tx69698_apx

26
231 Appendix 1 CONVERSION TABLES The following conversion tables (reproduced with the kind permission of Spirax Sarco) will provide conversion between SI, metric, U.S., and Imperial systems. All tables use a multiplying factor. SI Units—Numerical Prefixes Factor Scientific In Words SI Prefix SI Symbol 1,000,000,000 10 9 billion/milliard/trillion *giga G 1,000,000 10 6 million *mega M 1,000 10 3 thousand *kilo k 100 10 2 hundred hecto h 10 10 ten deca da 0.1 10 –1 tenth deci d 0.01 10 –2 hundredth centi c 0.001 10 –3 thousandth milli m 0.000001 10 –6 millionth *micro µ 0.000000001 10 –9 billionth/milliardth *nano n © 2002 by CRC Press LLC

Upload: christian-pinedo-reategui

Post on 04-Dec-2015

10 views

Category:

Documents


2 download

DESCRIPTION

engineering

TRANSCRIPT

Page 1: tx69698_Apx

231

Appendix 1

CONVERSION TABLES

The following conversion tables (reproduced with the kind permission of SpiraxSarco) will provide conversion between SI, metric, U.S., and Imperial systems. Alltables use a multiplying factor.

SI Units—Numerical Prefixes

Factor Scientific In Words SI Prefix SI Symbol

1,000,000,000 10

9

billion/milliard/trillion *giga G1,000,000 10

6

million *mega M1,000 10

3

thousand *kilo k100 10

2

hundred hecto h10 10 ten deca da0.1 10

–1

tenth deci d0.01 10

–2

hundredth centi c0.001 10

–3

thousandth milli m0.000001 10

–6

millionth *micro

µ

0.000000001 10

–9

billionth/milliardth *nano n

TX69698_frame_Apx Page 231 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 2: tx69698_Apx

232

Foo

d Plan

t Engin

eering System

s

Length

From/To Millimeter Centimeter Meter Kilometer Inch Foot Yard Mile

Millimeter 1 0.1 0.001 — 0.03937 — — —Centimeter 10 1 0.01 — 0.393701 0.032808 — —Meter 1000 100 1 0.001 39.3701 3.28084 1.09361 —Kilometer — — 1000 1 — 3280.84 1093.61 0.621371Inch 25.4 2.54 — — 1 0.083333 0.02778 —Foot 304.8 30.48 0.3048 — 12 1 0.33333 —Yard 914.4 91.44 0.9144 0.000914 36 3 1 0.000568Mile — — 1609.344 1.609344 — 5280 1760 1

Area

From/To cm

2

m

2

km

2

in.

2

ft

2

yd

2

Acre Mile

2

cm

2

1 0.0001 — 0.155 0.001076 0.0001196 — —m

2

10,000 1 0.000001 1550 10.7639 1.19599 0.0002471 —km

2

— 1,000,000 1 — — — 247.105 0.386102ha — 10,000 0.01 — — — 2.47105 —in.

2

6.4516 0.000645 — 1 0.006944 0.000772 — —f

2

929,03 0.092903 — 144 1 0.111111 0.000023 —yd

2

8361.27 0.836127 — 1296 9 1 0.0002066 —Acre — 4046.86 0.004047 6,272,640 43,560 4840 1 0.001562Mile

2

— — 2.589987 — — — 640 1

TX

69698_frame_A

px Page 232 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 3: tx69698_Apx

Ap

pen

dix 1

233

Mass

From/To kg Ton lb U.K. cwt. U.K. Ton U.S. cwt. U.S. Ton

kg 1 0.001 2.20462 0.019684 0.000984 0.022046 0.001102Ton 1000 1 2204.62 19.6841 0.984207 22.0462 1.10231lb 0.453592 0.000454 1 0.008929 0.000446 0.01 0.0005U.K. cwt 50.8023 0.050802 112 1 0.05 1.12 0.056U.K. ton 1016.05 1.01605 2240 20 1 22.4 1.12U.S. cwt. 45.3592 0.045359 100 0.892857 0.044643 1 0.03U.S. ton 907.185 0.907185 2000 17.8517 0.892857 20 1

Volume and Capacity

From/ To cm

3

m

3

Liter(dm

3

) ft

3

yd

3

U.K. Pint U.K. gal U.S. Pint U.S. gal

cm

3

1 — 0.001 0.00004 — 0.00176 0.00022 0.00211 0.00026m

3

— 1 1000 35.3147 1.30795 1759.75 219.969 2113.38 264.172liter 1000 0.001 1 0.03532 0.00131 1.75975 0.21997 2.11338 0.26417ft

3

28,316.8 0.02832 28.3168 1 0.03704 49.8307 6.22883 59.8442 7.48052yd

3

764,555 0.76456 764.555 27 1 1345.43 168.178 1615.79 201.974U.K. pint 568.261 0.00057 0.56826 0.02007 0.00074 1 0.125 1.20095 0.15012U.K. gal 4546.09 0.00455 4.54609 0.16054 0.00595 8 1 9.6076 1.20095U.S. pint 473.176 0.00047 0.47318 0.01671 0.00062 0.83267 0.10408 1 0.125U.S. gal 3785.41 0.00379 3.78541 0.13368 0.00495 6.66139 0.83267 8 1

TX

69698_frame_A

px Page 233 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 4: tx69698_Apx

234

Foo

d Plan

t Engin

eering System

s

Pressure

From/To Atmos mm Hg m bar Bar Pascal In H

2

0 In Hg psi

Atmos 1 760 1013.25 1.0132 101,325 406.781 29.9213 14.6959Mm Hg 0.0013158 1 1.33322 0.001333 133.322 0.53524 0.03937 0.019337M bar 0.0009869 0.75006 1 0.001 100 0.401463 0.02953 0.014504Bar 0.9869 750.062 1000 1 100,000 401.463 29.53 14.504Pascal 0.0000099 0.007501 0.01 0.00001 1 0.004015 0.0002953 0.000145In H

2

0 0.0024583 1.86832 2.49089 0.002491 249.089 1 0.0736 0.03613In Hg 0.033421 25.4 33.8639 0.0338639 3386.39 13.5951 1 0.491154psi 0.068046 51.7149 68.9476 0.068948 6894.76 27.6799 2.03602 1

Volume Rate of Flow

From/To L/h m

3

/sec m

3

/h ft

3

/h U.K. gal/m U.K. gal/h U.S. gal/m U.S. gal/h

L/sec)

3600 0.001 3.6 127.133 13.198 791.888 15.8503 951.019

L/h

1 — 0.001 0.03535 0.003666 0.219979 0.00440 0.264172

m

3

/sec

3,600,000 1 3600 127,133 13198.1 791,889 15,850.3 951,019

m

3

/h

1000 0.000278 1 35.3147 3.66615 219.969 4.40286 264.1718

ft

3

/h

28.3168 — 0.028317 1 0.103814 6.22883 0.12468 7.480517

U.K. gal/m

272.766 0.000076 0.272766 9.63262 1 60 1.20095 72.057

U.K. gal/h

4.54609 — 0.004546 0.160544 0.016667 1 0.02002 1.20095

U.S. gal/m

227.125 0.000063 0.227125 8.020832 0.832674 49.96045 1 60

U.S. gal/h

3.785411 — 0.003785 0.133681 0.013368 0.83267 0.016667 1

TX

69698_frame_A

px Page 234 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 5: tx69698_Apx

Ap

pen

dix 1

235

Power

From/To Btu/h W kcal/h kW

Btu/h 1 0.293071 0.251996 0.000293W 3.41214 1 0.859845 0.001kcal/h 3.96832 1.163 1 0.001163kW 3412.14 1000 859.845 1

Energy

From/To Btu Therm J kJ Cal

Btu 1 0.00001 1055.06 1.055 251.996Therm 100,000 1 — 105,500 25199600J 0.00094 — 1 0.001 2388kJ 0.9478 0.000009478 1000 1 238.85Cal 0.0039683 0.0039683

×

10

–5

4.1868 — 1

Specific Heat

From/To Btu/lb˚F J/kg ˚C

Btu/lb ˚F 1 4186.8J/kg ˚C 0.00023 1

TX

69698_frame_A

px Page 235 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 6: tx69698_Apx

236

Foo

d Plan

t Engin

eering System

s

Heat Flow Rate

From/To Btu/ft

2

h W/m

2

kcal/m

2

h

Btu/ft

2

h 1 3.154 2.712W/m

2

0.3169 1 0.859kcal/m

2

h 0.368 1.163 1

Thermal Conductance

From/To Btu/ft

2

h ˚F W/m

2

˚C kcal/m

2

h/˚C

Btu/ft

2

h ˚F 1 5.67826 4.88243W/m

2

˚C 0.176110 1 0.859845kcal/m

2

h/˚C 0.204816 1.163 1

Heat per Unit Mass

From/To Btu/lb kJ/kg

Btu/lb 1 2.326kJ/kg 0.4299 1

Linear Velocity

From/To ft/min ft/sec m/s

ft/min 1 0.016666 0.00508ft/s 60 1 0.3048m/s 196.850 3.28084 1

TX

69698_frame_A

px Page 236 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 7: tx69698_Apx

Appendix 1

237

TEMPERATURE CONVERSION

Conversion can be achieved by using the following formula:

˚F to ˚C

˚C = (˚F – 32)

×

5/9

˚C to ˚F

˚F = (˚C

×

9/5) + 32

TX69698_frame_Apx Page 237 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 8: tx69698_Apx

239

Appendix 2

A2.1 SOME HELP WITH CALCULATIONS

What follows are some basic rules of calculations. Most readers will find themfamiliar, however, this section is included for those who will benefit from a generalrefresher. Included is a small section outlining the rules applying to exponents andfractions. Throughout many years of helping many students with mathematicalproblems, I learned that a lack of understanding fractions and exponents is the basecause for a dislike of things numerical.

A2.2 THE PLUS/MINUS RULE

A number or symbol may be moved from one side of an equation to the other sideonly if the sign in front of the number is changed. A “plus” item on one side of theequation will become a “minus” item on the other side of the equation, and vice versa.

Using the “do on both sides” rule, one can write the equation as:

A2.3 FRACTIONS

A2.3.1 T

HE

D

IAGONAL

R

ULE

An item in a fraction may be moved diagonally across an equals sign:

and also as

Let us do it more slowly:

x y x y x y= + − = − =5 5 5 or or

x y

x y

x y

= +

− = + −

− =

5

5 5 5

5

A

B

C

DAD BC= =can be written as

A

C

B

D

D

B

C

A= =or

AD BC

ADD

BCD

=

=

TX69698_frame_Apx Page 239 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 9: tx69698_Apx

240

Food Plant Engineering Systems

A2.3.2 D

O

O

N

B

OTH

S

IDES

R

ULE

Whatever is done on one side of the equal sign must be repeated on the other sidein order to maintain equality.

If

A

=

B

then 2

A

= 2

B

(both sides were multiplied by 2) or

A

2

=

B

2

(both sideswere squared).

If

then

(both sides were inverted).If the symbols are confusing, replace them with simple numbers and see if the

rule works.If

then

If

then we can multiply on both sides by 2 to get

ABCD

AC

BCDC

BD

=

= =

XY

= 1

1X

Y=

0 512

. =

10 5

2.

=

xy

= 1

2 21 2

11 2

xy y y

= × = × =

TX69698_frame_Apx Page 240 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 10: tx69698_Apx

Appendix 2

241

A mistake that students sometimes make is to multiply both the numerator andthe denominator.

If

it cannot be said that R = R1 + R2. If this is hard to see, try real numbers.Thus,

and 2 ≠ 3 + 6.In this case, the whole item

must be inverted.

inverting both sides gives

Did you notice what happened to the numerator and denominator when a fractionwas inverted?

It looks far more complicated and difficult than it is.

A2.3.3 ADDING FRACTIONS

Reviewing an important rule will clarify the previous example. To add or subtractfractions, the denominators (the numbers below the line) must be the same. Thequickest way to make them the same is to multiply the numerator (the number above

1 1 1

1 2R R R= +

12

13

16

= +

13

16

+

1 1 1 11 1

1

1 2

1 2

2 1

1 2

1 2

1 2R R RR

R R

R R

R R

R R

R R= + = =

+= + =

+

12

13

16

= +

21

13

16

16 33 6

3 63 6

189

2=+

= +×

= ×+

= =

TX69698_frame_Apx Page 241 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 11: tx69698_Apx

242 Food Plant Engineering Systems

the line) and the denominator of one fraction with the denominator of the otherfraction.

A2.3.4 MULTIPLYING FRACTIONS

When multiplying fractions, we multiply the denominators with each other and thenumerators with each other.

Always check your use of fractions and exponents by using simple numbers.The small amount of time invested can save a large amount of time wasted.

A2.3.5 DIVIDING FRACTIONS

When dividing with a fraction, invert the numerator and use the multiplication rule.

A2.4 EXPONENTS

The mathematical principles used in working with fractions are similar to those forexponents. Remember when you work with exponents that anything with the expo-nent of zero is equal to one with the exception of zero itself. We exclude zero fromthis definition, because it is meaningless and it will cause havoc with all our

x

y

a

b

xb

yb

ay

yb

xb ay

yb+ = + = +

+ = × + ××

= + = =

+ = + =

23

34

2 4 3 33 4

8 912

1712

1 417

23

34

0 667 0 75 1 417

.

. . .

x

y

a

bc

x

y

a

b

c xac

yb× × = × × =

1

23

45

62 4 6

3 54815

33

153

15

3 2

0 667 0 8 6 3 2

× × = × ××

= = = =

× × =

.

. . .

a

b

c

d

a

b

d

c

ad

bc÷ = × =

÷ = × = =

÷ = =

34

25

34

52

158

1 875

34

25

0 750 4

1 875

.

..

.

TX69698_frame_Apx Page 242 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 12: tx69698_Apx

Appendix 2 243

equations. 00 is an undefined quantity, and we will just keep it as such. Zero withany exponent other than zero is zero. Be careful not to divide by zero, because thiscauses all sorts of disarray in mathematics.*

What follows are some ground rules regarding exponents.

1. A product of two numbers with an exponent can be written as:

This works both ways, if you have to multiply two numbers that have thesame exponent, you can multiply the two numbers, and the product willhave the same exponent as the individual numbers.

2. Where we multiply numbers with different exponents but similar basenumbers, we can simply add the exponents.

2 is the coefficient, x is the base, and 3 is the exponent.

If the exponents are not the same and the base numbers are not the same,multiplication is just not possible.

3. When an exponential number is raised to an exponent, we multiply theexponents.

* If zero is a big problem in mathematics, and zero means nothing, then nothing is a big problem inmathematics.

xy x ya a a( ) = ×

= ×( ) = ×6 2 3 2 32 2 2 2

2 2 2 2 23 1 1 1 1 1 1 3x x x x x x x x x= × × × = × × × = =+ +

x x xa b a b× =

× =

× = = = × × × ×

+

2 2 2

4 8 32 2 2 2 2 2 2

2 3 5

5 2 2 2 2 2

x y x ya b a b× = ×

x xa b ab( ) =

( ) =

( ) = ( ) = =

2 2

2 8 64 2

3 2 6

3 2 2 6

TX69698_frame_Apx Page 243 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 13: tx69698_Apx

244 Food Plant Engineering Systems

The square root of any number is that number to the exponent of 1/2. Inthe same way, the fourth root of a number is that number to exponent 1/4.The same rule applies:

4. When we divide exponential numbers where the base numbers are thesame, we get:

Notice the change of sign on the exponent when we inverted the basenumber to do the multiplication.

When we divide exponential numbers with different base numbers, evenif the exponents are the same, ((xa)/(xb)) they cannot be manipulated.

When you do try to do anything strange, answers may result. Use smallnumbers to check the rule.

With simple fractions, we can multiply and divide the numerator and thedenominator with the same amount, and the ratio will stay the same. Thisdoes not work when you manipulate exponents. Multiplying exponentsmeans raising the exponential number by the power of the multiplier.Dividing exponents means taking roots of the numbers. Be very carefulwhen you work with exponents.

x x xa aa

= ( ) =

= = ( ) = = =

12 2

12

2216 4 4 4 4 42 2 1

x

xx x x x

a

ba b a b a b= × = =

= =

=

− + −( ) −

−22

2 2

84

2

3

23 2

23

49

0 44

23

23

0 667 0 44

23

2

3

23

0 667

2

2

2

2

22

2

2

2

2

= =

=

= =

≠ = =

.

. .

.

TX69698_frame_Apx Page 244 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 14: tx69698_Apx

Appendix 2 245

A2.5 QUADRATIC EQUATIONS

Quadratic equations can be generalized as:

where a, b, and c are numbers called coefficients. The equation can be solved byfactorization, drawing a graph, or using a formula.

A2.5.1 SOLUTION BY FACTORIZATION

An easy test to determine if an equation will factorize is as follows:

Multiply the coefficients a and c.Write down the factor pairs of the product.If the sign of c is +, then adding one of the pairs together will give the

coefficient b if the equation factorizes.If the sign of c is –, then subtracting one of the pairs together will give the

coefficient b if the equation factorizes.

The procedure can be illustrated using the equation:

The product ac = 24.The factor pairs of 24 are (1,24) (2,12) (3,8) (4,6).Since c is – one of these pairs, we must subtract to give the coefficient of x. The

required pair is (3,8).Writing the equation with this pair gives:

A2.5.2 SOLUTION USING THE FORMULA

If an equation does not factorize, the following formula can be used:

ax bx c2 0+ + =

4 5 6 02x x+ − =

4 8 3 6 0

4 2 3 2 0

2 4 3 0

2 0

2

4 3 0

34

2x x x

x x x

x x

x

x

x

x

+ − − =

+ − + =

+ − =

+ =

= −

− =

=

( ) ( )

( )( )

TX69698_frame_Apx Page 245 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 15: tx69698_Apx

246 Food Plant Engineering Systems

Factorization by use of the formula can be illustrated with the following equation:

3x2 – 4x – 1 = 0

This equation does not factorize. The coefficients are: a = 3, b = –4, c = –1.Therefore:

A2.6 SIMULTANEOUS EQUATIONS

An equation such as y + x = 5 has an infinite number of pairs that will satisfy it.This is also true for the equation y – x = 3 . There are, however, only specific valuesfor x and y that will satisfy both equations.

Adding the two equations gives:

xb b ac

a= − ± −2 4

2

x

x

x

x

x

=− − ± − − −{ }

=± +{ }

= ±

= ±

= =

= − = −

( ) ( ) ( )( )

( )

.

..

..

4 4 4 3 1

2 3

4 16 12

64 28

6

4 5 2916

9 2916

1 55

1 2916

0 22

2

y x

y x

+ =

− =

5

3

2 8

4

1

y

y

x

=

=

=

TX69698_frame_Apx Page 246 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 16: tx69698_Apx

Appendix 2 247

This is rather simplistic. The rule is that we need the same number of equationsas we have unknowns. Working with three unknowns requires three equations, andso forth.

The easiest unknown to remove will be y. If we multiply the second equationby 2, we can subtract that from the first equation to get:

Adding equation 3 to equation 1 will also eliminate y, and we get:

We are left with two equations and two unknowns. There is no easy way to getrid of either of the two unknowns, so we will multiply the first one with 4 and thesecond one with 3 to get the x values the same.

Adding them gives:

Now, all we have to do is substitute the known values into the formulas andsolve for x:

x y z

x y z

x y z

+ + =

+ + =

− + =

2 3 20

2 11

3 2 2 8

x y z

x y z

x z

+ + =

+ + =

− + = −

2 3 20

4 2 2 22

3 2

x y z

x y z

x z

+ + =

− + =

+ =

2 3 20

3 2 2 8

4 5 28

− + = −

+ =

12 4 8

12 15 84

x z

x z

19 76

4

z

z

=

=

4 5 4 28

4 28 20 8

2

x

x

x

+ × =

= − =

=

TX69698_frame_Apx Page 247 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 17: tx69698_Apx

248 Food Plant Engineering Systems

And finally, to solve for y:

All three equations are satisfied when x = 2, y = 3, and z = 4.

A2.7 DIFFERENTIATION

A2.7.1 RULE 1

If

y = axn then

Differentiate:

Remember that anything to exponent 0 (zero) is 1, and anything multiplied with0 is zero.

x y z

y

y

+ + =

= − − × =

=

2 3 20

2 20 2 3 4 6

3

dy

dxnaxn= −1

y x

dy

dxx x

=

= − = −

− − −

3

3 3 9

3

3 1 4( )

yx

dy

dx

xx

=

= =

6

55

3

63

2

y x

dy

dxx

x

=

= ( ) =−−

2

34

23

2

34

34

14

1

y

y x

dy

dxx

=

=

= × =−

5

5

0 5 0

0

0 1

TX69698_frame_Apx Page 248 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 18: tx69698_Apx

Appendix 2 249

A2.7.1.1 Repeated Differentiation

When a function is differentiated, the differential coefficient is written as ((dy)/(dx)) or f ′(x). When the function is differentiated again, the second differential coefficient is ((d2y)/(dx)) or f ′′(x).

A2.7.2 RULE 2

A function of a function is a function in a function. If y = (u)v, then

A2.7.3 RULE 3

Differentiation of a product of two functions y = uv is given by

y = 3x3(2x2 – 9x +5)4

let 3x3 = u and (2x2 – 9x +5)4 = v

y x

dy

dxx

d y

dxx

d y

dxx

=

=

=

=

3

15

60

180

5

4

23

32

dy

dx

dy

du

du

dx= ×

y x x= −( )2 43 5

let then( )2 43 5x x u y u− = =

dy

dxu x

dy

dxx x x

= × −

= − −

5 6 4

5 2 4 6 4

4 2

3 4 2

( ) ( )

( ) ( )

dy

dxv

du

dxu

dv

dx= +

TX69698_frame_Apx Page 249 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 19: tx69698_Apx

250 Food Plant Engineering Systems

If this looks confusing, try another way.

This is not difficult, but the numbers can get confusing. In this problem, all threeof the rules were used.

Differentiate y = x2(4x – 3)

This simple problem is perhaps easier to understand and verify. Now for some-thing slightly more complicated.

dy

dxx x x x x x x

dy

dxx x x x x x x

dy

dxx x x x x

= − + ×[ ] + − + × −[ ]

= − + × + − − +[ ]

= − + − +

( ) ( ( ) ( ))

(( ) ) (( )( ) )

( ) ( ( )

2 9 5 9 3 4 2 9 5 4 9

3 2 9 5 3 16 36 2 9 5

3 2 9 5 3 2 9 5

2 4 2 3 2 3

2 2 4 2 3

2 2 3 2 ++ −

= − + − + + −

= − + − +

( ))

( ) ( )

( ) ( )

16 36

3 2 9 5 6 27 15 16 36

3 2 9 5 22 63 15

2

2 2 3 2 2

2 2 3 2

x x

dy

dxx x x x x x x

dy

dxx x x x x

dy

dxv x x v

dv

dx

dy

dxx v v x x

dy

dxx v x x x x

dy

dxx x x x x x x

= × +

= + −

= − + + −

= − + − + + −

4 2 3 3

2 3

2 3 2 2

2 2 3 2 2

3 3 3 4

3 3 4 4 9

3 3 2 9 5 16 36

3 2 9 5 6 27 15 16 36

( ) ( )

( ) ( ( ) ( )( ))

( ) ( ( ) )

( ) ( )

dy

dxx x x

dy

dxx x x x x x x

= − +

= − + = − = −

2 4 3 4

8 6 4 12 6 6 2 1

2

2 2 2

( ) ( )

( )

y x x x x

dy

dxx x x x

= − = −

= − = −

2 3 2

2

4 3 4 3

12 6 6 2 1

( )

( )

TX69698_frame_Apx Page 250 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 20: tx69698_Apx

Appendix 2 251

A2.7.4 RULE 4

If

Differentiate the following:

For more elaborate differential work, you should get a basic mathematics text.

A2.8 APPLICATIONS OF DIFFERENTIATION

When it is necessary to find the turning points of a system described by a function,the first diffential will give the turning points, and the second differential will indicateif it is a maximum or a minimum.

The operation works as follows:Find ((dy)/(dx)) and set ((dy)/(dx)) = 0 to find the turning points.Find ((d2y)/(dx)) and substitute the turning points into this second differential.

If the value is positive, the point is a minimum point; if it is negative, it is a maximumpoint.

Find and distinguish between the maximum and minimum values of 2x3 – 5x2 – 4x

yu

v

dy

dx

vdu

dxu

dv

dxv

= =−

then 2

yx

x=

4

32 1( )

let andx u x v4 32 1= − =( )

du

dxx

dv

dxx x= = − = −4 3 2 1 2 6 2 13 2 2and ( ) ( ) ( )

dy

dx

x x x x

x

dy

dx

x x x x

x

dy

dx

x x x

x

x x

x

x x

= − − −−

= − − −−

= − −−

= −−

= −

( ) ( ) ( ( ) )(( ) )

( ) (( ) ( ))( )

( ) ( )( )

(

2 1 4 6 2 12 1

2 1 2 1 4 6 12 1

8 4 62 1

2 42 1

2 22

3 3 4 2

3 2

2 3 4

6

4 3 4

4

4 3

4

3

xx − 1 4)

TX69698_frame_Apx Page 251 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 21: tx69698_Apx

252 Food Plant Engineering Systems

When

this is a maximum point at:

When x = 2,

this is a minimum point at:

2x3 – 5x2 – 4x = 2(2)3 – 5(2)2 – 4(2) = 16 – 20 – 8 = –12

dy

dxx x

x x

x

x

= − − =

+ − =

= −

=

6 10 4 0

3 1 2 4 0

13

2

2

( )( )

d y

dxx

2

12 10= −

xd y

dx= − = −

− = −1

312

13

10 142

2 5 4 213

513

413

227

59

43

2 15 3627

1927

3 22 2

x x x− − = −

− −

− −

= − − + = − − + =

d y

dx

2

12 2 10 14= − = +( )

TX69698_frame_Apx Page 252 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 22: tx69698_Apx

253

Appendix 3Steam Tables

TX69698_frame_Apx Page 253 Thursday, April 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 23: tx69698_Apx

254Fo

od

Plant En

gineerin

g Systems

Metric System Steam Table

TemperaturePressure

(Absolute) Specific

Volume ννννgSpecific Enthalpy (kJ kg–1) Specific Entropy (kJkg–1K–1)

(ºC) (kPa) (m3 kg–1) hf hfg hg sf sfg sg

0 0.6108 206.3 0.0 2501.6 2501.6 0.0 9.16 9.162 0.6970 179.92 8.4 2496.8 2505.2 0.03 9.07 9.1010 1.2276 106.38 42.0 2477.9 2519.9 0.15 8.75 8.9020 2.3366 57.79 83.9 2454.3 2538.2 0.30 8.37 8.6730 4.246 32.89 125.7 2430.7 2556.4 0.44 8.02 8.4540 7.384 19.52 167.5 2406.9 2574.4 0.57 7.69 8.2650 12.349 12.03 209.3 2382.9 2592.2 0.70 7.37 8.0860 19.940 7.671 251.1 2358.6 2609.7 0.83 7.10 7.9370 31.192 5.042 293.0 2334.0 2626.9 0.95 6.80 7.7580 47.39 3.407 334.9 2308.8 2643.8 1.08 6.54 7.6290 70.14 2.361 376.9 2283.2 2660.1 1.19 6.29 7.40100 101.35 1.673 419.1 2256.9 2676.0 1.31 6.05 7.36110 143.35 1.213 461.3 2230.0 2691.3 1.42 5.82 7.24120 198.53 0.892 503.7 2202.2 2706.0 1.53 5.60 7.13130 270.3 0.67 546.3 2173.6 2719.9 1.63 5.39 7.03140 361.3 0.51 589.1 2144.0 2733.1 1.74 5.19 6.93150 476.0 0.39 632.1 2113.2 2745.4 1.84 4.99 6.83175 892.4 0.22 741.1 2030.7 2771.8 2.09 4.53 6.62200 1553.8 0.13 852.4 1938.6 2790.9 2.33 4.10 6.43225 2550 0.08 966.9 1834.3 2801.2 2.56 3.68 6.25250 3973 0.05 1085.8 1714.7 2800.4 2.79 3.28 6.07300 8581 0.02 1345.1 1406.0 2751.0 3.26 2.45 5.71

Adapted from Lewis (1987)

TX

69698_frame_A

px Page 254 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 24: tx69698_Apx

Ap

pen

dix 3 Steam

Tables

255Imperial System Steam Table

PsigTemp (°F)

Specific volume

(cu ft/lb)

Heat of the

Liquid

Latent Heat

(Btu/lb)

Total Heat of Steam

(Btu/lb) PsigTemp (°F)

Specific Volume

(cu ft/lb)

Heat of the

Liquid

Latent Heat

(Btu/lb)

Total Heat of Steam

(Btu/lb)

0 212.0 26.79 180.0 970.4 1150.3 76 320.9 4.86 291.1 893.4 1184.51 215.3 25.23 183.4 967.2 1151.6 78 322.4 4.76 292.7 892.2 1184.92 218.5 23.80 186.6 966.3 1152.8 80 323.9 4.67 294.3 891.0 1185.33 221.5 22.53 189.6 964.3 1153.9 82 325.4 4.57 295.9 889.5 1185.74 224.4 21.40 192.5 962.4 1154.9 84 326.9 4.48 297.4 888.7 1186.15 227.2 20.38 195.3 960.4 1155.9 86 328.4 4.400 298.9 887.5 1186.46 229.8 19.45 198.0 958.8 1156.8 88 329.8 4.319 300.4 886.4 1186.87 232.4 18.61 200.6 957.2 1157.8 90 331.2 4.241 301.8 885.3 1187.18 234.8 17.85 203.1 955.5 1158.6 92 332.5 4.166 303.2 884.3 1187.59 237.1 17.14 205.4 954.0 1159.4 94 333.9 4.093 304.6 883.2 1187.810 239.4 16.49 207.7 952.5 1160.2 96 335.2 4.023 306.0 882.4 1188.111 241.6 15.89 209.9 951.1 1161.0 98 336.0 3.955 307.4 881.1 1188.512 243.7 15.34 212.1 949.6 1161.7 100 337.0 3.890 308.8 880.0 1188.813 245.8 14.82 214.2 948.2 1162.4 102 339.2 3.826 310.1 879.0 1189.114 247.8 14.33 216.2 946.8 1163.0 104 340.4 3.765 311.4 878.0 1189.415 249.7 13.88 218.2 945.5 1163.7 106 341.7 3.706 313.5 876.2 1189.716 251.6 13.45 220.1 944.2 1164.3 108 343.0 3.648 314.1 875.8 1189.917 253.5 13.05 222.0 942.9 1164.9 110 344.2 3.591 315.3 874.9 1190.218 255.3 12.68 223.9 941.6 1165.5 112 345.4 3.538 316.6 873.9 1190.519 257.1 12.33 225.7 940.4 1166.1 114 346.6 3.486 317.8 873.0 1190.820 258.8 11.99 227.4 939.3 1166.7 116 347.8 3.435 319.1 872.0 1191.121 260.5 11.67 229.1 938.1 1167.2 118 348.9 3.385 320.3 871.0 1191.3

(continued)

TX

69698_frame_A

px Page 255 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 25: tx69698_Apx

256Fo

od

Plant En

gineerin

g Systems

Imperial System Steam Table (CONTINUED)

PsigTemp (°F)

Specific volume

(cu ft/lb)

Heat of the

Liquid

Latent Heat

(Btu/lb)

Total Heat of Steam

(Btu/lb) PsigTemp (°F)

Specific Volume

(cu ft/lb)

Heat of the

Liquid

Latent Heat

(Btu/lb)

Total Heat of Steam

(Btu/lb)

22 262.1 11.38 230.8 936.9 1167.7 120 350.1 3.338 321.5 870.5 1191.623 263.7 11.09 232.4 935.8 1168.2 122 351.2 3.292 322.7 869.1 1191.824 265.3 10.82 234.0 934.8 1168.8 124 352.4 3.248 323.8 868.8 1192.125 266.9 10.67 235.6 933.7 1169.3 126 353.5 3.204 325.0 867.3 1192.326 268.3 10.32 237.2 932.5 1169.7 128 354.6 3.160 326.2 866.4 1192.627 269.8 10.00 238.7 931.5 1170.2 130 355.7 3.118 327.3 865.5 1192.828 271.3 9.86 240.1 930.5 1170.6 132 356.7 3.078 328.4 864.6 1193.029 272.7 9.65 241.6 929.5 1171.1 134 357.8 3.039 329.5 863.8 1193.330 274.1 9.45 243.0 928.5 1171.5 136 358.9 2.999 330.6 862.8 1193.532 276.8 9.07 245.7 926.6 1172.3 138 359.9 2.961 331.8 861.9 1193.734 279.4 8.72 248.4 924.7 1173.1 140 360.9 2.925 332.8 861.1 1193.936 281.9 8.40 251.0 922.9 1173.9 142 362.0 2.890 333.9 860.3 1194.238 284.3 8.10 253.5 921.1 1174.6 144 363.0 3.856 335.0 859.4 1194.440 286.7 7.82 255.9 919.4 1175.3 146 364.0 2.823 336.0 858.6 1194.642 289.0 7.56 258.3 917.6 1175.9 148 365.0 2.790 337.1 857.7 1194.844 291.3 7.32 260.6 916.0 1176.6 150 365.9 2.758 338.1 856.9 1195.046 293.5 7.09 262.9 914.3 1177.2 152 366.9 2.726 339.1 856.1 1195.2

TX

69698_frame_A

px Page 256 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC

Page 26: tx69698_Apx

Ap

pen

dix 3 Steam

Tables

25748 295.6 6.88 265.1 912.7 1177.8 154 367.9 2.695 340.1 855.3 1195.450 297.7 6.68 267.2 911.2 1178.4 156 368.8 2.665 341.1 854.4 1195.552 299.7 6.50 269.3 909.6 1178.9 158 369.8 2.635 342.1 853.6 1195.754 301.7 6.32 271.3 908.2 1179.5 160 370.7 2.606 343.1 852.8 1195.956 303.6 6.14 273.3 906.7 1180.0 162 371.6 2.578 344.1 852.0 1196.158 305.5 5.98 275.2 905.3 1180.5 164 372.6 2.551 345.1 851.2 1196.360 307.3 5.83 277.1 903.9 1181.0 166 373.5 2.524 346.0 850.5 1196.562 309.1 5.69 279.0 902.5 1181.5 168 374.4 2.498 347.0 849.7 1196.764 310.9 5.56 280.8 901.2 1182.0 170 375.3 2.472 347.9 848.9 1196.866 312.6 5.43 282.6 999.8 1182.4 172 376.2 2.447 348.9 848.1 1197.068 314.4 5.30 284.4 998.5 1182.9 174 377.1 2.422 349.8 847.4 1197.270 316.0 5.18 286.1 897.2 1183.3 176 377.9 2.397 350.7 846.6 1197.372 317.7 5.07 287.8 895.9 1183.7 178 378.8 2.373 351.6 845.9 1197.574 319.3 4.97 289.5 894.6 1184.1

Source: Farrell (1979).

TX

69698_frame_A

px Page 257 Thursday, A

pril 4, 2002 3:54 PM

© 2002 by CRC Press LLC