twist 4 matrix elements

14
1 Twist 4 Matrix elements Su Houng Lee 1. S. Choi et al, PLB 312 (1993) 351 2. Su Houng Lee, PRD 49 (1994) 2242

Upload: avon

Post on 05-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Twist 4 Matrix elements. Su Houng Lee 1. S. Choi et al, PLB 312 (1993) 351 2. Su Houng Lee, PRD 49 (1994) 2242. Some basics on matrix elements and moments. DIS. e (E’,k’). e (E,k). X. P. Polarization Tensors. Where w =2pq/q 2. OPE. P. P. Diagrammatic rep of Structure function. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Twist 4 Matrix elements

1

Twist 4 Matrix elements

Su Houng Lee

1. S. Choi et al, PLB 312 (1993) 351

2. Su Houng Lee, PRD 49 (1994) 2242

Page 2: Twist 4 Matrix elements

S H Lee 2

DIS

Polarization Tensors

Some basics on matrix elements and moments

e (E,k)

X

e (E’,k’)

P

MQWQWd

d

dEd

d

M

2/,2

tan,2'

22

221

MWQxFWQWQxFL 2/, ,/1, 22

2222

12

24 de |0|

2

1FFpjxjpxedW L

iqx

n

nn2,nL,

4 Ad Ae |]0T[| pjxjpxediT iqx

1

0

22-nn ),(A Im QxFdxxTW

Where =2pq/q2

1

02

24222-n

2

4n2

n

),(),(

AA

Q

QxFQxFdxx

Q

Page 3: Twist 4 Matrix elements

S H Lee 3

Diagrammatic rep of Structure function

Diagrammatic rep of OPE

X

P

24 de |0|

2

1FFpjxjpxedW L

iqx

n

nn2,nL,

4 Ad Ae |]00,T[| pQxQxpxediT iqx

P

P

x 0Q Q

P P P

0 0

Q Q

OPE

Page 4: Twist 4 Matrix elements

S H Lee 4

Twist-2 Operators

|]00,T[|4 pQxQxpxediT iqx

P P

00

Q Q pDQpA |0| 22

2

02 LA

Twist-4 Operators

P P

00

Q Q

P P

00

Q Q

pFDQpAG |0],[| 524

pQQpA aa || 554

1

pQp

pFDQpA

aa ||

|0],[|

2

242

Page 5: Twist 4 Matrix elements

S H Lee 5

Twist-4 Operators

OPE

gg AA

QxAAA

QxT

8

3

4

11e

16

1

8

51d 2

2221

22

Operators

kP

k AgMppO

2

4

1

25

52

522

5521

, QFDigO

QgO

QQgO

g

aa

aa

mass Operators

2QDDmOm

mm A

QxA

QxT

4

181e

3

141d

2222

g

g

AAdxF

AAAdxF

8

3

4

1

2

1

16

1

8

5

2

1

21

0

42

211

0

42

Page 6: Twist 4 Matrix elements

S H Lee 6

Parameterizing F2 (=4)

For Cp: BCDMSdata and SLAC data +Virchauz,Milsztajin, PLB274 (92) 221

For Cp-Cn: NMC (combining NMC,SLAC, BCDMSdata)

222

42 ,QxFxCF p

87.18 ,11.33 ,88.16 ,33.3 ,27.0 ,4.0 43210 aaaaab

0 ,1

44

33

2210

b

x

xaxaxaxaaxC bp

• We fit to

2

2

2

2

2

2 1Q

xCxC

F

F

F

F np

p

n

p

n

• We fit to

96.10 ,44.22 ,32.12 ,14.3 ,27.0 ,4.0 43210 aaaaab

2

23

2

11)1( :Soldate

Q

xxxF

2

2

2

32

111)1( :al.et Gunion

Q

x

Q

xxxF

Page 7: Twist 4 Matrix elements

S H Lee 7

Parameterizing FL (=4)

Parameterization using transverse basis (Ellis, Furmanski, Petronzio 82)

2224 ,4 TTTL kxfkkdF

P P

00

Q Q

SLAC data analyzed by Sanchex Guillen etal. (91)

22222

24 GeV 01.003.0 ,8 QxFFL

34 1 1 Soldate xxFL

Page 8: Twist 4 Matrix elements

S H Lee 8

Constraints for matrix elements from experiments

(neutron) GeV 004.0011.0

(proton) GeV 004.0005.0

16

1

8

5

2

12

221

1

0

42

gAAAdxF

(neutron) GeV 008.0023.0

(proton) GeV 012.0035.0

8

3

4

1

2

12

22

1

0

4 gL AAdxF

Note that the matrix elements A’s for the proton and neutron data are independent.

1A 2A

gA gA

proton

neutrondata

proton

neutronMIT Bag

2221 MeV 300 GeV 1.0 solution typicalOne gAAA

Page 9: Twist 4 Matrix elements

S H Lee 9

MIT Bag model calculations (Jaffe-Soldate 81)

Definitions

pOOpM

A

AgMppO

kii

k

N

k

kP

k

|3

1|

2

4

1

00

2

Calculations

B 0,E ,)(

urgr

rfx • operators

• Normalizations by Jaffe (75)

||2

1

|0|2

1

34

4

pyjxjpyexdd

pjxjpxedW

yxiq

iqx

pyOyOpydM

A kii

k

N

k |3

1|

200

3

Vpppp '2'| 33

Page 10: Twist 4 Matrix elements

S H Lee 10

Calculations- cont

25

52

522

5521

, QFDigO

QgO

QQgO

g

aa

aa

• calculations involve spin and spatial parts

pyOyOpydM

A kii

k

N

k |3

1|

200

3

rgrfdrrrgrfdrr 2222222 ,

Page 11: Twist 4 Matrix elements

S H Lee 11

MIT Bag model vs experimental constraint

F2: Q2=5 GeV2 s = 0.5

(neutron) GeV 015.0

(proton) GeV 027.0

16

1

8

5

2

1 Bag MIT

2

221

1

0

42

s

sgAAAdxF

(neutron) GeV 008.0023.0

(proton) GeV 012.0035.0

8

3

4

1

2

1 Experiment

2

22

1

0

4 gL AAdxF

(neutron) GeV 004.0011.0

(proton) GeV 004.0005.0

16

1

8

5

2

1 Experiment

2

221

1

0

42

gAAAdxF

(neutron) GeV 026.0

(proton) GeV 022.0

8

3

4

1

2

1 Bag MIT

2

22

1

0

4

s

sgL AAdxF

FL: Q2=5 GeV2 s = 0.5

Page 12: Twist 4 Matrix elements

S H Lee 12

A Parameterization based on flavor structure

Flavor structure

gudd

gduu

gnp

uddduunp

udduuddduunp

KQKQA

KQKQA

KQQKQKQA

)(2

)(2

)(

2)(

22)(

22)(

121)(

21)(

21)( 2/

pdduupM

K

puFDupM

igK

pdduuuupM

K

iu

gu

iu

|2|2

|,|2

||2

2

52

2

• 7 Unknowns: F2,FL, proton, neutron target 4 constraints

Page 13: Twist 4 Matrix elements

S H Lee 13

1. Twist-4 matrix elements are interesting itself because,

a) First experimental measurements of multiparticle correlation inside proton

b) Need much more correlation than

such as

Summary - i

c) Non-trivial test of low energy models of QCD d) QCD sum rules for hadrons in nuclear matter

Page 14: Twist 4 Matrix elements

S H Lee 14

2. To answer the questions, need experimental update on

Summary - ii

(neutron) GeV 004.0011.0

(proton) GeV 004.0005.0,

2

21

0

242 dxQxF

(neutron) GeV 008.0023.0

(proton) GeV 012.0035.0,

2

21

0

24 dxQxFL