uang - columns with high axial and drift demand.pdf

258
 STRUCTURAL SYSTEMS RESEARCH PROJECT Report No. SSRP-06/22 CYCLIC BEHAVIOR OF STEEL COLUMNS WITH COMB INED HIGH  A XIAL L OA D A ND DRIFT DEMA ND by JAMES NEWELL CHIA-MING UANG Final Report to American Institute of Steel Co nstruction, Inc. December 2006 Department of Structural Engineering University of California, San Diego La Jolla, California 92093-0085

Upload: robox514

Post on 07-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 1/257

Page 2: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 2/257

 

University of California, San Diego

Department of Structural Engineering

Structural Systems Research Project

Report No. SSRP-06/22

Cyclic Behavior of Steel Columns with Combined

High Axial Load and Drift Demand

 by

James Newell

Graduate Student Researcher  

Chia-Ming Uang

Professor of Structural Engineering

Final Report to American Institute of Steel Construction, Inc.

Department of Structural Engineering

University of California, San Diego

La Jolla, California 92093-0085

December 2006

Page 3: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 3/257

 

i

ABSTRACT

 Nonlinear time-history analysis of steel braced frames, especially buckling-

restrained braced frames (BRBF), subjected to earthquake ground motions has revealed

that columns in the bottom stories are often subjected to combined high axial load and

inelastic rotation demand resulting from story drift. The reliability of column members

under this reversing high axial loads and drift demand has not been previously

experimentally verified. To provide a basis for performance evaluation of columns under

high axial load and drift demand, nine W14 section column specimens have been

subjected to laboratory and analytical investigation.

Since a loading protocol for column testing did not exist, the first phase of this

 project consisted of development of a statistically based loading sequence for braced

frame column testing. 3-story and 7-story BRBF prototype building models were

designed and analyzed. Nonlinear time-history analysis of frame models, subjected to a

suite of 20 properly scaled earthquake ground motions, was conducted. Time histories of

first-story drift ratio for the 20 records were processed using a rainflow cycle counting

 procedure. Statistical analysis was used to quantify maximum and cumulative story drift

and maximum column axial load demand for development of a reasonable loading

sequence for experimental testing. The first step in the developed loading protocolconsisted of imposing a compressive axial load offset of 0.15Pn to simulate gravity load.

Then in-phase, increasing amplitude cyclic axial load and story drift were applied.

The experimental program consisted of cyclic testing nine full-scale fixed-base

columns. ASTM A992 steel wide-flange sections typical of braced frame columns,

representing a practical range of flange and web width-to-thickness ratios, and 15 ft story

height were subjected to different levels of axial force demand (35%, 55%, and 75% of

column yield strength) combined with story drift demand of up to 10% for these

simulated first-story columns. Column specimens were tested at the University of

California, San Diego (UCSD) Seismic Response Modification Device (SRMD) Test

Facility.

The test data agreed well with the established P-M   interaction surface.

Significant overstrength was observed between the test data and the P-M   interaction

Page 4: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 4/257

 

ii

surface based on nominal material properties. Specimens achieved drift capacities of 7%

to 9%, corresponding to a ductility of approximately 10. These drift capacities were

calculated assuming a 10% reduction from peak moment resistance was used to define

the drift capacity. These drift capacities were more than four times the expected BRBF

story drift from earthquake nonlinear time-history analysis. For all specimens only minor

yielding was observed at a story drift of 1.5%, the maximum expected drift from

nonlinear time-history analysis. Flange local buckling was observed for all specimens

with the exception of Specimen W14×370-35. No web local buckling was observed.

The relatively small amplitude of flange local buckling observed at 6% drift (more than

three times the maximum expected drift) provided an indication that strength degradation

due to flange local buckling is not expected to present a problem for the seismic design of

the tested W14 column sections.

The finite element program ABAQUS was used to model the steel column

specimens. Models predicted global behavior, yielding, and strength degradation

resulting from local buckling at large drifts. Models were subjected to both monotonic

and cyclic loading sequences. Analysis results were observed to be well correlated with

experimental results. It was determined that a typical initial residual stress distribution

did not significantly effect the P-M   interaction or moment versus drift response. The

 behavior of deep columns with higher width/thickness ratios than the tested W14 sections

was also investigated. Models of W27 deep column sections showed significant strength

degradation due to flange and web local buckling.

Page 5: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 5/257

Page 6: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 6/257

 

iv

TABLE OF CONTENTS

ABSTRACT........................................................................................................................ i 

ACKNOWLEDGEMENTS ............................................................................................ iii 

TABLE OF CONTENTS ................................................................................................ iv 

LIST OF FIGURES ........................................................................................................ vii 

LIST OF TABLES ........................................................................................................... xi 

LIST OF SYMBOLS ...................................................................................................... xii 

1.  INTRODUCTION....................................................................................................... 1 

1.1 General................................................................................................................... 1

1.2 Scope and Objectives............................................................................................. 1

2.  LOADING PROTOCOL DEVELOPMENT............................................................ 2 

2.1 General................................................................................................................... 2

2.2 Buildings for Column Demand Study ................................................................... 2

2.3 Buckling-Restrained Braced Frame Models.......................................................... 2

2.3.1 Geometry .................................................................................................... 2

2.3.2 Modeling Technique................................................................................... 3

2.3.3 Modal and Pushover Analyses ................................................................... 3

2.4 Time-History Analysis .......................................................................................... 4

2.4.1 Earthquake Records .................................................................................... 4

2.4.2 Analysis and Data Reduction ..................................................................... 5

2.5 Column Demands .................................................................................................. 5

2.5.1 Story Drift Demand Parameters ................................................................. 5

2.5.2 Demand from Time-History Analysis ........................................................ 7

2.6 Proposed Braced Frame Column Testing Protocol ............................................... 7

3.  TESTING PROGRAM............................................................................................. 38 3.1 General................................................................................................................. 38

3.2 Test Setup ............................................................................................................ 38

3.3 Test Specimens .................................................................................................... 38

3.4 Material Properties .............................................................................................. 39

3.5 Instrumentation.................................................................................................... 40

Page 7: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 7/257

 

v

3.6 Loading History................................................................................................... 40

3.7 Axial Load-Moment Interaction Surface............................................................. 42

3.8 Drift Capacity ...................................................................................................... 42

4.  TEST RESULTS ....................................................................................................... 58 

4.1 Introduction ......................................................................................................... 58

4.2 Specimen W14×132-35 ....................................................................................... 58

4.2.1 General...................................................................................................... 58

4.2.2 Observed Performance ............................................................................. 59

4.2.3 Recorded Response................................................................................... 59

4.3 Specimen W14×132-55 ....................................................................................... 59

4.3.1 Observed Performance ............................................................................. 59

4.3.2 Recorded Response................................................................................... 60

4.4 Specimen W14×132-75 ....................................................................................... 60

4.4.1 Observed Performance ............................................................................. 60

4.4.2 Recorded Response................................................................................... 60

4.5 Specimen W14×176-35 ....................................................................................... 61

4.5.1 Observed Performance ............................................................................. 61

4.5.2 Recorded Response................................................................................... 61

4.6 Specimen W14×176-55 ....................................................................................... 61

4.6.1 Observed Performance ............................................................................. 61

4.6.2 Recorded Response................................................................................... 62

4.7 Specimen W14×176-75 ....................................................................................... 62

4.7.1 Observed Performance ............................................................................. 62

4.7.2 Recorded Response................................................................................... 62

4.8 Specimen W14×233-35 ....................................................................................... 63

4.8.1 Observed Performance ............................................................................. 63

4.8.2 Recorded Response................................................................................... 63

4.9 Specimen W14×233-55 ....................................................................................... 63

4.9.1 Observed Performance ............................................................................. 64

4.9.2 Recorded Response................................................................................... 64

Page 8: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 8/257

 

vi

4.10 Specimen W14×370-35 ....................................................................................... 64

4.10.1 Observed Performance ............................................................................. 64

4.10.2 Recorded Response................................................................................... 64

5.  COMPARISON OF EXPERIMENTAL RESULTS............................................ 134 

5.1 Flange Yielding ................................................................................................. 134

5.2 Local Buckling .................................................................................................. 134

5.3 P-M  Interaction and Moment versus Drift Response ........................................ 135

5.4 Drift Capacity .................................................................................................... 135

6.  ANALYTICAL STUDY OF TEST SPECIMENS ............................................... 150 

6.1 Modeling Techniques ........................................................................................ 150

6.2 Boundary Conditions and Column Geometry ................................................... 150

6.3 Material Properties ............................................................................................ 150

6.4 Loading Protocol and Computational Algorithm.............................................. 151

6.5 Effect of Residual Stresses ................................................................................ 151

6.6 Analysis Results of W14 Column Models ........................................................ 152

6.6.1 Monotonic Loading Sequence Results ................................................... 152

6.6.2 Comparison of Specimen and Model Results......................................... 152

6.6.3 Comparison of Results for Two Cyclic Loading Sequences .................. 153

6.7 Analysis Results of W27 Column Models ........................................................ 153

6.7.1 Monotonic Loading Sequence Results ................................................... 154

6.7.2 Cyclic Loading Sequence Results .......................................................... 154

7.  SUMMARY AND CONCLUSIONS...................................................................... 190 

7.1 Summary............................................................................................................ 190

7.2 Conclusions ....................................................................................................... 191

REFERENCES.............................................................................................................. 193 

APPENDIX A: Time-History Analysis Results.......................................................... 196 

APPENDIX B: Strain Gage Data ................................................................................ 215 

Page 9: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 9/257

 

vii

LIST OF FIGURES

Figure 2.1 Plan View ........................................................................................................ 13

Figure 2.2 Elevation of 3-Story BRBF Model.................................................................. 13Figure 2.3 Elevation of 7-Story BRBF Model.................................................................. 14

Figure 2.4 P-M Interaction Curve for Beam-Column Elements....................................... 15Figure 2.5 3-Story BRBF: Pushover Analysis Results ..................................................... 16

Figure 2.6 7-Story BRBF: Pushover Analysis Results ..................................................... 18

Figure 2.7 Acceleration Time Histories of Un-scaled Ground Motions........................... 20Figure 2.8 IBC Design Acceleration Response Spectrum (5% Damping) ....................... 22

Figure 2.9 Design Acceleration Response Spectra for 2% and 5% Damping .................. 22

Figure 2.10 3-Story BRBF: Scaled 2% Damped Acceleration Response Spectra ........... 23Figure 2.11 7-Story BRBF: Scaled 2% Damped Acceleration Response Spectra ........... 25

Figure 2.12 Average Scaled and Design Acceleration Response Spectra

(2% Damping) ............................................................................................... 27Figure 2.13 3-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles............... 28Figure 2.14 7-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles............... 30

Figure 2.15 3-Story BRBF: Story Drift Ratio Demand.................................................... 32

Figure 2.16 7-Story BRBF: Story Drift Ratio Demand.................................................... 33Figure 2.17 3-Story BRBF: Column Axial Load Demand ............................................... 34

Figure 2.18 7-Story BRBF: Column Axial Load Demand ............................................... 34

Figure 2.19 Elastic-Perfectly Plastic Column Axial Load versus Story Drift RatioRelationship................................................................................................... 35

Figure 2.20 Story Drift and Column Axial Loading Sequence (to 1.5% drift) ................ 36

Figure 2.21 Comparison of First-Story Drift Ratio CDFs................................................ 37

Figure 3.1 SRMD Test Facility......................................................................................... 47Figure 3.2 Specimen Details ............................................................................................. 48

Figure 3.3 Re-Usable Haunches ....................................................................................... 49

Figure 3.4 Re-Usable Haunch Details .............................................................................. 50Figure 3.5 Specimen Displacement Transducers.............................................................. 51

Figure 3.6 Specimen Strain Gages and Rosettes .............................................................. 51

Figure 3.7 Bilinear Column Axial Load versus Story Drift Ratio Relationship............... 52Figure 3.8 Specimen W14×132-35: Loading Sequence ................................................... 53

Figure 3.9 Specimen W14×176-35: Loading Sequence ................................................... 54

Figure 3.10 Sequence for Loading Scheme C (2% Drift and Beyond) ............................ 55Figure 3.11 Specimen W14×132-75: 4% Drift Cycle ...................................................... 56

Figure 3.12 P-M Interaction Curve for Column Specimens ............................................. 57Figure 3.13 Target Point End Moment versus Drift Response......................................... 57

Figure 4.1 Specimen W14×132-35: Yielding Pattern....................................................... 67Figure 4.2 Specimen W14×132-35: Flange Local Buckling (West End)......................... 68

Figure 4.3 Specimen W14×132-35: Overall Deformed Configuration ............................ 69

Figure 4.4 Specimen W14×132-35: P-M Interaction ....................................................... 70Figure 4.5 Specimen W14×132-35: End Moment versus Drift Response ....................... 70

Figure 4.6 Specimen W14×132-35: Force-Displacement Response ................................ 71

Page 10: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 10/257

 

viii

Figure 4.7 Specimen W14×132-55: Yielding Pattern....................................................... 72

Figure 4.8 Specimen W14×132-55: Flange Local Buckling (West End)......................... 74Figure 4.9 Specimen W14×132-55: Overall Deformed Configuration ............................ 75

Figure 4.10 Specimen W14×132-55: P-M Interaction ..................................................... 76

Figure 4.11 Specimen W14×132-55: End Moment versus Drift Response ..................... 76

Figure 4.12 Specimen W14×132-55: Force-Displacement Response .............................. 77Figure 4.13 Specimen W14×132-75: Yielding Pattern..................................................... 78

Figure 4.14 Specimen W14×132-75: Flange Local Buckling (West End)....................... 80

Figure 4.15 Specimen W14×132-75: Overall Deformed Configuration .......................... 81Figure 4.16 Specimen W14×132-75: Column Fracture (10% Drift)................................ 83

Figure 4.17 Specimen W14×132-75: P-M Interaction ..................................................... 84

Figure 4.18 Specimen W14×132-75: P-M  Interaction (Target Points) ............................ 84Figure 4.19 Specimen W14×132-75: End Moment versus Drift Response ..................... 85

Figure 4.20 Specimen W14×132-75: Compression Side Target Points End Moment

versus Drift Response.................................................................................... 85

Figure 4.21 Specimen W14×132-75: Force-Displacement Response .............................. 86

Figure 4.22 Specimen W14×176-35: Yielding Pattern..................................................... 87Figure 4.23 Specimen W14×176-35: Flange Local Buckling (West End)....................... 89

Figure 4.24 Specimen W14×176-35: Overall Deformed Configuration .......................... 90Figure 4.25 Specimen W14×176-35: Partial Column Flange Fracture (10% Drift)......... 92

Figure 4.26 Specimen W14×176-35: P-M Interaction ..................................................... 93

Figure 4.27 Specimen W14×176-35: End Moment versus Drift Response ..................... 93Figure 4.28 Specimen W14×176-35: Force-Displacement Response .............................. 94

Figure 4.29 Specimen W14×176-55: Yielding Pattern..................................................... 95

Figure 4.30 Specimen W14×176-55: Flange Local Buckling (West End)....................... 97Figure 4.31 Specimen W14×176-55: Overall Deformed Configuration .......................... 98

Figure 4.32 Specimen W14×176-55: Column Fracture (10% Drift).............................. 100Figure 4.33 Specimen W14×176-55: P-M Interaction ................................................... 101

Figure 4.34 Specimen W14×176-55: P-M  Interaction (Target Points) .......................... 101

Figure 4.35 Specimen W14×176-55: End Moment versus Drift Response ................... 102

Figure 4.36 Specimen W14×176-55: Compression Side Target Points End Momentversus Drift Response.................................................................................. 102

Figure 4.37 Specimen W14×176-55: Force-Displacement Response ............................ 103

Figure 4.38 Specimen W14×176-75: Yielding Pattern................................................... 104Figure 4.39 Specimen W14×176-75: Flange Local Buckling (West End)..................... 106

Figure 4.40 Specimen W14×176-75: Overall Deformed Configuration ........................ 107

Figure 4.41 Specimen W14×176-75: Column Fracture (10% Drift).............................. 109Figure 4.42 Specimen W14×176-75: P-M Interaction ................................................... 110

Figure 4.43 Specimen W14×176-75: P-M  Interaction (Target Points) .......................... 110

Figure 4.44 Specimen W14×176-75: End Moment versus Drift Response ................... 111Figure 4.45 Specimen W14×176-75: Compression Side Target Points End Moment

versus Drift Response.................................................................................. 111

Figure 4.46 Specimen W14×176-75: Force-Displacement Response ............................ 112

Figure 4.47 Specimen W14×233-35: Yielding Pattern................................................... 113Figure 4.48 Specimen W14×233-35: Flange Local Buckling (West End)..................... 115

Figure 4.49 Specimen W14×233-35: Overall Deformed Configuration ........................ 116

Page 11: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 11/257

 

ix

Figure 4.50 Specimen W14×233-35: Column-to-Base Plate Weld Fracture

(9% Drift) .................................................................................................... 118Figure 4.51 Specimen W14×233-35: P-M Interaction ................................................... 119

Figure 4.52 Specimen W14×233-35: P-M  Interaction (Target Points) .......................... 119

Figure 4.53 Specimen W14×233-35: End Moment versus Drift Response ................... 120

Figure 4.54 Specimen W14×233-35: Compression Side Target Points End Momentversus Drift Response.................................................................................. 120

Figure 4.55 Specimen W14×233-35: Force-Displacement Response ............................ 121

Figure 4.56 Specimen W14×233-55: Yielding Pattern................................................... 122Figure 4.57 Specimen W14×233-55: Flange Local Buckling (West End)..................... 124

Figure 4.58 Specimen W14×233-55: Overall Deformed Configuration ........................ 125

Figure 4.59 Specimen W14×233-55: P-M Interaction ................................................... 127Figure 4.60 Specimen W14×233-55: P-M  Interaction (Target Points) .......................... 127

Figure 4.61 Specimen W14×233-55: End Moment versus Drift Response ................... 128

Figure 4.62 Specimen W14×233-55: Compression Side Target Points End Moment

versus Drift Response.................................................................................. 128

Figure 4.63 Specimen W14×233-55: Force-Displacement Response ............................ 129Figure 4.64 Specimen W14×370-35: Before Testing..................................................... 130

Figure 4.65 Specimen W14×370-35: Yielding Pattern at 2% Drift................................ 130Figure 4.66 Specimen W14×370-35: Column-to-Base Plate Weld Fracture

(3% Drift) .................................................................................................... 131

Figure 4.67 Specimen W14×370-35: P-M Interaction ................................................... 132Figure 4.68 Specimen W14×370-35: End Moment versus Drift Response ................... 132

Figure 4.69 Specimen W14×370-35: Force-Displacement Response ............................ 133

Figure 5.1 Extent of Flange Yielding ............................................................................. 137Figure 5.2 Comparison of Flange Local Buckling at -6% Drift ..................................... 140

Figure 5.3 Comparison of Flange Local Buckling at -8% Drift ..................................... 141Figure 5.4 Specimen W14×132: Comparison of P-M  Interaction.................................. 142

Figure 5.5 Specimen W14×176: Comparison of P-M  Interaction.................................. 143

Figure 5.6 Specimen W14×233: Comparison of P-M  Interaction.................................. 144

Figure 5.7 Specimen W14×370-35: P-M Interaction ..................................................... 144Figure 5.8 Specimen W14×132: Comparison of End Moment versus Drift Response.. 145

Figure 5.9 Specimen W14×176: Comparison of End Moment versus Drift Response.. 146

Figure 5.10 Specimen W14×233: Comparison of End Moment versus DriftResponse...................................................................................................... 147

Figure 5.11 Specimen W14×370-35: End Moment versus Drift Response ................... 147

Figure 5.12 Comparison of Target Points End Moment versus Drift Response ............ 148Figure 6.1 Model Boundary Conditions and Geometry.................................................. 155

Figure 6.2 Cyclic Material Test Results (Kaufmann et al. 2001) ................................... 156

Figure 6.3 Residual Stress Distribution .......................................................................... 157Figure 6.4 Comparison of the W14×132 Models Monotonic End Moment versus

Drift Response with and without Residual Stresses ..................................... 158

Figure 6.5 Comparison of Model W14×132-75 Response with and without Residual

Stresses.......................................................................................................... 159Figure 6.6 Comparison of W14 Column Models Monotonic End Moment versus

Drift Response .............................................................................................. 160

Page 12: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 12/257

 

x

Figure 6.7 Model W14×132: Comparison of Specimen and Model P-M  Interaction .... 161

Figure 6.8 Model W14×176: Comparison of Specimen and Model P-M  Interaction .... 162Figure 6.9 Model W14×233: Comparison of Specimen and Model P-M  Interaction .... 163

Figure 6.10 Model W14×370-35: Comparison of Specimen and Model P-M  

Interaction.................................................................................................... 163

Figure 6.11 Model W14×132: Comparison of Specimen and Model End Momentversus Drift Response.................................................................................. 164

Figure 6.12 Model W14×176: Comparison of Specimen and Model End Moment

versus Drift Response.................................................................................. 165Figure 6.13 Model W14×233: Comparison of Specimen and Model End Moment

versus Drift Response.................................................................................. 166

Figure 6.14 Model W14×370-35: Comparison of Specimen and Model End Momentversus Drift Response.................................................................................. 166

Figure 6.15 Model W14×132: 5% Drift ......................................................................... 167

Figure 6.16 Model W14×176: 5% Drift ......................................................................... 168

Figure 6.17 Model W14×233: 5% Drift ......................................................................... 169

Figure 6.18 Model W14×370: 5% Drift ......................................................................... 170Figure 6.19 Model W14×132: Comparison of P-M  Interaction ..................................... 171

Figure 6.20 Model W14×176: Comparison of P-M  Interaction ..................................... 172Figure 6.21 Model W14×233: Comparison of P-M  Interaction ..................................... 173

Figure 6.22 Model W14×370: Comparison of P-M  Interaction ..................................... 174

Figure 6.23 Model W14×132: Comparison of End Moment versus Drift Response ..... 175Figure 6.24 Model W14×176: Comparison of End Moment versus Drift Response ..... 176

Figure 6.25 Model W14×233: Comparison of End Moment versus Drift Response ..... 177

Figure 6.26 Model W14×370: Comparison of End Moment versus Drift Response ..... 178

Figure 6.27 Comparison of Width-Thickness Ratios with λ ps for InvestigatedW-Shapes..................................................................................................... 179

Figure 6.28 Comparison of Deep Column Models Monotonic End Moment versusDrift Response............................................................................................. 180Figure 6.29 Model W27×146: Comparison of P-M  Interaction ..................................... 181

Figure 6.30 Model W27×194: Comparison of P-M  Interaction ..................................... 182

Figure 6.31 Model W27×281: Comparison of P-M  Interaction ..................................... 183

Figure 6.32 Model W27×146: Comparison of End Moment versus Drift Response ..... 184Figure 6.33 Model W27×194: Comparison of End Moment versus Drift Response ..... 185

Figure 6.34 Model W27×281: Comparison of End Moment versus Drift Response ..... 186

Figure 6.35 Model W27×146: 5% Drift ......................................................................... 187Figure 6.36 Model W27×194: 5% Drift ......................................................................... 188

Figure 6.37 Model W27×281: 5% Drift ......................................................................... 189

Page 13: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 13/257

 

xi

LIST OF TABLES

Table 2.1 Weights Used for Design and Analysis.............................................................. 9

Table 2.2 Predicted Natural Periods ................................................................................... 9Table 2.3 LMSR Ground Motion Records ....................................................................... 10

Table 2.4 Ground Motion Scaling Factors........................................................................ 11Table 2.5 Column Story Drift Demand............................................................................. 11

Table 2.6 Column Axial Load Demand............................................................................ 12

Table 2.7 Proposed Story Drift Ratio Loading Sequence................................................. 12Table 3.1 Test Matrix........................................................................................................ 44

Table 3.2 Steel Mechanical Properties.............................................................................. 44

Table 3.3 Test Sequence and Loading Scheme ................................................................ 45Table 3.4 Loading Scheme A: Story Drift Ratio Loading Sequence................................ 45

Table 3.5 Loading Schemes B and C: Story Drift Ratio Loading Sequence.................... 46

Table 4.1 Testing Summary.............................................................................................. 66Table 5.1 Drift Capacity ................................................................................................. 137

Page 14: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 14/257

 

xii

LIST OF SYMBOLS

 Asc  Area of Buckling-Restrained Brace steel core

 D  Dead load

 E   Modulus of elasticity

 H   Column clear length

 I  x  Moment of inertia about the x-axis

K   Initial stiffness

 L  Live load

 M   Moment

 M  p  Plastic moment M  pa  Actual plastic moment of the column

 M  pn  Nominal plastic moment of the column

P  Axial load

PG  Axial load from gravity load

P L  Longitudinal force from SRMD

Pn  Nominal axial strength

PS   Axial load from seismic load

PT   Target column compressive axial load

P y  Yield strength

P yn  Nominal yield strength

P ya  Actual yield strength

P yc  Compressive yield strength

P yt   Tensile yield strength

S a  Site-specific MCE spectral response acceleration

S  D1  5% damped design spectral response acceleration parameter at a period of 1 sec.

S  DS   5% damped design spectral response acceleration parameter at short periods

T   Fundamental period of the building

T 0  =0.2 S  D1/S  DS  

T 1  First mode period of vibration

Page 15: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 15/257

 

xiii

T 2  Second mode period of vibration

T a  Approximate fundamental period of the building

T S   =S  D1/S  DS

V   Lateral force from SRMD

b f   Flange width

d c  Column depth

h  Clear distance between flanges less the fillet or corner radius for rolled shapes

hn  Height above base to uppermost level of building

t  f   Flange thickness

t w  Web thickness

Δ  Lateral displacement from SRMD

θy  Yield rotation

λps  Limiting slenderness parameter for compact element

Page 16: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 16/257

 

1

1.  INTRODUCTION 

1.1  General

Use of buckling-restrained braced frames (BRBFs) as a seismic force resisting

system is gaining increased popularity among the U.S. structural engineering community.

It is anticipated this trend will continue as the 2005 AISC  Seismic Provisions for

Structural Steel Buildings, and U.S. model building codes adopt this system.

Experimental testing has shown stable hysteretic behavior of individual buckling-

restrained braces (BRBs) tested in a uniaxial and subassembly configuration (Wantanabe

et al. 1988, Wantanabe 1992, Aiken et al. 2000, Black et al. 2002, Merritt et al. 2003a,

2003b, 2003c, Uang and Nakashima 2004, Newell et al. 2005, 2006).

 Nonlinear static and time-history analysis of BRBFs conducted for research

 purposes and design validation has revealed columns in BRBFs are subjected to high

axial loads combined with large drift demand. BRBF models typically employ fixed-

 base columns and rigid beam-column joints where BRBs frame in with gusset plate

connections. Analysis results have shown expected maximum story drift ratios of about

2% (Sabelli 2001). This level of drift results in inelastic rotational demand combined

with high axial force demand at column bases and often at intermediate stories. Columns

in concentrically braced frames and eccentrically braced frames are also subjected to

inelastic rotational demand and high axial forces. The reliability of columns under this

level of combined loading has not been experimentally validated.

1.2  Scope and Objectives

To provide the basis for performance evaluation of columns in braced frames

subjected to reversing high axial loads combined with high drift demand, the objectives

of this research are to: (1) develop a statistically based loading sequence for experimental

testing beam-columns, (2) cyclically test nine full-scale W14 wide-flange section

columns subjected to reversed, increasing amplitude axial load and drift demand, and (3)

 perform additional parametric studies using finite element analysis to extrapolate test

results to columns that were beyond the scope of experimental testing.

Page 17: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 17/257

 

2

2. LOADING PROTOCOL DEVELOPMENT

2.1  General

To develop a rational, statistically based loading sequence for braced frame

column testing, 3-story and 7-story BRBF prototype building models were designed and

analyzed. Nonlinear time-history analysis of frame models, subjected to a suite of 20

earthquake ground motions, was conducted. Time-histories of first-story drift ratio for

the 20 records were processed using a rainflow cycle counting procedure. Statistical

analysis was used to quantify maximum and cumulative story drift as well as maximum

column axial load demand for development of a loading sequence for experimental

testing.

2.2  Buildings for Column Demand Study

A 3-story and 7-story prototype buckling-restrained braced frame building,

designed for a typical Los Angeles site, were used for loading protocol development.

The 7-story building was a design example from Steel TIPS   (Lopez and Sabelli 2004).

Figure 2.1 shows a plan view and dimensions of the 7-story buildings. BRBFs in the

north-south direction (2 braced bays per floor) were modeled as part of this study.

Gravity loads used in the design of both the 3-story and 7-story buildings are given in

Table 2.1. The 3-story building was specifically design for this study using the same plan

dimensions and gravity loading as the 7-story Steel Tips building, except that the 3-story

design used 10 psf partition load, whereas the 7-story design used 20 psf. Elevation

views, dimensions, and member sizes for the two frames are provided in Figures 2.2 and

2.3.

2.3  Buckling-Restrained Braced Frame Models

2.3.1 

Geometry

Models of the 3-story and 7-story BRBF were developed and analyzed with the

nonlinear structural analysis program DRAIN-2DX (Prakash et al. 1992). Beam and

column centerline dimensions were used to define model geometry. Beam-column

connections with buckling-restrained braces (BRBs) framing in were modeled as fixed

Page 18: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 18/257

 

3

connections to account for rigidity provided by the gusset plate connections. Panel zones

were not modeled explicitly and panel zone deformations were neglected.

2.3.2  Modeling Technique

Beams and columns were modeled with inelastic beam-column elements. The

axial force-moment yield surface for the beam-column elements is shown in Figure 2.4.

A yield stress of 55 ksi and a post-yield stiffness equal to 5% of the elastic stiffness were

used for all beam and column members.

BRBs were modeled with inelastic truss elements. It is common to specify a

 brace core plate yield stress of 42 ksi (±4 ksi) based on project specific tensile coupon

testing (Lopez and Sabelli 2004). A brace tensile yield stress of 42 ksi was therefore

used in the model. The compressive yield stress was 110% of the tensile yield stress, and

the post-yield stiffness equal to 3% of the elastic stiffness, as is typical of BRB

component test results (Black et al. 2002).

Gravity loads used in the models are given in Table 2.1. The gravity load

combination of 1.2 D + 0.5 L per International Building Code (ICC 2006) was applied to

the model frames during the static pushover and time-history analyses. Gravity loads for

the half of the structure associated with each frame, but not directly acting on it, were

applied to a P-delta column (see Figures 2.2 and 2.3). Rayleigh damping (mass and

stiffness proportional damping) was used for all elements. Damping coefficients were

 based on 2% damping in the first and second modes for each frame.

2.3.3  Modal and Pushover Analyses

Fundamental natural periods determined from eigenvalue analysis of both model

frames are given in Table 2.2. Also provided are the approximate first mode periods

calculated using the empirical formula [Equation 12.8-7 in  Minimum Design Loads for

 Buildings and Other Structures (SEI-ASCE 2005)].

A pushover analysis was performed for both model frames. The base shear was

distributed over the height of the building as specified in the International Building Code.

Figure 2.5(a and b) shows the base shear versus roof drift relationship and sequence of

yielding for the 3-story BRBF. A plot of column axial load versus story drift ratio is

Page 19: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 19/257

 

4

 provided in Figure 2.5(c). Note that the column gravity load offset was equal to 0.12Pn,

where Pn  equals the nominal axial compression strength. Figure 2.5(d) shows the axial

load-moment (P-M ) interaction curve for the first-story column base up to the point

where the yield surface was reached at 2.5% first-story drift ratio. Figure 2.6 provides

similar plots for the 7-story BRBF pushover analysis. The P-M interaction curve [Figure

2.6(d)] is shown up to 2.2% first-story drift ratio when the yield surface was reached.

Column gravity load offset in this case was equal to 0.13Pn. In both cases the column

axial load versus story drift ratio shows an essentially bi-linear relationship similar to

BRB demand.

2.4  Time-History Analysis

2.4.1 

Earthquake Records

A suite of twenty large magnitude, small distance (LMSR) Los Angeles ground

motion records were used for loading protocol development. These records have been

used recently for other loading sequence studies (Krawinkler et al. 2003, Medina 2003,

Richards and Uang 2003). The ground motion records are herein referred to as P01 to

P20. Table 2.3 provides information on the event, source, peak ground acceleration, and

duration of each record. Un-scaled acceleration time-histories are shown in Figure 2.7.

The typical LA site acceleration response spectrum for 5% damping, with S  DS 

 =

0.64 and S  D1 = 1.1 (see Figure 2.8), was adjusted to a 2% damping spectrum using the

scaling procedure in FEMA 356 (FEMA 2000). The 5% damping spectrum values were

divided by 0.8 to obtain the 2% damping spectrum. Both the 2% and 5% damping

acceleration response spectra are shown in Figure 2.9.

Scale factors for the earthquake records were calculated to set the 2% damping

spectral acceleration of each record equal to the 2% damping design spectral acceleration,

at the fundamental natural period of each frame. Each ground motion record was scaled

differently for each frame. Scale factors are provided in Table 2.4. Figures 2.10 and 2.11

show the response spectra for the scaled records along with the design spectrum. The

vertical lines on these plots indicate the fundamental natural period of the frames. Figure

2.12 shows the average response spectra for the scaled earthquake records along with the

design spectrum.

Page 20: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 20/257

 

5

2.4.2  Analysis and Data Reduction

Both model frames were subjected to each of the 20 specifically scaled ground

motion records. Story drift ratio (SDR), column, and BRB time-history responses were

extracted from the analysis results. Typical results are provided in Appendix A for the 3-

story BRBF subjected to records P09 and P14 and the 7-story BRBF for records P08 and

P19. The figures show story drift ratio, first-story column axial load, and end moment

time-histories along with the axial load-moment (P-M ) interaction for one first-story

column and BRB hysteretic response for each brace.

For loading protocol development, story drift ratio time-histories were converted

into series of cycles using a simplified rainflow cycle counting procedure (Krawinkler et

al. 2001, Ricahrds and Uang 2003). This process resulted in symmetric cycles defined by

their range  (change in peak-to-peak values from time-history) and ordered with

decreasing range. Figures 2.13 and 2.14 provide story drift ratio rainflow cycle counting

results for both frames and each of the 20 ground motions.

2.5  Column Demands

2.5.1  Story Drift Demand Parameters

The moment frame connection loading protocol in the AISC Seismic Provisions 

(2005) is an interstory drift angle based sequence. Similarly, the eccentrically braced

frame (EBF) link-to-column connection protocol is a link rotation angle based sequence.

Unlike the moment frame and EBF loading protocols, for testing of columns under high

axial load and drift demand a dual parameter (i.e., axial load and story drift ratio) loading

sequence is required. The development of this braced frame column testing protocol

follows the same basic framework as was used in development of the steel moment frame

connection loading sequence (Krawinkler et al. 2000) and the EBF link-to-column

connection loading sequence (Richards and Uang 2003).

 Number of Significant Cycles

The majority of story drift cycles that a column experiences during an earthquake

are very small and do not significantly contribute to cumulative damage. But for almost

all excursions greater than the yield drift, column axial load is close to its maximum

Page 21: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 21/257

 

6

value. Thus, large elastic cycles and inelastic cycles need to be considered in loading

 protocol development. Cycles with ranges greater than one-half of the elastic range are

considered to be damaging (Krawinkler et al. 2000). Columns are expected to remain

elastic for all but a few excursions during even a significant earthquake. A loading

sequence developed based on cycles greater than one-half the elastic range of the column

would be unrealistically short. Demand on braced frame columns is directly related to

demand imposed by the braces, which in the case of BRBs, are expected to undergo

moderate inelastic deformation during a significant earthquake. The range of significant

(damaging) story drift ratio cycles has been selected to correspond to one-half that

expected at yield of the prototype building BRBs. A typical BRB axial yield

displacement of 0.25 in. (Newell et al. 2005) would correspond to a story drift ratio at

yield of 0.002 rad. for the prototype frames (chevron bracing configuration and brace

inclination angle, θ, equal to about 45°). The elastic range  (defined as peak-to-peak

response) is, therefore, 0.004 rad. and one-half this range is 0.002 rad. Story drift ratio

cycles with a range greater than 0.002 rad. are considered to be significant.

 Number of “Large” Cycles

Large story drift ratio cycles are considered to be those with a range greater than

0.005 rad. These cycles contribute the most to column damage.

Cumulative RangeDamage to steel members under cyclic loading is assumed to be described by a

cumulative damage model (Krawinkler 1996). Therefore, the sum of significant cycle

ranges is an important measure of cumulative demand and, combined with experimental

results, can provide an indication of when failure of a particular member may occur.

 Maximum Drift Range and Maximum Drift

The maximum drift range is the largest symmetric cycle coming from the rainflow

counting procedure (first cycle in the ordered cycles). The maximum drift is the largest

excursion from the time-history results. This maximum drift should correspond to the

 point in the developed loading protocol where the cumulative demand is reached . 

Page 22: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 22/257

 

7

2.5.2  Demand from Time-History Analysis

Story drift ratio demand parameters for the 3-story BRBF under each ground

motion record are shown in Figure 2.15. Story drift ratio demand parameters for the 7-

story BRBF are shown in Figure 2.16. Column axial load demands for the 3-story and 7

story BRBFs are shown in Figures 2.17 and 2.18, respectively. Note that the axial load

shown is a combination of gravity and seismic loads. Percentile values of demand

 parameters, shown in part (b) of Figures 2.15 to 2.18, are based on a lognormal

distribution fit to the data shown in the corresponding part (a) figure. For loading

 protocol development, the number of significant cycles should be represented on average,

so 50th percentile values are of interest. All other demand parameters should be

represented conservatively in a loading protocol, so 90th percentile values are of interest

(Krawinkler et al. 2000). Tables 2.5 and 2.6 summarize story drift ratio and column axial

load demand parameters for the 3-story and 7-story frames. The 90th  percentile values of

column compressive axial load indicate that the target loads (e.g., 0.35P y, 0.55P y, 0.75P y)

for this project were within a reasonable range.

2.6  Proposed Braced Frame Column Testing Protocol

A proposed loading sequence for braced frame columns subject to combined axial

load and story drift ratio demand was developed, based on the results of the time-history

analysis described above. The protocol is prescribed in terms of story drift ratio (see

Table 2.7). Note that the initial step in the experimental protocol is application of gravity

(compressive) load.

It was observed from the time history analysis that for all excursions larger than

the yield drift the column axial load approached a constant maximum value. Therefore,

column axial loads for the testing protocol were determined based on the elastic-perfectly

 plastic column axial load versus story drift ratio relationship shown in Figure 2.19.

Calculation of column axial loads at the protocol drift levels are based on reaching the

target column compressive axial load, PT , (e.g., 0.35P y, 0.55P y, 0.75P y) at 0.002 rad. story

drift ratio (yield drift) and axial loads for all excursions larger than the yield drift were

equal to the maximum level for that specimen. The story drift and column axial load

were in phase (see Figure 2.20) to represent realistic frame action.

Page 23: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 23/257

 

8

Figure 2.21 shows the cumulative density functions (CDFs) from the first-story

column drift cycle data and discrete CDFs for the proposed loading sequence. The CDF

indicates the percentage of cycles having a range less than some given range. The

 protocol CDFs are below the analysis data CDFs, indicating that the protocol is

conservative and contains a greater percentage of large amplitude cycles as compared

with the data.

Page 24: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 24/257

 

9

Table 2.1 Weights Used for Design and Analysis

(a) Roof Weights

Element Loading (psf)

Roofing and Insulation 7.0

Steel and Concrete Deck 47.0Steel Framing and Fireproofing 8.0

Ceiling 3.0

Mechanical/Electrical 2.0

Curtain Wall 15.0

(b) Floor Weights

Element Loading (psf)

Steel and Concrete Deck 47.0

Steel Framing and Fireproofing 8.0

Partition Walls 10.0a, 20.0

 b 

Ceiling 3.0Mechanical/Electrical 2.0

Curtain Wall 15.0a3-Story b7-Story (Lopez and Sabelli 2004) 

Table 2.2 Predicted Natural Periods

Frame T1 (sec.) T2 (sec.)

3-Story BRBF 0.510 (0.300)a  0.207

7-Story BRBF 0.909 (0.550) 0.328aValues in parentheses calculated using Ta=(0.02)hn

3/4  per

ASCE 7-05

Page 25: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 25/257

Page 26: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 26/257

 

11

Table 2.4 Ground Motion Scaling Factors

Scaling Factor Name

3-Story BRBF 7-Story BRBF

P01 2.940 2.899

P02 1.253 2.303

P03 1.461 2.166

P04 1.195 2.182

P05 2.313 5.715

P06 1.649 1.160

P07 1.154 0.930

P08 2.707 2.723

P09 1.490 1.052

P10 2.686 2.782

P11 1.304 2.798

P12 2.630 11.603

P13 1.914 3.869P14 3.036 6.873

P15 1.699 2.105

P16 2.875 3.835

P17 3.743 4.238

P18 2.120 1.776

P19 1.691 5.028

P20 2.593 2.642

Table 2.5 Column Story Drift Demand

(a) 3-Story BRBF

Story Drift RatioParameter

Analysis Protocol

 Number of Significant Cycles 31 36

 Number of Large Cycles 11 18

Cumulative Demand 0.22 rad. 0.28 rad.

Maximum Cycle Range 0.023 rad. 0.03 rad.

Maximum Cycle 0.015 rad. 0.015 rad.

(b) 7-Story BRBF

Story Drift RatioParameter

Analysis Protocol

 Number of Significant Cycles 28 36

 Number of Large Cycles 18 18

Cumulative Demand 0.20 rad. 0.28 rad.

Maximum Cycle Range 0.021 rad. 0.03 rad.

Maximum Cycle 0.013 rad. 0.015 rad.

Page 27: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 27/257

 

12

Table 2.6 Column Axial Load Demand

(a) 3-Story BRBF

Column Axial Load

Tension CompressionParameter(kips) (P/Py) (kips) (P/Py)

Maximum 80.6 0.057 358 0.254

Minimum 23.0 0.016 326 0.231

Average 37.4 0.027 339 0.241

Standard Deviation 13.2 0.009 11.6 0.008

90th Percentile 52.1 0.037 354 0.251

(b) 7-Story BRBF

Column Axial Load

Tension CompressionParameter

(kips) (P/Py) (kips) (P/Py)

Maximum 856 0.276 1774 0.572

Minimum 1013 0.327 1624 0.524

Average 924 0.298 1691 0.546

Standard Deviation 40.7 0.013 39.4 0.013

90th Percentile 977 0.315 1742 0.562

Table 2.7 Proposed Story Drift Ratio Loading Sequence

LoadStep

Story DriftRatio

 Numberof Cycles

0Apply column axial

gravity load

1 0.001 6

2 0.0015 6

3 0.002 6

4 0.003 4

5 0.004 4

6 0.005 4

7 0.0075 2

8 0.01 2

9 0.015 2

10a  0.02 1

aContinue with increments in StoryDrift Ratio of 0.01, and perform one

cycle at each step

Page 28: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 28/257

 

13

Buckling RestrainedBraced Frame

Braced FrameModeled

30 ft 3 @ 20 ft 30 ft

22.5 ft

30 ft

22.5 ft

1.3 ft1.3 ft

NORTH

 Figure 2.1 Plan View

P-delta

Column

2@ 11'-6"

14'

Pin Connection

30'

W12x50

W12x50

W12x50

   W   1   2  x   9   6

  A  s  c

   =   6 .  3  8    i  n

   ²

 A s c   =   5.  1  3

   i  n  ²

 A s c   =   3.  0  8   i  n  ²

 

Figure 2.2 Elevation of 3-Story BRBF Model

Page 29: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 29/257

 

14

6 @ 11'-6"

Pin Connection

30'

W16x50

W16x50

W16x50

W16x50

W16x50

W16x50

W16x50

4' (TYP.)

14'

   W   1   4  x   2   1   1

   W   1   4  x   1   4   5

   W   1   4  x   7   4

  A  s  c

   =   1  1 .  0

    i  n   ²

 A s c   =   1  0

.  5   i  n  ²

 A s c   = 

  9.  5   i  n  ²

 A s c   =   8.  5   i  n  ²

 A s c   =

   7.  0   i  n  ²

 A s c   =   5.  5   i  n  ²

 A s c   =   3.  0   i  n  ²

P-delta

Column

 

Figure 2.3 Elevation of 7-Story BRBF Model

Page 30: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 30/257

Page 31: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 31/257

 

16

0 1 2 3 4 5

0

100

200

300

400

500

600

   B  a  s  e   S   h  e  a  r   (   k   i  p  s   )

Roof Drift Ratio (%)

0.0

0.2

0.4

   B  a  s  e   S   h  e  a  r   R

  a   t   i  o

 (a) Pushover Response

1

2

3

5

4

6

78 

(b) Sequence of Yielding

Figure 2.5 3-Story BRBF: Pushover Analysis Results

87

6

1-34-5

Design SeismicBase Shear

Page 32: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 32/257

 

17

-4 -2 0 2 4

-0.4

-0.2

0.0

0.2

0.4

Story Drift Ratio (%)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-5 0 5

Story Drift (in.)

-600

-400

-200

0

200

400

600

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

 (c) First-Story Column Axial Load versus Story Drift Ratio

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-1500

-1000

-500

0

500

1000

1500

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

 (d) First-Story Column Axial Load-Moment Interaction

Figure 2.5 3-Story BRBF: Pushover Analysis Results (cont.)

Page 33: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 33/257

 

18

0 1 2 3 4 5

0

200

400

600

800

1000

1200

   B  a  s  e   S   h  e  a  r   (   k   i  p  s   )

Roof Drift Ratio (%)

0.0

0.2

0.4

   B  a  s  e   S   h  e  a  r   R

  a   t   i  o

 (a) Pushover Response

2

2

1

2

2

2

69

1

1

3

4

5

8

7

10

 

(b) Sequence of Yielding

Figure 2.6 7-Story BRBF: Pushover Analysis Results

10

1-9

Design SeismicBase Shear

Page 34: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 34/257

 

19

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

Story Drift Ratio (%)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-5 0 5

Story Drift (in.)

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

 (c) First-Story Column Axial Load versus Story Drift Ratio

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

 (d) First-Story Column Axial Load-Moment Interaction

Figure 2.6 7-Story BRBF: Pushover Analysis Results (cont.)

Page 35: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 35/257

 

20

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P01 PGA = 0.17g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P02 PGA = 0.44g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P03 PGA = 0.37g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P04 PGA = 0.21g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P05 PGA = 0.23g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P06 PGA = 0.25g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P07 PGA = 0.28g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P08 PGA = 0.21g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P09 PGA = 0.42g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P10 PGA = 0.27g

 Figure 2.7 Acceleration Time Histories of Un-scaled Ground Motions

Page 36: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 36/257

 

21

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P11 PGA = 0.24g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P12 PGA = 0.21g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P13 PGA = 0.23g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P14 PGA = 0.16g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P15 PGA = 0.37g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P16 PGA = 0.17g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P17 PGA = 0.16g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P18 PGA = 0.36g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P19 PGA = 0.19g

0 10 20 30 40-0.5

0.0

0.5

Time (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   ) Record P20 PGA = 0.17g

 Figure 2.7 Acceleration Time Histories of Un-scaled Ground Motions (cont.)

Page 37: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 37/257

 

22

Figure 2.8 IBC Design Acceleration Response Spectrum (5% Damping)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

 Figure 2.9 Design Acceleration Response Spectra for 2% and 5% Damping

1.1/0.8 = 1.375

1.1

0.5820.116

(0.64/0.8)/T 

=0.8/T 

0.64/T

Typical LA Site Spectra for 5%Damping (Krawinkler, 2001)Spectra adjusted to 2% Damping

Sa = SD1/T

SDS

SD1

1.0 

TS = SD1/SDS 

T0 = 0.2SD1/SDS 

Period (sec.) 

   A  c  c  e   l  e  r  a   t   i  o  n

   (  g   )

 

Page 38: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 38/257

 

23

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P01

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P02

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P03

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P04

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P05

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P06

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P07

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P08

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P09

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P10

 

Figure 2.10 3-Story BRBF: Scaled 2% Damped Acceleration Response Spectra

Page 39: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 39/257

 

24

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P11

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P12

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P13

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P14

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P15

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P16

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P17

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P18

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P19

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P20

 

Figure 2.10 3-Story BRBF: Scaled 2% Damped Acceleration Response Spectra (cont.)

Page 40: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 40/257

 

25

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P01

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P02

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P03

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P04

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P05

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P06

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P07

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P08

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P09

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P10

 

Figure 2.11 7-Story BRBF: Scaled 2% Damped Acceleration Response Spectra

Page 41: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 41/257

 

26

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P11

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P12

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P13

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P14

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P15

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.01.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P16

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P17

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00.5

1.0

1.5

2.02.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P18

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P19

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.5

1.0

1.52.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n   (  g   )

Record P20

 

Figure 2.11 7-Story BRBF: Scaled 2% Damped Acceleration Response Spectra (cont.)

Page 42: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 42/257

 

27

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e   l  e  r  a   t   i  o  n

   (  g   )

 AverageDesign

 (a) 3-Story BRBF

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Period (sec.)

   A  c  c  e

   l  e  r  a   t   i  o  n   (  g   )

 AverageDesign

 (b) 7-Story BRBF

Figure 2.12 Average Scaled and Design Acceleration Response Spectra (2% Damping)

T1 

T1 

Page 43: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 43/257

 

28

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P01

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P02

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P03

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P04

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P05

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P06

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P07

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P08

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P09

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P10

 

Figure 2.13 3-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles

Page 44: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 44/257

 

29

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P11

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P12

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P13

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P14

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P15

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P16

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P17

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P18

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P19

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P20

 

Figure 2.13 3-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles (cont.)

Page 45: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 45/257

 

30

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P01

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P02

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P03

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P04

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P05

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P06

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P07

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P08

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P09

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P10

 

Figure 2.14 7-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles

Page 46: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 46/257

 

31

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P11

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P12

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P13

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P14

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P15

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P16

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P17

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P18

0 20 40 60 80 100-2

-1

0

1

2

Step

   S   D   R   (   %   )

Record P19

0 20 40 60 80 100-2

-1

01

2

Step

   S   D   R   (   %

   )Record P20

 

Figure 2.14 7-Story BRBF: First Story Drift Ratio Rainflow Counting Cycles (cont.)

Page 47: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 47/257

 

32

5 10 15 2040

60

80

100

120

Earthquake Record Number 

   N  u  m .  o   f   C  y  c   l  e  s

5 10 15 20

20

40

60

Earthquake Record Number 

   N  u  m .  o   f   S   i  g .   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   2   )

5 10 15 200

5

10

15

Earthquake Record Number    N  u  m .  o   f   L  a  r  g  e   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   5   )

5 10 15 200.0

0.1

0.2

0.3

Earthquake Record Number 

   C  u  m .   D  r   i   f   t

5 10 15 200.0

0.01

0.02

0.03

Earthquake Record Number 

   M  a  x .   D  r   i   f   t   R  a  n  g  e

5 10 15 200.0

0.01

0.02

0.03

Earthquake Record Number 

   M  a  x .   D  r   i   f   t

50 60 70 80 9040

60

80

100

120

Percentile

   N  u  m .  o   f   C  y  c   l  e  s

50 60 70 80 90

20

40

60

Percentile

   N  u  m .  o   f   S   i  g .   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   2   )

50 60 70 80 900

5

10

15

Percentile   N  u  m .  o   f   L  a  r  g  e   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   5   )

50 60 70 80 900.0

0.1

0.2

0.3

Percentile

   C  u  m .   D  r   i   f   t

50 60 70 80 900.0

0.01

0.02

0.03

Percentile

   M  a  x .   D  r   i   f   t   R  a  n  g  e

50 60 70 80 900.0

0.01

0.02

0.03

Percentile

   M  a  x .   D  r   i   f   t

 (a) Data for Each Record (b) Percentile Values

Figure 2.15 3-Story BRBF: Story Drift Ratio Demand

Page 48: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 48/257

 

33

5 10 15 2050

100

150

Earthquake Record Number 

   N  u  m .  o   f   C  y  c   l  e  s

5 10 15 20

20

40

60

Earthquake Record Number 

   N  u  m .  o   f   S   i  g .   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   2   )

5 10 15 200

10

20

30

Earthquake Record Number    N  u  m .  o   f   L  a  r  g  e   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   5   )

5 10 15 200.0

0.1

0.2

0.3

Earthquake Record Number 

   C  u  m .   D  r   i   f   t

5 10 15 200.0

0.01

0.02

0.03

Earthquake Record Number 

   M  a  x .   D  r   i   f   t   R  a  n  g  e

5 10 15 200.0

0.01

0.02

0.03

Earthquake Record Number 

   M  a  x .   D  r   i   f   t

50 60 70 80 9050

100

150

Percentile

   N  u  m .  o   f   C  y  c   l  e  s

50 60 70 80 90

20

40

60

Percentile

   N  u  m .  o   f   S   i  g .   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   2   )

50 60 70 80 900

10

20

30

Percentile   N  u  m .  o   f   L  a  r  g  e   C  y  c   l  e  s

   (   R  a  n  g  e   >   0 .   0   0   5   )

50 60 70 80 900.0

0.1

0.2

0.3

Percentile

   C  u  m .   D  r   i   f   t

50 60 70 80 900.0

0.01

0.02

0.03

Percentile

   M  a  x .   D  r   i   f   t   R  a  n  g  e

50 60 70 80 900.0

0.01

0.02

0.03

Percentile

   M  a  x .   D  r   i   f   t

 (a) Data for Each Record (b) Percentile Values

Figure 2.16 7-Story BRBF: Story Drift Ratio Demand

Page 49: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 49/257

 

34

5 10 15 200

50

100

Earthquake Record Number 

   M  a  x .   T  e  n .   (   k   i  p  s   )

0.0

0.02

0.04

0.06

   P   /   P  y

5 10 15 20300

350

400

Earthquake Record Number 

   M  a  x .   C  o  m  p .   (   k   i  p  s   )

0.22

0.24

0.26

0.28

   P   /   P  y

50 60 70 80 900

50

100

Percentile

   M  a  x .   T  e  n .   (   k   i  p  s   )

0.0

0.02

0.04

0.06

   P   /   P  y

50 60 70 80 90300

350

400

Percentile

   M  a  x .   C  o  m  p .   (   k   i  p  s   )

0.22

0.24

0.26

0.28

   P   /   P  y

 (a) Data for Each Record (b) Percentile Values

Figure 2.17 3-Story BRBF: Column Axial Load Demand

5 10 15 20800

900

1000

1100

Earthquake Record Number 

   M  a  x .   T  e  n .   (   k   i  p  s   )

0.26

0.28

0.30

0.32

0.34

   P   /   P  y

5 10 15 201500

1600

1700

1800

Earthquake Record Number 

   M  a  x .   C  o  m  p .   (   k   i  p  s   )

0.48

0.50

0.52

0.54

0.56

0.58

   P   /   P  y

50 60 70 80 90800

900

1000

1100

Percentile

   M  a  x .   T  e  n .   (   k   i  p  s   )

0.26

0.28

0.30

0.32

0.34

   P   /   P  y

50 60 70 80 901500

1600

1700

1800

Percentile

   M  a  x .   C  o  m  p .   (   k   i  p  s   )

0.48

0.50

0.52

0.54

0.56

0.58

   P   /   P  y

 (a) Data for Each Record (b) Percentile Values

Figure 2.18 7-Story BRBF: Column Axial Load Demand

Page 50: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 50/257

 

35

(a) Seismic Load

(b) Combined Seismic and Gravity Load

Figure 2.19 Elastic-Perfectly Plastic Column Axial Load versus Story Drift Ratio

Relationship

Story

Drift Ratio

P

K

0.002

-0.002

PS -PG 

PG 

PT  (=P

S +P

G)

Story

Drift Ratio

P

K0.002

-0.002

PS  

PS  

Page 51: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 51/257

 

36

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   R  a   t   i  o   (   %   )

 

(a) Lateral Deformation

-1.0

-0.5

0.0

0.5

1.0

   C  o   l  u  m  n

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

 

(b) Axial Load

Figure 2.20 Story Drift and Column Axial Loading Sequence (to 1.5% drift)

Step

Step

Gravity LoadOffset

   (     P   /     P    y   )

 

Page 52: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 52/257

 

37

0.0 0.005 0.010 0.015 0.020 0.025 0.030

0.0

0.2

0.4

0.6

0.8

1.0

   C   D   F

Story Drift Range

DataProposed Protocol

 (a) 3-Story BRBF

0.0 0.005 0.010 0.015 0.020 0.025 0.030

0.0

0.2

0.4

0.6

0.8

1.0

   C   D   F

Story Drift Range

DataProposed Protocol

 (b) 7-Story BRBF

Figure 2.21 Comparison of First-Story Drift Ratio CDFs

Page 53: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 53/257

 

38

3. TESTING PROGRAM

3.1  General

The experimental program consisted of testing nine full-scale fixed-base columns.

ASTM A992 steel wide-flange sections typical of braced frame columns, representing a

 practical range of flange and web width-to-thickness ratios, and 15 ft story height were

subjected to different levels of axial force demand combined with story drift demand for

these simulated bottom-story columns. The test matrix is summarized in Table 3.1. A

total of four W14 sections were selected such that the effect of width-thickness ratios on

cyclic local buckling behavior could also be investigated. The axial load capacity of the

test facility precluded testing of a W14×233 specimen at an axial load of 0.75P y  and a

W14×370 specimen at an axial load of 0.55P y or 0.75P y. However, these two sections

were tested at axial loads within the equipment capacity. 

3.2  Test Setup

The testing used the UCSD SRMD Test Facility as shown in Figure 3.1. Column

specimens were tested in a horizontal configuration with one end of the specimen

attached to a reaction fixture that was attached to a strong-wall. The other end of the

specimen was attached to a reaction fixture attached to the SRMD shake table platen.

Longitudinal (E-W) and lateral (N-S) movement of the shake table platen imposed load

in both directions. Lateral movement was applied to induce strong-axis bending of the

specimen. Control software for the SRMD Test Facility automatically resolved applied

loads into longitudinal and lateral components.

3.3  Test Specimens

In practical applications, the column fixed-base condition in the first-story is

created by either extending and embedding steel columns in basement walls, if used, or

connecting the column base to grade beams. Since the objective of this research was

focused on strength and ductility capacities of steel columns, not the column base

connection to surrounding members, both ends of the column specimen were

strengthened by stiffeners or re-usable haunches to simulate the fixed-end condition (see

Page 54: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 54/257

 

39

Figure 3.1). As described above, this fixed-end condition is appropriate for column bases

 but underestimates the potential for column lateral-torsional buckling (due to higher

moment gradients in an actual building column). Accounting for the flexibility of the

column top connection would have required a more complicated test setup and an

additional variable would have been added to the testing matrix. Except for both ends,

specimens were not braced laterally to inhibit weak-axis buckling. The clear length of

column between the haunches at both ends represented the column height of 15 ft.

Testing in this manner allowed for investigation of steel column behavior without placing

excess demand on the welded column base plate connection.

Specimens consisted of an 18 ft column section with 3 in. thick base plates

welded on each end (see Figure 3.2). Column flange to base plate welds were electro-

slag welds and the column web was fillet welded to the base plate. Specimens were

attached the reaction fixtures with 28 high-strength threaded rods per base plate. Re-

usable haunches, shown in Figures 3.3 and 3.4, were bolted to both flanges and each side

of the web on both ends of the specimen. The 18 in. length of haunches on each end of

the specimen resulted in a clear column length of 15 ft. Shim plates were used between

the haunches and column to accommodate the variation in column section dimensions for

the different specimen sizes.

3.4  Material Properties

Wide-flange column sections were specified to be ASTM A992 material. The

values shown in Table 3.2 are the material properties of the column sections obtained

from tension coupon testing by Testing Services & Inspection (TSI), Inc. and Certified

Mill Test Reports.

Column base plates and plate material for the haunches were specified to be

ASTM A36. Haunch-to-column bolts were 1-1/2 in. dia. ASTM A490 high-strength

structural bolts and were tensioned to a minimum of 148 kips, the minimum specified

 pretension for slip-critical connections (AISC 2005b).

Page 55: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 55/257

 

40

3.5  Instrumentation

A combination of displacement transducers, strain gage rosettes, and uni-axial

strain gages were placed in specific locations on the specimen to measure global and

local response. Displacement transducers were positioned as shown in Figure 3.5. The

various strain gage rosettes and uni-axial strain gages were used to measure strain

throughout the column length (see Figure 3.6). In addition, longitudinal and lateral

displacement of the SRMD platen and longitudinal and lateral load applied to move the

 platen (load applied to specimen) were recorded.

3.6  Loading History

The loading history for the test specimens was developed as described in Chapter

2. Three different loading schemes were used during testing to overcome difficulties

encountered in simultaneously controlling the SRMD input longitudinal and lateral

displacements to achieve both the desired column axial load targets and story drift targets.

Table 3.3 provides the specimen testing sequence and loading scheme (A, B, or C) used

for each specimen. For all loading schemes the story drift ratio combined with a column

clear length of 15 ft was used to compute the input lateral displacements for the SRMD

 platen. The target column axial load was used to calculate a target axial displacement

 based on specimen axial stiffness and a known SRMD system stiffness in the longitudinal

direction.

Loading Scheme A (Specimens W14×132-35 and W14×176-35) was based on an

earlier version of the loading sequence than presented in Chapter 2. BRBs were assumed

to yield at 0.003 rad. story drift ratio and a bilinear column axial load versus story drift

relationship (see Figure 3.7) was used to calculate column axial loads. This calculation

was based on reaching the target column compressive axial load, PT , (0.35P y) at 6% story

drift. Table 3.4 provides the Loading Scheme A story drift ratio sequence. The loading

sequences for Specimens W14×132-35 and W14×176-35 are shown in Figures 3.8 and

3.9, respectively. Axial load and drift were in-phase to represent realistic frame action.

 Note that Specimen W14×132-35 was tested to 6% drift and Specimen W14×176-35 was

tested to 10% drift. It was observed during testing and data analysis of these two

specimens that for large cycles, greater than 2% drift, the column axial load targets were

Page 56: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 56/257

 

41

not achieved. This was in part due to the significant column axial displacement

component from applied lateral displacement (drift) and in part due to softening of

column response from yielding and local buckling.

Loading Scheme B (Specimens W14×132-55) was based on the loading sequence

 presented in Chapter 2 (see Table 3.5). Axial load and drift were simultaneously applied

in-phase with each other. Loading Scheme B was different from Loading Scheme A in

that it accounted for the significant column axial displacement component from drift in

calculation of the applied longitudinal displacements. However, the column axial load

targets for large drift cycles were still not achieved due to softening of column response

from yielding and local buckling and, therefore, Loading Scheme C was developed.

Loading Scheme C (all remaining specimens) was identical to Loading Scheme B

through the 1.5% drift cycles. Calculation of column axial loads at the protocol drift

levels were based on reaching the target column compressive axial load, PT , (e.g., 0.35P y,

0.55P y, 0.75P y) at 0.002 rad. story drift ratio (yield drift) and axial loads for all

excursions larger than the yield drift were equal to the maximum level for that specimen.

The story drift and column axial load were in-phase (see Figure 2.20) to represent

realistic frame action. For cycles at 2% drift and beyond the drift component of

displacement was applied first, followed by application of longitudinal displacement until

the target axial load was achieved. This part of the loading scheme is illustrated in Figure

3.10. By loading in this manner the tests could still be safely conducted in displacement

control and the combined target axial loads and story drifts could be achieved.

Figure 3.11 shows typical P-M  interaction and moment versus drift response for

the 4% drift cycle of Specimen W14×132-75 (Loading Scheme C). The labeled points on

the graphs correspond to points from the loading sequence shown in Figure 3.11(a) and

indicate the direction of motion in these responses. The trends observed from this single

cycle are typical of those observed for this form of the loading sequence. Points 2 and 5

correspond to points where the target values of axial load and drift were reached. These

 points will be indicated as discrete points in the results presented in Chapters 4 to 6. In

 particular, point 5 (target compressive axial load and drift) was of primary interest for

defining the test specimen drift capacity under high axial load.

Page 57: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 57/257

 

42

3.7  Axial Load-Moment Interaction Surface

The axial load-moment (P-M) interaction surface, shown in Figure 3.12, is

 provided along with the experimental and analytical results in the following chapters.

Plastic moment capacity, M  p was calculated as the plastic section modulus times the yield

strength. Tension axial load capacity, P yt   was calculated as the section area times the

yield strength. Compression axial load capacity, P yc was calculated based on weak axis

 buckling with an effective length factor equal to 0.6 (fixed-fixed end condition). The

column length in these calculations was assumed to equal 16.5 ft (average of 18 ft total

length and 15 ft clear length) to account for the fact that the haunches did not provide a

 perfectly fixed end condition. Chapter 4 presents P-M   interaction surfaces calculated

using both nominal and actual material properties. Where not indicated, the interaction

surface was based on nominal material properties. Note that no LRFD strength reduction

factors were applied in determination of the P-M  interaction surface ordinates.

3.8  Drift Capacity

To determine specimen ductility a definition of the yield rotation and drift

capacity are required. The yield rotation for the W14 sections tested, calculated from Eq.

(3.1), ranged from 0.70% to 0.79%.

 x

 p y

 EI  H  M 

6=θ  

(3.1)

 

where

 E = modulus of elasticity (29,000 ksi) I  x  = moment of inertia about the x-axis

 H = column clear length (180 in.) M  p  = plastic moment

θy  = yield rotation

This calculation neglects the decrease in yield rotation due to the presence of axial load.

Ductility of beam-columns calculated using this value of yield rotation will therefore

 provide a conservative approximation of the actual ductility.

Page 58: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 58/257

Page 59: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 59/257

Page 60: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 60/257

 

45

Table 3.3 Test Sequence and Loading Scheme

Specimen

Designation

Test

Sequence

Loading

Scheme

W14×132-35 1 A

W14×132-55 3 B

W14×132-75 5 C

W14×176-35 2 A

W14×176-55 4 C

W14×176-75 6 C

W14×233-35 7 C

W14×233-55 8 C

W14×370-35 9 C

Table 3.4 Loading Scheme A: Story Drift Ratio Loading Sequence

Load

Step

Story Drift

Ratio

 Number

of Cycles

0Apply column axial

gravity load

1 0.001 6

2 0.002 6

3 0.003 6

4 0.004 65 0.005 4

6 0.0075 2

7 0.01 2

8 0.015 2

9a  0.02 1

aContinue with increments in Story

Drift Ratio of 0.01, and perform one

cycle at each step

Page 61: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 61/257

 

46

Table 3.5 Loading Schemes B and C: Story Drift Ratio Loading Sequence

LoadStep

Story DriftRatio

 Numberof Cycles

0

Apply column axial

gravity load1 0.001 6

2 0.0015 6

3 0.002 6

4 0.003 4

5 0.004 4

6 0.005 4

7 0.0075 2

8 0.01 2

9 0.015 2

10

a

  0.02 1aContinue with increments in StoryDrift Ratio of 0.01, and perform one

cycle at each step

Page 62: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 62/257

 

47

(a) Schematic View

(b) Overview of Specimen

Figure 3.1 SRMD Test Facility

 NORTH

Page 63: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 63/257

 

48

10 5

Ø11316

Ø11316

(Center holes on web)

(Center holes relative to web, both flanges)

5

 A

 A10

222

216

5

NOTE: ALL DIMENSIONS

 ARE IN INCHES

(a) Overall Dimensions

W14x (A992)

 Centered on base-plate

 3 in. PL (A36)

Section A-A

ESW

54

30 12

6

3 3 8 @ 6

Ø11316

6T

NOTE: Fillet weld dimension T is equal to0.625 times the column web thickness

 

(b) Base Plate

Figure 3.2 Specimen Details

Page 64: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 64/257

 

49

Figure 3.3 Re-Usable Haunches

Page 65: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 65/257

Page 66: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 66/257

 

51

PLAN VIEW

WEST EAST

ELEVATION

L2

L1

L3 L9 (RELATIVE TO

PLATEN FIXTURE)

45" 45" 45" 45"

L4 L5 L6 L7 L8

 

Figure 3.5 Specimen Displacement Transducers

222"

180"

R3R1 R2 R5R4

S11

S12

S7

S8

S2

S1

S3

S15

S16

S19

S20

S23

S24

S28

S27

S29

24" 24" 30" 30" 30" 30" 24" 24"

24" 24" 60" 60" 24" 24"

NORTH FLANGE

S13

S14

S9

S10

S5

S4

S6

S17

S18

S21

S22

S25

S26

S31

S30

S32

24" 24" 30" 30" 30" 30" 24" 24"

SOUTH FLANGE

UNDERSIDE OF WEB

WEST EAST

b

r y

ROSETTE CHANNEL ORIENTATION

 

Figure 3.6 Specimen Strain Gages and Rosettes

Page 67: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 67/257

 

52

(a) Seismic Load

(b) Combined Seismic and Gravity Load

Figure 3.7 Bilinear Column Axial Load versus Story Drift Ratio Relationship

Story

Drift Ratio

P

K

0.03K  

0.06

-0.06

0.003

-0.003

PS -PG 

PG 

PT  (=PS +PG)

Story

Drift Ratio

P

K

0.03K  

0.06

-0.06

0.003

-0.003

PS  

PS  

Page 68: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 68/257

 

53

-10

-5

0

5

10

   L  a   t  e  r  a   l   D  e   f  o  r  m  a   t   i  o  n   (   i  n .   )

-0.06

-0.04

-0.02

0.0

0.02

0.04

0.06

   S   t  o  r  y   D  r   i   f   t   R  a   t   i  o

 

(a) Lateral Deformation

-1000

-500

0

500

1000

   C  o   l  u  m

  n   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-0.4

-0.2

0.0

0.2

0.4

   P   /   P  y

 

(b) Axial Load

Figure 3.8 Specimen W14×132-35: Loading Sequence

Step

Step

Gravity Load

Offset

     P   /     P    y

 

Page 69: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 69/257

 

54

-20

-10

0

10

20

   L  a   t  e  r  a   l   D  e   f  o  r  m  a   t   i  o  n   (   i  n .   )

-0.10

-0.05

0.0

0.05

0.10

   S   t  o  r  y   D  r   i   f   t   R  a   t   i  o

 

(a) Lateral Deformation

-1000

-500

0

500

1000

   C  o   l  u  m

  n   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-0.4

-0.2

0.0

0.2

0.4

   P   /   P  y

 

(b) Axial Load

Figure 3.9 Specimen W14×176-35: Loading Sequence

Step

Step

Gravity LoadOffset

     P   /     P    y

 

Page 70: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 70/257

 

55

0, 3, 6

1

2

4

5

LongitudinalDisplacement

Lateral

Displacement

 

Figure 3.10 Sequence for Loading Scheme C (2% Drift and Beyond)

0-1 Sweep arc to target drift

1-2 Increase longitudinal displacement until

target longitudinal load is reached2-3 Return to original set-point

3-4 Sweep arc to target drift

4-5 Increase longitudinal displacement untiltarget longitudinal load is reached

5-6 Return to original set-point

Page 71: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 71/257

 

56

0, 3, 6

1

2

4

5

LongitudinalDisplacement

LateralDisplacement

 (a) Loading Sequence

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0 -0.5 0.0 0.5 1.0

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) P-M  Interaction

-4 -2 0 2 4

-20

-10

0

10

20

Story Drift (%)

   E  n   d   M

  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

 (c) End Moment versus Drift

Figure 3.11 Specimen W14×132-75: 4% Drift Cycle

0 1

2

3

4

5

6

0

1

2

34

5

6

Page 72: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 72/257

 

57

Figure 3.12 P-M Interaction Curve for Column Specimens

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t   (   M

   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 Figure 3.13 Target Point End Moment versus Drift Response

P yt  

0.2P yt  

0.2P yc 

 M  p - M  p 

 M

P

0.9 M  p -0.9 M  p 

P yc 

0.9Mmax

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     M

     /     M     P    n

 

Page 73: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 73/257

 

58

4.  TEST RESULTS

4.1  Introduction

This chapter presents the observed performance and recorded response for the

nine column specimens. Figures are included which show the progression of yielding,

flange local buckling, and overall deformation with increasing drift. Also included,

where appropriate, are figures showing specimen fracture. Plots of axial load-moment

(P-M ) interaction and moment versus drift response illustrate specimen global behavior.

Table 4.1 provides a summary of the drift achieved by each specimen and well as a

description of any specimen fractures. Selected plots of specimen strain versus story drift

ratio for all specimens are provided in Appendix B.

The specimen end moment was calculated from Eq. (4.1) with the assumption that

the inflection point (double curvature bending) was in the middle of the column length.

)(2

1Δ−=  LPVH  M   

(4.1)

 

where

 H = column clear length (180 in.)

 M   = end momentP L  = longitudinal force from SRMD (positive for tension)V 

 = lateral force from SRMD

Δ  = lateral displacement from SRMD

4.2  Specimen W14×132-35

4.2.1  General

Specimen W14×132-35 (0.35P y  axial load target) was tested on November 22,

2005 using Loading Scheme A. Lateral drifts of up to 6% (10.8 in.) were applied. For

large cycles, greater than 2% drift, the column axial load targets were not achieved for

the reasons described in Chapter 3. An axial compressive load offset of 0.15Pn  (246

kips) was initially applied for the W14×132 specimens, followed by cyclic, increasing

amplitude longitudinal and lateral displacement.

Page 74: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 74/257

 

59

4.2.2  Observed Performance

Figure 4.1 shows the progression of yielding at each end of the specimen. Flange

local buckling, as shown in Figure 4.2, began to develop at 5% drift. Photos showing the

specimen overall deformed configuration at 4% and 6% drift are shown in Figure 4.3.

 No fracture of the test specimen was observed.

4.2.3  Recorded Response

The axial load-moment interaction is shown in Figure 4.4, along with the P-M  

interaction surfaces based on actual and nominal material properties. The horizontal line

shown is at the target compressive axial load level of 0.35P yn. Figure 4.5 shows the end

moment versus story drift relationship. The horizontal lines shown are at the nominal

 plastic moment capacity of the section. Plots of longitudinal force versus lateral force,

longitudinal force versus column axial displacement, and lateral force versus lateral

displacement are provided in Figure 4.6. The column axial displacement shown in Figure

4.6(b) was calculated from the average of displacement transducers L1 and L2 (see

Figure 3.5).

4.3  Specimen W14×132-55

Specimen W14×132-55 (0.55P y  axial load target) was tested on May 1, 2006

using Loading Scheme B. Lateral drifts of up to 8% (14.4 in.) were applied. For large

cycles, greater than 2% drift, the column axial load targets were not achieved for the

reasons described in Chapter 3.

4.3.1  Observed Performance

Figure 4.7 shows the progression of yielding at each end of the specimen. The

 progression of flange local buckling is shown Figure 4.8. Photos showing the specimen

overall deformed configuration at 4% and 8% drift are shown in Figure 4.9. No fracture

of the test specimen was observed.

Page 75: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 75/257

Page 76: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 76/257

 

61

horizontal line shown is at 90% of this maximum moment. Using a 10% reduction from

 M max to define the drift capacity, the drift capacity for this specimen was 7%. Additional

force-displacement response plots are shown in Figure 4.21.

4.5  Specimen W14×176-35

Specimen W14×176-35 (0.35P y  axial load target) was tested on November 29,

2005 using Loading Scheme A. Lateral drifts of up to 10% (18 in.) were applied. For

large cycles, greater than 2% drift, the column axial load targets were not achieved for

the reasons described in Chapter 3. An axial compressive load offset of 0.15Pn  (335

kips) was initially applied for the W14×176 specimens.

4.5.1 

Observed Performance

Figure 4.22 shows the progression of yielding at each end of the specimen for 2%

to 10% drift. Flange local buckling, as shown in Figure 4.23, began to develop at 6%

drift. Photos showing the specimen overall deformed configuration at large drifts are

shown in Figure 4.24. The specimen completed the 10% drift cycle. After testing a

 partial fracture of the column flange was observed, as shown in Figure 4.25.

4.5.2  Recorded Response

The P-M  interaction and moment versus drift response are shown in Figures 4.26

and 4.27 respectively. Plots of longitudinal force versus lateral force, longitudinal force

versus column axial displacement, and lateral force versus lateral displacement are

 provided in Figure 4.28.

4.6  Specimen W14×176-55

Specimen W14×176-55 (0.55P y  axial load target) was tested on May 8, 2006

using Loading Scheme C. Lateral drifts of up to 10% (18 in.) were applied.

4.6.1  Observed Performance

Figure 4.29 shows the progression of yielding at each end of the specimen. The

 progression of flange local buckling is shown in Figure 4.30. Photos showing the

Page 77: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 77/257

 

62

specimen overall deformed configuration at large drifts are shown in Figure 4.31. Near

the end of the 10% drift cycle the column flange completely fractured through the bolt

hole net section and propagated partially through the web (see Figure 4.32).

4.6.2 

Recorded Response

Figure 4.33 shows the overall P-M   interaction and Figure 4.34 shows the  P-M  

interaction for points where the axial load and drift target points were achieved. Figure

4.35 shows the overall moment versus drift response along with the points where the

targets were reached. The plot of the end moment versus drift response based on the

target points on the compression side, shown in Figure 4.36, indicates the drift capacity

for this specimen was 9%, based on an allowable 10% reduction in moment from  M max.

Figure 4.37 provides additional force-displacement response plots.

4.7  Specimen W14×176-75

Specimen W14×176-75 (0.75P y  axial load target) was tested on May 15, 2006

using Loading Scheme C. Lateral drifts of up to 10% (18 in.) were applied.

4.7.1  Observed Performance

Figure 4.38 shows the progression of yielding at each end of the specimen.

Increasing amplitude of flange local buckling from 4% to 10% drift is shown in Figure

4.39. Photos showing the specimen overall deformed configuration at large drifts are

shown in Figure 4.40. On the 10% drift cycle the column flange completely fractured

through the bolt hole net section and propagated partially through the web (see Figure

4.41). Despite the fracture, the 10% drift cycle was completed with drift and axial load

targets being achieved.

4.7.2  Recorded Response

The recorded overall P-M  interaction is shown in Figure 4.42, along with the P-M  

interaction yield surface. Figure 4.43 shows the P-M   interaction for the target points.

 Notice on the tension side that the moment was essentially reduced to zero at 10% drift

after fracture of the column flange but the target axial load was still achieved. Figure

4.44 shows the overall and target point moment versus drift response. A drift capacity of

Page 78: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 78/257

 

63

8% was observed from Figure 4.45, which shows the end moment versus drift response

 based on the target points on the compression side. Longitudinal and lateral force versus

displacement response is shown in Figure 4.46.

4.8  Specimen W14×233-35

Specimen W14×233-35 (0.35P y  axial load target) was tested on May 18, 2006

using Loading Scheme C. Lateral drifts of up to 8% (14.4 in.) were applied. An axial

compressive load offset of 0.15Pn  (446 kips) was initially applied for the W14×233

specimens.

4.8.1  Observed Performance

Figure 4.47 shows the yielding pattern at each end of the specimen for 2% to 8%

drift. The progression of flange local buckling is shown in Figure 4.48. Photos showing

the specimen overall deformed configuration at large drift are shown in Figure 4.49. On

the +9% drift cycle the specimen experienced a “divot” pull out fracture of the flange-to-

 base plate welded joint (see Figure 4.50) and testing was suspended.

4.8.2  Recorded Response

Figure 4.51 shows the P-M  interaction and Figure 4.52 shows the P-M  interaction

for points where the axial load and drift target points were achieved. Figure 4.53 shows

the overall moment versus drift response along with the points where the targets were

reached. The plot of the end moment versus drift response based on the target points on

the compression side, shown in Figure 4.54, indicates the drift capacity for this specimen

was 8%, as limited by fracture of the column flange to base plate welded joint on the

+9% drift excursion. Figure 4.55 provides additional force-displacement response plots.

4.9  Specimen W14×233-55

Specimen W14×233-55 (0.55P y  axial load target) was tested on May 22, 2006

using Loading Scheme C. Lateral drifts of up to 10% (18 in.) were applied.

Page 79: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 79/257

 

64

4.9.1  Observed Performance

Figure 4.56 shows the yielding pattern at each end of the specimen. The

 progression of flange local buckling is shown Figure 4.57. Photos showing the specimen

overall deformed configuration at large drift are shown in Figure 4.58. Testing of the

specimen was suspended just prior to achieving the -9% drift targets due to an issue with

the SRMD machine. No fracture of the test specimen was observed.

4.9.2  Recorded Response

The recorded P-M   interaction is shown in Figure 4.59, along with the P-M  

interaction yield surface. Figure 4.60 shows the P-M   interaction for the target points.

Figure 4.61 shows the overall and target point moment versus drift response. A drift

capacity of at least 8% was observed from Figure 4.62, which shows the end momentversus drift response based on the target points on the compression side. A higher

allowable drift would have likely been observed if there had not been a mechanical issue

with the SRMD machine. Longitudinal and lateral force versus displacement response is

shown in Figure 4.63.

4.10  Specimen W14×370-35

Specimen W14×370-35 (0.35P y  axial load target) was tested on May 26, 2006

using Loading Scheme C. Lateral drifts of up to 2% (3.6 in.) were applied. An axial

compressive load offset of 0.15Pn  (718 kips) was initially applied, followed by cyclic

testing.

4.10.1  Observed Performance

Figure 4.64 shows the specimen before testing. The yielding pattern at 2% drift is

shown in Figure 4.65; only very minor yielding was observed. On the +3% drift cycle

the specimen experienced a fracture of the column flange-to-base plate welded joint (see

Figure 4.66). Note that no local buckling was observed during testing.

4.10.2  Recorded Response

The P-M  interaction and moment versus drift response are shown in Figures 4.67

and 4.68, respectively. Plots of longitudinal force versus lateral force, longitudinal force

Page 80: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 80/257

 

65

versus column axial displacement, and lateral force versus lateral displacement are

 provided in Figure 4.69.

Page 81: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 81/257

Page 82: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 82/257

 

67

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.1 Specimen W14×132-35: Yielding Pattern

Page 83: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 83/257

 

68

(a) -5% Drift (b) -6% Drift

Figure 4.2 Specimen W14×132-35: Flange Local Buckling (West End)

Page 84: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 84/257

 

69

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.3 Specimen W14×132-35: Overall Deformed Configuration

Page 85: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 85/257

 

70

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 ActualNominal

 Figure 4.4 Specimen W14×132-35: P-M  Interaction

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.5 Specimen W14×132-35: End Moment versus Drift Response

M/Mpn 

     P   /     P    y    n

 0.35Pyn

Mpn

Page 86: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 86/257

 

71

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.6 Specimen W14×132-35: Force-Displacement Response

Page 87: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 87/257

 

72

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.7 Specimen W14×132-55: Yielding Pattern

Page 88: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 88/257

 

73

East End West End

(d) 8% Drift

Figure 4.7 Specimen W14×132-55: Yielding Pattern (cont.)

Page 89: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 89/257

Page 90: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 90/257

 

75

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 8% Drift

Figure 4.9 Specimen W14×132-55: Overall Deformed Configuration

Page 91: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 91/257

 

76

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 ActualNominal

 Figure 4.10 Specimen W14×132-55: P-M  Interaction

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.11 Specimen W14×132-55: End Moment versus Drift Response

M/Mpn 

     P   /     P    y    n

 

0.55Pyn

Mpn

Page 92: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 92/257

 

77

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.12 Specimen W14×132-55: Force-Displacement Response

Page 93: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 93/257

 

78

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.13 Specimen W14×132-75: Yielding Pattern

Page 94: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 94/257

 

79

East End West End

(d) 8% Drift

(e) 10% DriftFigure 4.13 Specimen W14×132-75: Yielding Pattern (cont.)

Page 95: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 95/257

 

80

(a) -4% Drift (b) -6% Drift

(c) -8% Drift  (d) -10% Drift

Figure 4.14 Specimen W14×132-75: Flange Local Buckling (West End)

Page 96: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 96/257

Page 97: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 97/257

 

82

Tension Excursion Compression Excursion

(c) 8% Drift

(d) 10% Drift

Figure 4.15 Specimen W14×132-75: Overall Deformed Configuration (cont.)

Page 98: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 98/257

 

83

(a) Overall View of Fracture Location

(b) View of Fracture from Exterior Side of Flange (with Haunches Removed)

(c) View of Fracture from Interior Side of Flange (with Haunches Removed)

Figure 4.16 Specimen W14×132-75: Column Fracture (10% Drift)

Column Flange

Base Plate

Column

Web

Fracture

Location

Page 99: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 99/257

Page 100: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 100/257

 

85

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n

   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.19 Specimen W14×132-75: End Moment versus Drift Response

0 5 10 15 20

0

2

4

6

8

10

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

0 5 10

Story Drift Ratio (%)

 Figure 4.20 Specimen W14×132-75: Compression Side Target Points End Moment

versus Drift Response

0.9Mmax

Mpn

Page 101: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 101/257

 

86

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.21 Specimen W14×132-75: Force-Displacement Response

Page 102: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 102/257

 

87

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.22 Specimen W14×176-35: Yielding Pattern

Page 103: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 103/257

Page 104: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 104/257

 

89

(a) -4% Drift (b) -6% Drift

(c) -8% Drift  (d) -10% Drift

Figure 4.23 Specimen W14×176-35: Flange Local Buckling (West End)

Page 105: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 105/257

 

90

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.24 Specimen W14×176-35: Overall Deformed Configuration

Page 106: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 106/257

 

91

Tension Excursion Compression Excursion

(c) 8% Drift

(d) 10% Drift

Figure 4.24 Specimen W14×176-35: Overall Deformed Configuration

Page 107: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 107/257

 

92

Figure 4.25 Specimen W14×176-35: Partial Column Flange Fracture (10% Drift)

Column Flange

Base Plate

Page 108: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 108/257

 

93

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.26 Specimen W14×176-35: P-M  Interaction

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.27 Specimen W14×176-35: End Moment versus Drift Response

M/Mpn 

     P   /     P    y    n

 

0.35Pyn

Mpn

Page 109: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 109/257

 

94

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.28 Specimen W14×176-35: Force-Displacement Response

Page 110: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 110/257

 

95

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.29 Specimen W14×176-55: Yielding Pattern

Page 111: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 111/257

 

96

East End West End

(d) 8% Drift

(e) 10% DriftFigure 4.29 Specimen W14×176-55: Yielding Pattern (cont.)

Page 112: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 112/257

 

97

(a) -4% Drift (b) -6% Drift

(c) -8% Drift  (d) -10% Drift

Figure 4.30 Specimen W14×176-55: Flange Local Buckling (West End)

Page 113: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 113/257

 

98

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.31 Specimen W14×176-55: Overall Deformed Configuration

Page 114: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 114/257

 

99

Tension Excursion Compression Excursion

(c) 8% Drift

(d) 10% Drift

Figure 4.31 Specimen W14×176-55: Overall Deformed Configuration (cont.)

Page 115: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 115/257

 

100

(a) Overall View of Fracture Location

(b) View of Fracture from Exterior Side of Flange

(c) View of Fracture from Interior Side of Flange

Figure 4.32 Specimen W14×176-55: Column Fracture (10% Drift)

Column Flange

Column

Web

Fracture

Location

Page 116: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 116/257

 

101

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.33 Specimen W14×176-55: P-M  Interaction

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.34 Specimen W14×176-55: P-M  Interaction (Target Points)

M/Mpn 

     P   /     P    y    n

 

M/Mpn 

     P   /     P    y    n

 

0.55Pyn

0.55Pyn

Page 117: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 117/257

 

102

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n

   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.35 Specimen W14×176-55: End Moment versus Drift Response

0 5 10 15 20

0

5

10

15

20

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

0 5 10

Story Drift Ratio (%)

 Figure 4.36 Specimen W14×176-55: Compression Side Target Points End Moment

versus Drift Response

0.9Mmax

Mpn

Page 118: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 118/257

 

103

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.37 Specimen W14×176-55: Force-Displacement Response

Page 119: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 119/257

 

104

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.38 Specimen W14×176-75: Yielding Pattern

Page 120: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 120/257

 

105

East End West End

(d) 8% Drift

(e) 10% DriftFigure 4.38 Specimen W14×176-75: Yielding Pattern (cont.)

Page 121: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 121/257

 

106

(a) -4% Drift (b) -6% Drift

(c) -8% Drift  (d) -10% Drift

Figure 4.39 Specimen W14×176-75: Flange Local Buckling (West End)

Page 122: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 122/257

 

107

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.40 Specimen W14×176-75: Overall Deformed Configuration

Page 123: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 123/257

 

108

Tension Excursion Compression Excursion

(c) 8% Drift

(d) 10% Drift

Figure 4.40 Specimen W14×176-75: Overall Deformed Configuration (cont.)

Page 124: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 124/257

 

109

(a) Overall View of Fracture Location

(b) View of Fracture from Exterior Side of Flange

(c) View of Fracture from Interior Side of Flange

Figure 4.41 Specimen W14×176-75: Column Fracture (10% Drift)

Column Flange

Column

Web

Fracture

Location

Page 125: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 125/257

 

110

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.42 Specimen W14×176-75: P-M  Interaction

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.43 Specimen W14×176-75: P-M  Interaction (Target Points)

M/Mpn 

     P   /     P    y    n

 

M/Mpn 

     P   /     P    y    n

 

0.75Pyn

0.75Pyn

Page 126: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 126/257

 

111

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n

   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.44 Specimen W14×176-75: End Moment versus Drift Response

0 5 10 15 20

0

5

10

15

20

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

0 5 10

Story Drift Ratio (%)

 Figure 4.45 Specimen W14×176-75: Compression Side Target Points End Moment

versus Drift Response

0.9Mmax

Mpn

Page 127: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 127/257

 

112

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.46 Specimen W14×176-75: Force-Displacement Response

Page 128: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 128/257

 

113

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.47 Specimen W14×233-35: Yielding Pattern

Page 129: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 129/257

 

114

East End West End

(d) 8% Drift

Figure 4.47 Specimen W14×233-35: Yielding Pattern (cont.)

Page 130: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 130/257

 

115

(a) -4% Drift (b) -6% Drift

(c) -8% Drift

Figure 4.48 Specimen W14×233-35: Flange Local Buckling (West End)

Page 131: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 131/257

 

116

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.49 Specimen W14×233-35: Overall Deformed Configuration

Page 132: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 132/257

 

117

Tension Excursion Compression Excursion

(c) 8% Drift

Figure 4.49 Specimen W14×233-35: Overall Deformed Configuration (cont.)

Page 133: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 133/257

 

118

(a) Overall View of Fracture Location

(b) View of Fracture from Exterior Side of Flange

(c) View of Fracture from Interior Side of Flange

Figure 4.50 Specimen W14×233-35: Column-to-Base Plate Weld Fracture (9% Drift)

Column Flange

Base Plate

Column Flange

Base Plate

Column

Web

Fracture

Location

Page 134: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 134/257

 

119

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.51 Specimen W14×233-35: P-M  Interaction

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.52 Specimen W14×233-35: P-M  Interaction (Target Points)

M/Mpn 

     P   /     P    y    n

 

M/Mpn 

     P   /     P    y    n

 

0.35Pyn

0.35Pyn

Page 135: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 135/257

 

120

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n

   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.53 Specimen W14×233-35: End Moment versus Drift Response

0 5 10 15 20

0

5

10

15

20

25

30

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

0 5 10

Story Drift Ratio (%)

 Figure 4.54 Specimen W14×233-35: Compression Side Target Points End Moment

versus Drift Response

0.9Mmax

Mpn

Page 136: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 136/257

 

121

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.55 Specimen W14×233-35: Force-Displacement Response

Page 137: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 137/257

 

122

East End West End

(a) 2% Drift

(b) 4% Drift

(c) 6% Drift

Figure 4.56 Specimen W14×233-55: Yielding Pattern

Page 138: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 138/257

 

123

East End West End

(d) 8% Drift

Figure 4.56 Specimen W14×233-55: Yielding Pattern (cont.)

Page 139: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 139/257

 

124

(a) -4% Drift (b) -6% Drift

(c) -8% Drift

Figure 4.57 Specimen W14×233-55: Flange Local Buckling (West End)

Page 140: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 140/257

 

125

Tension Excursion Compression Excursion

(a) 4% Drift

(b) 6% Drift

Figure 4.58 Specimen W14×233-55: Overall Deformed Configuration

Page 141: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 141/257

 

126

Tension Excursion Compression Excursion

(c) 8% Drift

Figure 4.58 Specimen W14×233-55: Overall Deformed Configuration (cont.)

Page 142: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 142/257

 

127

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.59 Specimen W14×233-55: P-M  Interaction

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.60 Specimen W14×233-55: P-M  Interaction (Target Points)

M/Mpa 

     P   /     P    y    a

 

0.55Pyn

M/Mpn 

     P   /     P    y    n

 

M/Mpn 

     P   /     P    y    n

 

0.55Pyn

Page 143: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 143/257

 

128

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n

   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.61 Specimen W14×233-55: End Moment versus Drift Response

0 5 10 15 20

0

5

10

15

20

25

30

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

0 5 10

Story Drift Ratio (%)

 Figure 4.62 Specimen W14×233-55: Compression Side Target Points End Moment

versus Drift Response

0.9Mmax

Mpn

Page 144: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 144/257

 

129

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.63 Specimen W14×233-55: Force-Displacement Response

Page 145: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 145/257

 

130

Figure 4.64 Specimen W14×370-35: Before Testing

East End West End

Figure 4.65 Specimen W14×370-35: Yielding Pattern at 2% Drift

Page 146: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 146/257

 

131

(a) Overall View of Fracture Location

(b) View of Fracture from Exterior Side of Flange (with Haunches Removed)

(c) View of Fracture Location 1(with Haunches Removed)

(d) View of Fracture Location 2(with Haunches Removed)

Figure 4.66 Specimen W14×370-35: Column-to-Base Plate Weld Fracture (3% Drift)

Column Flange

Base Plate

Fracture

Location

Column Flange

Base Plate

Column Flange

Base Plate

Location 1 Location 2

Page 147: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 147/257

 

132

-60 -40 -20 0 20 40 60

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 Figure 4.67 Specimen W14×370-35: P-M  Interaction

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 Figure 4.68 Specimen W14×370-35: End Moment versus Drift Response

M/Mpn 

     P   /     P    y    n

 

0.35Pyn

Mpn

Page 148: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 148/257

 

133

-600 -400 -200 0 200 400 600

-2000

-1000

0

1000

2000

Lateral Force (kips)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (a) Longitudinal Force versus Lateral Force

-2 -1 0 1 2

-2000

-1000

0

1000

2000

 Axial Displacement (in.)

   L  o  n  g   i   t  u   d   i  n  a   l   F  o  r  c  e   (   k   i  p  s   )

 (b) Longitudinal Force versus Column Axial Displacement

-20 -10 0 10 20

-400

-200

0

200

400

Lateral Displacement (in.)

   L  a   t  e  r  a   l   F  o  r  c  e   (   k   i  p  s   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) Lateral Force versus Lateral Displacement

Figure 4.69 Specimen W14×370-35: Force-Displacement Response

Page 149: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 149/257

 

134

5. COMPARISON OF EXPERIMENTAL RESULTS

5.1  Flange Yielding

For all specimens only minor yielding was observed at a story drift of 1.5%, the

maximum expected drift from the nonlinear time-history analysis described in Chapter 2.

The extent of flange yielding, as evidenced by flaking of the whitewash, measured after

testing is shown in Figure 5.1 for all specimens. The combined compressive axial load

and bending resulted in increased compressive stresses on one flange (referred to as the

compression flange) and the tensile axial load and bending resulted in increased tensile

stresses on the opposite flange. For this testing the compressive axial load was greater

than the tensile axial load due to the gravity load offset. Consistent with this applied

loading the compression flange yielded length was observed to be greater than the tension

flange yielded length. For the 0.75P y specimens the compression flange yielded length

was approximately two times the column depth. It is noted that this is two times the

normally assumed plastic hinge length for moment frame beams.

5.2  Local Buckling

Flange local buckling was observed for all specimens with the exception of

Specimen W14×370-35 (which failed at 3% drift before any local buckling could occur).

This flange local buckling was observed to occur in a symmetric mode (i.e. deformation

of the flange on opposite sides of the web was in the same direction). No web local

 buckling was observed for any of the specimens. During testing it was observed that

flange local buckling forming on the negative drift excursion would fully straighten on

the following positive drift excursion and visa-versa. This cyclic straightening continued

to occur until about 8% drift when the buckled amplitude would only partially straighten

on the subsequent opposite drift excursion. Figure 5.2 shows a comparison of flange

local buckling photos for the different specimens at -6% drift and Figure 5.3 at -8% drift.

The relatively small amplitude of flange local buckling at -6% drift (more than three

times the maximum drift from the analysis of Chapter 2) provided an indication that

column strength degradation due to local buckling is not expected to be of critical

importance for the seismic design of the tested column sections. This may not be the

Page 150: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 150/257

 

135

case, however, for deep columns which have higher web slenderness than the W14

sections tested.

5.3   P-M  Interaction and Moment versus Drift Response

Figures 5.4 to 5.7 show a comparison of the P-M   interaction for all tested

specimens. The P-M test data and the established P-M   interaction surface agreed well

with each other. Significant cyclic overstrength was observed between the test data and

the P-M   interaction surface based on nominal material properties. The overstrength

tended to be higher for heavier sections with a smaller width-thickness ratio.

The moment versus drift response for all specimens is compared in Figures 5.8 to

5.11. Recall that the discrete points on the figures indicate where the combined axial

load and drift targets were reached. The points on the positive drift side that show a

significantly reduced capacity occurred after partial or complete fracture of the specimen.

The overall moment versus drift response was very similar for each specimen due to the

sequence in which the load was applied. Recall that for 2% drift and beyond in Loading

Scheme C lateral displacement was first applied until the target drift was reached and

then axial load was increased to the target value. The points included in the moment

versus drift plots represent the actual behavior of interest in this study. By comparing the

results from, for example, Figure 5.9(b and c) the reduced moment capacity due to

increased axial load is evident.

5.4  Drift Capacity

Figure 5.12 provides a comparison of moment versus drift response for the

compressive axial load target points for the five specimens tested using Loading Scheme

C. The reduced moment capacity from increased axial load is evident from Figure 5.12(b

and c) and (d and e). It was also observed that increasing the column section weight

increased the story drift at which degradation in moment capacity occurred. It is assumed

that this was due to reduced influence of local buckling for the stockier column sections.

Table 5.1 provides the drift capacities defined assuming an allowable 10% reduction

from peak moment resistance. Drift capacities of 7% to 9% were more than four times

Page 151: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 151/257

 

136

the expected BRBF story drift from earthquake nonlinear time-history analysis. These

drift capacities correspond to a ductility of approximately 10.

Page 152: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 152/257

 

137

Table 5.1 Drift Capacity

Specimen

Designation

Drift

Capacity

W14×132-75 7%

W14×176-55 9%

W14×176-75 8%

W14×233-35 8%

W14×233-55 >8%

EastWest

> 13"

6"

16" 6" 

(a) W14×132-35 (6% Drift)

EastWest

22"

15"

17"

22" 

(b) W14×132-55 (8% Drift)

EastWest

20"

30"

32"

16" 

(c) W14×132-75 (10% Drift)

Figure 5.1 Extent of Flange Yielding

Page 153: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 153/257

 

138

EastWest

18"

24"

23"

16" 

(d) W14×176-35 (10% Drift)

EastWest

24"

16"

21"

22" 

(e) W14×176-55 (10% Drift)

EastWest

24"

31"

30"

17" 

(f) W14×176-75 (10% Drift)

Figure 5.1 Extent of Flange Yielding (cont.)

Page 154: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 154/257

 

139

East

26"

24"

West

26"

25" 

(g) W14×233-35 (8% Drift)

EastWest

23"

29"

28"

23" 

(h) W14×233-55 (8% Drift)

NO SIGNIFICANT YIELDING

EastWest

 (i) W14×370-35 (2% Drift)

Figure 5.1 Extent of Flange Yielding (cont.)

Page 155: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 155/257

 

140

0.35P y  0.55P y  0.75P y 

(a) W14×135-35 (b) W14×135-55 (c) W14×135-75

(d) W14×176-35 (e) W14×176-55 (f) W14×176-75

(g) W14×233-35 (h) W14×233-55

Figure 5.2 Comparison of Flange Local Buckling at -6% Drift

Page 156: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 156/257

 

141

0.35P y  0.55P y  0.75P y 

(a) W14×135-55 (b) W14×135-75

(c) W14×176-35 (d) W14×176-55 (e) W14×176-75

(f) W14×233-35 (g) W14×233-55

Figure 5.3 Comparison of Flange Local Buckling at -8% Drift

Page 157: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 157/257

 

142

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (

   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 ActualNominal

 (a) 35%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 ActualNominal

 (b) 55%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 ActualNominal

 (c) 75%P y 

Figure 5.4 Specimen W14×132: Comparison of P-M  Interaction

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

Page 158: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 158/257

 

143

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (

   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 (a) 35%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 (b) 55%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 (c) 75%P y 

Figure 5.5 Specimen W14×176: Comparison of P-M  Interaction

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

Page 159: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 159/257

 

144

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (

   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 (a) 35%P y 

-40 -20 0 20 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1 0 1

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 ActualNominal

 (b) 55%P y 

Figure 5.6 Specimen W14×233: Comparison of P-M  Interaction

-60 -40 -20 0 20 40 60

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o

  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P

   /   P  y

 ActualNominal

 

Figure 5.7 Specimen W14×370-35: P-M  Interaction

M/Mpn 

     P   /     P    y    n

0.55Pyn 

M/Mpn 

0.35Pyn 

     P   /     P    y    n

     P   /     P    y    n

     P

   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

Page 160: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 160/257

 

145

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0

   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M

  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) 75%P y 

Figure 5.8 Specimen W14×132: Comparison of End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 161: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 161/257

 

146

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0

   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M

  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) 75%P y 

Figure 5.9 Specimen W14×176: Comparison of End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 162: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 162/257

 

147

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0

   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

Figure 5.10 Specimen W14×233: Comparison of End Moment versus Drift Response

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 

Figure 5.11 Specimen W14×370-35: End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 163: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 163/257

 

148

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m

  e  n   t   (   M   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 (a) W14×132-75

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t   (   M   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 (b) W14×176-55

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t   (   M   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 (c) W14×176-75

Figure 5.12 Comparison of Target Points End Moment versus Drift Response

0.9Mmax

0.9Mmax

0.9Mmax

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     (     M     /     M     P    n   )

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     (     M     /     M     P    n   )

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     (     M     /     M     P    n   )

Page 164: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 164/257

 

149

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m

  e  n   t   (   M   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 (d) W14×233-35 

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Story Drift (in.)

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t   (   M   /   M  p  n   )

0 5 10

Story Drift Ratio (%)

 (e) W14×233-55

Figure 5.12 Comparison of Target Points End Moment versus Drift Response (cont.)

0.9Mmax

0.9Mmax

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     (     M     /     M     P    n   )

   N  o  r  m  a   l   i  z  e   d   E  n   d   M  o  m  e  n   t     (     M     /     M     P    n   )

Page 165: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 165/257

 

150

6. ANALYTICAL STUDY OF TEST SPECIMENS

6.1  Modeling Techniques

The finite element program ABAQUS (ABAQUS Inc. 2005) was used to model

the steel column specimens. Models predict global behavior, yielding, and strength

degradation resulting from local buckling at large drifts. Standard shell elements were

used in the models. The general-purpose shell element type used (ABAQUS S4R) has

four nodes with six degrees of freedom per node, 3 translational and 3 rotational. This

element allows for transverse shear deformations, accounts for finite membrane strains,

and will allow for changes in thickness, making it suitable for large-strain analysis.

6.2  Boundary Conditions and Column Geometry

The boundary conditions simulated those used for experimental testing of the

steel column specimens. Only the 15 ft clear length of the specimens was modeled. A

fixed connection was used at both ends of the column to simulate the restraint provided

 by the column base plate and the flange and web haunches (see Figure 3.1). Consistent

with the test set-up no additional lateral bracing was provided. Figure 6.1 shows the

column model boundary conditions and finite element mesh.

6.3 

Material Properties

A992 steel was specified for the test specimen column sections. In the analysis, it

was assumed that the yield strength for all the steel material was 54 ksi. An elastic

modulus of 29,000 ksi and a Poisson’s ratio of 0.3 were specified for the elastic material

 properties. The plasticity in the models was based on a von Mises yield surface and

associated flow rule. The plastic hardening was defined by a nonlinear kinematic

hardening law.

Data from cyclic coupon testing performed at Lehigh University (Kaufmann et al.

2001) was used to determine appropriate values for the plasticity material model

 parameters. Steel C from the Lehigh study was selected as the prototype material. Steel

C had a yield strength of 54 ksi and an ultimate strength of 72 ksi under monotonic

testing, which was judged to be representative of the A992 steel members used for

laboratory specimen fabrication. Figure 6.2 shows results of cyclic coupon testing of the

Page 166: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 166/257

 

151

 prototype material performed at ±4% strain. The shape of the stabilized curve was used

to determine the parameters that define the plasticity model.

6.4  Loading Protocol and Computational Algorithm

Models were subjected to one of three loading sequences. The first loading

sequence was a monotonic loading consisting of an initial application of the target axial

load followed by lateral displacement to the target drift. Separate monotonic loading

cases were run for both the tension and compression target axial loads. The second

loading sequence was cyclic and consisted of using recorded axial load and lateral

displacement from experimental testing as the input loading for analysis. The third

loading sequence, termed the ideal loading sequence consisted of application of

simultaneous, in-phase axial load and lateral displacement, which achieved the targets at

the same time. This type of loading sequence controlling the axial load and lateral

displacement would have been ideal for experimental testing but load control for such a

specimen is considered unsafe for the equipment and personnel.

Lateral displacement and axial load were imposed at the column end loading point.

A rigid constraint was imposed on edges at the column ends to prevent stress

concentrations at the loading and reaction points. The forces, moments, and

displacements associated with the applied loading along with various stress and strain

components and the deformed shape were obtained from the computer analysis.

6.5  Effect of Residual Stresses

Model W14×132 was used to investigate the effect of residual stresses on the

 performance of the column specimens subjected to combined high axial load and lateral

drift. Residual stresses exist in an non-loaded wide-flange steel section and primarily

result from uneven cooling after hot rolling of the section. A simplified linear residual

stress distribution is shown in Figure 6.3(a). The maximum residual stress was assumed

to be 12 ksi (Salmon and Johnson 1996). This self-equilibrating residual stress

distribution was applied to the model as an initial stress condition as shown in the axial

stress contour plot in Figure 6.3(b).

Page 167: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 167/257

 

152

A comparison of the monotonic moment versus drift response for Model

W14×132 at the three target axial load levels with and without residual stresses is shown

in Figure 6.4. It was observed that residual stresses did not have a significant effect on

the monotonic behavior of this model. Model W14×132-75 with and without residual

stresses was subjected to the loading history from experimental test data. Figure 6.5

 provides a comparison of the P-M   interaction and moment versus drift response and

again shows that the effect of residual stresses on the performance of this model was

negligible.

6.6  Analysis Results of W14 Column Models

6.6.1  Monotonic Loading Sequence Results

Monotonic loading of the models was conducted to provide a simple

approximation of cyclic behavior before performing a more computationally intensive

cyclic analysis. Moment versus drift response (see Figure 6.6) was in general agreement

with behavior observed during testing. Increase of the axial load level caused a

corresponding decrease in moment capacity. Also, consistent with observations from the

experimental results Figure 6.6(a and b) shows a softening of the moment versus drift at

large negative drifts for Models W14×132 and W14×176. This softening behavior was

not observed for Specimens W14×233 and was not observed in the monotonic response

of Model W14×233 or Model W14×370.

6.6.2  Comparison of Specimen and Model Results

A comparison of test specimen and model P-M interaction is provided in Figures

6.7 to 6.10. The model response was from the loading sequence using recorded axial

load and lateral displacement from experimental testing as the input loading for analysis.

In general, good agreement was observed between the specimen and model responses.

Models did tend to slightly overpredict the moment as compared with experimental

results. Figures 6.11 to 6.14 compare the experimental and analytically predicted

moment versus drift response. Discrete points shown on these figures again represent

 points where both the target axial load and drift were achieved. Good agreement was

observed between the specimen and model moment versus drift response. Figures 6.15 to

Page 168: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 168/257

 

153

6.18 show axial stress contour plots and the model deformed shapes at -5% drift for the

loading history generated from test results. The figures show symmetric flange local

 buckling, which was consistent with tests. No web local buckling was observed

(consistent with experimental results). The amplitude of flange local buckling was

observed to decrease as the section weight increased. For Model W14×233 and Model

W14×370 only very minor local buckling was observed.

6.6.3  Comparison of Results for Two Cyclic Loading Sequences

Figures 6.19 to 6.22 show a comparison of P-M interaction for models loaded

with the loading history from test data and the ideal loading history (in-phase axial load

and lateral displacement). Both loading sequences were observed to result in very similar  

P-M interaction response. The moment versus drift for the two loading sequences is

shown in Figures 6.23 to 6.26. At first the results from the two different loading

sequences did not appear to be well correlated. However, when the discrete points on the

loading history from test plots were compared with the ideal loading history response

 plots reasonable agreement was observed. The correlation in response between models

subjected to the two different cyclic loading histories provided an indication that Loading

Scheme C, used for experimental testing, was a reasonable approximation of the more

ideal in-phase axial load and lateral displacement loading sequence. The correlation also

enabled extrapolation to other axial load levels and other column sections using the ideal

loading sequence and confidence gained in the modeling techniques to reasonably predict

experimentally observed behavior.

6.7  Analysis Results of W27 Column Models

The W14 columns tested were in general very stocky sections. Figure 6.27(a)

shows that the flange slenderness for the W14×132 section was very close to the limiting

value of 7.2 (AISC 2005a) but the web slenderness was less than half of the allowable

value for a column with an axial load ratio, P/P y equal to 0.75. In order to investigate the

 performance of columns with web slenderness closer to the limiting value a W27×146,

W27×194, and W27×281 section were modeled and subjected to loading sequences

similar to the W14 section models. Figure 6.27(b) shows that the flange and web

Page 169: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 169/257

 

154

slenderness for the W27×146 section were very close to the current seismically compact

limit.

6.7.1  Monotonic Loading Sequence Results

The monotonic moment versus drift for the W27 deep column models, shown in

Figure 6.28, indicates more severe degradation in response than for the W14 column

models (Figure 6.6). Increasing the section weight (reducing λ ps) tended to reduce the

degradation observed at large drifts. Figure 6.28 also shows softening of the response for

large positive drifts, which was not observed for the W14 models.

6.7.2  Cyclic Loading Sequence Results

The cyclic loading sequence applied to these models was the ideal loading

sequence, with in-phase axial load and lateral displacement. The P-M  interaction along

with the P-M   interaction surface based on nominal material properties is shown in

Figures 6.29 to 6.31 for Models W27×146, W27×194, and W27×281. It is noted that the

shape of the P-M interaction appears to be somewhat inconsistent with the shape of the

P-M interaction surface. Much larger moments were observed at high axial loads than

would have been predicted by the interaction surface.

Figures 6.32 to 6.34 show the moment versus drift response for the W27 models.Six of the models did not complete the loading sequence to 10% drift due to severe local

 buckling and associated computational instability. The response of the W27 deep column

models showed more significant degradation than for the W14 column sections tested.

The reliability of deep columns under combined high axial load and drift demand should

 be the subject of further analytical and experimental investigation.

Figures 6.35 to 6.37 show axial stress contour plots and the model deformed

shapes at -5% drift. Significant flange and web local buckling was observed for the

W27×146 and W27×194 sections. Flange and web local buckling observed for Model

W27×281 was much less severe. This is consistent with the improved moment versus

drift response of this model as compared with the two lighter W27 sections modeled.

Unlike the symmetric flange local buckling observed for the W14 test specimens and

models the W27 models showed antisymmetric flange local buckling.

Page 170: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 170/257

Page 171: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 171/257

 

156

-0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04

-100

-80

-60

-40

-20

0

20

40

60

80

100

Strain (in/in)

   S   t  r  e  s  s   (   k  s   i   )

-0.04 -0.03 -0.02 -0.01 0.0 0.01 0.02 0.03 0.04

-100

-80

-60

-40

-20

0

20

40

60

80

100

Strain (in/in)

   S   t  r  e  s  s   (   k  s   i   )

 

Figure 6.2 Cyclic Material Test Results (Kaufmann et al. 2001)

Stabilized Cycle

Page 172: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 172/257

 

157

+12 ksi

+12 ksi

-12 ksi

+12 ksi

-12 ksi

-12 ksi

FLANGE

DISTRIBUTION

WEB

DISTRIBUTION

 (a) Assumed Residual Stresses

(b) Initial Model Residual Stresses

Figure 6.3 Residual Stress Distribution

Page 173: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 173/257

 

158

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

With Residual StressWithout Residual Stress

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

With Residual StressWithout Residual Stress

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

With Residual StressWithout Residual Stress

 (c) 75%P y 

Figure 6.4 Comparison of the W14×132 Models Monotonic End Moment versus Drift

Response with and without Residual Stresses

Page 174: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 174/257

 

159

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

With Residual StressWithout Residual Stress

 (a) P-M  Interaction 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

With Residual StressWithout Residual Stress

 (b) End Moment versus Drift Response

Figure 6.5 Comparison of Model W14×132-75 Response with and without Residual

Stresses

0.75Pyn

M/Mpn 

     P   /     P    y    n

 

Mpn

Page 175: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 175/257

 

160

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

(a) W14×132 (b) W14×176

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

 

-20 -10 0 10 20

-60

-40

-20

0

20

40

60

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

(c) W14×233 (d) W14×370

Figure 6.6 Comparison of W14 Column Models Monotonic End Moment versus Drift

Response

Page 176: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 176/257

 

161

Specimen Model

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (a) 35%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (b) 55%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (c) 75%P y 

Figure 6.7 Model W14×132: Comparison of Specimen and Model P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 177: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 177/257

 

162

Specimen Model

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (c) 75%P y 

Figure 6.8 Model W14×176: Comparison of Specimen and Model P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 178: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 178/257

 

163

Specimen Model

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

Figure 6.9 Model W14×233: Comparison of Specimen and Model P-M  Interaction

Specimen Model

-60 -40 -20 0 20 40 60

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /

   P  y

 

-60 -40 -20 0 20 40 60

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 

Figure 6.10 Model W14×370-35: Comparison of Specimen and Model P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /

     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

Page 179: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 179/257

 

164

Specimen Model

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)  

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.11 Model W14×132: Comparison of Specimen and Model End Moment versus

Drift Response

MpnMpn

MpnMpn

MpnMpn

Page 180: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 180/257

 

165

Specimen Model

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.12 Model W14×176: Comparison of Specimen and Model End Moment versus

Drift Response

MpnMpn

MpnMpn

MpnMpn

Page 181: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 181/257

 

166

Specimen Model

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

Figure 6.13 Model W14×233: Comparison of Specimen and Model End Moment versus

Drift Response

Specimen Model

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 

Figure 6.14 Model W14×370-35: Comparison of Specimen and Model End Moment

versus Drift Response

MpnMpn

MpnMpn

MpnMpn

Page 182: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 182/257

 

167

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.15 Model W14×132: 5% Drift

Page 183: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 183/257

 

168

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.16 Model W14×176: 5% Drift

Page 184: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 184/257

 

169

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.17 Model W14×233: 5% Drift

Page 185: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 185/257

 

170

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.18 Model W14×370: 5% Drift

Page 186: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 186/257

 

171

Loading History from Test Ideal Loading History

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (a) 35%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (b) 55%P y 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 

-20 -10 0 10 20

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

   P   /   P  y

 (c) 75%P y 

Figure 6.19 Model W14×132: Comparison of P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn

 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn

 

0.75Pyn 

     P   /     P    y    n

Page 187: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 187/257

 

172

Loading History from Test Ideal Loading History

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-30 -20 -10 0 10 20 30

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (c) 75%P y 

Figure 6.20 Model W14×176: Comparison of P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 188: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 188/257

 

173

Loading History from Test Ideal Loading History

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5

M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-40 -30 -20 -10 0 10 20 30 40

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (c) 75%P y 

Figure 6.21 Model W14×233: Comparison of P-M  Interaction

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

     P   /     P    y    n

Page 189: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 189/257

 

174

Loading History from Test Ideal Loading History

-100 -50 0 50 100

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-2 -1 0 1 2M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 

-100 -50 0 50 100

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p

  s   )

-2 -1 0 1 2M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-100 -50 0 50 100

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-2 -1 0 1 2M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-100 -50 0 50 100

-6000

-4000

-2000

0

2000

4000

6000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-2 -1 0 1 2M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (c) 75%P y 

Figure 6.22 Model W14×370: Comparison of P-M  Interaction

M/Mpn 

0.75Pyn 

     P   /     P    y    n

M/Mpn 

0.55Pyn 

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

Page 190: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 190/257

Page 191: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 191/257

 

176

Loading History from Test Ideal Loading History

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.24 Model W14×176: Comparison of End Moment versus Drift Response

MpnMpn

MpnMpn

MpnMpn

Page 192: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 192/257

 

177

Loading History from Test Ideal Loading History

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.25 Model W14×233: Comparison of End Moment versus Drift Response

Mpn

MpnMpn

MpnMpn

Page 193: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 193/257

 

178

Loading History from Test Ideal Loading History

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0

   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.26 Model W14×370: Comparison of End Moment versus Drift Response

Mpn

Mpn

MpnMpn

Page 194: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 194/257

 

179

0 2 4 6 8 100

10

20

30

40

50

b/2tf 

   h   /   t  w

W14x132

W14x176W14x233W14x370

 (a) Specimen and Model W14 Sections

0 2 4 6 8 100

10

20

30

40

50

b/2tf 

   h   /   t  w

W27x146W27x194W27x281

 (b) Model W27 Sections

Figure 6.27 Comparison of Width-Thickness Ratios with λ ps for Investigated W-Shapes

bf /2tf 

bf /2tf 

      h             /     t    w

      h             /     t    w

λps=7.2

λps=40.4 (P/Py=0.75)

λps=7.2

λps=40.4 (P/Py=0.75)

Page 195: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 195/257

 

180

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

 (a) W27×146

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

 (b) W27×194

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

35%55%75%

 (c) W27×281

Figure 6.28 Comparison of Deep Column Models Monotonic End Moment versus Drift

Response

Page 196: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 196/257

 

181

-40 -20 0 20 40

-2000

-1000

0

1000

2000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-40 -20 0 20 40

-2000

-1000

0

1000

2000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-40 -20 0 20 40

-2000

-1000

0

1000

2000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (c) 75%P y 

Figure 6.29 Model W27×146: Comparison of P-M  Interaction

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 197: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 197/257

 

182

-60 -40 -20 0 20 40 60

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-60 -40 -20 0 20 40 60

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-60 -40 -20 0 20 40 60

-3000

-2000

-1000

0

1000

2000

3000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 

(c) 75%P y 

Figure 6.30 Model W27×194: Comparison of P-M  Interaction

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 198: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 198/257

 

183

-100 -50 0 50 100

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-0.5-1.5-2.0 -1.0 0.0 0.5 1.0 1.5 2.0M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (a) 35%P y 

-100 -50 0 50 100

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-0.5-1.5-2.0 -1.0 0.0 0.5 1.0 1.5 2.0M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 (b) 55%P y 

-100 -50 0 50 100

-4000

-2000

0

2000

4000

End Moment (x1000 kip-in)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

-0.5-1.5-2.0 -1.0 0.0 0.5 1.0 1.5 2.0M/Mp

-1.0

-0.5

0.0

0.5

1.0

   P   /   P  y

 

(c) 75%P y 

Figure 6.31 Model W27×281: Comparison of P-M  Interaction

M/Mpn 

0.55Pyn 

     P   /     P    y    n

M/Mpn 

0.35Pyn 

     P   /     P

    y    n

M/Mpn 

0.75Pyn 

     P   /     P    y    n

Page 199: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 199/257

 

184

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.32 Model W27×146: Comparison of End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 200: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 200/257

 

185

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-40

-20

0

20

40

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.33 Model W27×194: Comparison of End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 201: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 201/257

 

186

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (a) 35%P y 

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (b) 55%P y 

-20 -10 0 10 20

-50

0

50

Story Drift (in.)

   E  n   d   M  o  m  e  n   t   (  x   1   0   0   0   k   i  p  -   i  n   )

-10 -5 0 5 10

Story Drift Ratio (%)

 (c) 75%P y 

Figure 6.34 Model W27×281: Comparison of End Moment versus Drift Response

Mpn

Mpn

Mpn

Page 202: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 202/257

 

187

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.35 Model W27×146: 5% Drift

Page 203: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 203/257

 

188

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.36 Model W27×194: 5% Drift

Page 204: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 204/257

 

189

(a) 35%P y 

(b) 55%P y 

(c) 75%P y 

Figure 6.37 Model W27×281: 5% Drift

Page 205: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 205/257

 

190

7.  SUMMARY AND CONCLUSIONS

7.1  Summary

To develop a rational loading sequence for cyclic testing of braced frame columns,

3-story and 7-story BRBF prototype building models were designed and analyzed.

 Nonlinear time-history analysis of frame models, subjected to a suite of 20 ground

motion records, was conducted. First-story column axial load and story drift ratio time-

histories for the 20 records were processed using a rainflow cycle counting procedure.

Statistical analysis was used to quantify maximum and cumulative column demands and

a loading sequence for experimental testing was developed. The loading sequence was

controlled by story drift ratio, and column axial loads were calculated based on idealized

 brace demand on the columns.

The experimental program consisted of testing nine full-scale fixed-base columns.

ASTM A992 steel wide-flange sections typical of braced frame columns, representing a

 practical range of flange and web width-to-thickness ratios, and 15 ft story height were

subjected to different levels of axial force demand (0.35P y, 0.55P y, and 0.75P y) combined

with story drift demand for these simulated first-story columns. Column specimens were

tested in a horizontal configuration with one end of the specimen attached to a reaction

fixture that was attached to a strong-wall. The other end of the specimen was attached to

a reaction fixture attached to the SRMD shake table platen. Longitudinal and lateral

movement of the shake table platen imposed load in both directions.  Since the objective

of this research was focused on strength and ductility capacities of steel columns, not the

column base connection to surrounding members, both ends of the column specimen

were strengthened by stiffeners or re-usable haunches to simulate the fixed-end condition.

Except for both ends, specimens were not braced laterally to inhibit weak-axis buckling.

Three different loading schemes were used during testing to overcome difficulties

encountered in simultaneously controlling the SRMD input longitudinal and lateral

displacements to achieve both the desired column axial load targets and story drift targets.

The final Loading Scheme C consisted of in-phase story drift and column axial load to

represent realistic frame action through the 1.5% drift cycles. Calculation of column

axial loads at the protocol drift levels were based on reaching the target column

compressive axial load (e.g., 0.35P y, 0.55P y, 0.75P y) at 0.002 rad. story drift ratio (yield

Page 206: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 206/257

 

191

drift) and axial loads for all excursions larger than the yield drift were equal to the

maximum level for that specimen. For cycles at 2% drift and beyond the drift component

of displacement was applied first, followed by application of longitudinal displacement

until the target axial load was achieved. By loading in this manor the tests were safely

conducted in displacement control and the combined target axial loads and story drifts

could be achieved.

7.2  Conclusions

The test data agreed well with the established P-M interaction surface.

Significant overstrength was observed between the test data and the P-M   interaction

surface based on nominal material properties. Drift capacities of 7% to 9% were

calculated assuming a 10% reduction from peak moment resistance is used to define the

drift capacity. These drift capacities correspond to a ductility of approximately 10 and

were more than four times the expected BRBF story drift from earthquake nonlinear

time-history analysis. For all specimens only minor yielding was observed at a story drift

of 1.5%, the maximum expected drift from nonlinear time-history analysis.

Flange local buckling was observed for all specimens with the exception of

Specimen W14×370-35, which failed prematurely due to fracture of the column flange-

to-base plate welded joint. No web local buckling was observed. Cyclic straightening of

flange local buckling occurred until about 8% drift when the buckled amplitude formed

on one drift excursion would only partially straighten on the subsequent opposite drift

excursion. The relatively small amplitude of flange local buckling observed at 6% drift

(more than three times the maximum expected drift) provided an indication that strength

degradation due to flange local buckling is not expected to present a problem for the

seismic design of the tested W14 column sections.

 No fracture was observed for Specimens W14×132-35, W14×132-55, and

W14×233-55. Specimens W14×132-75, W14×176-35, W14×176-55, and W14×176-75

experienced partial or complete fracture of the column flange through the haunch bolt

hole net section. Specimens W14×233-35, and W14×370-35 failed by fracture of the

column flange-to-base plate electroslag complete joint penetration groove welded joint.

With the exception of Specimen W14×370-35, which failed at 3% drift, the fracture of

Page 207: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 207/257

 

192

the other specimens occurred at 8% drift or larger, which was well beyond the expected

earthquake drift demand on these columns.

The finite element program ABAQUS was used to model the steel column

specimens. Models predicted global behavior, yielding, and strength degradation

resulting from local buckling at large drifts. Models were subjected to both monotonic

and cyclic loading sequences. Analysis results were observed to be well correlated with

experimental results. It was determined that a typical initial residual stress distribution

did not significantly effect the P-M   interaction or moment versus drift response. The

 behavior of deep columns with higher width/thickness ratios than the tested W14 sections

was also investigated. Finite element analysis of three W27 column models similar to

tested specimens revealed a potential vulnerability of deep columns to combined high

axial load and drift demand. Significant degradation from flange and web local buckling

was accelerated by the presence of high axial load.

Page 208: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 208/257

 

193

REFERENCES

(1)  ABAQUS Inc. (2005),  ABAQUS/CAE Users Manual, Electronic Version 6.4-5,Pawtucket, RI.

(2)  Aiken, I., Clark, P., Tajirian, F., Kasai, K., Kimura, I. and Ko, E. (2000). “UnbondedBraces in the United States-Design Studies, Large-Scale Testing and the First

Building Application.” Proceedings of International Symposium on Passive Control,

Tokyo Institute of Technology, Tokyo, Japan, pp. 203-217.

(3)  American Institute of Steel Construction and Structural Engineers Association of

California. (2001).  Recommended Buckling-Restrained Braced Frame Provisions.

Chicago, IL.

(4)  American Institute of Steel Construction. (2005a). Seismic Provisions for Structural

Steel Buildings. Chicago, IL.

(5)  American Institute of Steel Construction. (2005b). Thirteenth Edition Steel

Construction Manual. Chicago, IL.

(6)  Black, C., Makris, N. and Aiken, I. (2002). “Component Testing, Stability Analysis

and Characterization of Buckling Restrained Braces.”  Report No. PEER-2002/08 ,

Pacific Earthquake Engineering Research Center, University of California, Berkeley,CA.

(7)  International Code Council Inc. (2006). International Building Code. Whittier, CA.

(8)  Kaufmann, E., Metrovich, B. and Pense, A. (2001), “Characterization of Cyclic

Inelastic Strain Behavior on Properties of A572 Gr. 50 and A913 Rolled Sections.” ATLASS Report No. 01-13, National Center for Engineering Research on Advanced

Technology for Large Structural Systems, Lehigh University, Bethlehem, PA.

(9)  Krawinkler, H. (1996). “Cyclic Loading Histories for Seismic Experimentation onStrucutural Components.” Earthquake Spectra, 12(1).

(10) Krawinkler, H., Gupta, A., Medina, R. and Luco, N. (2000). “Loading Histories forSeismic Performance Testing of SMRF Components and Assemblies.”  Report No.

SAC/BD-00/10. SAC Joint Venture.

(11) Krawinkler, H., Parisi, F., Ibarra, L., Ayoub, A. and Medina, R. (2001).“Development of a Testing Protocol for Wood Frame Structures.”  Report No. W-02,

CUREE-Caltech Woodframe Project, Stanford University, Palo Alto, CA.

(12) Krawinkler, H., Medina, R. and Alavi, B. (2003). “Seismic Drift and Ductility

Demands and their Dependence on Ground Motions.” Engineering Structures, 25(5),

 pp. 637-653.

Page 209: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 209/257

 

194

(13) Lopez, W. and Sabelli, R. (2004). “Seismic Design of Buckling-Restrained Braced

Frames.” Structural Steel Education Council Technical Information & ProductServices, Moraga, CA.

(14) Medina, R.A. (2003). “Seismic Demands for Nondeteriorating Frame Structures and

their Dependence on Ground Motions.” Ph.D. Dissertation, Department of Civil andEnvironmental Engineering, Stanford University, Palo Alto, CA.

(15) Merritt, S., Uang, C.M., Benzoni, G. (2003a). “Subassemblage Testing of Corebrace

Buckling-Restrained Braces.” Report No. TR-2003/01, University of California, San

Diego, La Jolla, CA.

(16) Merritt, S., Uang, C.M., Benzoni, G. (2003b). “Subassemblage Testing of Star

Seismic Buckling-Restrained Braces.”  Report No. TR-2003/04, University of

California, San Diego, La Jolla, CA.

(17) Merritt, S., Uang, C.M., Benzoni, G. (2003c). “Uniaxial Testing of AssociatedBuckling-Restrained Braces.” Report No. TR-2003/05, University of California, SanDiego, La Jolla, CA.

(18)  Newell, J., Uang, C.M., Benzoni, G. (2005). “Subassemblage Testing of Corebrace

Buckling-Restrained Braces (F Series).”  Report No. TR-2005/01, University ofCalifornia, San Diego, La Jolla, CA.

(19)  Newell, J., Uang, C.M., Benzoni, G. (2006). “Subassemblage Testing of CorebraceBuckling-Restrained Braces (G Series).”  Report No. TR-2006/01, University of

California, San Diego, La Jolla, CA.

(20) Prakash, V., Powell, G.H., and Campbell, S. (1993). “DRAIN-2DX: Base Program

Description and User Guide.”  Report No. UCB/SEMM-93/17, Department of CivilEngineering, University of California, Berkeley, CA.

(21) Richards, P. and Uang, C.-M. (2003). “Development of Testing Protocol for ShortLinks in Eccentrically Braced Frames.”  Report No. SSRP-2003/08 , University of

California, San Diego, La Jolla, CA.

(22) Sabelli, R. (2001). “Research of Improving the Design and Analysis of Earthquake-Resistant Steel-Braced Frames.” 2000 NEHRP Professional Fellowship Report. 

EERI, Oakland, CA.

(23) Salmon, C. and Johnson, J. (1996). Steel Structures: Design and Behavior,

 Emphasizing Load and Resistance Factor Design. 4th Ed. HarperCollins College

Publishers, New York.

(24) Structural Engineering Institute and American Society of Civil Engineers. (2005).

 Minimum Design Loads for Buildings and Other Structures, ASCE 7-05. Reston, Va.

Page 210: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 210/257

 

195

(25) Uang, C.M. and Nakashima, M. (2004). “Steel Buckling-Restrained Braced Frames.”(Chapter 16) in Earthquake Engineering: Recent Advances and Applications, editors:

Y. Bozorgnia and V. V. Bertero, CRC Press, Boca Raton.

(26) Watanabe, A. (1992). “Development of Composite Brace with a Large Ductility.”US-Japan Workshop on Composite and Hybrid Structures, San Francisco, CA.

(27) Watanabe, A., Hitomi, Y., Saeki, E., Wada, A., Fujimoto, M. (1988). “Properties of

Brace Encased in Buckling-Restraining Concrete and Steel Tube.” Proceedings of

 Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan. Paper

 No. 6-7-4. Vol. IV, pp. 719-724.

Page 211: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 211/257

 

196

APPENDIX A: Time-History Analysis Results

Page 212: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 212/257

 

197

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D   R   (   %   )

 

(a) Third Story

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D   R   (   %   )

 (b) Second Story

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D   R   (   %   )

 

(c) First Story

3-Story BRBF: Story Drift Ratio Time-Histories (Record P09)

Page 213: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 213/257

Page 214: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 214/257

 

199

-1.0 -0.5 0.0 0.5 1.0-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-1500

-1000

-500

0

500

1000

1500

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-5 0 5

Moment (x1000 kip-in.)

 3-Story BRBF: Axial Load-Moment Interaction (Record P09)

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Moment (M/Mpn)

Page 215: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 215/257

 

200

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(a) Third Story

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(b) Second Story

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(c) First Story

3-Story BRBF: Brace Axial Load versus Axial Deformation Relationship (Record P09)

Page 216: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 216/257

 

201

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D

   R   (   %   )

 

(a) Third Story

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D   R   (   %   )

 

(b) Second Story

0 10 20 30 40-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Time (sec)

   S   D   R   (   %   )

 

(c) First Story

3-Story BRBF: Story Drift Ratio Time-Histories (Record P14)

Page 217: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 217/257

 

202

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   A  x   i  a   l   L  o  a   d   (   P

   /   P  y   )

-1500

-1000

-500

0

500

1000

1500

   A  x   i  a   l   L  o  a   d   (   k

   i  p  s   )

 (a) Axial Load

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   M  o  m

  e  n   t   (   M   /   M  p   )

-5

0

5

   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n .   )

 (b) Moment at Column Base

3-Story BRBF: Column Response Time-Histories (Record P14)

   M  o  m

  e  n   t   (     M     /     M    p    n   )

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Page 218: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 218/257

 

203

-1.0 -0.5 0.0 0.5 1.0-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-1500

-1000

-500

0

500

1000

1500

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-5 0 5

Moment (x1000 kip-in.)

 3-Story BRBF: Axial Load-Moment Interaction (Record P14)

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Moment (M/Mpn)

Page 219: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 219/257

 

204

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(a) Third Story

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(b) Second Story

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-300

-200

-100

0

100

200

300

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(c) First Story

3-Story BRBF: Brace Axial Load versus Axial Deformation Relationship (Record P14)

Page 220: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 220/257

 

205

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(a) Seventh Story (b) Sixth Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(c) Fifth Story (d) Fourth Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S

   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S

   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(e) Third Story (f) Second Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-3

-2

-1

0

1

2

3

   S   t  o

  r  y   D  r   i   f   t   (   i  n .   )

 

(g) First Story

7-Story BRBF: Story Drift Ratio Time-Histories (Record P08)

Page 221: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 221/257

 

206

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   A  x   i  a   l   L  o  a   d   (   P

   /   P  y   )

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k

   i  p  s   )

 (a) Axial Load

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   M  o  m

  e  n   t   (   M   /   M  p   )

-20

-10

0

10

20

   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n .   )

 (b) Moment at Column Base

7-Story BRBF: Column Response Time-Histories (Record P08)

   M  o  m

  e  n   t   (     M     /     M    p    n   )

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Page 222: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 222/257

 

207

-1.0 -0.5 0.0 0.5 1.0-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-20 -10 0 10 20

Moment (x1000 kip-in.)

 7-Story BRBF: Axial Load-Moment Interaction (Record P08)

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Moment (M/Mpn)

Page 223: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 223/257

 

208

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(a) Seventh Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(b) Sixth Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(c) Fifth Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(d) Fourth Story

7-Story BRBF: Brace Axial Load versus Axial Deformation Relationship for Record P08

Page 224: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 224/257

 

209

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(e) Third Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(f) Second Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(g) First Story

7-Story BRBF: Brace Axial Load versus Axial Deformation Relationship for Record P08

(cont.)

Page 225: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 225/257

 

210

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(a) Seventh Story (b) Sixth Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(c) Fifth Story (d) Fourth Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S

   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-2

-1

0

1

2

   S

   t  o  r  y   D  r   i   f   t   (   i  n .   )

 

(e) Third Story (f) Second Story

0 10 20 30 40-2

-1

0

1

2

Time (sec)

   S   D   R   (   %   )

-3

-2

-1

0

1

2

3

   S   t

  o  r  y   D  r   i   f   t   (   i  n .   )

 

(g) First Story

7-Story BRBF: Story Drift Ratio Time-Histories (Record P19)

Page 226: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 226/257

 

211

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   A  x   i  a   l   L  o  a   d   (   P

   /   P  y   )

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k

   i  p  s   )

 (a) Axial Load

0 10 20 30 40

-1.0

-0.5

0.0

0.5

1.0

Time (sec)

   M  o  m

  e  n   t   (   M   /   M  p   )

-20

-10

0

10

20

   M  o  m  e  n   t

   (  x   1   0   0   0   k   i  p  -   i  n .   )

 (b) Moment at Column Base

7-Story BRBF: Column Response Time-Histories (Record P19)

   M  o  m

  e  n   t   (     M     /     M    p    n   )

   A  x   i  a   l   L  o  a   d   (     P     /     P

   )

Page 227: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 227/257

 

212

-1.0 -0.5 0.0 0.5 1.0-1.0

-0.5

0.0

0.5

1.0

Moment (M/Mp)

   A  x   i  a   l   L  o  a   d   (   P   /   P  y   )

-3000

-2000

-1000

0

1000

2000

3000

   A  x   i  a   l   L  o  a   d   (   k   i  p  s   )

-20 -10 0 10 20

Moment (x1000 kip-in.)

 7-Story BRBF: Axial Load-Moment Interaction (Record P19)

   A  x   i  a   l   L  o  a   d   (     P     /     P    y   )

Moment (M/Mpn)

Page 228: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 228/257

 

213

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(a) Seventh Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(b) Sixth Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(c) Fifth Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(d) Fourth Story

7-Story BRBF: Brace Axial Load versus Axial Deformation Relationship for Record P19

Page 229: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 229/257

 

214

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(e) Third Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(f) Second Story

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

 

-2 -1 0 1 2-600

-400

-200

0

200

400

600

 Axial Deformation (in.)

   A

  x   i  a   l   F  o  r  c  e   (   k   i  p  s   )

(g) First Story

7-Story BRBF: Brace Axial Load versus Axial Deformation Relationship for Record P19

(cont.)

Page 230: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 230/257

 

215

APPENDIX B: Strain Gage Data

Page 231: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 231/257

 

216

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-35: Strain Gages S1 to S6

Page 232: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 232/257

 

217

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-35: Strain Gages S27 to S32

Page 233: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 233/257

 

218

   R   1

-10 -5 0 5 10

-0.010

-0.005

0.0

0.005

0.010

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.010

-0.005

0.0

0.005

0.010

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.010

-0.005

0.0

0.005

0.010

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.010

-0.005

0.0

0.005

0.010

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.010

-0.005

0.0

0.005

0.010

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-35: Strain Rosettes R1 to R5

Page 234: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 234/257

 

219

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-55: Strain Gages S1 to S6

Page 235: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 235/257

 

220

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-55: Strain Gages S27 to S32

Page 236: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 236/257

 

221

   R   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-55: Strain Rosettes R1 to R5

Page 237: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 237/257

 

222

   S   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-75: Strain Gages S1 to S6

Page 238: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 238/257

 

223

   S   2   7

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-75: Strain Gages S27 to S32

Page 239: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 239/257

 

224

   R   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×132-75: Strain Rosettes R1 to R5

Page 240: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 240/257

 

225

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-35: Strain Gages S1 to S6

Page 241: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 241/257

 

226

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-35: Strain Gages S27 to S32

Page 242: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 242/257

 

227

   R   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-35: Strain Rosettes R1 to R5

Page 243: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 243/257

 

228

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-55: Strain Gages S1 to S6

Page 244: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 244/257

 

229

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-55: Strain Gages S27 to S32

Page 245: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 245/257

 

230

   R   1

-10 -5 0 5 10

-0.06

-0.04-0.02

0.0

0.02

0.04

0.06

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.06

-0.04-0.02

0.0

0.02

0.04

0.06

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.06

-0.04-0.02

0.0

0.02

0.04

0.06

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.06

-0.04-0.02

0.0

0.02

0.04

0.06

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.06

-0.04-0.02

0.0

0.02

0.04

0.06

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-55: Strain Rosettes R1 to R5

Page 246: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 246/257

 

231

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-75: Strain Gages S1 to S6

Page 247: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 247/257

 

232

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×176-75: Strain Gages S27 to S32

Page 248: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 248/257

Page 249: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 249/257

 

234

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-35: Strain Gages S1 to S6

Page 250: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 250/257

 

235

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-35: Strain Gages S27 to S32

Page 251: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 251/257

 

236

   R   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-35: Strain Rosettes R1 to R5

Page 252: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 252/257

 

237

   S   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-55: Strain Gages S1 to S6

Page 253: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 253/257

 

238

   S   2   7

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.02

-0.01

0.0

0.01

0.02

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-55: Strain Gages S27 to S32

Page 254: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 254/257

 

239

   R   1

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   2

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   4

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   3

-10 -5 0 5 10

-0.04

-0.02

0.0

0.02

0.04

Story Drift Ratio (%)

   S   h  e  a  r   S

   t  r  a   i  n   (   i  n .   /   i  n .   )

 Specimen W14×233-55: Strain Rosettes R1 to R5

Page 255: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 255/257

 

240

   S   1

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   4

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   5

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   6

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×370-35: Strain Gages S1 to S6

Page 256: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 256/257

 

241

   S   2   7

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   0

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   8

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   1

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   2   9

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

   S   3   2

-10 -5 0 5 10

-0.004

-0.002

0.0

0.002

0.004

Story Drift Ratio (%)

   S   t  r  a

   i  n   (   i  n .   /   i  n .   )

 Specimen W14×370-35: Strain Gages S27 to S32

Page 257: Uang - Columns with High Axial and Drift Demand.pdf

8/20/2019 Uang - Columns with High Axial and Drift Demand.pdf

http://slidepdf.com/reader/full/uang-columns-with-high-axial-and-drift-demandpdf 257/257

 

   R   1

0 005

0.0

0.005

0.010

ar   S   t  r  a   i  n   (   i  n .   /   i  n .   )

   R   5

0 005

0.0

0.005

0.010

ar   S   t  r  a   i  n   (   i  n .   /   i  n .   )