tunnelling on ground groundwater and control measures 1

31
THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012 Impacts  of  Tunnelling  on  Ground  and  Groundwater  and  Control  Measures  – Part  1:  Estimation  Methods Steve Macklin Principal Engineering Geologist GHD Melbourne

Upload: others

Post on 13-Nov-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Impacts of Tunnelling on Ground and Groundwater and Control Measures – Part 1: Estimation MethodsSteve MacklinPrincipal Engineering GeologistGHD Melbourne

Page 2: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in coarse & fine grained 

soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 3: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of lecture2. Terminology and concepts3. Immediate settlement in soils – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures

Page 4: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Scope of today’s presentation :    

• principles of the “Gaussian curve” empirical method• Tunnel excavations at depths typical for civil engineering (e.g. for sewers, roads, railways etc…) 

• Tunnelling in both soil and rock, emphasis on soil• time dependent consolidation and “de‐pressurisation” effects• effects of settlement on structures on/within the ground • more rigorous analytical methods, 2D and 3D numerical modelling, centrifuge testing and “1G” scaled modelling are not discussed 

• “Control measures” are discussed in the Part 2 companion paper. 

References to be found in the handouts. 

Page 5: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Tunnelling movements:  

• Face take; • Radial take  into annular gap; • distortion of the tunnel lining; • Alignment variation during 

drive (radius, pitch, yaw); • changes in groundwater 

pressures and time dependent consolidation in fine soils;  

• re‐compaction in coarse grained soils.  

• Transient outward movements or “heave” 

• Rapidly changing ground conditions

Page 6: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Page 7: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 8: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

VOLUME LOSS (Vs)

Vs = additional exc. Vol.

=   Aexc – Ao (m3/m, or m²)

or

%∗ 100%

Vo = theoretical exc. Vol.

Also C/D, P/D ratios  and internal support pressure (σT)

Page 9: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 10: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

THE SETTLEMENT TROUGH 

exp 2

2.507

i = trough width point of inflection between hogging and sagging parts

G‐function required for settlements in between (Attewell & Woodman (1982)

Page 11: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2 3y/i

settl

emet

/max

imum

set

tlem

ent

NORMALISED FORM OF THE TRANSVERSE AND LONGITUDINAL SETTLEMENT PROFILES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2 3x/i

settl

emen

t/max

imum

set

tlem

ent

Page 12: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

HANDY EQUATIONS….

Where, i = 0.5*Z (clay soils); 0.3*Z (granular soils) typically…...

Page 13: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 14: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

DEWATERING SETTLEMENT IN PERMEABLE SOILS 

∆ ∗ ′

∆ ∗ ′

Page 15: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

CONSOLIDATION SETTLEMENT IN FINE GRAINED SOILS

Coode Island Silt case study…. 

Page 16: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Coode Island Silt case study….

Page 17: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 18: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

4 1 1 4 1 2

4 1 2 1 2 2

NON GAUSSIAN

Simple elastic analysis…..

Numerical Finite or Distinct element modelling……..

Page 19: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

1. Introduction, scope of Part 12. Terminology and concepts3. Tunnelling settlement – the Gaussian model4. “De‐pressurisation effects” in soils5. “Settlement” in rock6. Staged assessment of settlement effects on structures7. Concluding remarks

Page 20: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Preliminary assessment

Second stage assessment

Detailed evaluation

• Contours of settlement• <10mm, 1:500 slope• e.g. Rankin (1988)

• Sum of tensile ground and structure strains

• Deflection ratios/angular distortions

• Relative stiffness effects

• “Moderate” risk or greater• structure details, movement history and condition in detail

• 2D and 3D, numerical analysis of SSI if appropriate

Page 21: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Damage Risk classification after Burland et al (1977), Rankin (1988) and Boscardinand Cording (1989).

Page 22: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

2ND STAGE ASSESSMENT

Model of a building as a beam undergoing bending and shear deformation after Burland et al (1978)

dmax = ∆L

1+HL2

18IGE

bmax =  ∆L

L12t+

3I2y LH

EG

Page 23: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

aspect ratio and bending and diagonal strain effects….

Page 24: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Potts and Addenbrooke(1997).

,ρ ∗

relative stiffness effects

Page 25: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

22 ∗ Δ

, trans = 0.446 Smax/(Zo – Zpipe)and apply reduction factors for SSI

R’

Utilities (and tunnels)

Page 26: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Don’t forget differential settlement effects on services

Page 27: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

2D FE mesh of the WRB facade

DETAILED EVALUATION

Page 28: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Tunnel

Page 29: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

Bolted segment lined tunnel

Detailed model of lining skin and flanges:

• 4 elements through the thickness

• 6 elements across segment width

Radial joints modelled explicitly:

•Bolt Shear Capacity•Bolt Play in Shear•Bolt Tensile Capacity •Bolt Play in Tension

Page 30: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

… e.g. JLE St James’s Park data (Nyren et al, 1996)

I&M AND BACK‐ANALYSIS 

Page 31: Tunnelling on Ground Groundwater and Control Measures 1

THE ATS TUNNEL DESIGN & CONSTRUCTION SHORT COURSE 2012

KEY POINTS 

1. Tunnelling method, heading geometry (C/D, P/D), and stress ratio (N, LF) are important considerations when using the empirical Gaussian method.  

2. Assumption of radial movements towards the tunnel axis are OK and generally conservative for near surface settlement assessment in uniform soil.  They fall down when looking close to the tunnel however.  

3. “de‐pressurisation” (effective stress) settlement can be important when tunnelling in or near compressible fine grained soils.  

4. Long term “consolidation settlement” can be important, especially in soft fine grained soils, even if water pressures balanced during tunnelling. 

5. A phased approach to risk assessment is typically undertaken with a preliminary assessment based on settlement and slope – often all that can be done with limited data.  

6. Second stage assessments may be undertaken based on an understanding of the structural form (e.g. Burland’s /L and h % method);  simple modification factors can be applied for SSI effects.  

7. Detailed evaluation of critical structures should take into account relative stiffness effects,  3‐D effects and self weight of the structure.  FE/FD modelling usually required.  

8. Simple back‐analysis of inexpensive I&M data is recommended to validate your design assumptions and improve the case history database.