turbine gas meter - gescompany.eu€¦ · the gas flows through an integrated flow conditioner,...

7
TURBINE GAS METER

Upload: buinhan

Post on 06-Sep-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

TURBINE GAS METER

CGT series turbine gas meters are flow meters designed to measure quantity of gases. The CGT series gas meters are applied in measurement systems where high accuracy is required:

pling, to the index unit, which is mounted on the top of the body, and shows the op-erating volume on the total-izer.

The turbine wheel, as a standard, is made of alumin-ium. This allows to provide each CGT turbine gas me-ters with HF inductive pulse sensors. There are no extra costs due to the replacement of the turbine wheel.

DESIGN AND FUNCTION

The turbine gas meter meas-ures the quantity of gas basing on the flow principle. The gas flows through an integrated flow conditioner, which distri-butes the flow proportio-nally in the annular slot and guides it to the turbine wheel. The wheel is driven by the gas flow, and the angular velocity of the rotation is proportional to the gas flow rate.

The energy consumption, perceived as pressure loss, is reduced to absolute feasible minimum due to the applica-tion of the flow conditioner, highest precision ball barings, most accurate tolerances of all measuring parts and their proper alignement.The rotary motion of the tur-bine wheel is transferred me-chanically by gear wheels, and the incorporated gas tight and hermetic magnetic cou-

1

Magnetic coupling

Index head

Meter body

Measurement cartridge

Flow conditioner

transportation of natural gas primary and secondary measurements control metering of the natural gas

and non aggressive technical gases in industry flow measurement for technical purposes

1

pressure rating: PN16 to PN110, ANSI150 to ANSI600 other rates on request

nominal diameter: DN50 up to DN400 other on request

meter bodies: cast iron or carbon steel details in table 4

flow 6 to 10 000 m3/h other on request

rangeability: up to 1:30 at atmospheric pressure higher on request

upstream pipe: minimum 2 x DN; meters meet the requirements of the OIML R32 89 Annex A

temperature range: gas temperature -20°C to +60°C ambient temperature -25°C to +70°C

allowed medias: see table 2

operating position: horizontal or vertical

2

GENERAL TECHNICAL DATA

DESIGN &

TECHNICALDATA

table 1

2

DN

1:10 1:20 1:30 1:5 1:10 1:20 1:30

Qmin(at atmospheric pres-

sure) for meters de-signed for 1.6 &2 MPa

HF3÷HF6HF1, HF2LF

QmaxG Qmin(at atmospheric pressure)

for meters designed for 5, 6.4, 10, & 11 MPa

LF values andapproximate HF

values

m3/h m3/h m3/h m3/h m3/h m3/h m3/h m3/h pulse/m3pulse/m3pulse/m3--

50

80

100

150

200

250

300

400

40

65

100

160

250

160

250

400

400

650

1000

650

1000

1600

1000

1600

2500

1600

2500

4000

2500

4000

6500

65

100

160

250

400

250

400

650

650

1000

1600

1000

1600

2500

1600

2500

4000

2500

4000

6500

4000

6500

10000

6

10

16

25

40

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

5

8

13

20

13

20

32

32

50

80

50

80

130

80

130

200

130

200

320

200

320

500

-

-

-

-

-

-

13

20

20

32

50

32

50

80

50

80

130

80

130

200

130

200

320

13

20

32

50

80

50

80

130

130

200

320

-

-

-

-

-

-

-

-

-

-

-

-

6

10

16

25

40

25

40

65

65

100

160

100

160

250

160

250

400

250

400

650

400

650

1000

-

-

8

13

20

13

20

32

32

50

80

50

80

130

80

130

200

130

200

320

200

320

500

-

-

-

-

-

-

-

20

20

32

50

32

50

80

50

80

130

80

130

200

130

200

320

2610

2610

1081

844

470

1383

632

401

302

227

129

114

116

67

58

58

34

32

32

19

7

7

7

94829

94829

42563

30652

17059

29309

16782

9719

7331

6873

3910

3113

3167

2025

2111

2111

1223

1181

1181

680

242

242

285

10

1

1

1

0,1

1

0,1

0,1

0,1

0,1

3

fig.2: Measurement error typical curve at low pressure (average 1 bar a) green curve

at high pressure (over 5 bar a) blue curve

Gas

Argon

Butane

Carbon dioxide

Carbon monoxide

Ethane

Ethylene

Helium

Methane

Natural gas

Nitrogen

Propane

Acetylene

Hydrogen

Air

Ar

C4H10

CO2

CO

C2H6

C2H4

He

CH4

-

N2

C3H8

C2H2

H2

-

Chemical symbol

(formula)

1,66

2,53

1,84

1,16

1,27

1,17

0,17

0,67

~0,75

1,16

1,87

1,09

0,084

1,20

Density ρ[kg/m3]

1,38

2,10

1,53

0,97

1,06

0,98

0,14

0,55

~0,63

0,97

1,56

0,91

0,07

1,00

Density related to air

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

standard IIB

special IIC

special IIC

standard IIB

Gas meterexecution

measurement accuracy: EU requirements and better guaranteed at least: 0.2 Qmax – Qmax < ± 1% Qmin – 0.2 Qmax < ± 2%

MEASUREMENT OUTPUTS

PULSE SENSORS

Error%

+2

+1

0

-1

-2

Q min,ρQ min Q t Q max Q

table 2: Physical properties of most popular gases that may be measured with the CGT turbine gas meters - density at 101,325 kPa and at 20˚C

The mechanical index unit indicates the actual volume of the measured gas at operat-ing temperature and operating pressure. It can be rotated axially by 350° in order to facilitate the readings and enable easier connection of pulse sensor plugs.The index unit is provided with one low frequency LFK reed contact pulse transmitter, as a standard. On request the index may be equipped with:- LFI inductive pulse sensors (NAMUR)- HF inductive pulse sensors (NAMUR)

PRESSURE AND TEMPERATURE OUTPUTS

The operating pressure (reference pressure) can be taken from the pressure taps, marked pr, located on both sides of the meter body.The meters can be optionally equipped with two temperature taps for the measure-ment of the gas temperature.

3

4

MEASUREMENT OUTPUTS

fig. 2. Location of measurement outputs (top view)

The CGT turbine gas meters may be provided with up to 10 pulse sensors for DN100 – DN300 and up to 8 pulse sensors for DN50 – DN80

LFK – low frequency reed contact pulse sensor LFK1, LFK2LFI – low frequency inductive pulse sensor LFI1, LFI2HF – inductive pulse sensor in the index unit HF1, HF2HF – inductive pulse sensor over the turbine wheel HF3, HF4HF – inductive pulse sensor over the reference wheel HF5, HF6AFK – anti-fraud reed contact AFK

The sockets in the index match the TUCHEL plug no C091 31H006 100 2fig. 3 Pulse sensor PIN numbering in sockets 1 and 2 installed in the index

The sockets of optional HF3, HF4, HF5, HF6 pulse sensors match the TUCHEL plug no C091 31D004 100 2. For connections, please use PIN 3 and PIN 4.table 4: Permissible supply parameters of intrinsically safe circuits for HF3, HF4, HF5, and HF6.

HF (index)

Ui = 20 V DC

I i = 60 mA

Pi = 80 mW

Li = 150 μH

Ci = 150 nF

LFI

Ui = 20 V DC

I i = 60 mA

Pi = 130 mW

Li ≈ 350 μH

Ci = 250 nF

LFK

Ui = 15,5 V DC

I i = 52 mA

Pi = 169 mW

Li ≈ 0

Ci ≈ 0

table 3: Permissible supply parameters of intrinsically safe circuits.

-

+

-

+

-

+

-

+

-

+

-

+

S1

4

2

5

3

6

1

4

2

5

3

6

Socket 1

Socket 2

LFK 1 LFK 2 AFK LFI 1 LFI 2 HF 1 HF 2polarityPIN

S

O

P

O

O

P

O

P

O

O

P

O

O

O

P

O

O

O

P

O

O

O

P

O

P

P

O

P

O

O

O

P

O

O

P

S - standard connection P - preferred connection O – alternative connection

CHFI-02

Bi3-EG12-RY1

Bi1-EG05-Y1

NJ08-5GM-N-Y07451

15,5

20

20

16

52

60

60

25

169

200

80

64

40

150

150

50

28

150

150

20

HF3 HF4 HF5 HF6 Ui [ V ] I i [mA] Pi [mW ] Li [μH] Ci [nF]

5

Overall dimensions and weights of CGT turbine gas meters are shown in Table 4

table 4

fig.5 Dimensions of the CGT turbine gas meter

DIMENSIONS AND WEIGHTS

DN

mm mm mm mm mm mm kg

L A B C E;F weight

Size E is valid for: PN16, PN20, PN50, ANSI150, ANSI300Size F is valid for: PN63/64, PN100, ANSI600

50

80

100

150

4

Flange body

PN16PN20/ANSI150

PN16PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600

150

240

300

450

198

201

215

242

42

60

80

101

125

155

58

95

124

180

150

216

146

212

157

223

185

251

98

1211121517131918242427283230242532344239465247466464808696

105

DN

mm mm mm mm mm mm kg

L A B C E;F weight

200

250

300

400

Flange body

PN16PN20/ANSI150

PN16PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600PN16

PN20/ANSI150PN50/ANSI300

PN63/64PN100

PN110/ANSI600

600

750

900

1200

202

268

232

298

258

324

387

70717071

100115130140130130175190230250190200260270330340350390480490610580

cast

ir

on

stee

lca

st

iro

nst

eel

cast

ir

on

cast

ir

on

stee

lst

eel

cast

ir

on

stee

l

cast

ir

on

stee

lst

eel

stee

lst

eel

265

293

318

354

212

270

300

500

240

330

350

400

6

DIMENSIONS &PERFORMANCE

PRESSURE LOSS5

The gas meter causes inevitable pressure loss. The value of pressure loss was de-termined for air at atmospheric conditions (density ρ0 = 1,2 kg/m3), and is present-ed in figure 6.Please use the following formula in order to determine the pressure loss ∆prz [Pa] in operating conditions (different gases and pressures):

DEFINITION:

ρ - gas density according to table 2 [kg/m3],pa - atmospheric pressure (pa = 101 [kPa] ),p - gauge pressure before meter inlet [kPa],∆p - pressure loss related to air (from fig 6) [Pa],ρ0 = 1,2 kg/m3.

∆p rz = ( ) • ( ) • ∆p ρρρ0

pa+ppa

fig. 6 Diagram of pressure loss related to ρ0 = 1,2 kg/m3 (air).

~

COMMON S.A. has an ongoing program of product research and development. Technical specifications and con-struction may change due to improvements. This publication serves as general information only, and all specifica-tions are subject to confirmation by COMMON S.A.