turning potential into reality - berlin energy … · turning potential into reality ... global pv...

21
© Fraunhofer ISE TURNING POTENTIAL INTO REALITY THE LANDSCAPE OF SUCCESSFUL ENERGY TRANSFORMATION APPROACHES Eicke R. Weber Fraunhofer Institute for Solar Energy Systems ISE and University of Freiburg, Germany Energy Transition Dialogue Berlin, March 26, 2015 www.ise.fraunhofer.de

Upload: nguyentu

Post on 29-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

© Fraunhofer ISE

TURNING POTENTIAL INTO REALITY –

THE LANDSCAPE OF SUCCESSFUL ENERGY

TRANSFORMATION APPROACHES

Eicke R. Weber

Fraunhofer Institute for

Solar Energy Systems ISE

and

University of Freiburg, Germany

Energy Transition Dialogue

Berlin, March 26, 2015

www.ise.fraunhofer.de

© Fraunhofer ISE

2

Cornerstones for the Transformation of our Energy System to efficient use of finally 100% renewable energy –

Energy System 2.0, part of the Third Industrial Revolution (J. Rifkin)

Energy efficiency: buildings, production, transport

Massive increase in renewable energies: photovoltaics, solar and geo

thermal, wind, hydro, biomass...

Fast development of the electric grid: transmission and distribution grid,

bidirectional

Small and large scale energy storage systems: electricity, hydrogen,

methane, methanol, biogas, solar heat, hydro.....

Sustainable mobility as integral part of the energy system: electric

mobility with batteries and hydrogen/fuel cells

© Fraunhofer ISE

3

Electricity Generation from Renewable Energy Sources Development in Germany 1990 – 2012/2013

Year 2013

Total* 25.4%

152.6 TWh

PV 4.7%

30 TWh

35.9 GW

Bio 8.0%

48 TWh

Wind 8.9%

53 TWh

34.7 GW

Hydro 3.5%

21 TWh

* Gross electricity

demand

© Fraunhofer ISE

4

Price Learning Curve of Solar Energy (c-Si Photovoltaics)

- Driven by Innovation & Market Introduction!

Preis über kumulierter Kapazität in GW Learning Rate:

Each time the cumulative c-Si PV

production doubled, the price

went down by 20 %

- by a factor of 10 in 25 years!

Solar Electricity Today:

8-10 ct/kWh in Germany,

half in sun-rich countries!

Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: ISE 2014

© Fraunhofer ISE

5

PV Electricity Cost (LCOE) till 2050

in different regions

Source: ISE PV cost study 2014

PV will generate lowest-cost electricity @ 2-4ct/kWh!

© Fraunhofer ISE

6

PV Market Growth (IEA 2014)

Source: IEA 2014

Rapid introduction of PV globally is fueled by availability of cost-competitive,

distributed energy

Till 2050 more than 4.000 GWp PV will be installed

We are just at

the beginning

of the global

growth curve!

© Fraunhofer ISE

7

Crystalline Silicon Technology Portfolio

c-Si PV is not a commodity, but a high-tech product!

material quality

diffusion length

base conductivity

device quality

passivation of surfaces

low series resistance

light confinement

cell structures

PERC: Passivated Emitter

and Rear Cell

MWT: Metal Wrap Through

IBC-BJ: Interdigitated Back

Contact – Back Junction

HJT: Hetero Junction Technology

Adapted from Preu et al., EU-PVSEC 2009

material

quality module

efficiency

Industry

Standard

IBC-BJ

HJT

PERC

MWT- PERC

20%

19%

18%

17%

16%

15% 14%

21%

device quality

BC- HJT

© Fraunhofer ISE

8

Global PV Production Capacity and Installations

Source: Lux Research Inc., Grafik: PSE AG

Global PV production overcapacity will quickly disappear in the coming years!

Production Capacity

Installations

Excess Capacity

Mo

du

le C

ap

ac

ity (

GW

)

Excess

Ca

pa

cit

y (

GW

)

© Fraunhofer ISE

9

Electrical Capacity of Renewable Energy Sources in

Germany

Data: BMU, BDEW. Graph: PSE AG 2013

PV showed most rapid growth till 2013!

© Fraunhofer ISE

10

PV Systems Yearly Installed in Germany

Distribution of system size

Data: up to 2008: extrapolation from utilities data; since 2009: Bundesnetzagentur. Graph: PSE AG 2013

© Fraunhofer ISE

11

Investment for Small Rooftop PV Systems in relation to market development and subsidy schemes in Germany

Data: BSW-Solar, BNA. Graph: PSE AG 2013

© Fraunhofer ISE

12

Next Generation of Hybrid PV Mini-grids

Simple integration of

different energy

sources (PV, wind,

hydro, etc.)

Least cost option

Increasing quality of

energy services

Support of local

infrastructure and

economic

development

Alternative solution to

the national electricity

network

© Fraunhofer ISE

13

99 households, a

rural clinic and a

fish factory

Daily

consumption:

2849 kWh

Peak load:

200 kW

Variation of PV

module prices

Mini-grids: Substitution of Diesel Generators

with renewable energy

Life cycle cost analysis – example Mexico

Source: M. Vetter, Fraunhofer ISE

Share of solar energy

© Fraunhofer ISE

14

Characteristics of Energy Systems Based on RES

Increased regional autonomy

(supply and demand balanced over the year

or at each hour – to be defined)

Increased interdependency of energy

sectors (electricity, heating, cooling, mobility)

Increased complexity intelligent control

concepts and strategies needed

Use of smart technologies

(ICT, self optimizing sub-systems)

Hierarchy of using renewable energy:

1. Generated within the city

2. Imported from the region

3. Imported from outside the region

Sustainable energy systems must be

adapted to the specific conditions of each

city / region / country

Bild

: F

WT

M / G

reen C

ity

Clu

ste

tr F

reib

urg

© Fraunhofer ISE

15

© Fraunhofer ISE

Optimization of Germany’s future energy system based

on hourly modeling

REM od-D

Renewable

Energy Model –

Deutschland

Electricity generat ion,

storage and end-use

Fuels (including

biomass and synthet ic

fuels f rom RE)

Mobility

(bat tery-

elect ric,

hydrogen,

conv. fuel mix)

Processes in

industry and

tert iary sector

Heat

(buildings,

incl. storage

and heat ing

networks)

Comprehensive

analysis of the

overall system

Slide courtesy Hans-Martin Henning 2014

Optimization of Germany’s Future Energy System

based on hourly modeling

© Fraunhofer ISE

16

© Fraunhofer ISE

TWh

Traktion

H2-Bedarf

45

11

TWh

TWh

39

TWh

14

TWh

Einzelgebäude mit Sole-Wärmepumpe

Solarthermie

11

Solarthermie 8 Gebäude

9

TWh

el. WP Luft 43

TWh

TWh

44

4

Einzelgebäude mit Gas-Wärmepumpe

13

TWh

14 4

W-Speicher

GWth TWh 60 TWh

82

TWh

220

TWh

420

22 GWth TWh 103 GWh

51 W-Speicher14el. WP Sole

Biomasse

TWh

0

TWh

15

KWK-BHKW

Solarthermie 13

TWh

Strombedarf gesamt (ohne

Strom für Wärme und MIV)

375

TWh

TWh

3

GWgas 0

220

0

TWh

0Sabatier Methan-Sp.

H2-Speicher

7 GWth TWh

TWh 41

3

GWth

Gas-WP

W-Speicher

25

20

40

TWh

388 TWh

20 GWth TWh Wärmenetze mit

GuD-KWK

7 GWth TWh

W-Speicher

TWh Wärmenetze mit

BHKW-KWK

Wärmebedarf gesamt

TWh

26

TWh

TWh

217

TWh

82

16

TWh

GWel

TWh 23

4

TWh

9 Pump-Sp-KW 7

TWh

TWh

6

TWh

Gasturbine

W-Speicher

Steink.-KW Braunk.-KW Öl-KW

3 GW 0 GW5 GW 0 GW 7 GW

Atom-KWPV Wind On Wind Off Wasserkraft

112

TWh

103

TWh

147

Batterien

24 GWh

GW 120 GW 32 GW

143

TWh

5

TWh 60 GWh TWh

TWh

Einzelgebäude mit Luft-Wärmepumpe

GWth

Gebäude

8

TWh

7

TWh 50

14

4 TWh

TWh

19 GWth TWh GWh

Einzelgebäude mit Gaskessel

TWh

Gaskessel 71 Gebäude

32 GWth

0

4

Gebäude

59

0.0

TWh

3734

Solarthermie 6 W-Speicher

Gebäude

15

27 GWh

23

TWh

TWh

TWh 173 GWh

3

TWh

ungenutzter Strom (Abregelung)

TWh

0

TWh

26

TWh

12

TWh

TWh

5

TWh

TWh

241 TWh

Gebäude

4

87

TWh 6 TWh

Gebäude

59

7 GWth TWh

3

TWh

WP zentral 20

KWK-GuD 27

35 GWel TWh

20

60

TWh

7

GW

Einzelgebäude mit Mini-BHKW

6 46

WP zentral 23

4

8

TWh

TWh

Verkehr (ohne

Schienenverkehr/Strom)

Brennstoff-basierter Verkehr

Batterie-basierter Verkehr

Wasserstoff-basierter Verkehr

137

TWh

TWh

TWh

TWh

TWh

TWh

TWhTraktion gesamt

Brennstoffe

Traktion

erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien

14 GWth TWh 56 GWh

86 TWh

Geothermie 6 Gebäude

2 GWth

10

TWh

TWh108 TWh

57 TWh

0

TWh

3

TWh

TWh 173

Wärmenetze mit Tiefen-Geothermie

TWh

Brennstoffe

TWhErdgas

394

TWh

4

TWh

22

TWh

Elektrolyse

82

33 GWel

4

21

TWh

0

TWh

TWh 26

1 GW

GuD-KW

ungenutztWarmwasserRaumheizung

290 TWh 98 TWh 2

Solarthermie

GWh

Mini-BHKW 23

GWh

TWh

Solarthermie 13

20 GWth

GWel TWh

TWh

0.6

GWth TWh

TWh

W-Speicher

TWh

TWh

76

6

41

82

Strombedarf

Traktion

Solarthermie 12 6

TWh

73

TWh

25 TWh

Brennstoffe

55

220

100% Wert 2010

335

TWh

TWh

Treibstoff

Verkehr

55

TWh

420 TWh

Brennstoff-basierte Prozesse in

Industrie und Gewerbe

gesamt 445 TWh

Solarthermie

%

41

55

© F

rau

nh

ofe

r ISE

Optimization of Germany’s future energy system based

on hourly modeling

REM od-D

Renewable

Energy Model –

Deutschland Slide courtesy Hans-Martin Henning 2014

Optimization of Germany’s Future Energy System

based on hourly modeling

© Fraunhofer ISE

17

© Fraunhofer ISE

TWh

Traktion

H2-Bedarf

45

11

TWh

TWh

39

TWh

14

TWh

Einzelgebäude mit Sole-Wärmepumpe

Solarthermie

11

Solarthermie 8 Gebäude

9

TWh

el. WP Luft 43

TWh

TWh

44

4

Einzelgebäude mit Gas-Wärmepumpe

13

TWh

14 4

W-Speicher

GWth TWh 60 TWh

82

TWh

220

TWh

420

22 GWth TWh 103 GWh

51 W-Speicher14el. WP Sole

Biomasse

TWh

0

TWh

15

KWK-BHKW

Solarthermie 13

TWh

Strombedarf gesamt (ohne

Strom für Wärme und MIV)

375

TWh

TWh

3

GWgas 0

220

0

TWh

0Sabatier Methan-Sp.

H2-Speicher

7 GWth TWh

TWh 41

3

GWth

Gas-WP

W-Speicher

25

20

40

TWh

388 TWh

20 GWth TWh Wärmenetze mit

GuD-KWK

7 GWth TWh

W-Speicher

TWh Wärmenetze mit

BHKW-KWK

Wärmebedarf gesamt

TWh

26

TWh

TWh

217

TWh

82

16

TWh

GWel

TWh 23

4

TWh

9 Pump-Sp-KW 7

TWh

TWh

6

TWh

Gasturbine

W-Speicher

Steink.-KW Braunk.-KW Öl-KW

3 GW 0 GW5 GW 0 GW 7 GW

Atom-KWPV Wind On Wind Off Wasserkraft

112

TWh

103

TWh

147

Batterien

24 GWh

GW 120 GW 32 GW

143

TWh

5

TWh 60 GWh TWh

TWh

Einzelgebäude mit Luft-Wärmepumpe

GWth

Gebäude

8

TWh

7

TWh 50

14

4 TWh

TWh

19 GWth TWh GWh

Einzelgebäude mit Gaskessel

TWh

Gaskessel 71 Gebäude

32 GWth

0

4

Gebäude

59

0.0

TWh

3734

Solarthermie 6 W-Speicher

Gebäude

15

27 GWh

23

TWh

TWh

TWh 173 GWh

3

TWh

ungenutzter Strom (Abregelung)

TWh

0

TWh

26

TWh

12

TWh

TWh

5

TWh

TWh

241 TWh

Gebäude

4

87

TWh 6 TWh

Gebäude

59

7 GWth TWh

3

TWh

WP zentral 20

KWK-GuD 27

35 GWel TWh

20

60

TWh

7

GW

Einzelgebäude mit Mini-BHKW

6 46

WP zentral 23

4

8

TWh

TWh

Verkehr (ohne

Schienenverkehr/Strom)

Brennstoff-basierter Verkehr

Batterie-basierter Verkehr

Wasserstoff-basierter Verkehr

137

TWh

TWh

TWh

TWh

TWh

TWh

TWhTraktion gesamt

Brennstoffe

Traktion

erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien

14 GWth TWh 56 GWh

86 TWh

Geothermie 6 Gebäude

2 GWth

10

TWh

TWh108 TWh

57 TWh

0

TWh

3

TWh

TWh 173

Wärmenetze mit Tiefen-Geothermie

TWh

Brennstoffe

TWhErdgas

394

TWh

4

TWh

22

TWh

Elektrolyse

82

33 GWel

4

21

TWh

0

TWh

TWh 26

1 GW

GuD-KW

ungenutztWarmwasserRaumheizung

290 TWh 98 TWh 2

Solarthermie

GWh

Mini-BHKW 23

GWh

TWh

Solarthermie 13

20 GWth

GWel TWh

TWh

0.6

GWth TWh

TWh

W-Speicher

TWh

TWh

76

6

41

82

Strombedarf

Traktion

Solarthermie 12 6

TWh

73

TWh

25 TWh

Brennstoffe

55

220

100% Wert 2010

335

TWh

TWh

Treibstoff

Verkehr

55

TWh

420 TWh

Brennstoff-basierte Prozesse in

Industrie und Gewerbe

gesamt 445 TWh

Solarthermie

%

41

55

© F

rau

nh

ofe

r ISE

Electricity

generation

Photovoltaics

147 GWel

Medium and large size CHP

(connected to dist rict heat ing)

60 GWel

Onshore

Wind

120 GWel

Offshore Wind

32 GWel

Slide courtesy Hans-Martin Henning 2014

© Fraunhofer ISE

18

Slide courtesy Hans-Martin Henning 2014

Investments in Energy System 2.0 vs. Saved Fuel Costs

Example Germany

© Fraunhofer ISE

19

Summarizing the German Experience

Germany defined a target energy system for 2050

and developed milestones for 2020/2030/2040

In most aspects the development is successful:

Renewable energies in the electricity sector

performed better than expected (25.4% in 2013)

due to the feed-in tariff (EEG), now the market

development is reduced by reduced tariffs

The grid expansion is on the way, however, due

to extensive participation processes with

stakeholder and citizens, the planning phase is

rather long

Electric vehicles goal is 1 Mio until 2020, there

are doubts to achieve this goal (13500 end of

2013)

However, there are strong discussions ongoing:

Increased electricity prices (partly by renewables)

Greenhouse gas emissions are increasing due to

increased coal firing (emission trading is not

working)

Efficiency is behind schedule

© Fraunhofer ISE

20

The example of the global photovoltaics market demonstrated how innovations

and market introduction work together to bring down the costs of this

technology, a key pillar of our future energy system

Similar developments are expected for many more technologies needed for the

energy transformation: energy storage, efficiency technologies, sustainable

mobility, smart grid……..

Government policy has first to actively support market introduction, later it is

sufficient to set rules for further growth of centralized and decentralized power

supply systems, driven by the economics of renewable energy

Germany has set the example, California is on a similar course, may be further

along, others are watching, more and more are following….

Nations who recognize the opportunities clearly will harvest great benefits!

Turning Potential into Reality – the landscape of successful energy transformation approaches

© Fraunhofer ISE

21

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Eicke R. Weber with many ISE coworkers

www.ise.fraunhofer.de

[email protected]