u n c l a s s i f i e d la-ur-06-5159 short-pulse ion acceleration exceeding scaling laws from flat...

22
U N C L A S S I F I E D LA-UR-06-5159 acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser facility Kirk Flippo P-24, Los Alamos National Laboratory November 3 rd , 2006 FIW, Cambridge, MA

Upload: sydney-crawford

Post on 18-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

U N C L A S S I F I E D

LA-UR-06-5159

Short-pulse ion acceleration exceeding scaling

laws from flat foils and “Pizza-top Cone” targets at

the Trident laser facility

Kirk FlippoP-24, Los Alamos National Laboratory

November 3rd, 2006 FIW, Cambridge, MA

Page 2: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Colleagues and Collaborators

B. M. Hegelich, J. A. Cobble, J. C. Fernández, D. C. Gautier,

R. Johnson, J. Kline, S. Letzring, T. Shimada

P-24, LANL

Jörg SchreiberDepartment für Physik, Ludwig-Maximilians-Universität München

and Max-Planck-Institut für Quantenoptik, München, GERMANY

Marius SchollmeierDarmstadt University of Technology, Institute of Nuclear Physics

GSI, Darmstadt, GERMANY

B. Albright, M. J. Schmitt, L. YinX-1-PTA, LANL

G. Korgan, S. MalekosNanoJems

R. SchulzeMST-6, LANL

S. Gaillard, J. Rassuchine, M. Bakeman, N. Le Galloudec, T.E. Cowan,Nevada Terawatt Facility, University of Nevada, Reno

Ron PereaMST-7

Page 3: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Outline

• Intro and overview of acceleration mechanisms• TNSA and the Maxwellian spectra• Flat Cu target results• Pizza-top cone target results• Recent Scaling Laws and comparison with current best

scaling laws

Page 4: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Proton Acceleration Experiment Setup:Oblique View from 67-degrees to target parallel

67-degrees

Short Pulse

Protons

RCF

Target Rear-side Normal

Target

Top View

Target

RCFIon Beam

ShortPulse To

ThomsonParabolas

Holes for TP Access

RCF Plane

Rear-side Plane

Page 5: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Pre-p

ulse Pre-plasma

Pre-p

ulse

Brief Overview of Laser-Ion AccelerationTarget Normal Sheath Accelerations (TNSA)

E

p+e-

rear side p+

e-

targetsp

laser

front side p+Reflected

sp laser

Pre-plasma

target

refluxing e-

Reflected

sp laser

target

e-

e-

1 2

3

Preplasma Formation Hot e- Generation…

e-

… and hot e- RecirculationIon Acceleration

p+ p+

p+

Cold return current e-

p+CH &H2O

E

CH &H2O

E

p+

Page 6: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Vanadium Ablation Experiment:Actual Laser Heating Shot (no ablation, no Photoshop®)

~1 mm

1 cm

Page 7: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Laser accelerated ions typically exhibit a Maxwellian spectrum usually with a cuttoff

LULI, solid target, Hegelich et al., PRL 89 (2002)

RAL, gas targetWei et al., PRL 93 (2004)

LLNL, PW, solid targetSnavely et al., PRL 85 (2000)

LLNL, cluster targetDitmire et al., PRA 57 (1998)

MPQ, Ti:S solid target, Schneider, Hegelich et al., APB 79 (2004)

Jena, water droplet target, Karsch, Hegelich et al., PRL 91 (2003)

CUOS, solid targetMaksimchuk et al. PRL 84 4108 (2000)

Page 8: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Flat Copper Foil Target RCF up to 23.2 MeV I=1.1x1019 W/cm2,19.6 J, 670fs (expected ~13 MeV)

1.2 MeVBragg Peak = 22.5 MeV 23.2 MeV

HD RCF MD RCF

Beam decreases in size with higher proton energies

Page 9: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Flat Copper Foil Spectrum I=1.1x1019 W/cm2,19.6 J

0.1

1

10

100

0 5 10 15 20 25

Energy [MeV]

Ap

pro

xim

ate

Pro

ton

Nu

mb

er

[bil

lio

ns/

cm^

2]

.14 J in protons, ~.75% conversion efficiency

Page 10: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Typical Pizza-Top Cone Target

Dimensions and material information of a typical target. The target dimensions vary. The Critical Dimension is the inside converging apex and ranges from 4um to 20 um in diameter. The inner target surface may have an adhesive layer less than 200A. The area in between the gold, at the flat foil, may consist of SiO2.

Typical target angle at a cross section of ~50um. However, target angle becomes sharper as you approach the apex

Page 11: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Image from the rear side of the RCF stack with LANEX imaging plate showing beam > 35 MeV

Target holder

Cone

target

Proton BeamRCF stack with Lanex on back

Laser

Page 12: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Pizza-Top Cone Target Beam > 30 MeVI= 11019 W/cm2, 19 J, 605 fs

High energy beam diameter does not change as drastically with energy as in the flat foil case

1.2 MeVBragg Peak = 5 MeV 26.8 MeV

HD RCF CR-39HD RCF

22 - 25.6 MeV

HS RCF Lanex

30+ MeV

Page 13: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159Cut-off extrapolated from flat foils

Pizza-Top Cone Target Spectrum > 30 MeVI= 11019 W/cm2, 19 J, 605 fs

1

10

100

1000

0 5 10 15 20 25 30 35

Energy [MeV]

Pro

ton

Nu

mb

er [

bill

ion

s/cm

^2]

CR-39

Beam seen exiting RCF stack on LANEX was greater than 30 MeV

Scanner RCF imaging spectroscopy gives

~.5 J in protons measured, ~2.5% conversion eff. !

Page 14: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Proton energy from cones is dependent on the top to neck ratio

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

Top to Neck Diameter Ratio

Ma

xim

um

Pro

ton

En

erg

y [

MeV

] August Clean March Clean

Flat-tops andfootball-tops

+

+

26.8 MeV Flat Foil Maximum

Page 15: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Thinner targets improve the maximum energy of protons and the energy conversion efficiency of cones.

From J. Fuchs et al., Nature Physics 1, 199 (2005)

15 um Cone target

10

15 um Cu target

30

35

15 um Cone target

15 um Cu target

5 um Cu target

35 um Cu target

Trident: =600fs,I=11019 W/cm2

If analysis is done via the method in the paper

Page 16: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

The proton maximum energy and conversion efficiency correspond to over 3 times the measured intensities.

From J. Fuchs et al., Nature Physics 1, 199 (2005)

30

35

Cone target

Cu target

10

Cu target

Cone target

(laser= 320 fs for protons > 4 MeV)Trident: =600fs,I=11019 W/cm2

Page 17: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

For the measured pulse duration both the proton maximum and the energy conversion efficiency is enhanced.

From J. Fuchs et al., Nature Physics 1, 199 (2005)

Cu targetCone target

Cu target

Cone target

Trident: =600fs,I=11019 W/cm2

>3.5 times above model in energy

and almost 5 times in Intensity

Page 18: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Comparison between fluid-model predictions and previously published data of similar conditions

20-μm-thick targets and a 10 μm FWHM laser spot size.

Number of protons in a

1 MeV bin around 10 MeV

From J. Fuchs et al., Nature Physics 1, 199 (2005)

Cu target

Cone targetCu targetCone target

Page 19: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Conclusions

• Protons from flat foils have been recorded up to 26.8 MeV, which is severaltimes the energy for the thickness, > 3.5 times above scaling for a given pulse duration, and scaling as an experiment with 3 times the intensity on target.

• Protons from cone targets have been observedabove 30 MeV and extrapolated to >35 MeV, and much higher efficiency (~2x) and ~5 times the number than a flat foil!

• Above scaling law energies and efficiencies are due to improved laser condition monitoring, especially pre-pulse levels (contrast).

• Recent RCF calibration using Bragg-peak energies indicates the higher dE/dx for a given particle can lead to a greater OD.

• A different calibration would have a significant impact on the total conversion efficiency numbers due to a difference in total numbers

and Maxwellian temperatures.

Page 20: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Backup Slides

Page 21: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Proton Energy Dependence on Pulse Duration for Constant Intensities

y = 0.0106x1.1774

y = 0.3111x0.6455

y = 3E-07x2.7118

y = 0.0807x0.8213

0

5

10

15

20

25

30

500 550 600 650 700 750 800 850

Pulse Duration [fs]

Max

imu

m P

roto

n E

ner

gy

[MeV

]

Cu 1E19 Fe 1.1E19 Cu 8E18 Cu 9.5E18 Power (Cu 1E19)

Power (Fe 1.1E19) Power (Cu 8E18) Power (Cu 9.5E18)

Page 22: U N C L A S S I F I E D LA-UR-06-5159 Short-pulse ion acceleration exceeding scaling laws from flat foils and “Pizza-top Cone” targets at the Trident laser

LA-UR-06-5159

Flat Foil and Cone Spectra Show Different Temperature Behaviors

Spectra Au Cone and Cu Flat Foil

y = 2E+10e-0.2269x

R2 = 0.9971

y = 3E+09e-0.0955x

R2 = 0.9898

y = 5E+09e-0.2052x

R2 = 0.9953

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0 5 10 15 20 25 30

Energy [MeV]

Nu

mb

er/M

eV

18582 Au Cone Low Temp Cone High Temp Cone

18497 Cu Foil Low Temp Foil High Temp Foil

Expon. (Low Temp Cone) Expon. (High Temp Cone) Expon. (High Temp Foil)