model te- sting, structural engineering and theorethical debates. More than thirty underground projects were carried out in Croatia, Bosnia and Herzegovina and Slovenia based on his designs. He took part in the construction of 40km of tunnels in Croatia in the role of the supervising engi- neer. He was the president of the Yougoslav Tunnelling Association, and subsequently of the Croatian Tunnelling Association, and the founder and the first president of ITA Croatia. In his approach to problem solving he did not stop at the first solution but tried persistently for new possibilities yielding new outlooks on a problem. In his last years he was active in research on history of tunnelling and writing a book on tunnelling. Born in Zagreb in 1961, earned PhD level from Faculty of Civil Engineering, University of Za- greb. Three times winner of the Rector’s Award of the University of Zagreb. Since 1990 active in underground projects as design manager, project leader, or checking engineer on diffe- rent tunnelling, subway or underground space structures in Paris, Lille, Seattle, Puerto Rico, Munich, Vienna, Budapest, New Delhi, Seoul, Hong Kong, Singapore, as well as on several underground projects in Northwestern China. Member of the winning team that was awarded first price in 2000 as the most successful consulting company in Austria for the Wanjiazhai Yellow River Diversion Project in China. Author of 85 scientific and technical papers, coauthor of 3 guidelines on design and construction of underground structures in Austria and EU. Co- founder and coorganizer of series of congresses of Central European countries on concrete engineering (CCC Congresses), founder of „Croatian society for concrete engineering and construction technology” HUBITG. Born in Sarajevo in 1958. Graduated in civil engineering from University of Zagreb, and ear- ned Masters Certificate in Applied Project Management at the Villanova University, USA. As the employee of Elektroprojekt d.d. he was responsible for calculations and remediation of concrete dams and remediation of hydrotechnical tunnels in Croatia and Bosnia and Her- zegovina. In the course of the last ten years he was active in the field of the environmental engineering, particularly the remediation of landfills, and preparation of projects and tender documents for EU financed projects. He designed over thirty landfills in Croatia, Bosnia and Herzegovina and Slovenia. As the consultant of the Delegation of the European Commission to the Republic of Croatia he was responsible for monitoring of project execution under the PHARE 2005 program for development of the business infrastructure. Owner and managing director of Hudec Plan Ltd. Mladen HUDEC, Davorin KOLIĆ, Svjetlan HUDEC Prof.Emer. Mladen HUDEC, PhD, CE (1924-2004) Davorin KOLIĆ, PhD, CE, PEng Svjetlan HUDEC, MEng, CE, PEng TUNELI - Iskop i primarna podgrada TUNNELS - Excavation and primary support M. Hudec D. Kolić S. Hudec original croatian product ISBN: 978-953-55728-1-7

Upload: lejla-pirkic

Post on 23-Oct-2015

172 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Tuneli

TUNELI

Excavation and primary support

Iskop i primarna podgrada

TUNNELS

Mladen Hudec, Professor Emeritus of Civil Engineering, BSCE, MSCE, PhD, University of Zagreb, Croatia built a distinctive opus of scientific, professional and educational work in 50 years of his professional career as the engineer and the university professor. Born in Slunj in 1924, graduated in Civil Engineering from University of Zagreb. Worked as the assistant lecturer at the University of Sarajevo, and as the university professor at the Faculty of Mining, Geology and Petroleum Engineering (RGN), University of Zagreb. Between the years 1970 and 1971 he worked as visiting professor at the Henry Krumb School of Mines of Columbia University, New York. He was the author of more than eighty professional and scientific works in various fields of construction engineering and biomechanics, of a number of textbooks and also coauthor of a number of textbooks and guidelines. He was active in the fields of model te-sting, structural engineering and theorethical debates. More than thirty underground projects were carried out in Croatia, Bosnia and Herzegovina and Slovenia based on his designs. He took part in the construction of 40km of tunnels in Croatia in the role of the supervising engi-neer. He was the president of the Yougoslav Tunnelling Association, and subsequently of the Croatian Tunnelling Association, and the founder and the first president of ITA Croatia. In his approach to problem solving he did not stop at the first solution but tried persistently for new possibilities yielding new outlooks on a problem. In his last years he was active in research on history of tunnelling and writing a book on tunnelling.

Born in Zagreb in 1961, earned PhD level from Faculty of Civil Engineering, University of Za-greb. Three times winner of the Rector’s Award of the University of Zagreb. Since 1990 active in underground projects as design manager, project leader, or checking engineer on diffe-rent tunnelling, subway or underground space structures in Paris, Lille, Seattle, Puerto Rico, Munich, Vienna, Budapest, New Delhi, Seoul, Hong Kong, Singapore, as well as on several underground projects in Northwestern China. Member of the winning team that was awarded first price in 2000 as the most successful consulting company in Austria for the Wanjiazhai Yellow River Diversion Project in China. Author of 85 scientific and technical papers, coauthor of 3 guidelines on design and construction of underground structures in Austria and EU. Co-founder and coorganizer of series of congresses of Central European countries on concrete engineering (CCC Congresses), founder of „Croatian society for concrete engineering and construction technology” HUBITG.

Born in Sarajevo in 1958. Graduated in civil engineering from University of Zagreb, and ear-ned Masters Certificate in Applied Project Management at the Villanova University, USA. As the employee of Elektroprojekt d.d. he was responsible for calculations and remediation of concrete dams and remediation of hydrotechnical tunnels in Croatia and Bosnia and Her-zegovina. In the course of the last ten years he was active in the field of the environmental engineering, particularly the remediation of landfills, and preparation of projects and tender documents for EU financed projects. He designed over thirty landfills in Croatia, Bosnia and Herzegovina and Slovenia. As the consultant of the Delegation of the European Commission to the Republic of Croatia he was responsible for monitoring of project execution under the PHARE 2005 program for development of the business infrastructure. Owner and managing director of Hudec Plan Ltd.

Mladen HUDEC, Davorin KOLIĆ, Svjetlan HUDEC

Prof.Emer. Mladen HUDEC, PhD, CE (1924-2004)

Davorin KOLIĆ, PhD, CE, PEng

Svjetlan HUDEC, MEng, CE, PEng

TU

NELI

- Is

kop i p

rim

arna

podgra

da

TU

NN

ELS

- Ex

cava

tion a

nd p

rim

ary

support

M. H

udec

D

. Kol

ićS

. Hud

ec

originalcroatian product

ISBN: 978-953-55728-1-7

Page 2: Tuneli

9

Proslov

Ova knjiga nastala je na osnovnoj građi i materijalima Prof.Hudeca pripremljenim za iz-davanje knjige o tunelima i podzemnim gradnjama. Osnovna struktura knjige započinje s povijesnim razvojem i razvija se preko dijelova i elemenata analize i principa koji se koriste u tunelima građenim konvencionalnim metodama iskopa. Te elemente potrebno je poznavati u smislu savladavanja tematike spomenute metodologije izgradnje. Uz prikaz metodologije iskopa predstavljeni su i elementi primarne podgrade, te je njima zaključen koncept područja djelovanja knjige.

Temeljem ovakvog materijala dopunjena su i obrađena sva poglavlja kao i dodana novija koja se odnose na suvremeni pristup razvoju izgradnje tunela i drugih podzemnih pros-tora. Na taj način je prethodno koncipirano djelo upotpunjeno i zadržan je njegov rezul-tat na razini obrade metodologije iskopa i ostvarivanja primarne podgrade tunela i drugih podzemnih prostorija. Metoda analize naponskih stanja i zaštita od gubitka stabilnosti pojedinih dijelova svoda potkopa prikazana je za djelovanja u čvrstim, stijenskim materi-jalima. Stoga pripremljena knjiga predstavlja osnove iskopa i primarnih mjera podgrade izvedenih konvencionalnim metodama izvedbe u stijenskim materijalima.

Obrađeni materijal knjige predstavlja tako u prvome, uvodnom, poglavlju razlike između novijih i starijih tunelskim metoda koje su bile osnove razvoja novijih konvencionalnih me-toda izvedbe tunela i podzemnih gradnji. Prikazuje se i osnovna razlika konvencionalne tunelogradnje prema sve više korištenim metodama strojnog iskopa tunela.

Povijest izgradnje tunela u drugom poglavlju nije ulazila u detalje i širinu prikaza već je prikazala četiri poznata i upečatljiva primjera podzemnih gradnji iz daleke povijesti. Oni su

Page 3: Tuneli

TUNELI Iskop i primarna podgrada10

odabrani iz niza takvih zapisa koje je o povijesti podzemnih gradnji Prof.Hudec objavljivao niz godina u godišnjaku RGN fakulteta gdje su iste, ali i mnoge druge podzemne gradnje, puno detaljnije i opširnije prikazane. Ovi zapisi navedeni su u bibliografskoj listi ove kn-jige.

Naredna poglavlja prikazuju razvoj konvncionalnih metoda iskopa koje svoje korijene im-aju u rudarskim metodama iskopa. Tokom vremena se razvojem metoda došlo do met-odologije iskopa tunela koju danas raspoznajemo pod različitim nazivima, ali se karak-terizira načelno iskopom čela u dijelovima i zaštitom od urušavanja prskanim betonom i primjenom sidara.

Razvoj i primjena konvencionalne metode iskopa tunela, koju u primjeni nazivamo u ovome dijelu Europe „Novom austrijskom metodom“, opisana je u 8. poglavlju. Inače, ova metoda se u različitim krajevima naziva različitim imenima i u primjeni je u svim dijelovima svijeta (tako npr. u upotrebi su nazivi : u Sjevernoj Americi : SEM - “Sequential Excavation Method“, u Velikoj Britaniji i Jugoistoku Azije : SCL – „Sprayed Concrete Lining“ method, u Njemačkoj i Švicarskoj : „Spritzbetonbauweise“, a u Austriji i mnogo drugih zemalja svijeta : na engleskom „New Austrian Tunnelling Method“ – NATM ili u njemačkom obliku „Neue Österreichische Tunnelbauweise“ – NÖT).

U poglavljima 9 i 10 prikazani su zakoni ponašanja materijala i analiza naprezanja oko podzemnog otvora. Pristup je ostvaren algebarskim izrazima i pogodan je za brze analize i definiciju naponskog stanja u glavnim smjerovima naprezanja. Isto tako ova dva poglavl-ja služe kao podloga određivanja gubitka stabilnosti svoda potkopa na ispadanje blokova.

Nakon definiranja naponskih stanja oko otvora , kao i predviđanja moguće nestabilnosti svoda na ispadanje blokova naredna poglavlja razrađuju tipove i oblike elemenata pri-marne podgrade koji se danas koriste. Tako se u poglavlju 12 obrađuju sidra i njihovi različiti načini djelovanja uz osnovne izraze za dimenzioniranje sidara. Poglavlje 13 posvećeno je prskanom betonu i njegovoj primjeni dok poglavlje 14 uvodi primjenu pr-skanog betona armiranog čeličnim vlaknima i to vrlo osnovno jer se puno više detalja nalazi u smjernicama za njihovu primjenu koje su navedene u literaturi. Nastavno se u poglavlju 15 opisuje djelovanje prskanog betona pod opterećenjem požarom što je vrlo ozbiljno i značajno područje inicirano problemima u primjeni i dodatnim zahtjevima na sig-urnost tunela koji su se razvili nakon niza havarija posljednjih desetak godina. I konačno poglavlje 16 opisuje oblike i primjenu čeličnih lučnih elemenata primarne podgrade koje zovemo remenatama, a u izvedbi su u različitim oblicima i različitih su krutosti na savi-janje.

U završnim dijelovima knjige prikazano je prvo nekoliko primjera iz skorije prakse i načini

Page 4: Tuneli

11

primjene elemenata podgrade koji su prikazani nadalje svojim karakteristikama u tabli-cama koje su korisne za svakodnevno korištenje u projektantskoj i izvođačkoj praksi.

U svakom slučaju knjiga se u ovome obliku u kojem se sada nalazi može uspješno koris-titi i kao informativna literatura, a uz korištenje niza smjernica navedenih u literaturnoj listi i kao praktičan priručnik.U narednim izdanjima knjige planira se nadalje razviti knjigu i dodati poglavlja koja će pokrivati : područja iskopa i podgrade tunela u mekim, nestabilnim materijalima, moni-toring i mjerenja deformacija poprečnog presjeka u toku iskopa i primjene primarne podgrade, izvedbu vodonepropusnih slojeva obloge i detalja odvodnje, izradu unutarnje betonske obloge i principe ventiliranja tunela.

Davorin Kolić, Svjetlan Hudec

Zagreb, 15.05.2009

Page 5: Tuneli

13

Sadržaj :

Predgovor predsjednika ITA Predgovor predsjednika HKIGProslovZahvala

1. Uvod ....................................................................................................................................17

2. Povijest tunelogradnje ...................................................................................................... 212.1 Uvod..................................................................................................................................... 212.2 Egipat ................................................................................................................................... 212.3 Indija .................................................................................................................................... 242.4 Malta .................................................................................................................................... 262.5 Kapadokija ........................................................................................................................... 27

3. Istražni potkopi ................................................................................................................. 31

4. Stara austrijska metoda ................................................................................................... 35

5. Belgijska metoda ............................................................................................................... 37

6. Njemačka metoda .............................................................................................................. 39

7. Talijanska metoda .............................................................................................................. 41

8. Suvremena tunelogradnja : Nova austrijska metoda (NATM) ....................................... 438.1 Uvod..................................................................................................................................... 438.2 Načela tunelogradnje po NATM ........................................................................................... 458.2.1 Općenito............................................................................................................................... 458.2.2 Neki od preduvjeta za uspješnu primjenu NATM ................................................................. 468.3 Načini građenja kod NATM .................................................................................................. 478.3.1 Općenito............................................................................................................................... 478.3.2 Tuneli u čvrstoj stijeni ........................................................................................................... 488.3.3 Uvjeti gnječenja stijenske mase ........................................................................................... 508.3.4 Uvjeti mekog tla ................................................................................................................... 528.4 Osnovne projektne faze ....................................................................................................... 538.5 Upravljanje rizicima .............................................................................................................. 54

Page 6: Tuneli

TUNELI Iskop i primarna podgrada14

8.5.1 Identificiranje rizika .............................................................................................................. 548.5.2 Ocjena rizika ........................................................................................................................ 558.6 Istraživanje tla ...................................................................................................................... 558.7 Geotehnički projekt i građenje ............................................................................................. 578.7.1 Metodologija geotehničkog projektiranja.............................................................................. 578.7.2 Postupak tijekom građenja................................................................................................... 588.8 Upravljanje geotehničkom sigurnošću ................................................................................. 608.9 Opažanje – vrednovanje podataka ...................................................................................... 608.10 Ugovor za građenje.............................................................................................................. 638.11 Organizacija građenja po NATM .......................................................................................... 66

9. Teorije čvrstoće u ponašanju stijenske mase ................................................................. 69

10. Naprezanja uz otvor u masivu ......................................................................................... 79

11. Ponašanje stijenske mase: prognoza odvala.................................................................. 9511.1 Uvod..................................................................................................................................... 9511.2 Plohe diskontinuiteta ............................................................................................................ 9611.3 Odnos ravnina diskontinuiteta i tunelskog profila............................................................... 10511.4 Trag kose ravnine u stereografskoj projekciji ..................................................................... 10811.5 Kriterij loma na ravninama diskontinuteta .......................................................................... 11411.6 Ograničavanje područja sklonog odvalama ....................................................................... 11911.7 Provjera kriterija čvrstoće na ravnini diskontinuiteta .......................................................... 12311.8 Kriterij loma za klin ............................................................................................................. 12611.9 Povratna analiza odvala za neke tunele ............................................................................ 126

12. Sidra ................................................................................................................................. 127

13. Mlazni beton ..................................................................................................................... 141

14. Mikroarmirani mlazni beton ............................................................................................ 151

15. Vatrootpornost mikroarmiranog betona ....................................................................... 15315.1 Uvod................................................................................................................................... 15315.2 Slom konstrukcijskih elemenata od armiranog betona zbog požarnog djelovanja ............ 15315.3 Slom betona kao posljedica ljuštenja ................................................................................. 15415.4 Vremensko temperaturne krivulje (”krivulje požara”) ......................................................... 15815.4.1 ISO standardna krivulja požara ili ETK krivulja .................................................................. 15815.4.2 Hidrokarbonske krivulje (HC i HCinc) ................................................................................ 15915.4.3 RABT/ZTV krivulja ............................................................................................................. 15915.4.4 EBA krivulja ........................................................................................................................ 159

Page 7: Tuneli

15

15.4.5 RWS krivulja ...................................................................................................................... 15915.5 Spriječavanje ljuštenja ....................................................................................................... 16015.6 Pokusi ................................................................................................................................ 162

16. Čelični elementi podgrade .............................................................................................. 16516.1 Uvod................................................................................................................................... 16516.2. Funkcije i dimenzioniranje rešetkastih lukova ................................................................... 16616.3 Izrada rešetkastih lukova ................................................................................................... 16716.3.1 Materijali ............................................................................................................................. 16716.3.2 Izrada ................................................................................................................................. 16816.3.3 Kontrola kvalitete ............................................................................................................... 16816.4 Montaža rešetkastih lukova ............................................................................................... 16816.5 Proizvodi ............................................................................................................................ 16916.5.1 Općenito............................................................................................................................. 16916.5.2 Integralni dio podgradnog sustava s oblogom od mlaznog betona ................................... 17016.5.3 Šipke, ukrućenja ................................................................................................................17016.5.4 Spojevi ...............................................................................................................................17016.5.5 Kontrola kvalitete ...............................................................................................................17016.6 Pantex ® rešetkasti lukovi s tri šipke ................................................................................. 17116.7 Pantex ® rešetkasti lukovi s četiri šipke ............................................................................. 17216.8 Pantex ® rešetkasti plošni lukovi ....................................................................................... 173

17. Primjeri ............................................................................................................................. 17517.1 Željeznički tunel Koralm, Istražni tunel Paierdorf, Austrija ................................................. 17617.2 Produžetak linije C praškog metroa od Ládví do Letňany, Republika Češka .................... 17817.3 Tunel Šentvid – kaverne, Šentvid, Ljubljana, Slovenija ..................................................... 180

18. Tablice s elementima podgrade ..................................................................................... 18318.1 SN-Sidra ............................................................................................................................ 18418.2 Mehanička sidra ................................................................................................................. 18518.3 IBO - Injektirana bušaća sidra............................................................................................ 18618.4 IBI - Injektirana bušaća sidra ............................................................................................. 18718.5 Ekspanzijska sidra ............................................................................................................. 18818.6 AT - POWER SET Samobušaća sidra ............................................................................... 18918.7 CT-Sidro .............................................................................................................................19018.8 Čelična koplja.....................................................................................................................19118.9 Čelična cijevna koplja ........................................................................................................19118.10 IBO – Injektirano bušaće koplje ......................................................................................... 19118.11 AT - POWER SET Samobušaće cijevno koplje ................................................................. 19218.12 PANTEX Rešetkasti lukovi (s tri šipke) .............................................................................. 19218.13 PANTEX Rešetkasti lukovi (s četiri šipke) .......................................................................... 194

Page 8: Tuneli

TUNELI Iskop i primarna podgrada16

18.14 PANTEX Rešetkasti plošni lukovi ...................................................................................... 19518.15 TH-Profili ............................................................................................................................ 19618.16 HEB-Profili ......................................................................................................................... 19618.17 UNP-Profili .........................................................................................................................19718.18 AT - LSC Popuštajući elementi podgrade .......................................................................... 19718.19 AT-SISTEM Cijevni kišobran .............................................................................................. 198

19. Literatura .......................................................................................................................... 201

Page 9: Tuneli

43Suvremena tunelogradnja: nova austrijska metoda (NATM)

Poglavlje 8SUVREMENA TUNELOGRADNJA: NOVA AUSTRIJSKA METODA (NATM)

8.1 Uvod

Još u XIX. stoljeću počinje primjena trajnih materijala za podgrađivanje i u rudarstvu i u građevinarstvu. U rudnicima ugljena u zapadnoj Europi i Engleskoj primjenjuje se čelična podgrada koja zamjenjuje drvenu, a od dvadesetih godina XX. stoljeća počinje i primjena mlaznog betona i čeličnih sidara. Stari način izrade podzemnih prostorija gotovo je potpu-no napušten u drugoj polovini XX. stoljeća. Posebnu zaslugu za to imaju austrijski inženjeri koji su pedesetih godina teoetski i praktično osmislili "novu austrijsku tunelsku metodu" (NATM) (Brown, 1990; Jodl, 1995; Karakus-Fowler, 2004; Mueller, 1978; Romero, 2002). U skandinavskim zemljama je razrađena kasnije i "norveška metoda" koja daje nešto drugačija praktična rješenja, pridržavajući se istih principa. Za razvoj metode zaslužan je niz austrijskih inženjera, ponajprije Rabcewicz (1964, 1965), a zatim Kastner (1962), Muller (1978), Fenner (1938), Pacher (1964) i drugi. Umjesto da se podgradi pripiše puno opterećenje "brdskim pritiscima", znatan dio preraspodjele naprezanja oko otvora u masi pripisuje se stijeni, koja s podgradom čini spregnutu konstrukciju. Ekonomična podgrada omogućuje da se stijena dijelom deformira, jer time stijena preuzima na sebe dio pre-raspodjele i smanjuje opterećenje podgrade. Kao osnovni element provjere djelovanja podgrade uvode se obavezna mjerenja deformacija profila otvora ("mjerenje konvergen-cije"), kojima se dokazuje završetak faze deformiranja i stabilnost složene sprege stijene i podgrade (Fairhurst/Carranza-Torres, 2002).

Tehnološki razvoj i inženjerska praksa u tunelogradnji bili su temelj za nova teoretska objašnjenja koja će omogućiti stvaranje i primjenu ekonomičnih projektnih rješenja. U os-novi, promjena je bila moguća prihvaćanjem zakona mehanike kontinuuma, odnosno na-jprije geomehanike, a zatim i mehanike stijena kao polazišta za koncepciju građevinskih zahvata u podzemlju. Osnovne postavke temeljene su najprije na rezultatima teorije elastičnosti, uz uvažavanje nekih postavki o nelinearnom ponašanju materijala, ali samo

Page 10: Tuneli

89Naprezanja uz otvor u masivuoccur at the opening boundary equals O,C , i.e. it is reduced to the uniaxial strength (see Figure 10.12).

Figure 10.12 Reduction of circular stress at the opening boundary due to plastification

Material yields, behaving like an incompressible fluid with = 0.5, and as a result a plastic ring is formed around the opening boundary. The stress distribution does not follow Hertz equations (10.2) anymore.

Figure 10.13 Static equilibrium conditions for an element in polar coordinate system

If equilibrium conditions are set in the direction of radius (polygon of forces on the right hand side) we have:

02

ddr2ddr Cr

from which differential equation for stresses may be derived:

occur at the opening boundary equals O,C , i.e. it is reduced to the uniaxial strength (see Figure 10.12).

Figure 10.12 Reduction of circular stress at the opening boundary due to plastification

Material yields, behaving like an incompressible fluid with = 0.5, and as a result a plastic ring is formed around the opening boundary. The stress distribution does not follow Hertz equations (10.2) anymore.

Figure 10.13 Static equilibrium conditions for an element in polar coordinate system

If equilibrium conditions are set in the direction of radius (polygon of forces on the right hand side) we have:

02

ddr2ddr Cr

from which differential equation for stresses may be derived:

Sl. 10.12 Smanjenje cirkularnog naprezanja na rubu otvora uslijed plastifikacije.

Materijal se plastificira, ponašajući se kao nestišljiva tekućina uz = 0.5, a rezultat je po-java plastificiranog prstena uz rub otvora. Raspodjela naprezanja nije više prema Kirscho-vim formulama (10.2).

Sl. 10.13 Uvjeti statičke ravnoteže za element u polarnom koordinatnom sustavu

Ako se postavi uvjet ravnoteže u smjeru radijusa (desni poligon sila) dobiva se:

Page 11: Tuneli

TUNNELS Excavation and primary support90

Fig. 10.16 Support reaction, based on Fenner-Pacher curve (Pacher, 1964), in Rabcewicz (1973)]

Prior to excavation the rock mass around the tunnel cavity boundary is subjected to a quasi-hydrostatic primary pressure po. Upon excavation the primary stress is released and the secondary stress state established with occurrence of radial deformations u. In the case of intact rock this process develops almost momentarily and the displacement is linear, the initial displacement line being extended up to OU axis, with the rock mass taking complete secondary stresses. The case is shown in Figure 10.16 where yielding occurred and displacement is now non-linear. If the excavated profile is supported prior to the rock mass reaching maximum displacement, the support will take part of the pressure proportional to the joint displacement of the rock mass and the support. The rock mass/support system reaches the equilibrium in the point F on the above curve with no further displacement occurring. The case is shown in Figure 10.16 where the calotte pressure curve passes minimum point, after which loosening of the rock mass starts and the re-quired support pressure to stop the loosening increases greatly. The tunnel wall pressure curve ends on the OU axis (point G), meaning that the equilibrium can be reached in this case without support action, but with much greater radial displacements.

Inside the plastic zone the material yielded and its limit strength may be expressed as modified Mohr- Coulomb failure criterion:

(10.11)

Page 12: Tuneli

91Stress-strain rock behaviour around excavation opening

where is the principal stress in the plastic zone, and values and k may be derived from the equation:

(10.12)

The parameters i in the above equation refer to the plastified rock mass.

For further analysis, it is necessary to plot the curves shown in Figure 10.16. No plastifica-tion occurs if the support reactive pressure is less than a critical support pressure:

(10.13)

the values and k to be derived from the equation (10.12).

If the effective support pressure is greater than the critical support pressure in the equa-tion (10.13), the displacement of the tunnel wall (convergence) will be within elastic region and is given by:

(10.14)

where E and are elastic constants, a is radius of the opening, pV is primary vertical pres-sure, and pU support reactive pressure around opening boundary. The radius of the plas-tic zone is given by (after Hoek ,1999a):

(10.15)

and the displacement of the walls of the tunnel is given by:

(10.16)