tunl contributions in the us nuclear data program

35
TUNL Contributions in the US Nuclear Data Program Nuclear Structure Data Evaluation Program J.H. Kelley (USNDP Structure Group Leader), Jim Purcell, and Grace Sheu (H.R. Weller & Kent Leung) We are responsible for nuclear structure evaluation in the A=2-20 mass region Energy Levels of Light Nuclei reviews published in Nuclear Physics A ENSDF files for A=2-20 XUNDL from A=2-20 Web interface for A=3-20 Information

Upload: blue

Post on 24-Feb-2016

68 views

Category:

Documents


0 download

DESCRIPTION

TUNL Contributions in the US Nuclear Data Program. Nuclear Structure Data Evaluation Program J.H. Kelley (USNDP Structure Group Leader), Jim Purcell, and Grace Sheu (H.R. Weller & Kent Leung). We are responsible for nuclear structure evaluation in the A=2-20 mass region - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TUNL Contributions in the  US Nuclear Data Program

TUNL Contributions in the US Nuclear Data Program

Nuclear Structure Data Evaluation Program J.H. Kelley (USNDP Structure Group Leader),

Jim Purcell, and Grace Sheu(H.R. Weller & Kent Leung)

We are responsible for nuclear structure evaluation in the A=2-20 mass region• Energy Levels of Light Nuclei reviews published in Nuclear Physics

A• ENSDF files for A=2-20• XUNDL from A=2-20

Web interface for A=3-20 Information

Page 2: TUNL Contributions in the  US Nuclear Data Program

Evaluation Activities• Energy Levels of Light Nuclei

– Follow style of Fay Ajzenberg-Selove– Broad scope of reactions is included – discussion

format. – Adopted levels/gammas, Energy Level Diagrams

• ENSDF– More rigorous information required– Better documentation of original sources– reaction data sets/decay data sets– Adopted levels/gammas, decay widths, etc.

Page 3: TUNL Contributions in the  US Nuclear Data Program

Adopted Levels g-ray transitions

Page 4: TUNL Contributions in the  US Nuclear Data Program

Present Evaluation ActivitiesPublished “Energy Levels of Light Nuclei: A=3”

Nucl. Phys. A848 (2010) 1“Energy Levels of Light Nuclei: A=11”

Nucl. Phys. A880 (2012) 88 (ENSDF Updated)

Work in progress:– A=12 Evaluation for “Energy Levels” (90%)– Preparing A=12 ENSDF file– Preparing A=3 ENSDF file(Jim Purcell)– Preparing A=2 ENSDF file(K. Leung & H.R. Weller)

Page 5: TUNL Contributions in the  US Nuclear Data Program

Evaluation Activities• Updated ENSDF nuclides

– 6B, 14F, 15Ne, 18Mg, 19Mg

• Updated ENSDF Reaction Data sets– b: 14Be, 14B, 19N, 20N– b-n: 12Be, 13B, 14Be, 14B, 15B, 16C, 17B, 17C, 17N, 18C, 18N,

19B, 19C, 19N, 20C, 20N– b-p: 9C, 11Be, 13O, – b-a: 9C, 11Be, 14Be, 17N, 18N, 20Na

Page 6: TUNL Contributions in the  US Nuclear Data Program

XUNDLCompilation Activities

• Experimental Unevaluated Nuclear Data Library– Up-to-date structure data Library– New articles added within 1-2 months– Feedback loop between source and evaluator– Committed to A=2-20 since April 2009– 60-65 data sets/year (5-6/month)– Organized “Workshop on the Future of XUNDL”

• TUNL May 16-17 2013

Page 7: TUNL Contributions in the  US Nuclear Data Program

Why XUNDL makes a difference

17Ne17Ne used for device

calibration

Page 8: TUNL Contributions in the  US Nuclear Data Program

Other Compilation Activities• Compilation of ground state decay & b-decay

references and data• Compilation of (p,X) and (a,X) excitation

functions• TUNL Dissertations-

– http://www.tunl.duke.edu/~gsheu/Theses/TUNL_Theses.shtml

Page 10: TUNL Contributions in the  US Nuclear Data Program

Synergistic Experimental ActivitiesHIGS FacilityCompton Backscattered Photons

Monoenergetic Neutron Sources at TUNLDD, DT, PT, and PLi

147Nd Absolute 239Pu Fission Product Yield

Page 11: TUNL Contributions in the  US Nuclear Data Program

HIGS FacilityCompton Backscattered Photons

TUNL and HIGS

Page 12: TUNL Contributions in the  US Nuclear Data Program

Nuclear Resonance Fluorescence Technique

TUNL and HIGS

Experimental Observables in NRF

HIGS Advantages

AXN

1-

Excitation energy Ex

Spin and parity J,

Decay width 0

Branching ratio i /

A.P. Tonchev, NIM B 241 51474 (2005)

G. Rusev, PRC 79, 047601 (2009)

In a completely model independent way !

σel = f(Eγ) (from primary g.s. transitions)

σinel = f(Eγ) (from secondary transitions)

σtot = σel + σinel = σabs

Page 13: TUNL Contributions in the  US Nuclear Data Program

High Intensity Gamma-ray SourceNuclear Resonance Fluorescence• Levels and Level Parameters• DHS/DNDO cargo container interrogation

Page 14: TUNL Contributions in the  US Nuclear Data Program

Spin and Parity Determination

TUNL and HIGS

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

Page 15: TUNL Contributions in the  US Nuclear Data Program

Spin and Parity Determination

TUNL and HIGS

N. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474

Page 16: TUNL Contributions in the  US Nuclear Data Program

NRF from 238U

TUNL and HIGS

Over 105 new excited low-spin states in 238U were observed at γ-ray beam energies from 2.0 to 5.5 MeV.

80 E1 and 25 M1 states were identified

HIGS facility is an ideal source for identifying low-spin states

Samantha Hammond Ph.D. Project

Page 17: TUNL Contributions in the  US Nuclear Data Program

NRF from 235U

TUNL and HIGS

Eg = 1800 keV; ΔE/E = 70 keVm235U = 3.5 g; ti = 6 h; ϕγ = 3x107 γ/s

13 discrete deexcitations were identified for the first time in the from 1.6 to 3.0 MeV. This includes 10 to the ground state, two branching transitions to the third excited state

at 46.2 keV and one unresolved transition in 235U. Unique decay pattern

E. Kwan et al., accepted by PRC

Page 18: TUNL Contributions in the  US Nuclear Data Program
Page 19: TUNL Contributions in the  US Nuclear Data Program

Monoenergetic Neutron Sources available at TUNLDD, DT, PT, and PLi, Sources

DENIS source FN TANDEM 10MV

Shielded neutron source area

Flux on target (107 - 108) cm-2 s-1

Energy spread dE/E = 0.1 to 0.402H(d,n)3He; Monoenergetic neutrons: 4.0 – 7.7 MeV

3H(p,n)3He; Monoenergetic neutrons: 0.5 – 7.7 MeV

Quasi-monoenergetic neutrons

7Li(p,n)7Be; Monoenergetic neutrons: 0.1 – 0.65 MeV

3H(d,n)4He; Monoenergetic neutrons: 14.8 – 20.5 MeV

Page 20: TUNL Contributions in the  US Nuclear Data Program

1. Motivation

2. Energy Dependence of Fission-Product Yields

3. Experimental technique

4. Results

5. Future plans

Modernizing the Fission Basis: Measurement of Fission Product Yields from Fast-Neutron-Induced Fission

for the LLNL-LANL-TUNL collaboration

Page 21: TUNL Contributions in the  US Nuclear Data Program

21

TUNLDukeC. BHATIAM. BHIKEB. FALLINC. HOWELLW. TORNOW N.C. State Univ.M. GOODENJ. KELLEY

LLNLJ. BECKERR. HENDERSONJ. KENNEALLYR. MACRIC. RYANS. SHEETSM. STOYERA. TONCHEV

LANLC. ARNOLDE. BONDT. BREDEWEGM. FOWLERW. MOODYR. RUNDBERGG. RUSEVD. VIEIRAJ. WILHEMY

Acknowledgements

Page 22: TUNL Contributions in the  US Nuclear Data Program

Motivation

Resolve the long-standing difference between LLNL and LANL with respect to selected fission product data

Joint LANL/LLNL fission product review panel endorsed a possible energy dependence of 239Pu(n,f)147Nd fission product yield with fission neutrons:

4.7%/MeV from 0.2 to 1.9 MeV (M. Chadwick)

3.2%/MeV from 0.2 to 1.9 MeV (I. Thompson)

Mostly low energy data from critical assembly or fast reactors

239Pu(n,f)147Nd

M.B. Chadwick et al. Nuclear Data Sheets 111 (2010) 2923; H.D Selby et al. Nuclear Data Sheets 111 (2010) 2891.P. Baisden et al, LLNL-TR-426165, 2010; R. Henderson et al. LLNL-TR-418425-DRAFT; I. Tompson et al. Nucl. Sci. Eng. 171, 85 (2012)

There are no 147Nd data between 1.9 and 14 MeV

Very scarce experimental data at the MeV-range

Large discrepancy (~20%) at 14 MeV

Page 23: TUNL Contributions in the  US Nuclear Data Program

Fission Fragment Distribution with Neutron Energy

YiE (A) = fractional yields of mass chain ‘A’ (after b decays) from initial

actinide ‘i’ for neutron energy ‘E’.

How does the asymmetry evolve with neutron energy for 235,238U, 239Pu?

Depends on actinide Depends on neutron energy

Goal: Develop high-precision FPY energy dependence from 1 to 15 MeV

Page 24: TUNL Contributions in the  US Nuclear Data Program

2H gas

From VdG accelerator

p or dn

One thick target ~0.2 g/cm2

Two thin targets ~10 μg/cm2

Dual fission chamber n-detector

Monoenergetic Neutron Irradiation

Page 25: TUNL Contributions in the  US Nuclear Data Program

Dual Fission Chamber: The Renaissance of the NIST idea

Design and fabricate three fission chambers: one for 239Pu, one for 235U, and one for 238U

Dedicated thin (~10 μg/cm2) 235,238U and 239Pu foils electroplated on 0.5” titanium backing★

Dedicated thick (200 - 400 mg/cm2) 235U (93.27%) 238U (99.97%) and 239Pu (98.4%) targets

Fission chamber efficiency confirmed: 100%, confirmed with activation measurements

★ Made by LANL

Gas flow in and out

FC

gas cell

Page 26: TUNL Contributions in the  US Nuclear Data Program

Fission Spectrum at En = 9.0 MeV

Excellent a / fission separation

alpha

fission

Page 27: TUNL Contributions in the  US Nuclear Data Program

FPY Ratios to 99Mo for 239Pu at 4.6, 9.0, 14.5, and 14.8 MeV

FP/ 99Mo 

 Present

Data

 Present

Data

 Present

Data

 Present

Data

 Gindler 1

et al.

LANL2

Selby et al.

Saclay3

J. Laurec et al.

England 4 et al.

 

LANL5 LLNL6

Nethaway

<Einc> 4.6 MeV 9 MeV 14.5 MeV 14.8 MeV 4.5 MeV 1.3 -1.5 MeV 14.7 MeV 14 MeV 14 MeV 14.8 MeV

87Kr91Sr92Sr97Zr

105Ru131I

132Te133I

140Ba142La143Ce147Nd

0.21 ± 5.3%0.52 ± 2.2%0.56 ± 4.3%0.96 ± 3.3%0.96 ± 3.7%

-0.83 ± 5.2%1.18 ± 5.0%0.89 ± 3.8%

-0.63 ± 3.9%0.37 ± 5.1%

0.22 ± 5.3%0.48 ± 1.4%0.51 ± 3.7%0.89 ± 2.9%0.85 ± 2.2%0.93 ± 3.3%0.76 ± 4.0%1.03 ± 3.5%0.82 ± 3.0%0.80 ± 2.1%0.64 ± 2.6%0.34 ± 3.9%

0.22 ± 5.5%0.52 ± 1.4%0.52 ± 3.7%0.97 ± 2.1%0.86 ± 2.0%1.03 ± 3.0%0.80 ± 4.0%1.09 ± 3.9%0.84 ± 2.3%0.85 ± 2.0%0.64 ± 2.3%0.35 ± 3.2%

0.21 ± 5.3%0.53 ± 1.8%0.52 ± 3.8%0.86 ± 2.7%0.86 ± 2.7%

-0.76 ± 4.9%0.88 ± 3.7%0.85 ± 2.8%0.90 ± 3.4%

-0.36 ± 4.6%

0.22 ± 4.5%0.51 ± 4.8%0.58 ± 6.4%0.93 ± 0.6%0.87 ± 6.0%

-0.84 ± 0.7%1.11 ± 0.6%0.88 ± 0.6%0.79 ± 5.9%0.65 ± 0.6%

-

0.77 ± 4.5%

----

0.85 ± 4.2%

-0.71 ± 5.2%

0.34 ± 3.5%

---

0.83 ± 3.3%-

0.61 ± 3.5%0.81 ± 4.5%0.99 ± 6.2%0.82 ± 3.1%

-0.67 ± 3.2%0.31 ± 5.2%

--

0.93 -

0.920.700.940.78

-0.590.36

0.86 ± 7.1 %0.74 ± 6.0 %0.97 ± 5.2 %0.61 ± 7.9 %0.74 ± 5.7 %0.74 ± 5.8 %

-0.34 ± 6.3 %

0.86 ± 7.1 %--

0.6 ± 7.1%-

0.72 ± 7.1 %

-0.33 ± 7.1 %

1 J.E.Gindler et al. Phys. Rev. C 27 (1983) 2058.2 H.D.Selby et al. Nucl. Data Sheets 111(2010)2891-2922.3 J. Laurec et al. Nucl. Data Sheets 111(2010)2965-2980.4 T.R. England and B.F. Rider, LA-UR-94-3106.5 M. Mac Innes, M.B. Chadwick, and T. Kawano, Nuclear Data Sheets 112 (2011) 3135–31526 D.R.Nethaway and B. Mendoza, Phys. Rev. C 6 (1972) 1827

Page 28: TUNL Contributions in the  US Nuclear Data Program

FPY Ratios to 99Mo for 235U and 238U at 4.6, 9.0, and 14.5 MeV

FP/ 99Mo  PresentData

 

PresentData

 Present

DataGlendenin et al. 1

ANLSelby et al. 2

LANLLaurec et al. 3

SaclayMaeck mass-spectrometry4

England et al.5

 

Innes et al. 6

LANLNethaway et

al.7

LLNL

<Einc> 4.6 MeV  9 MeV 14.5 MeV 3.9 MeV ~1.4 MeV 14.7 MeV 0.2-0.4 MeV 14 MeV 14 MeV 14.8 MeV238U

97Zr105Rh

131I132Te135Xe140Ba141Ce143Ce147Nd

0.86 ± 2.6 %0.55 ± 3.0 %

-0.74 ± 4.3 %

-0.79 ± 2.9 %

-0.70 ± 3.2 %0.35 ± 3.5 %

0.85 ± 2.4 %0.62 ± 3.3 %0.60 ± 2.7 %0.74 ± 4.5 %

-0.87 ± 2.8 %

-0.73 ± 3.1 %0.37 ± 2.8 %

0.97 ± 2.2 % 0.76 ± 3.4 %0.71 ± 2.2 %1.18 ± 5.4 %1.15 ± 3.4 % 0.93 ± 2.5 %0.88 ± 2.4 %0.87 ± 2.6 %0.40 ± 3.5 % 

0.94 ± 0.2 %0.73 ± 0.4 %0.56 ± 0.2 %0.82 ± 0.3 %

-1.03 ± 0.5 %

-0.77 ± 0.4 %0.45 ± 0.4 %

---- 

0.92 ± 3.6 %--

0.42 ± 3.8 % 

0.89 ± 3.4 %0.58 ± 5.0 %0.70 ± 3.4 %0.81 ± 4.7 %0.99 ± 4.8 %0.79 ± 3.3 %0.67 ± 3.5 %0.77 ± 3.2 %0.34 ± 5.4 %

-----

0.95 ± 2.4 %--

0.40 ± 1.8 %

0.930.570.690.811.020.880.530.700.37

 

0.89 ± 6.1 %0.57 ± 14.7 %0.71 ± 5.6 %0.82 ± 5.9 %

-0.80 ± 5.9 %

0.75 ± 5.9 % -

0.37 ± 5.6 % 

0.88 ± 6.5 %----

0.78 ± 7.2 %-

0.86 ± 7.2 % 0.36 ± 7.0 %

235U 97Zr

105Rh131I

132Te140Ba143Ce147Nd

1.04 ± 4.4 %0.37 ± 2.5 %

-1.09 ± 4.6 %0.99 ± 3.6 %0.93 ± 3.8 %0.35 ± 4.3 %

1.04 ± 2.4 %0.39 ± 2.4 %0.91 ± 3.6 %1.08 ± 4.2 %1.05 ± 2.9 %0.93 ± 3.8 %0.30 ± 3.0 %

1.02 ± 1.8 %0.37 ± 1.8 %0.84 ± 2.4 %1.10 ± 3.3 %1.06 ± 2.5 %0.92 ± 2.6 %0.38 ± 2.7 %

1.09 ± 0.4 %-

0.73 ± 0.3 %0.94 ± 0.4 %1.07 ± 0.4 %0.86 ± 0.5 %0.41 ± 0.3 %

----

0.97 ± 3.3 %-

0.36 ± 3.4 %

0.98 ± 3.6 %-

0.86 ± 3.3 %0.81 ± 4.7 %0.89 ± 3.3 %0.72 ± 3.3 %0.30 ± 5.5 %

----

1.01 ± 1.4 %-

0.34 ± 1.4 %

1.010.360.800.790.880.740.32

0.99 ± 6.6 %0.37 ± 6.0 %0.89 ± 5.8 %0.81 ± 5.5 %0.89 ± 5.5 %

-0.32 ± 5.8 %

1 ± 13.9 %---

0.83 ± 10.6 %-

0.32 ± 11.9 %

1 L. E. Glendenin et al. Phys. Rev. C 24 (1981) 2600.2 H. D. Selby et al. Nucl. Data Sheets 111(2010)2891-2922.3 J. Laurec et al. Nucl. Data Sheets 111(2010)2965-2980.4 W.J. Maeck et al., ENICO – 1028 (1980).5 T.R. England and B.F. Rider, LA-UR-94-3106.6 M. Mac Innes, M.B. Chadwick, and T. Kawano, Nuclear Data Sheets 112 (2011) 3135–3152.7 D. R. Nethaway and B. Mendoza, Phys. Rev. C 6 (1972) 1827.

Page 29: TUNL Contributions in the  US Nuclear Data Program

239Pu FPY Ratios to 99Mo: at 4.6, 9.0, 14.5, and 14.8 MeV Preliminary

90 100 110 120 130 140 1500.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 239Pu_TUNL

147Nd143Ce

140Ba

133I

132Te

131I97Zr

Mass Number of fission fragments

Yie

ld r

atio

( X

/ 9

9 Mo

) TUNL_4.6MeV TUNL_9MeV TUNL_14.5 MeV TUNL_14.8 MeV

Page 30: TUNL Contributions in the  US Nuclear Data Program

235U FPY Ratios with Respect to 99Mo: Comparison Preliminary

90 100 110 120 130 140 1500.0

0.5

1.0

1.5

2.0

147Nd

143Ce

140Ba132Te

131I

105Rh

97Zr

235U Y

ield

rat

io (

X /

99 M

o )

Mass Number of fission fragments

TUNL_9 MeV LA-UR-94-3106_14MeV Saclay_14.7 MeV LANL_1.3-1.5 MeV

Page 31: TUNL Contributions in the  US Nuclear Data Program

238U FPY Ratios with Respect to 99Mo: Comparison Preliminary

90 100 110 120 130 140 1500.0

0.5

1.0

1.5

147Nd

143Ce

140Ba132Te

131I

105Rh

97Zr

238UY

ield

rat

io (

X /

99 M

o )

Mass Number of fission fragments

TUNL_9 MeV LA-UR-94-3106_14MeV Saclay_14.7 MeV LANL_1.3-1.5 MeV

Page 32: TUNL Contributions in the  US Nuclear Data Program

239Pu FPY Ratios: 147Nd/99Mo at 4.6, 9.0, 14.5 and 14.8 MeV Preliminary

0 2 4 6 8 10 12 14 160.20

0.25

0.30

0.35

0.40

0.45

0.50

En (MeV)

FPY COMPARISON_239Pu14

7 Nd

/ 99M

o

TUNL Selby_LANL(2010) Laurec_Sachlay(2010) England(1994) Innes_LANL(2011) Nethway_LLNL(1972)

Page 33: TUNL Contributions in the  US Nuclear Data Program

147Nd Absolute Fission Product Yield Preliminary

Page 34: TUNL Contributions in the  US Nuclear Data Program

Comparison with Theory

1. Our absolute magnitude of the 147Nd FPY below 2.5 MeV and at 14.5 MeV neutron energies are slightly higher than the predicted values.

2. We can rule out the two low-yield data at 14.8 MeV.

3. The slope of 147Nd FPY from 4.6 to 14.8 MeV is slightly negative (-1% / MeV).

4. There is no energy dependence (or it is below our experimental sensitivity) for 140Ba and 99Mofragments.

Model calculation ___Uncertainties ___

J. Lestone. Nuclear Data Sheets 112 (2011) 3120

Page 35: TUNL Contributions in the  US Nuclear Data Program

SummaryWe start delivering precise (< 2% relative uncertainty) information on FPY ratios obtained at SIX energies in case of 239Pu and at FOUR energies for 235U and 238U

We will deliver accurate (4-5% absolute uncertainty) information on the energy dependent fission product yields covering an energy range from 1 < En < 15 MeV 

Potential experiments:

Reduce 147Nd branching ratio uncertainty from the current 8%

High-accuracy measurements in the 0-2 MeV range to clarify 144Ce and 147Nd neutron-energy dependence

Strong LLNL-LANL-TUNL Collaborative Effort