turbine engineering for hydropower plants -...

34
LMH Laboratory for Hydraulic Machines Turbine Engineering for Hydropower Plants Prof. François Avellan [email protected] Itaipu Power Plant

Upload: hakhanh

Post on 28-Mar-2018

226 views

Category:

Documents


4 download

TRANSCRIPT

  • LMH Laboratory for Hydraulic Machines

    Turbine Engineering for Hydropower Plants

    Prof. Franois [email protected]

    Itaipu Power Plant

    mailto:[email protected]

  • LMH Laboratory for Hydraulic Machines

    Scope

    Basic Concepts

    Turbine Specific Energy

    Specific Speed

    Specifications

    Pelton Turbines

    Francis Turbines

    OutlookUnit 4

    2Turbine Engineering for Hydropower Plants

  • LMH Laboratory for Hydraulic Machines

    Hydroelectric Power Plant:Storage or Run-of-River Power Station

    3Turbine Engineering for Hydropower Plants

  • LMH Laboratory for Hydraulic Machines

    Hydropower: Turbine Driving an Electrical (Synchronous) Generator

    Machine Power Output

    Available Hydraulic Power

    Turbine Efficiency

    Driving Power Defined as Positive :

    4

    ; 100 %T ThP P =

    ( )WP T=

    ( )3

    3

    J Jkg ms kgsm

    WhP Q E

    =

    0P

    ( )

    ( )

    1J kgI I

    h

    I I

    E gH gH

    P Q E

    Q gH gH

    =

    =

    I I

    I

    I

    gHQ

    I

    I

    gHQ

    T

    ( ) = + N meldJ T Tdt

    Basic Concepts

  • LMH Laboratory for Hydraulic Machines

    5

    Rotating train dynamics

    Rotating train angular momentum equation

    Synchronous conditions :

    Power failure : runaway speed

    Synchronous speed relation :

    : Grid frequency : Number of poles : Rotating frequency

    5

    ( )

    = +

    N m

    eldJ T Tdt

    = elT T

    = = >. 0 0l

    dT Tdt

    ( )

    =2

    Hzgridp

    fn

    z

    gridf

    pzn

    = 23 16 Hz; 50 Hz; 60 Hzgridf

    Basic Concepts

  • LMH Laboratory for Hydraulic Machines

    Discharge - Head Chart of Hydropower Plant Capacity

    6

    = hP Q gH

    Basic Concepts

  • LMH Laboratory for Hydraulic Machines

    Definition of State Variables

    Mean Flow Local Specific Energy

    Discharge: Extensive Variable

    Mean Flow Specific Energy: Intensive Variable:

    7

    ( )3 1m sA

    Q C ndA

    ( )2

    -10 J kg2

    h

    A

    P p C C ngH gZ dAQ Q

    = + +

    Basic Concepts

    ( )2

    -1

    Gravity Potential KineticPressure

    J kg2t

    p Ch g Z Cste

    = + + +

    = 1 2V A A

    2n2A

    1A

    1C

    =

    On

    0C n

    V

    1n

  • LMH Laboratory for Hydraulic Machines

    Hydraulic System: Specific Energy and Discharge Budgets

    Specific Energy Budget

    Steady Flow ? Straight Stream Lines, free of Secondary Flow

    Flow Budget

    DischargeDischarge Velocity

    8

    ( )1 21 2

    r igH gH gH

    = +

    11

    1

    gHA

    Q

    22

    2

    gHA

    Q

    1 2

    1 1 2 2

    Q QA C A C

    = =

    Basic Concepts

  • LMH Laboratory for Hydraulic Machines

    Runner/Impeller Specific Energy Transfer

    Traversing Discharge

    Transferred Specific Energy

    Power Transfer

    Drive: Turbines

    Brake: Pumps, Propellers

    9

    ( )3 -1m stQ

    ( ) = -11 1 J kgt rbgH gH E E

    ( )= Wt t tP Q E

    > 0P

    < 0P

    Brillant Extension Project, British Columbia, Canada, Kaplan Turbine CAD Model, PF2 EPFL Test Rig

    1

    1

    tQ

    Turbine Specific Energy

  • LMH Laboratory for Hydraulic Machines

    Specific EnergyTransfer

    10

    [ ]

    ( )

    = + +

    Reaction

    221 1 1 1

    1 1

    Water WheelDisplacement Impulse

    -1

    2 2

    J kg

    t rb

    Loss

    p Cp CE gZ gZ E

    ( )

    = + + 2

    -1J kg2

    p CgH gZ

    Turbine Specific Energy

  • LMH Laboratory for Hydraulic Machines

    Dimensional Analysis

    Power Plant Conditions

    Discharge

    Specific Energy

    Unit Characteristic

    Angular Speed

    Turbine/Pump Dimension

    [ ] ( ) 3 1 3 -1 = m sQ L T

    ( )

    = 2 2

    2 2 -1= J kgI IML TE gH gH L T

    M

    [ ] ( ) 1 -1= sT

    [ ] ( )= mD L

    1111

    /

    Specific Speed

  • LMH Laboratory for Hydraulic Machines

    Dimensional Analysis(Contd)

    Dimensionless Angular Speed Condition

    Yields Linear System

    Dimension of Time

    Dimension of Length

    Solution

    [ ]

    = = =

    0 0 0

    0 0 1 3 2 2

    Q E M T L

    T L T L T L T

    =1 2 0

    + =3 2 0

    = =1 3;2 4

    1212

    =

    12

    1 3 32 4 4

    2

    Q

    E/

    Specific Speed

  • LMH Laboratory for Hydraulic Machines

    Dimensional Analysis(Contd)

    Discharge Coefficient

    Energy Coefficient

    Specific Speed

    Unit Specific SpeedRotating Speed

    Discharge Factor

    Speed factor

    = =

    12

    34

    U Cmk k

    = CmU

    = 22EU

    1313

    =2Cm

    CmkE

    =2UUk

    E

    ( )= = 12

    34

    157.7 S.I.QQn NH

    ( )1minNSpecific Speed

  • LMH Laboratory for Hydraulic Machines

    Selecting Hydraulic Turbines

    14

    Highest eff. 96% 97%Head

    Specific Speed

    ( )( )( )

    ( )

    =

    =

    =

    =

    3 1

    1

    Head m

    Discharge m s

    Speed min

    2Hzgrid

    p

    H

    Q

    N

    fn

    z

    Specific Speed

  • LMH Laboratory for Hydraulic Machines

    Hydro Turbines International Market

    Breakdown by Types of Turbines

    1038 GW Installed Capacity in 2012Modernization Market

    1000 GW to be built before 2050Greenfields Project

    15

    Pelton8%

    Francis61%

    Kaplan17%

    Bulb2%

    Pump-Turbine

    12%

    Turbine Specifications

  • LMH Laboratory for Hydraulic Machines

    1

    10

    100

    1'000

    1 10 100Percentage of time discharge was exceeded

    m3/s

    %

    Total Flow

    Diverted Flow

    Matching Turbine Specific Speed to Site Conditions

    Site Potential Specific Energy

    Site Specific Energy

    Data Science: Flow Duration Statistics

    Average Discharge

    16

    ( )B Bg Z Z( ) ( ) = -11 1 J kgB rBgH gH g Z Z gH

    ( )3 -1Instal. m sQ

    Turbine Specifications

    Graphique3

    Percentage of time discharge was exceeded

    Total Flow1009590807060504030201050.112.6813.3214.6518.14999999999999921.3725.6933.47999999999999740.1750.3265.23999999999999584.41100.84164.56Total Flow1009590807060504030201050.16.346.988.3111.80999999999999915.03000000000000119.35000000000000127.13999999999999733.8343.98000000000000458.89999999999999178.06999999999999394.5158.22

    Annual Energy Variation Order 1

    LA HIGUERA POWER PLANT- GUARANTEED ANNUAL NET ENERGYEnergy Losses

    Variation order 1Source Attachement II: Energ PowergHr = K Q2/2A2inlet (J/kg)

    Latitude34.20C273.15KStatistical parametersERROR:#VALUE!ERROR:#VALUE!

    Distr. CL Elevation704mCoefficientsERROR:#VALUE!ERROR:#VALUE!

    Gravity9.7945648183m/s2Lambda0.01Coef. Standard DeviationERROR:#VALUE!ERROR:#VALUE!

    pstandard93,150PaD11R2, SEERROR:#VALUE!ERROR:#VALUE!q =9C

    kilo1,000L17500Twater =282.15K

    1 day24hrelative2.1%r* =1001.52kg/m3

    1 year 365daysBeing SortedAverage15.837%1,263.6644

    ExceedDaysMonthsTotal FlowEnvir. FlowDivert. FlowGross HeadHead LossesNet HeadEff. TurbineEff. Gen.Gross PowerServiceElectric LossNet PowerEff. TransfoPower @ 154 kVGross EnergyOutage (1%)Net energySpecific Energy LossesSpecific Kinetic Energy*Unit Divert. FlowEffect. TurbineSorted Divert. FlowEffect. TurbineGross PowerdP/Pr

    %m3/sm3/sm3/smmm%%MWMWMWMW%GWhGWhGWhJ/kgJ/kgm3/s%m3/s%MWkg/m3

    100365.0012.0012.686.346.343830.04382.9682.1094.7031.860.20.000631.6699.631.530.35ERROR:#REF!6.3482.1010.9682.1018.5241.875%1,723.14

    95346.7511.4013.326.346.983830.04382.9686.3096.0035.910.20.001235.7199.635.5614.690.1514.550.42ERROR:#REF!6.9886.3011.6086.3021.7239.502%1,655.55

    90328.5010.8014.656.348.313830.06382.9490.2096.7042.080.20.001541.8899.641.7116.920.1716.750.60ERROR:#REF!8.3190.2012.9390.2027.2335.292%1,547.84

    80292.009.6018.156.3411.813830.12382.8893.1097.3055.310.20.002455.1199.554.8342.290.4241.861.20ERROR:#REF!11.8193.1015.2492.5040.1827.350%1,378.63

    70255.508.4021.376.3415.033830.20382.8094.1097.7066.830.20.004566.6299.666.3653.080.5352.551.95ERROR:#REF!15.0394.1016.4393.1051.8922.355%1,289.94

    60219.007.2025.696.3419.353830.33382.6793.8097.9080.780.20.009080.5899.680.2564.220.6463.573.23ERROR:#REF!19.3593.8017.9593.6066.7117.424%1,212.91

    50182.506.0033.486.3427.143830.65382.3592.5097.1099.000.20.014498.7899.698.3978.240.7877.466.35ERROR:#REF!13.5792.5019.6594.1091.437.644%1,084.47

    40146.004.8040.176.3433.833831.01381.9993.6097.40116.560.20.0330116.3399.5115.7593.790.9492.859.87ERROR:#REF!16.9293.6023.0293.40115.570.847%1,010.12

    30109.503.6050.326.3443.983831.70381.3093.4097.70144.370.20.0600144.1199.5143.39113.501.13112.3616.69ERROR:#REF!21.9993.4023.9793.80150.11-3.979%963.24

    2073.002.4065.246.3458.903833.06379.9492.6097.80153.010.20.1200152.6999.5151.93129.351.29128.0529.93ERROR:#REF!29.4592.6025.0092.60198.81-29.935%770.81

    1036.501.2084.416.3478.073835.37377.6392.6097.80153.010.20.1200152.6999.5151.93133.091.33131.7639.0492.60261.91-71.175%585.10

    518.250.60100.846.3494.503837.87375.1392.6097.80153.010.20.1200152.6999.5151.9366.540.6765.88*Reference area: Turbine inlet47.2592.60314.93-105.826%486.59

    0.10.37- 0164.566.34158.2238322.05360.9592.6097.80153.010.20.1200152.6999.5151.9365.210.6564.56AI =ERROR:#REF!m279.1192.60507.32-231.561%302.05

    Annual Total870.928.71862.21

    *Average water density for water pressure computation to compute actual water density !

    Percentage of time discharge was exceeded

    Total Flow1009590807060504030201050.112.6813.3214.6518.14999999999999921.3725.6933.47999999999999740.1750.3265.23999999999999584.41100.84164.56Total Flow1009590807060504030201050.16.346.988.3111.80999999999999915.03000000000000119.35000000000000127.13999999999999733.8343.98000000000000458.89999999999999178.06999999999999394.5158.22

  • LMH Laboratory for Hydraulic Machines

    Matching Turbine Specific Speed to Site Conditions

    Targeted Unit Specific Speed

    Rated Head Specification of Unit Number Specification of rotating frequency

    Runaway Speed Limitation

    Limitation of Apparent Power per Poles

    Air cooling < 28 MVA < Water cooling < 35 MVA

    17

    =

    12

    .34

    1 instalQ

    units

    Qn N

    z HE gH=

    2 60 sgridp

    fN

    z

    =unitsz

    Turbine Specifications

  • LMH Laboratory for Hydraulic Machines

    1'269 MW Bieudron Power Plant3 Pelton Turbines

    500 MVA Generators 428.5 min-1

    14 poles, 35.7 MVA/pole*Water Cooled

    423 MW Pelton* Turbines, 5 injectors 1'883 mWC Head* 25 m3/s DischargeD1 = 3.993 m ~28 t Runner Mass

    Pelton Turbines 18

  • LMH Laboratory for Hydraulic Machines

    Pelton Turbines

    Impinging Jet on Pelton BucketsFVPM Flow Numerical Simulations

    19Christian VESSAZ, EPFL Doctoral Thesis N 6470, 2014

  • LMH Laboratory for Hydraulic Machines

    Silt Erosion of Turbine Components: 4 x 100 MW Pelton, 900 m Head

    Silt Erosion

    Bucket

    Needle

    Needle Severe Erosion Erosion Ripples

    on Buckets ~2'500 Total Hours

    of Operation

    20Pelton Turbines

  • LMH Laboratory for Hydraulic Machines

    SPHEROS Finite Volume Particle Method SolverMulti Scale Silt Laden Flow Erosion Simulation

    21

    LEGUIZAMON Sebastin, EPFL Doctoral Student, CTI Project GPU-SPHEROS

    Pelton Turbines

    Copper sample

    3 mm slurry jet, 10 m/s

  • LMH Laboratory for Hydraulic Machines

    Giga Hydropower Plantsare Francis Powered

    22

    Hydropower Plant Country Capacity

    (MW) Energy (TWh)

    Capacity Factor

    EPFL Model Testing Type

    Three Gorges China 22'500 98.5 0.50 Storage Itaip Brazil-Paraguay 14'000 98.3 0.80 Storage

    Xiluodu China 13'860 57.1 0.47 Storage Belo Monte Brazil 11'233 - Run-of-River

    Guri (Ral Leoni) Venezuela 8'850 53.4 0.69 Storage Tucurui Brazil 8'370 41.4 0.56 Storage

    Grand Coulee USA 6'809 20.0 0.34 Storage Longtan China 6'426 18.7 0.33 Storage

    Xiangjiaba China 6'400 NA NA Storage Krasnoyarsk Russia 6'000 20.4 0.39 Storage

    Robert Bourassa (LG2) Canada 5'616 26.5 0.54 Storage Churchill Falls Canada 5'428 35.0 0.74 Storage

    Tucurui Dam, Eletro Norte

    Francis Turbines

    Hydropower Plant

    Country

    Capacity (MW)

    Energy(TWh)

    CapacityFactor

    EPFL Model Testing

    Type

    Three Gorges

    China

    22'500

    98.5

    0.50

    Storage

    Itaip

    Brazil-Paraguay

    14'000

    98.3

    0.80

    Storage

    Xiluodu

    China

    13'860

    57.1

    0.47

    Storage

    Belo Monte

    Brazil

    11'233

    -

    Run-of-River

    Guri (Ral Leoni)

    Venezuela

    8'850

    53.4

    0.69

    Storage

    Tucurui

    Brazil

    8'370

    41.4

    0.56

    Storage

    Grand Coulee

    USA

    6'809

    20.0

    0.34

    Storage

    Longtan

    China

    6'426

    18.7

    0.33

    Storage

    Xiangjiaba

    China

    6'400

    NA

    NA

    Storage

    Krasnoyarsk

    Russia

    6'000

    20.4

    0.39

    Storage

    Robert Bourassa (LG2)

    Canada

    5'616

    26.5

    0.54

    Storage

    Churchill Falls

    Canada

    5'428

    35.0

    0.74

    Storage

  • LMH Laboratory for Hydraulic Machines

    Xiangjiaba Power Station (Jinsha River, Yunnan)

    8 Francis Turbines

    825 MW Max. Power

    10.5 m Diameter

    406 000 kg

    23What level of p fluctuations to be expected for a 800 MW turbine ?

  • LMH Laboratory for Hydraulic Machines

    HYPERBOLE Turbine Case Study Hill Chart and Operating Range

    Deep Part Load Part Load Full Load

    EDn

    EDQ

    Francis Turbines 24

  • LMH Laboratory for Hydraulic Machines

    Unsteady Flow in Francis Draft Tube

    25

    Mller et al., Experiments in Fluids n 54 : 1514, 2013.

    Allign et al., Journal of Hydraulic Research, Vol. 51, 6, 2010.

    Simon Pasche PhD Work, SNF GRANT N 200021_149818

    Francis Turbines

  • LMH Laboratory for Hydraulic Machines

    Machine Setting Level

    IEC 60193 Definitions Specific Energy

    Net Positive Suction Specific Energy

    Setting Level

    26

    = s ref Bh Z Z

    ( )

    1J kg

    vrefI

    pNPSE gH gZ

    ( ) > 10 J kgI IE gH gH

    IEC 60193 Standard, "Hydraulic Turbines, Storage Pumpsand Pump-Turbines-Model Acceptance Tests". International Electrotechnical Commission; Geneva,Nov. 1999.

    Turbine Specifications

  • LMH Laboratory for Hydraulic Machines

    HYPERBOLEERC/FP7-ENERGY-2013-1-Grant N 608532

    HYdropower plants PERformance and flexiBleOperation"towards Lean integration of new renewable Energies

    Dynamic Assessment of Francis Turbines & Pump-Turbines 42 Months, EUR 6.3 Mio EUR 4.3 Mio Supported by European Commission 1st Sept. 2013 28th Feb. 2017

    Consortium coordinated by EPFL

    27

  • LMH Laboratory for Hydraulic Machines

    28

    Headwater reservoir

    Tailwater reservoir

    Surge Tank

    Hydraulic Eng.

    Mechanical Eng.

    Electrical Eng.

    System ApproachHYPERBOLEERC/FP7-ENERGY-2013-1-Grant 608532

    HYdropower plants PERformance and flexiBle Operationtowards Lean integration of new renewable Energies

  • LMH Laboratory for Hydraulic Machines

    System Approach Methodology

    29Francis Turbines

  • LMH Laboratory for Hydraulic Machines

    Deep part load operatingconditions Q

  • LMH Laboratory for Hydraulic Machines

    Deep part loadInter blades vortices

    Visualization

    Hollow guide vaneswith window

    Boroscopewith swiveling prism

    High Speed CameraHigh intensity Xenon flashCompact power LED

    DPL2: nED = 0.317

    HYPERBOLE

    31Francis Turbines

  • LMH Laboratory for Hydraulic Machines

    Deep part load Inter blades vortices

    Flow Numerical Simulations

    Void Fraction 10% Isosurface

    32

    HYPERBOLE

    32Francis Turbines

  • LMH Laboratory for Hydraulic Machines

    Hydroelectric Plants Generate17% of the World Electricity

    33Luciano dos Santos, "Digital Disruption of Hydroelectricity", HYPERBOLE Conference, Porto, February 2-3, 2017

  • LMH Laboratory for Hydraulic Machines

    THANK YOU FOR YOUR ATTENTION

    34

    http://lmh.epfl.ch/

    Turbine Engineering for Hydropower PlantsScopeHydroelectric Power Plant:Storage or Run-of-River Power StationHydropower: Turbine Driving an Electrical (Synchronous) GeneratorRotating train dynamicsDischarge - Head Chart of Hydropower Plant CapacityDefinition of State VariablesHydraulic System: Specific Energy and Discharge BudgetsRunner/Impeller Specific Energy TransferDiapositive numro 10Dimensional AnalysisDimensional Analysis(Contd)Dimensional Analysis(Contd)Selecting Hydraulic TurbinesHydro Turbines International MarketMatching Turbine Specific Speed to Site ConditionsMatching Turbine Specific Speed to Site Conditions1'269 MW Bieudron Power Plant3 Pelton TurbinesImpinging Jet on Pelton BucketsFVPM Flow Numerical SimulationsSilt ErosionSPHEROS Finite Volume Particle Method SolverMulti Scale Silt Laden Flow Erosion SimulationGiga Hydropower Plantsare Francis PoweredXiangjiaba Power Station (Jinsha River, Yunnan)HYPERBOLE Turbine Case Study Hill Chart and Operating RangeUnsteady Flow in Francis Draft TubeMachine Setting LevelHYPERBOLEERC/FP7-ENERGY-2013-1-Grant N 608532HYdropower plants PERformance and flexiBle Operationtowards Lean integration of new renewable EnergiesSystem Approach MethodologyDeep part load operatingconditions Q