uk china collaborative literature review on toxic metals in industrial symbiosis in the cement...

27
METABOLISM OF TOXIC METALS IN INDUSTRIAL SYMBIOSIS IN THE CEMENT INDUSTRY – A GLOBAL REVIEW AND ANALYSIS Stegemann, J.A. 1 , Zhang, W.S. 2 , Wang, Z.Y. 2 , Wei, J.X. 3 , Yu, Q.J. 3 , and Zhou, Q. 1 1 Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, UK 2 China Building Materials Academy, Beijing, China 3 South China University of Technology, Guangzhou, China Abstract UNDER CONSTRUCTION

Upload: shashwat-omar

Post on 07-Dec-2015

4 views

Category:

Documents


0 download

DESCRIPTION

this document throws light on the use of toxic metals in the cement industry

TRANSCRIPT

Page 1: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

METABOLISM OF TOXIC METALS IN INDUSTRIAL SYMBIOSIS IN THE CEMENT INDUSTRY – A GLOBAL

REVIEW AND ANALYSIS

Stegemann, J.A.1, Zhang, W.S. 2, Wang, Z.Y.2, Wei, J.X.3, Yu, Q.J. 3, and Zhou, Q. 1

1Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic

Engineering, University College London, UK

2China Building Materials Academy, Beijing, China

3South China University of Technology, Guangzhou, China

Abstract

UNDER CONSTRUCTION

Page 2: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

1 Introduction

Over the past three decades, the concept of industrial ecology has emerged as central to the

development of resource efficiency and sustainability (e.g., Frosch & Gallopoulos, 1989; Chertow,

2000). With its comparable need to make efficient use of resources, industrial activity is analogous

to a natural ecosystem, where a network of companies (organisms) must innovate (adapt) in

response to market (environmental) pressures, and competition leads to survival of the fittest. In a

natural ecosystem, resources are shared and cycled between members for mutual benefit in

symbiotic relationships. In industrial symbiosis, the by-products of one industry become the raw

materials for another.

Concrete is the most widely used material in the world and essential to much of our infrastructure.

As well as consuming about 11% of global industrial energy, cement production consumed more

than 5 Gt of non-fuel raw materials in 2011. More efficient management of the significant

proportion of global resources consumed by the cement/ concrete industry is therefore important to

sustainability. As obtaining energy and materials resources at lower cost has always been good

business, industrial symbiosis has occurred in the cement industry since long before the

popularisation of industrial ecology. The most common practices have been: 1) co-processing of

alternative fuels and raw materials (ARF), whereby a) wastes with high calorific value replace fossil

fuels, and/or b) mineral wastes replace raw material feeds (limestone, clay and supplements), to the

cement kiln, and 2) replacement of Portland cement clinker with pozzolanic wastes and diluents to

produce blended cements. Minerals waste may also replace natural aggregate in concrete

(Stegemann, 2014).

Many wastes contain elements or compounds that have the potential to interfere with cement

chemistry or pollute the environment and the viability of utilising wastes in cement production

requires that: 1) the manufacturing process is not adversely affected or can be adapted, 2) the

technical characteristics of the final cementitious material are appropriate to its intended use, and 3)

the risks of negative impacts on health or the environment from manufacturing and use of the

cementitious material are unchanged or reduced (Stegemann, 2014). In general, there has been a

high degree of conservatism and regulatory influence regarding the industrial by-products that are

allowed to enter the cement production system, and the cement industry has promoted industrial

symbiosis as a safe practice (e.g., Cembureau, 1997). However, when resources are more scarce and

costly and waste builds up in an ecosystem at levels that are detrimental to its health, there is a

greater incentive to evolve more efficient by-product utilisation in more specialised industrial-

ecological niches. Consequently, there is increasing pressure for a wider range of waste types,

including hazardous wastes, to be used in cement-based products.

The objectives of this review are therefore to:

1) to examine our present understanding of the fate and behaviour of heavy metals in co-

processing, through the cement kiln, into clinker and air pollution control dusts, to hydrated

Portland and blended cement pastes and the environment, and

2) identify areas where further research is needed to enable resource efficiency with concomitant

protection of the environment from heavy metal pollution.

Page 3: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

2 Approach

Review of the literature focussed on …

(Achternbosch et al., 2003, 2005; Adaska & Taubert, 2008; Alp, Deveci, Yazici, Türk, & Süngün, 2009;

Alp, Deveci, & Süngün, 2008; Andrade, Maringolo, & Kihara, 2003; Aouad, Laboudigue, Gineys, & NE,

2012; Artelt & Greinacher, 1993; a M. Barros, Tenório, & Espinosa, 2002; A. M. Barros, Espinosa, &

Tenório, 2004; A. M. Barros, Tenório, & Espinosa, 2004; Basten et al., 2002; Battelle/WBCSD, 2002;

Benard et al., 2009; Bermudez, Jasan, Plá, & Pignata, 2012; Bernardo, Marroccoli, Nobili, Telesca, &

Valenti, 2007; Bochenek & Kurdowski, 2013; Bodaghpour, Joo, & Ahmadi, 2012; Bolio-Arceo &

Glasser, 1998, 2000; I Bonhoure, Wieland, Scheidegger, & Tits, 2002; I. Bonhoure, Scheidegger,

Wieland, & Dähn, 2002; Isabelle Bonhoure, Baur, Wieland, Johnson, & Scheidegger, 2006; Isabelle

Bonhoure, Wieland, Scheidegger, Ochs, & Kunz, 2003; BUWAL, 1998; Carrasco, Bredin, Gningue, &

Heitz, 1998; Cembureau, 1997, 2009; Q. Y. Chen et al., 2007; Y.-L. Chen et al., 2009; Y.-L. Chen,

Chang, Lai, & Ko, 2012; Chen, Jida; Liao, Shiguo; Xie, Bin; Zhang, Liwei; Wang & Jiang, 2011; Chertow,

2000; Chinyama, 2011; CPCB, 2010; Dąbkowska- Naskręt, Jaworska, & Długosz, 2014; Degré, 2006;

Dekeukelaere, 2011; Dell’Orso, Mangialardi, Evangelista Paolini, & Piga, 2012; Eckert, Guo, &

Moscati, 1999; Eckert & Guo, 1998; Ekincioglu, Gurgun, Engin, Tarhan, & Kumbaracibasi, 2013; El-

Awady & Sami, 1997; Environment Agency, 2008; D C R Espinosa & Tenorio, 2001; Denise C R

Espinosa & Tenorio, 2000; FIERENS & VERHAEGE.JP, 1971; Frosch & Gallopoulos, 1989; Gaona, Dähn,

Tits, Scheinost, & Wieland, 2011a, 2011b; Gaona, Kulik, Macé, & Wieland, 2012; Gaona, Wieland,

Tits, Scheinost, & Dähn, 2013; Genon & Brizio, 2008; Gheorghe, Radu, Stac, & Saca, 2013;

Giannopoulos, Kolaitis, Togkalidou, Skevis, & Founti, 2007; Gierzatowicz, 2000; Gineys, Aouad, &

Damidot, 2010; Gineys, Aouad, Sorrentino, & Damidot, 2012; Gineys, Aouad, & Damidot, 2011;

Gineys, Aouad, Sorrentino, & Damidot, 2011; Gomes, Drumond, Neto, & Lira, 2013; Guan, Zhang,

Yang, & Yang, 1998; Guo & Eckert, 1996; Guo, 1997; Hanna et al., 1995; Hasanbeigi, Lu, Williams, &

Price, 2012; Heimburg, 1981; Hekal, Kishar, Hegazi, & Mohamed, 2011; Hill & Sharp, 2003;

HOLCIM/GTZ, 2006; Hsiao, Wang, & Yang, 2001; Huang, Yang, & Wang, 2012; Ivey et al., 1990; Jones,

Bankiewicz, & Hupa, 2014; Kaddatz, Rasul, & Rahman, 2013; Kapur & Kapur, 2004; Karagiannis &

Ftikos, 2012; Karstensen, 2007, 2008; Kikuchi, 2001; KIRCHNER, 1985, 1986, 1987; Klein & Hoenig,

2004; Kleppinger, 1993; Kolovos, Barafaka, Kakali, & Tsivilis, 2005; Krammart & Tangtermsirikul,

2004; KRCMAR, LINNER, & WEISWEILER, 1994; Lam, Barford, & McKay, 2011; Li, 2013a, 2013b;

Lieber & Gebauer, 1969; S. Lin, Su, & Tong, 2007; Y.-M. Lin, Zhou, Zhou, & Wu, 2011; Lin, Yi-Ming;

Zhou, Shao-qi; Zhou, De-jun; Wu, 2011; Ling, Jin, & Nie, 2008; Liu & Wang, 2011; Lorea, 2007; B. G.

Ma, 2009; X.-W. Ma, Chen, & Wang, 2010; Madlool, Saidur, Hossain, & Rahim, 2011; Martens,

Jacques, Van Gerven, Wang, & Mallants, 2010; Medina, Borunda, & Elguézabal, 2006; Mokrzycki &

Uliasz-Bochenczyk, 2003; Murat & Sorrentino, 1996; Murray & Price, 2008; Napia, Sinsiri,

Jaturapitakkul, & Chindaprasirt, 2012; Navia, Rivela, Lorber, & Méndez, 2006; Ogunbileje et al., 2013;

Pan, Huang, Kuo, & Lin, 2008; Paone, 2008; Park, 2000; PCA, 1992; Pembina Institute, 2005; Peng,

Zheng; Yu, Li-feng; Ding, Qiong; Wang, Kai-xiang; Gao, 2012; Pinakidou et al., 2006; Polat, Gürol,

Budak, Karabulut, & Ertuǧrul, 2004; Prodjosantoso & Kennedy, 2003; Pudasainee et al., 2009; Puntke

& Schneider, 2001; Qiao, Poon, & Cheeseman, 2007; Qiu, Luo, Shi, & Ni, 2011; Ract, Espinosa, &

Tenório, 2003; Reijnders, 2008; Romano & Rodrigues, 2008; Saikia, Kato, & Kojima, 2007; a M.

Scheidegger et al., 2006; A M Scheidegger et al., 2006a, 2006b; André M. Scheidegger et al., 2001,

2006; André M. Scheidegger, Wieland, Scheinost, Dähn, & Spieler, 2000; Schneider & Kuhlmann,

1997; Schuhmacher, Nadal, & Domingo, 2009; Serclerat, Massardier, Moszkowicz, & Murat, 1997;

Page 4: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Serclerat, Moszkowicz, & Murat, 1997; Serclérat, Moszkowicz, & Pollet, 2000; Serclérat &

Moszkowicz, 1997; Seyler, Hellweg, Monteil, & Hungerbühler, 2005; Shih, Chang, & Chiang, 2003;

Shih, Chang, Lu, & Chiang, 2005; Sikalidis, Zabaniotou, & Famellos, 2002; Sinyoung, Asavapisit,

Kajitvichyanukul, & Songsiriritthigul, 2011; Sinyoung, Songsiriritthigul, Asavapisit, & Kajitvichyanukul,

2011; SPRUNG, KIRCHNER, & RECHENBERG, 1984; SPRUNG, RECHENBERG, & BACHMANN, 1994;

SPRUNG & RECHENBERG, 1978, 1983, 1994; SPRUNG, 1992; Sreekrishnavilasam, King, & Santagata,

2006; Stegemann, 2014; Stephan, Knofel, & Hardtl, 2001; Stephan, Maleki, Knöfel, Eber, & Härdtl,

1999a, 1999b; Stephan, Mallmann, Knöfel, & Härdtl, 2000a, 2000b; Sun, Bai, Man, Jiang, & Shen,

2007; Taeb & Faghighi, 2002; Tamas & Abonyi, 2002; Thomanetz, 2012; M A Trezza & Scian, 2000,

2007; Monica Adriana Trezza & Scian, 2009; Tsakiridis, Agatzini-Leonardou, & Oustadakis, 2004;

Tsakiridis, Papadimitriou, Tsivilis, & Koroneos, 2008; Tsiliyannis, 2012; UNEP, 2012; H. . van der Sloot,

2000; H. A. van der Sloot et al., 2011; H. van der Sloot et al., 2008; van Oss & Padovani, 2002, 2003;

VDZ, 1996, 2001, 2005, 2011; Vespa, Daehn, Wieland, Grolimund, & Scheidegger, 2006; Vespa,

Dähn, Grolimund, Wieland, & Scheidegger, 2007, 2006; Vespa, Wieland, Dähn, Grolimund, &

Scheidegger, 2007; Vespa, Wieland, Dahn, Grolimund, & Scheidegger, 2004; Vespa, Dähn, Gallucci,

et al., 2006; Vespa, Dähn, Grolimund, Harfouche, et al., 2006; L. Wang, Jin, Li, & Nie, 2010; L. Wang,

Jin, Nie, & Li, 2010; R. Wang, Chen, & Shi, 2009; Wang, Lei; Jin, Yiying;Liu, 2009; WBCSD/CSI, 2005;

WEISWEILER & KRCMAR, 1989, 1990; WEISWEILER, LINNER, & KRCMAR, 1990; Wichman, Sprenger,

Wobst, & Bahadir, 2000; Wieland, Bonhoure, Fujita, Tits, & Scheidegger, 2003; Wieland, Tits, Spieler,

Dobler, & Scheidegger, n.d.; WRAP, 2012; Wu, Shi, de Schutter, Guo, & Ye, 2012; Xin & Yang, 2005;

Xue, Yang, & Huang, 2011; Yan, Karstensen, Huang, Wang, & Cai, 2010; Y.-F. Yang, Huang, Zhang,

Yang, & Wang, 2009; Yu Yang, Yang, Huang, Zhang, & Wang, 2008; Yufei Yang, Huang, Yang, Huang,

& Wang, 2011; Yu-fei Yang, Huang, Yang, & Wang, 2008; Yufei Yang, Xue, & Huang, 2013; Yufei Yang,

Yang, Wang, & Huang, 2011; Yu, Lin, Hisada, Saeki, & Nagataki, 2002; Zemba et al., 2011; H. Zhang,

Pang, He, & Shao, 2010; J. Zhang et al., 2009; J. Zhang, Liu, Li, Nie, & Jin, 2008; T. Zhang, Gao, Gao,

Wei, & Yu, 2013; Zhu, Takaoka, Oshita, & Morisawa, 2011; Ziegler, Scheidegger, Johnson, Dähn, &

Wieland, 2001)

3 Results

3.1 Co-processing of wastes containing heavy metals in the cement kiln as alternative fuels

(Genon & Brizio, 2008; Li, 2013a; Y.-M. Lin et al., 2011; Seyler et al., 2005)

3.2 Co-processing of wastes containing heavy metals in the cement kiln as alternative raw

materials

(Alp et al., 2008, 2009; Bernardo et al., 2007; Y.-L. Chen et al., 2009, 2012; Chen, Jida; Liao, Shiguo;

Xie, Bin; Zhang, Liwei; Wang & Jiang, 2011; Denise C R Espinosa & Tenorio, 2000; Gomes et al., 2013;

Guan et al., 1998; Kapur & Kapur, 2004; Krammart & Tangtermsirikul, 2004; Lam et al., 2011; B. G.

Ma, 2009; Medina et al., 2006; Pan et al., 2008; Qiu et al., 2011; Saikia et al., 2007; Taeb & Faghighi,

2002; Monica Adriana Trezza & Scian, 2009; Tsakiridis et al., 2004, 2008; L. Wang, Jin, Nie, et al.,

2010; Wu et al., 2012; Zhu et al., 2011)

3.3 Heavy metal content of commercial cements

Page 5: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

3.4 Fate of metals in the cement kiln

3.4.1 Volatilisation and mineralogy of gas- entrained and condensed solid phases

3.4.2 Clinker formation and mineralogy

Stephan

(Andrade et al. 2003)

Addition of 1% ZnO, Pb(NO3)2 and NH4VO3

V has shown a preferential partition towards C2S. Zn appears in higher amounts in periclase,

and C3S has higher Zn contents than C2S. Pb concentrates in minute spherules and

partitions toward C3S in small amounts

(Barros et al. 2002)

(Gineys et al. 2011)

maximum amount that could be incorporated into a standard clinker whilst reaching thelimit of solid solution of its four major phases (C3S, C2S, C3A and C4AF).

Threshold limit was considered to be reached when XRD showed new phases

The threshold limits for Cu, Ni, Zn and Sn were respectively equal to 0.35, 0.5, 0.7 and 1wt.%.

beyond the threshold limits. Ni was associated with Mg as a magnesium nickel oxide(MgNiO2) and Sn reacted with lime to form a calcium stannate (Ca2SnO4).

Cu changed the crystallisation process and affected therefore the formation of C3S. Indeed ahigh content of Cu in clinker led to the decomposition of C3S into C2S and of free lime. Zn, inturn, affected the formation of C3A. Ca6Zn3Al4O15 was formed whilst a tremendousreduction of C3A content was identified.

(Gineys et al. 2011)

The threshold limit for Sn was affected by the Bogue content in interstitial phases.

The threshold limit for Zn was affected by the Bogue content in C3S

Cu was unaffectedby any modifications of clinker composition

(Prodjosantoso & Kennedy 2003)

solubility of Mg, Cd, Pb and Ba in Ca3Al2O6

Mg cations are found to partially substitute for Ca2 +, and structural refinements show thatMg preferentially occupies the smaller six-coordinate sites in Ca3 xMgxAl2O6.

Ba preferentially occupies the larger eight- and nine-coordinate sites.

X-ray microanalysis suggests that Pb and Cd are lost from the samples during thepreparation process.

(Ract et al. 2003)

Samples were prepared by additions from 0.25 to 5 wt.% of a galvanic sludge to an industrialclinker

raw-material in a laboratory device

Page 6: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

up to 2 wt.% of a galvanic sludge containing 2.4 wt.%Cu and 1.2 wt.% Ni to clinker raw-material do not affect the clinkeringreactions and that these metals are totally incorporatedinto the clinker.

[this is only 480 mg/kg Cu, 240 mg/kg Ni!]

3.5 Fate of metals in the hydrated paste

3.5.1 Fundamental studies

Hydrated cement paste, whether Portland or blended, is composed of highly alkaline crystalline and

amorphous phases, including calcium silicate hydrate (C-S-H, at least 50% on a dry mass basis),

Ca(OH)2 (up to 20% on a dry mass basis), as well as hydrated calciumalumino-ferrites and calcium

sulphoaluminates, including ettringite [Ca6Al2(SO4)3(OH)12.26H2O].and monosulphate

[[Ca2AlSO4(OH)6).12H2O ](e.g., Lothenbach et al. 2011). Heavy metals can be taken up into these

cement hydration products, or sorbed onto their surfaces, or form separate solid phases in the

alkaline conditions, as further discussed in an excellent review by Johnson (2002). Recent

fundamental and valuable studies in this area have also been undertaken by Wieland and co-

workers, who have used x-ray absorption spectroscopy (XAS) to study speciation of various metals

doped into C-S-H and hardened cement pastes.

It is thought that cation-exchange can occur in the CaO interlayer of C-S-H; replacement of Ca2+ by

Mg2+ has been reported (e.g., Massazza, 1998), which suggests that the potential for replacement by

other alkaline earth elements, such as Sr, exists. The crystalline calcium silicate hydrate mineral

tobermorite has been shown to have a high capacity for exchange of Ca2+ with Co2+, Ni2+, Cu2+ and

Mg2+ (Johnson 2002). However, there is good evidence that Zn and Pb are incorporated as oxides in

the silicate layers of C-S-H, rather than exchanging for Ca2+ (Ziegler et al. 2001, Tommaseo and

Kersten 2002, Rose et al. 2000).

Trivalent cations, such as Cr3+, Ni3+ and Co3+, can also substitute for Al3+ or Fe3+ in ettringite, as

reported by Gougar and co-workers (1996), and possibly other hydrated calcium aluminates such as

hydrogarnet [C3ASxH6-2x ]which has been shown to take up Cr3+ (Kindness et al., 199b). Gougar (1996)

also reviews reports that divalent cations, such as Ba2+, Cd2+, Co2+, Hg2+, Ni2+, Pb2+, Sr2+ and Zn2+, can

replace Ca2+ in ettringite minerals, but the evidence for this is not strong. As reviewed by Johnson

(2002), heavy metals that form oxyanions, such as As, Cr(VI), Mo, Sb, Se, Te, V and W can substitute

for sulphate in ettringite and monosulphate.

When the sorption or exchange capacity of cement hydration products is exceeded, metals will form

new solid phases. Due to the alkaline nature of cement hydration products, with a typical pH of

12.3, and a possible range from about 10 to 14, the most likely anion to form a metal-bearing salt is

the hydroxide ion, OH-. Metals may form single-metal hydroxides, but may also form other phases

such as calcium zincate, or other mixed hydroxides (e.g., Scheidegger et al. 2000, Johnson 2002).

Oxyanions may also precipitate with calcium (Johnson 2002)

Wieland and coworkers - significant uptake of stannate and uranate [Sn(IV) and U(VI)] by C-S-H and a

structural model of the binding mechanism has been proposed on the basis of X-ray absorption

spectroscopy studies.

Page 7: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

An important difference between heavy metals introduced by co-processing of wastes, as compared

with those introduced by blending of mineral wastes with blended cements, is that the former are

likely to be more intimately mixed with cement phases and may have undergone a change in

speciation, whereas the latter may be associated with waste particles. However, inorganic

encapsulated particles are likely to react with the cement matrix to some degree. Depending on

reaction kinetics, soluble species such as chlorides and sulphates may dissolve during or soon after

mixing of cement powder with water, releasing metals for other interaction with the cement

hydration products, whereas species such as oxides may dissolve more gradually and participate in

secondary reactions during cement hardening and curing, and some aluminosilicates may retain

their original form in the waste in the long term.

3.5.2 Portland cement from co-processing

3.5.3 Blended cements with mineral wastes

Hsaio et al. (2001) observed respeciation of soluble CuCl2 to precipitated Cu(OH)2, and also

oxidation of Cu+ to Cu2+ in municipal waste incinerator fly ash solidified with Portland cement.

4 Leaching of metals from cement pastes

Hydrated cement paste provides a dense physical matrix of low permeability, which constitutes a

physical barrier to leaching.

AsO43- and MoO4

2- are known to form calcium salts of low solubility at high pH, whereas the solubility

of calcium salts of AsO33-, CrO4

2-, SeO32-, SeO4

2- is higher, and that of Sb and V salts is unknown

(Johnson 2002).

The measured porewater or leachate concentrations of metal contaminants are often found to be

lower than the solubilities of their hydroxide (Johnson, 2002). If the total contaminant

concentration in the product is lower than the capacity of the matrix for uptake of the contaminant,

the leachate concentration is controlled by partitioning between the solid and liquid, rather than

metal hydroxide solubility. This phenomenon is evident for Pb, whose solubility is an order of

magnitude lower than the solubility in equilibrium with hydroxide at pH 10 to 13.5, and several

orders of magnitude lower at more acidic pHs (Johnson, 2002). However, Pb remains by far the most

soluble metal in the alkaline environment provided by a cement matrix.

Based on leaching data alone, it is difficult to know the mechanism by which the matrix takes up

contaminants. It is assumed that surface sorption is responsible at lower contaminant

concentrations, and uptake into the hydration products through solid solution occurs as

contaminant concentrations increase and surface sorption sites are saturated.

5 Fate of heavy metals in demolition of cement-based structures

Page 8: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Achternbosch

- use of: electric arc furnace dust (EWC code 10 02 07*) as iron supplement by St Lawrence Cement,

air pollution control (APC) residues from energy-from-waste (EfW) plants, which are classified as

hazardous wastes under EWC code 19 01 07*, in cement-based products by Cenin (cenin.co.uk) and

Lignacite (www.lignacite.co.uk),; other proposals include utilisation of leaded cathode ray tube glass

(EWC code 16 02 13*/15*) ….

6 Discussion

6.1 Research Requirements

7 Conclusions

8 References [UNDER CONSTRUCTION; NEEDS SORTING AND SOME ADDITIONS, E.G., CLINKER

PAPERS]

Achternbosch, M., Bräutigam, K., Gleis, M., Hartlieb, N., Kupsch, C., Richers, U., & Stemmermann, P.(2003). Heavy Metals in Cement and Concrete Resulting from the Co-incineration of Wastes inCement Kilns with Regard to the Legitimacy of Waste Utilisation, Wissenschaftliche BerichteFKZA 6923 (p. 200). Karlsruhe, Germany.

Achternbosch, M., Bräutigam, K., Hartlieb, N., Kupsch, C., Richers, U., & Stemmermann, P. (2005).Impact of the use of waste on trace element concentrations in cement and concrete. WasteManagement & Research, 23(4), 328–337. doi:10.1177/0734242X05056075

Adaska, W. S., & Taubert, D. H. (2008). Beneficial uses of cement kiln dust. In Cement IndustryTechnical Conference (pp. 210–228). Miami, USA: IEEE-IAS/PCA.

Alp, I., Deveci, H., & Süngün, H. (2008). Utilization of flotation wastes of copper slag as raw materialin cement production. Journal of Hazardous Materials, 159(2-3), 390–5.doi:10.1016/j.jhazmat.2008.02.056

Alp, I., Deveci, H., Yazici, E. Y., Türk, T., & Süngün, Y. H. (2009). Potential use of pyrite cinders as rawmaterial in cement production: results of industrial scale trial operations. Journal of HazardousMaterials, 166(1), 144–9. doi:10.1016/j.jhazmat.2008.10.129

Andrade, F. R. ., Maringolo, V., & Kihara, Y. (2003). Incorporation of V, Zn and Pb into the crystallinephases of Portland clinker. Cement and Concrete Research, 33(1), 63–71. doi:10.1016/S0008-8846(02)00928-6

Page 9: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Aouad, G., Laboudigue, A., Gineys, N., & NE, A. (2012). Dredeged sediments used as novel supply ofraw material to produce Portland cement clinker. Cement & Concrete Composites, 34(6), 788–793. doi:10.1016/j.cemconcomp.2012.02.008

Artelt, H. M., & Greinacher, E. (1993). Flue dusts containing heavy metal ions and chloride . I. Phaseanalysis, model experiments for recyling. Journal Fuer Praktische Chemie- Chemiker Zeitung,335, 255–261.

Barros, a M., Tenório, J. a S., & Espinosa, D. C. R. (2002). Chloride influence on the incorporation ofCr(2)O(3) and NiO in clinker: a laboratory evaluation. Journal of Hazardous Materials, 93(2),221–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12117468

Barros, A. M., Espinosa, D. C. R., & Tenório, J. A. S. (2004). Effect of Cr2O3 and NiO additions on thephase transformations at high temperature in Portland cement. Cement and ConcreteResearch, 34(10), 1795–1801. doi:10.1016/j.cemconres.2004.01.016

Barros, A. M., Tenório, J. A. S., & Espinosa, D. C. R. (2004). Evaluation of the incorporation ratio ofZnO, PbO and CdO into cement clinker. Journal of Hazardous Materials, 112(1-2), 71–8.doi:10.1016/j.jhazmat.2004.04.005

Basten, M., Broeker, H., Eber, B., Hilger, J., Luetkehaus, M., Reimer, T., … Wertel, C. (2002).Zementrohstoffe in Deutschland (p. 64). Düsseldorf, Germany.

Battelle/WBCSD. (2002). Toward A Sustainable Cement Industry (p. 314).

Benard, A., Rose, J., Hazemann, J.-L., Proux, O., Trotignon, L., Borschneck, D., … Bottero, J.-Y. (2009).Modelling of Pb release during Portland cement alteration. Advances in Cement Research,21(1), 1–10. doi:10.1680/adcr.2007.00028

Bermudez, G. M. A., Jasan, R., Plá, R., & Pignata, M. L. (2012). Heavy metals and trace elements inatmospheric fall-out : Their relationship with topsoil and wheat element composition. Journalof Hazardous Materials, 213-214, 447–456. doi:10.1016/j.jhazmat.2012.02.023

Bernardo, G., Marroccoli, M., Nobili, M., Telesca, A., & Valenti, G. L. (2007). The use of oil well-derived drilling waste and electric arc furnace slag as alternative raw materials in clinkerproduction. Resources, Conservation and Recycling, 52(1), 95–102.doi:10.1016/j.resconrec.2007.02.004

Bochenek, A., & Kurdowski, W. (2013). Influence of zinc phase on the properties of Portland cement.Cement Wapno Beton, 18(1), 52–.

Bodaghpour, S., Joo, N. B., & Ahmadi, S. (2012). A review on the existence of chrome in cement andenvironmental remedies to control its effects. International Journal of Geology, 6(2), 62–67.

Bolio-Arceo, H., & Glasser, F. (1998). Zinc oxide in cement clinkering: part 1. Systems CaO-ZnO-Al2O3and CaO-ZnO-Fe2O3. Advances in Cement Research, 10(1), 25–32.

Bolio-Arceo, H., & Glasser, F. (2000). Zinc oxide in Portland cement. Part II: hydration, strength gainand hydrate mineralogy. Advances in Cement Research, 12(4), 173–179.

Page 10: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Bonhoure, I., Baur, I., Wieland, E., Johnson, C. A., & Scheidegger, A. M. (2006). Uptake of Se(IV/VI)oxyanions by hardened cement paste and cement minerals: An X-ray absorption spectroscopystudy. Cement and Concrete Research, 36(1), 91–98. doi:10.1016/j.cemconres.2005.05.003

Bonhoure, I., Scheidegger, A. M., Wieland, E., & Dähn, R. (2002). Iodine species uptake by cementand CSH studied by I K-edge X-ray absorption spectroscopy. Radiochimica Acta, 90(9-11/2002),647–651. doi:10.1524/ract.2002.90.9-11_2002.647

Bonhoure, I., Wieland, E., Scheidegger, A. M., Ochs, M., & Kunz, D. (2003). EXAFS Study of Sn(IV)Immobilization by Hardened Cement Paste and Calcium Silicate Hydrates. EnvironmentalScience & Technology, 37(10), 2184–2191. doi:10.1021/es020194d

Bonhoure, I., Wieland, E., Scheidegger, A., & Tits, J. (2002). Radionuclides immobilization by cementand cement phases studied by EXAFS. GEOCHIMICA ET COSMOCHIMICA ACTA, 66(15A), A90–A90. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=25&SID=X1OVsoEyZWtWF5aVIZd&page=2&doc=14

BUWAL. (1998). Regelungen ueber die Abfallentsorgung in Zementwerken - Grundlagen, Methoden,Berechnungen (p. 30). Bern, Switzerland.

Carrasco, F., Bredin, N., Gningue, Y., & Heitz, M. (1998). Environmental Impact of the EnergyRecovery of Scrap Tires in a Cement Kiln. Environmental Technology, 19(5), 461–474.doi:10.1080/09593331908616702

Cembureau. (1997). Alternative Fuels in Cement Manufacture- Technical and Environmental Review(p. 28). Brussel, Belgium.

Cembureau. (2009). Sustainable Cement Production - Co-Processing of Alternative Fuels and RawMaterials in the European Cement Industry (p. 18). Brussels, Belgium.

Chen, Q. Y., Hills, C. D., Tyrer, M., Slipper, I., Shen, H. G., & Brough, a. (2007). Characterisation ofproducts of tricalcium silicate hydration in the presence of heavy metals. Journal of HazardousMaterials, 147(3), 817–25. doi:10.1016/j.jhazmat.2007.01.136

Chen, Y.-L., Chang, J.-E., Lai, Y.-C., & Ko, M.-S. (2012). Effects of sintering atmosphere on cementclinkers produced from chromium-bearing sludge. Journal of the Air & Waste ManagementAssociation, 62(5), 587–593. doi:10.1080/10962247.2012.665012

Chen, Y.-L., Shih, P.-H., Chiang, L.-C., Chang, Y.-K., Lu, H.-C., & Chang, J.-E. (2009). The influence ofheavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced fromelectroplating sludge. Journal of Hazardous Materials, 170(1), 443–8.doi:10.1016/j.jhazmat.2009.04.076

Chen, Jida; Liao, Shiguo; Xie, Bin; Zhang, Liwei; Wang, T. Y., & Jiang. (2011). Cement kiln- A universaldisposal for Cr-contaminated soil. In Part III: Study on the Contaminated Sites RemediationTechnology (pp. 471–477).

Chertow, M. R. (2000). Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ,25, 313–337. doi:10.1146/annurev.energy.25.1.313

Page 11: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Chinyama, M. P. M. (2011). Alternative Fuels in Cement Manufacturing. In M. Manzanera (Ed.),Alternative Fuel (pp. 263–284). Rijeka, Croatia: InTech. Retrieved fromhttp://www.intechopen.com/books/alternative-fuel/alternative-fuels-in-cement-manufacturing

CPCB. (2010). Guidelines on Co-processing in Cement/Power/Steel Industry (p. 46). Delhi, India.

Dąbkowska- Naskręt, H., Jaworska, H., & Długosz, J. (2014). Assessment of the total nickel content and its available forms in the soils around cement plant Lafarge Poland. International Journal ofEnvironmental Research, 8(1), 231–236.

Degré, J. (2006). Waste co-processing in EEII ’ s Example: the cement production. HOLCIM.

Dekeukelaere, A. (2011). Co-processing waste in the cement industry : total emission reduction. SWEEP-NET. Cementis Consulting.

Dell’Orso, M., Mangialardi, T., Evangelista Paolini, A., & Piga, L. (2012). Evaluation of the leachabilityof heavy metals from cement-based materials. Journal of Hazardous Materials, 227-228, 1–8.doi:10.1016/j.jhazmat.2012.04.017

Eckert, J. O., & Guo, Q. (1998). Heavy metals in cement and cement kiln dust from kilns co-fired withhazardous waste-derived fuel: application of EPA leaching and acid-digestion procedures.Journal of Hazardous Materials, 59, 55–93.

Eckert, J. O., Guo, Q., & Moscati, A. F. (1999). Mass Balance of Toxic Metals in Cement and.Environmental Engineering Science, 16(1), 31–56.

Ekincioglu, O., Gurgun, A. P., Engin, Y., Tarhan, M., & Kumbaracibasi, S. (2013). Approaches forsustainable cement production – A case study from Turkey. Energy and Buildings, 66, 136–142.doi:10.1016/j.enbuild.2013.07.006

El-Awady, M. H., & Sami, T. M. (1997). Removal of heavy metals by cement kiln dust. Bulletin ofEnvironmental Contamination and Toxicology, 59(4), 603–10. Retrieved fromhttp://www.ncbi.nlm.nih.gov/pubmed/9307426

Environment Agency. (2008). DRAFT Recommended Standard Specifications For Waste Derived FuelsUsed in Cement Works (p. 17). Bristol, UK.

Espinosa, D. C. R., & Tenorio, J. A. S. (2000). Laboratory study of galvanic sludge’s influence on theclinkerization process. Resources, Conservation and Recycling, 31, 71–82.

Espinosa, D. C. R., & Tenorio, J. A. S. (2001). Thermal behavior of chromium electroplating sludge.Waste Management, 21, 405–410.

FIERENS, P., & VERHAEGE.JP. (1971). STRUCTURE AND REACTIVITY OF CHROMIUM DOPEDTRICALCIUM SILICATE. AMERICAN CERAMIC SOCIETY BULLETIN, 50(4), 455–&. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=110&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=6&colName=WOS

Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing 1. Scientific American, 261(3),144–152.

Page 12: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Gaona, X., Dähn, R., Tits, J., Scheinost, A. C., & Wieland, E. (2011a). Uptake of Np(IV) by C-S-H phasesand cement paste: an EXAFS study. Environmental Science & Technology, 45(20), 8765–71.doi:10.1021/es2012897

Gaona, X., Dähn, R., Tits, J., Scheinost, A. C., & Wieland, E. (2011b). Uptake of Np(IV) by C-S-H phasesand cement paste: an EXAFS study. Environmental Science & Technology, 45(20), 8765–71.doi:10.1021/es2012897

Gaona, X., Kulik, D. a., Macé, N., & Wieland, E. (2012). Aqueous–solid solution thermodynamic modelof U(VI) uptake in C–S–H phases. Applied Geochemistry, 27(1), 81–95.doi:10.1016/j.apgeochem.2011.09.005

Gaona, X., Wieland, E., Tits, J., Scheinost, A. C., & Dähn, R. (2013). Np(V/VI) redox chemistry incementitious systems: XAFS investigations on the speciation under anoxic and oxidizingconditions. Applied Geochemistry, 28, 109–118. doi:10.1016/j.apgeochem.2012.10.024

Genon, G., & Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF.Waste Management, 28(11), 2375–85. doi:10.1016/j.wasman.2007.10.022

Gheorghe, M., Radu, L., Stac, D. N. Ă., & Saca, N. (2013). Environmental characteristics of concrete with cement manufactured with alternative fuel. Romanian Journal of Materials, 43(1), 81–89.

Giannopoulos, D., Kolaitis, D. I., Togkalidou, A., Skevis, G., & Founti, M. A. (2007). Quantification ofemissions from the co-incineration of cutting oil emulsions in cement plants – Part II : Trace species. Fuel, 86, 2491–2501. doi:10.1016/j.fuel.2007.02.034

Gierzatowicz, R. (2000). Utilisation of mineral wastes containg heavy metals in cement kiln is well-know method. Metal immobilisation into clinker might be determined by retention coefficients(Wr). Calculation of Wr enables the estimation of heavy metal emission to the atmospher. InThermal Solid Waste Utilisation in Regular Industrial Facilities. Environmental Science ResearchVolume 58 (pp. 58–66). New York, USA: KLUWER ACADEMIC/PLENUM PUBL.

Gineys, N., Aouad, G., & Damidot, D. (2010). Managing trace elements in Portland cement – Part I:Interactions between cement paste and heavy metals added during mixing as soluble salts.Cement and Concrete Composites, 32(8), 563–570. doi:10.1016/j.cemconcomp.2010.06.002

Gineys, N., Aouad, G., & Damidot, D. (2011). Managing trace elements in Portland cement – Part II:Comparison of two methods to incorporate Zn in a cement. Cement and Concrete Composites,33(6), 629–636. doi:10.1016/j.cemconcomp.2011.03.008

Gineys, N., Aouad, G., Sorrentino, F., & Damidot, D. (2011). Incorporation of trace elements inPortland cement clinker : Thresholds limits for Cu , Ni , Sn or Zn. Cement and ConcreteResearch, 41(11), 1177–1184. doi:10.1016/j.cemconres.2011.07.006

Gineys, N., Aouad, G., Sorrentino, F., & Damidot, D. (2012). Effect of the clinker composition on thethreshold limits for Cu, Sn or Zn. Cement and Concrete Research, 42(8), 1088–1093.doi:10.1016/j.cemconres.2012.05.002

Gomes, V., Drumond, P. Z., Neto, J. O. P., & Lira, A. R. (2013). Co-Processing at Cement Plant of SpentPotlining from the Aluminum Industry. In A. Tomsett & J. Johnson (Eds.), Essential Readings in

Page 13: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Light Metals: Electrode Technology for Aluminum Production, Volume 4. Hoboken, NJ, USA:John Wiley & Sons, Inc. doi:10.1002/9781118647745.ch142

Guan, Z., Zhang, S., Yang, J., & Yang, L. (1998). Study of cement clinker using Pb_Zn tailings asmineralizer. Journal of Zhengzhou University, 30(1), 28–32.

Guo, Q. (1997). Increases of lead and chromium in drinking water from using cement—mortar-linedpipes: initial modeling and assessment. Journal of Hazardous Materials, 56(1-2), 181–213.doi:10.1016/S0304-3894(97)00052-6

Guo, Q., & Eckert, J. O. (1996). Heavy metal outputs from a cement kiln co-fired with hazardouswaste fuels. Journal of Hazardous Materials, 51(1-3), 47–65. doi:10.1016/S0304-3894(96)01800-6

Hanna, R., Barrie, P., Cheeseman, C., Hills, C., Buchler, P., & Perry, R. (1995). Solid state 29-Si and 27-Al NMR and FTIR study of cement pastes containing industrial wastes and organics. Cement andConcrete Research, 25(7), 1435–1444.

Hasanbeigi, A., Lu, H., Williams, C., & Price, L. (2012). International Best Practices for Pre- Processingand Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry (p. 123).Berkeley, CA, USA.

Heimburg, R. W. (1981). Trace metal analysis of solvents used as fuel in a cement kiln. Minerals andthe Environment, 3, 24–26.

Hekal, E., Kishar, E., Hegazi, W., & Mohamed, M. (2011). Immobilization of Co ( II ) Ions in CementPastes and Their Effects on the Hydration Characteristics. Journal of Materials Science &Technology, 27(1), 74–80. doi:10.1016/S1005-0302(11)60029-7

Hill, J., & Sharp, J. . (2003). The hydration products of Portland cement in the presence of tin(II)chloride. Cement and Concrete Research, 33(1), 121–124. doi:10.1016/S0008-8846(02)00936-5

HOLCIM/GTZ. (2006). Guidelines on Co-Processing Waste Materials in Cement Production (p. 135).

Hsiao, M. C., Wang, H. P., & Yang, Y. W. (2001). EXAFS and XANES studies of copper in a solidified flyash. Environmental Science & Technologycience & Technology, 35(12), 2532–5.doi:10.1021/es001374v

Huang, Q., Yang, Y., & Wang, Q. (2012). Potential for serious environmental threats fromuncontrolled co-processing of wastes in cement kilns. Environmental Science & Technology, 46,13031–13032. doi:10.1021/es3042274

Ivey, D., Heimann, R., Neuwirth, M., Shumborski, S., Conrad, D., Mikula, R. J., … Toc, C. (1990).Electron microscopy of heavy metal waste in cement matrices. Journal of Materials Science, 25,5055–5062.

Jones, F., Bankiewicz, D., & Hupa, M. (2014). Occurrence and sources of zinc in fuels. Fuel, 117, 763–775. doi:10.1016/j.fuel.2013.10.005

Kaddatz, K. T., Rasul, M. G., & Rahman, A. (2013). Alternative Fuels for use in Cement Kilns: ProcessImpact Modelling. Procedia Engineering, 56, 413–420. doi:10.1016/j.proeng.2013.03.141

Page 14: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Kapur, P., & Kapur, P. C. (2004). Manufacture of eco-friendly and energy-efficient alinite cementsfrom fly ashes and other bulk wastes. Resources Processing, 51(1), 8–13. doi:10.4144/rpsj.51.8

Karagiannis, J., & Ftikos, C. (2012). Effect of waste ash on clinker phase composition andmicrostructure. Advances in Cement Research, 24(6), 349–357. doi:10.1680/adcr.11.00033

Karstensen, K. H. (2007). A Literature Review on Co-processing of Alternative Fuels and RawMaterials and Hazardous Wastes in Cement Kilns (p. 420). Trondheim, Norway.

Karstensen, K. H. (2008). Environmentally Sound Management of Hazardous and Industrial Wastes inCement Kilns in China - DRAFT Guidelines for co-processing of alternative fuels and rawmaterials and treatment of organic hazardous wastes in cement kilns (p. 134). Trondheim,Norway.

Kikuchi, R. (2001). Recycling of municipal solid waste for cement production: pilot-scale test fortransforming incineration ash of solid waste into cement clinker. Resources, Conservation andRecycling, 31(2), 137–147. doi:10.1016/S0921-3449(00)00077-X

KIRCHNER, G. (1985). REACTIONS OF CADMIUM IN THE CLINKER BURNING PROCESS. ZEMENT-KALK-GIPS, 38(9), 535–539. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=74&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=5&colName=WOS

KIRCHNER, G. (1986). BEHAVIOR OF HEAVY-METALS DURING CEMENT CLINKER BURNING. ZEMENT-KALK-GIPS, 39(10), 555–557. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=104&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=4&colName=WOS

KIRCHNER, G. (1987). THALLIUM CYCLES AND THALLIUM EMISSIONS IN CEMENT CLINKER BURNING.ZEMENT-KALK-GIPS, 40(3), 134–144. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=71&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=4&colName=WOS

Klein, H., & Hoenig, V. (2004). Experimentelle Untersuchung und Modellierung des Verhaltens vonSpurenelementen im Zementklinkerbrennprozess, AiF – Forschungsvorhaben 13230 N (pp. 1–14). Düsseldorf, Germany.

Kleppinger, E. W. (1993). Cement clinker: An environmental sink for residues from hazardous wastetreatment in cement kilns. Waste Management, 13(8), 553–572.

Kolovos, K., Barafaka, S., Kakali, G., & Tsivilis, S. (2005). CuO and ZnO addition in the cement raw mix:Effect on clinkering process and cement hydration and properties. CERAMICS-SILIKATY, 49(3),205–212.

Krammart, P., & Tangtermsirikul, S. (2004). Properties of cement made by partially replacing cementraw materials with municipal solid waste ashes and calcium carbide waste. Construction andBuilding Materials, 18(8), 579–583. doi:10.1016/j.conbuildmat.2004.04.014

KRCMAR, V., LINNER, B., & WEISWEILER, W. (1994). INVESTIGATIONS INTO THE BEHAVIOR OFTRACE-ELEMENTS DURING CLINKER BURNING IN A ROTARY KILN SYSTEM WITH GRATEPREHEATER. ZEMENT-KALK-GIPS, 47(10), 600–605. Retrieved from

Page 15: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=77&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=6&colName=WOS

Lam, C. H. K., Barford, J. P., & McKay, G. (2011). Utilization of municipal solid waste incineration ashin Portland cement clinker. Clean Technologies and Environmental Policy, 13(4), 607–615.doi:10.1007/s10098-011-0367-z

Li, C. (2013a). Heavy metals characterization of alternative fuels used in cement kilns. EnvironmentalEngineering, 31, 573–576.

Li, C. (2013b). Heavy metals characterization of alternative fuels used in cement kilns.pdf.Environmental Engineering, 31(Supplement), 573–576.

Lieber, W., & Gebauer, J. (1969). Einbau von Zink in Calciumsilicathydrate. ZKG, (4).

Lin, S., Su, D., & Tong, A. (2007). Pollution and prevention of Pb during cement calcination. Journal ofWuhan University of Technology-Mater. Sci. Ed., 22(3), 542–545. doi:10.1007/s11595-006-3542-z

Lin, Y.-M., Zhou, S.-Q., Zhou, D.-J., & Wu, Y.-Y. (2011). Utilizing the wastewater treatment plantsludge for the production of eco-cement, 32(2), 524–9.

Lin, Yi-Ming; Zhou, Shao-qi; Zhou, De-jun; Wu, Y. (2011). Utilizing the wastewater treatment plantsludge for the production of eco-cement.pdf. Environmental Science, 32(2), 524–529.

Ling, Y., Jin, Y., & Nie, Y. (2008). Studies on washing pretreatment of MSWI fly ash as raw materialsfor Portland cement.pdf. In X. Qian & J. Qu (Eds.), 12th Asian Pacific Confederation of ChemicalEngineering Congress. Dalian, China.

Liu, Y., & Wang, L. (2011). Leaching study on heavy metal ions of cement mortar. IEEE.

Lorea, C. (2007). Use of Alternative Fuels and Materials in the European Cement Industry - ALF-CEMIND Study Tour. Cembureau. Retrieved from www.cembureau.eu

Ma, B. G. (2009). Research on sintering cement clinker by using the municipal solid wasteincineration fly ash. Journal of Wuhan University of Technology,, 31(8), 51–54.

Ma, X.-W., Chen, H.-X., & Wang, P.-M. (2010). Effect of CuO on the formation of clinker minerals andthe hydration properties. Cement and Concrete Research, 40(12), 1681–1687.doi:10.1016/j.cemconres.2010.08.009

Madlool, N. a., Saidur, R., Hossain, M. S., & Rahim, N. a. (2011). A critical review on energy use andsavings in the cement industries. Renewable and Sustainable Energy Reviews, 15(4), 2042–2060. doi:10.1016/j.rser.2011.01.005

Martens, E., Jacques, D., Van Gerven, T., Wang, L., & Mallants, D. (2010). Geochemical modeling ofleaching of Ca, Mg, Al, and Pb from cementitious waste forms. Cement and Concrete Research,40(8), 1298–1305. doi:10.1016/j.cemconres.2010.01.007

Medina, L. E. G., Borunda, E. O., & Elguézabal, A. A. (2006). Use of copper slag in the manufacture ofPortland cement. Materiales de Construccion, 56(281), 31–40.

Page 16: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Mokrzycki, E., & Uliasz-Bochenczyk, A. (2003). Alternative fuels for the cement industry. AppliedEnergy, 74, 95–100.

Murat, M., & Sorrentino, F. (1996). Effect of large additions of Cd, Pb, Cr, Zn, to cement raw meal onthe composition and the properties of the clinker and the cement. Cement and ConcreteResearch, 26(3), 377–385.

Murray, A., & Price, L. (2008). Use of Alternative Fuels in Cement Manufacture : Analysis of Fuel Characteristics and Feasibility for Use in the Chinese Cement Sector (p. 63). Berkeley, CA, USA.

Napia, C., Sinsiri, T., Jaturapitakkul, C., & Chindaprasirt, P. (2012). Leaching of heavy metals fromsolidified waste using Portland cement and zeolite as a binder. Waste Management, 32(7),1459–1467. doi:10.1016/j.wasman.2012.02.011

Navia, R., Rivela, B., Lorber, K. E., & Méndez, R. (2006). Recycling contaminated soil as alternativeraw material in cement facilities: Life cycle assessment. Resources, Conservation and Recycling,48(4), 339–356. doi:10.1016/j.resconrec.2006.01.007

Ogunbileje, J. O., Sadagoparamanujam, V., Anetor, J. I., Farombi, E. O., Akinosun, O. M., & AO, O.(2013). Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese andchromium ( VI ) levels in Nigeria and United States of America cement dust. Chemosphere,90(11), 2743–2749. doi:10.1016/j.chemosphere.2012.11.058

Pan, J. R., Huang, C., Kuo, J.-J., & Lin, S.-H. (2008). Recycling MSWI bottom and fly ash as rawmaterials for Portland cement. Waste Management, 28(7), 1113–8.doi:10.1016/j.wasman.2007.04.009

Paone, P. (2008). Heavy metals in the cement industry: A look at volatile cycles and simple mitigationtechniques. In Cement Industry Technical Conference (p. 11). Miami, USA: IEEE-IAS/PCA.doi:10.1109/CITCON.2008.11

Park, C. (2000). Hydration and solidification of hazardous wastes containing heavy metals usingmodified cementitious materials. Cement and Concrete Research, 30, 429–435.

PCA. (1992). An Analysis of Selected Trace Metals in Cement Kiln Dust (p. 52). Skokie, Illinois, USA.

Pembina Institute. (2005). Alternative Fuel Use in the Canadian Cement Industry. Retrieved fromhttp://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CF4QFjAG&url=http%3A%2F%2Fwww.cement2020.org%2Fdownload%2Ffile%2Ffid%2F179&ei=PAIjU6njHoGshQeFuoHwBA&usg=AFQjCNE54C-lbjvT3QXljeNNRQ6buuT6vQ&bvm=bv.62922401,d.ZG4

Peng, Zheng; Yu, Li-feng; Ding, Qiong; Wang, Kai-xiang; Gao, X. (2012). Demonstration study of co-processing of DDT in a preheater_precalciner cement kiln system.pdf. China EnvironmentalScience, 32(7), 1326~1331.

Pinakidou, F., Katsikini, M., Paloura, E. C., Kavouras, P., Kalogirou, O., Komninou, P., … Erko, A.(2006). On the coordination environment of Fe- and Pb-rich solidified industrial waste: An X-rayabsorption and Mössbauer study. Journal of Non-Crystalline Solids, 352(28-29), 2933–2942.doi:10.1016/j.jnoncrysol.2006.04.006

Page 17: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Polat, R., Gürol, A., Budak, G., Karabulut, A., & Ertuǧrul, M. (2004). Elemental composition of cement kiln dust, raw material and cement from a coal-fired cement factory using energy dispersive X-ray fluorescence spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer,83(3-4), 377–385. doi:10.1016/S0022-4073(02)00379-5

Prodjosantoso, A. K., & Kennedy, B. J. (2003). Heavy metals in cement phases : on the solubility of Mg , Cd , Pb and Ba in Ca3Al2O6. Cement and Concrete Research, 33, 1077–1084.doi:10.1016/S0008-8846(03)00017-6

Pudasainee, D., Kim, J.-H., Lee, S.-H., Cho, S.-J., Song, G.-J., & Seo, Y.-C. (2009). Hazardous airpollutants emission characteristics from cement kilns co-burning wastes. EnvironmentalEngineering Research, 14(4), 212–219. doi:10.4491/eer.2009.14.4.212

Puntke, S., & Schneider, M. (2001). The behaviour of heavy metals in cement and concrete. ZKGInternational, 54(2), 106–113.

Qiao, X. C., Poon, C. S., & Cheeseman, C. R. (2007). Investigation into the stabilization / solidificationperformance of Portland cement through cement clinker phases. Journal of HazardousMaterials, 139, 238–243. doi:10.1016/j.jhazmat.2006.06.009

Qiu, G., Luo, Z., Shi, Z., & Ni, M. (2011). Utilization of coal gangue and copper tailings as clay forcement clinker calcinations. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(6),1205–1210. doi:10.1007/s11595-011-0391-1

Ract, P. G., Espinosa, D. C. R., & Tenório, J. A. S. (2003). Determination of Cu and Ni incorporationratios in Portland cement clinker. Waste Management, 23(3), 281–5. doi:10.1016/S0956-053X(02)00061-2

Reijnders, L. (2008). The cement industry as a scavenger in industrial ecology and the managementof hazardous substances. Journal of Industrial Ecology, 11(3), 15–25. doi:10.1162/jiec.2007.997

Romano, J. S., & Rodrigues, F. A. (2008). Cements obtained from rice hull: encapsulation of heavymetals. Journal of Hazardous Materials, 154(1-3), 1075–80. doi:10.1016/j.jhazmat.2007.11.051

Saikia, N., Kato, S., & Kojima, T. (2007). Production of cement clinkers from municipal solid wasteincineration (MSWI) fly ash. Waste Management, 27(9), 1178–89.doi:10.1016/j.wasman.2006.06.004

Scheidegger, a M., Vespa, M., Grolimund, D., Wieland, E., Harfouche, M., Bonhoure, I., & Dähn, R.(2006). The use of (micro)-X-ray absorption spectroscopy in cement research. WasteManagement, 26(7), 699–705. doi:10.1016/j.wasman.2006.01.032

Scheidegger, A. M., Vespa, M., Grolimund, D., Wieland, E., Harfouche, M., Bonhoure, I., & Dähn, R.(2006a). The use of (micro)-X-ray absorption spectroscopy in cement research. WasteManagement (New York, N.Y.), 26(7), 699–705. doi:10.1016/j.wasman.2006.01.032

Scheidegger, A. M., Vespa, M., Grolimund, D., Wieland, E., Harfouche, M., Bonhoure, I., & Dähn, R.(2006b). The use of (micro)-X-ray absorption spectroscopy in cement research. WasteManagement (New York, N.Y.), 26(7), 699–705. doi:10.1016/j.wasman.2006.01.032

Page 18: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Scheidegger, A. M., Vespa, M., Wieland, E., Harfouche, M., Grolimund, D., Dähn, R., … Scrivener, K.(2006). Micro-scale Chemical Speciation of Highly Heterogeneous Cementitious Materials UsingSynchrotron-based X-Ray Absorption Spectroscopy. CHIMIA International Journal for Chemistry,60(3), 149–149. doi:10.2533/000942906777674985

Scheidegger, A. M., Wieland, E., Scheinost, A. C., Dähn, R., & Spieler, P. (2000). SpectroscopicEvidence for the Formation of Layered Ni−Al Double Hydroxides in Cement. EnvironmentalScience & Technology, 34(21), 4545–4548. doi:10.1021/es0000798

Scheidegger, A. M., Wieland, E., Scheinost, A. C., Dähn, R., Tits, J., & Spieler, P. (2001). Ni phasesformed in cement and cement systems under highly alkaline conditions: an XAFS study. Journalof Synchrotron Radiation, 8(2), 916–918. doi:10.1107/S0909049500020586

Schneider, M., & Kuhlmann, K. (1997). Environmental relevance of the use of secondary constituentsin cement production. ZKG International, 50(1), 10–19.

Schuhmacher, M., Nadal, M., & Domingo, J. L. (2009). Environmental monitoring of PCDD/Fs andmetals in the vicinity of a cement plant after using sewage sludge as a secondary fuel.Chemosphere, 74(11), 1502–1508. doi:10.1016/j.chemosphere.2008.11.055

Serclerat, I., Massardier, V., Moszkowicz, P., & Murat, M. (1997). Trace metals in Portland cementclinker - I - Insertion mode in the clinker phases. Silicates Industriels, 62(9-10), 169–178.

Serclérat, I., & Moszkowicz, P. (1997). Retention mechanisms in mortars of the trace metalscontained in Portland cement clinkers. In H. Goumans, J. Senden, & H. van der Sloot (Eds.),Waste Materials in Construction: Putting Theory into Practice (pp. 339–347). Elsevier ScienceB.V.

Serclerat, I., Moszkowicz, P., & Murat, M. (1997). Trace metals in Portland cement clinker - II - Effectsand behavior during hydration. Silicates Industriels, 62(9-10), 179–187.

Serclérat, I., Moszkowicz, P., & Pollet, B. (2000). Retention mechanisms in mortars of the tracemetals contained in Portland cement clinkers. Waste Management, 20(2-3), 259–264.doi:10.1016/S0956-053X(99)00314-1

Seyler, C., Hellweg, S., Monteil, M., & Hungerbühler, K. (2005). Life cycle inventory for use of wastesolvent as fuel substitute in the cement industry- A multi-input allocation model. Int J LCA,10(2), 120–130. doi:10.1065/lca2004.08.173

Shih, P.-H., Chang, J.-E., & Chiang, L.-C. (2003). Replacement of raw mix in cement production bymunicipal solid waste incineration ash. Cement and Concrete Research, 33(11), 1831–1836.doi:10.1016/S0008-8846(03)00206-0

Shih, P.-H., Chang, J.-E., Lu, H.-C., & Chiang, L.-C. (2005). Reuse of heavy metal-containing sludges incement production. Cement and Concrete Research, 35(11), 2110–2115.doi:10.1016/j.cemconres.2005.08.006

Sikalidis, C., Zabaniotou, A., & Famellos, S. (2002). Utilisation of municipal solid wastes for mortarproduction. Resources, Conservation and Recycling, 36(2), 155–167. doi:10.1016/S0921-3449(02)00018-6

Page 19: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Sinyoung, S., Asavapisit, S., Kajitvichyanukul, P., & Songsiriritthigul, P. (2011). Speciation of Cr incement clinkers obtained from co-burning with Cr2O3. Nuclear Instruments and Methods inPhysics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,649(1), 210–212. doi:10.1016/j.nima.2011.01.012

Sinyoung, S., Songsiriritthigul, P., Asavapisit, S., & Kajitvichyanukul, P. (2011). Chromium behaviorduring cement-production processes: a clinkerization, hydration, and leaching study. Journal ofHazardous Materials, 191(1-3), 296–305. doi:10.1016/j.jhazmat.2011.04.077

SPRUNG, S. (1992). REDUCING ENVIRONMENTAL-POLLUTION BY USING SECONDARY RAW-MATERIALS. ZEMENT-KALK-GIPS, 45(5), 213–221. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=44&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=1&colName=WOS

SPRUNG, S., KIRCHNER, G., & RECHENBERG, W. (1984). REACTIONS OF POORLY VOLATILE TRACE-ELEMENTS IN CEMENT CLINKER BURNING. ZEMENT-KALK-GIPS, 37(10), 513–518. Retrievedfromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=51&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=2&colName=WOS

SPRUNG, S., & RECHENBERG, W. (1978). REACTIONS OF LEAD AND ZINC IN BURNING OF CEMENTCLINKER. ZEMENT-KALK-GIPS, 31(7), 327–329. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=68&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=3&colName=WOS

SPRUNG, S., & RECHENBERG, W. (1983). REACTIONS OF LEAD AND ZINC IN CEMENT MANUFACTURE.ZEMENT-KALK-GIPS, 36(10), 539–548. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=84&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=1&colName=WOS

SPRUNG, S., & RECHENBERG, W. (1994). LEVELS OF HEAVY-METALS IN CLINKER AND CEMENT.ZEMENT-KALK-GIPS, 47(5), 258–263. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=54&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=3&colName=WOS

SPRUNG, S., RECHENBERG, W., & BACHMANN, G. (1994). ENVIRONMENTAL COMPATIBILITY OFCEMENT. ZEMENT-KALK-GIPS, 47(8), 456–461. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=80&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=7&colName=WOS

Sreekrishnavilasam, A., King, S., & Santagata, M. (2006). Characterization of fresh and landfilledcement kiln dust for reuse in construction applications. Engineering Geology, 85(1-2), 165–173.doi:10.1016/j.enggeo.2005.09.036

Stegemann, J. A. (2014). The Potential Role of Energy-from-Waste Air Pollution Control Residues inthe Industrial Ecology of Cement. Journal of Sustainable Cement-Based Materials, on-line.doi:10.1080/21650373.2013.878673

Stephan, D., Knofel, D., & Hardtl, R. (2001). Examination of the influence of Cr, Ni and Zn on themanufacture and use of cement. ZKG International, 54(6), 335–346.

Page 20: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Stephan, D., Maleki, H., Knöfel, D., Eber, B., & Härdtl, R. (1999a). Influence of Cr , Ni , and Zn on theproperties of pure clinker phases- Part I. C3S. Cement and Concrete Research, 29, 545–552.

Stephan, D., Maleki, H., Knöfel, D., Eber, B., & Härdtl, R. (1999b). Influence of Cr , Ni , and Zn on theproperties of pure clinker phases Part II . C 3 A and C 4 AF. Cement and Concrete Research, 29,651–657.

Stephan, D., Mallmann, R., Knöfel, D., & Härdtl, R. (2000a). High intakes of Cr , Ni , and Zn in clinkerPart I . Influence on burning process and formation of phases. Cement and Concrete Research,29(1999), 1949–1957.

Stephan, D., Mallmann, R., Knöfel, D., & Härdtl, R. (2000b). High intakes of Cr , Ni , and Zn in clinkerPart II . Influence on the hydration properties. Cement and Concrete Research, 29(1999), 1959–1967.

Sun, S., Bai, D., Man, W., Jiang, L., & Shen, M. (2007). Shenglong et al (2007) Experimental study ontreating heavy metal elements by kilns.pdf. Chinese Journal of Environmental Engineering, 1(8),106–110.

Taeb, A., & Faghighi, S. (2002). Utilization of Cu slag in the cement industry. ZKG International, 44(4),98–100.

Tamas, F. D., & Abonyi, J. (2002). Trace elements in clinker I . A graphical representation. Cement andConcrete Research, 32, 1319–1323.

Thomanetz, E. (2012). Solid recovered fuels in the cement industry with special respect to hazardouswaste. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 30(4), 404–12. doi:10.1177/0734242X12440480

Trezza, M. A., & Scian, A. N. (2000). Burning wastes as an industrial resource Their effect on Portlandcement clinker. Cement and Concrete Research, 30, 137–144.

Trezza, M. A., & Scian, A. N. (2007). Waste with chrome in the Portland cement clinker production.Journal of Hazardous Materials, 147, 188–196. doi:10.1016/j.jhazmat.2006.12.082

Trezza, M. A., & Scian, A. N. (2009). Scrap tire ashes in Portland cement production. MaterialsResearch, 12(4), 489–494.

Tsakiridis, P. E., Agatzini-Leonardou, S., & Oustadakis, P. (2004). Red mud addition in the raw mealfor the production of Portland cement clinker. Journal of Hazardous Materials, 116(1-2), 103–10. doi:10.1016/j.jhazmat.2004.08.002

Tsakiridis, P. E., Papadimitriou, G. D., Tsivilis, S., & Koroneos, C. (2008). Utilization of steel slag forPortland cement clinker production. Journal of Hazardous Materials, 152(2), 805–11.doi:10.1016/j.jhazmat.2007.07.093

Tsiliyannis, C. A. (2012). Alternative fuels in cement manufacturing: Modeling for processoptimization under direct and compound operation. Fuel, 99, 20–39.doi:10.1016/j.fuel.2012.03.036

Page 21: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

UNEP. (2012). Basel Convention - Technical guidelines on the environmentally sound co-processing ofhazardous wastes in cement kilns (p. 59).

Van der Sloot, H. . (2000). Comparison of the characteristic leaching behavior of cements usingstandard (EN 196-1) cement mortar and an assessment of their long-term environmentalbehavior in construction products during service life and recycling. Cement and ConcreteResearch, 30(7), 1079–1096. doi:10.1016/S0008-8846(00)00287-8

Van der Sloot, H. A., van Zomeren, A., Meeussen, J., Hoede, D., Rietra, R., Stenger, R., … Dath, P.(2011). Environmental Criteria for Cement Based Products Phase I : Ordinary Portland Cement Phase II : Blended Cements and methodology for impact assessment. 2011 (p. 224).

Van der Sloot, H., van Zomeren, A., Stenger, R., Schneider, M., Spanka, G., Stoltenberg-Hansson, E.,& Dath, P. (2008). Environmental CRIteria for CEMent based products Phase I : Ordinary Portland Cements Phase II : Blended Cements EXECUTIVE SUMMARY (p. 28). Petten.

Van Oss, H. G., & Padovani, A. C. (2002). Cement manufacture and the environment: Part I:Chemistry and technology. Journal of Industrial Ecology, 6(1), 89–105.doi:10.1162/108819802320971650

Van Oss, H. G., & Padovani, A. C. (2003). Cement manufacture and the nvironment- Part II:Environmental challenges and opportunities. Journal of Industrial Ecology, 7(1), 93–126.

VDZ. (1996). Environmental compatibility of cement and concrete. Manufacture, application and useof alternative materials. (p. 24). Düsseldorf.

VDZ. (2001). Trace Elements in German Standard Cements 2001 (p. 11). Düsseldorf, Germany.Retrieved from http://www.vdz-online.de

VDZ. (2005). Umweltvertraeglichkeit von Zement und Beton. VDZ-Taetigkeitsbericht 2003-2005, 10.

VDZ. (2011). Umweltdaten der deutschen Zementindustrie 2011 (p. 52). Düsseldorf, Germany.

Vespa, M., Daehn, R., Wieland, E., Grolimund, D., & Scheidegger, A. M. (2006). THE INFLUENCE OFHYDRATION TIME ON THE Ni UPTAKE BY CEMENT. CZECHOSLOVAK JOURNAL OF PHYSICS, 56,D599–D607. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=X1OVsoEyZWtWF5aVIZd&page=1&doc=4

Vespa, M., Dähn, R., Gallucci, E., Grolimund, D., Wieland, E., & Scheidegger, A. M. (2006). MicroscaleInvestigations of Ni Uptake by Cement Using a Combination of Scanning Electron Microscopyand Synchrotron-Based Techniques. Environmental Science & Technology, 40(24), 7702–7709.doi:10.1021/es060957n

Vespa, M., Dähn, R., Grolimund, D., Harfouche, M., Wieland, E., & Scheidegger, A. M. (2006).Speciation of heavy metals in cement-stabilized waste forms: A micro-spectroscopic study.Journal of Geochemical Exploration, 88(1-3), 77–80. doi:10.1016/j.gexplo.2005.08.093

Vespa, M., Dähn, R., Grolimund, D., Wieland, E., & Scheidegger, A. M. (2006). SpectroscopicInvestigation of Ni Speciation in Hardened Cement Paste. Environmental Science & Technology,40(7), 2275–2282. doi:10.1021/es052240q

Page 22: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Vespa, M., Dähn, R., Grolimund, D., Wieland, E., & Scheidegger, A. M. (2007). Co Speciation inHardened Cement Paste: A Macro- and Micro-Spectroscopic Investigation. EnvironmentalScience & Technology, 41(6), 1902–1908. doi:10.1021/es0624568

Vespa, M., Wieland, E., Dahn, R., Grolimund, D., & Scheidegger, A. (2004). EXAFS study of Ni uptakeby hardened cement paste. GEOCHIMICA ET COSMOCHIMICA ACTA, 68(11), A166–A166.Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=25&SID=X1OVsoEyZWtWF5aVIZd&page=2&doc=11

Vespa, M., Wieland, E., Dähn, R., Grolimund, D., & Scheidegger, A. M. (2007). Determination of theelemental distribution and chemical speciation in highly heterogeneous cementitious materialsusing synchrotron-based micro-spectroscopic techniques. Cement and Concrete Research,37(11), 1473–1482. doi:10.1016/j.cemconres.2007.08.007

Wang, L., Jin, Y., Li, R., & Nie, Y. (2010). Modeling of Zn migration in coprocessing of MSWI fly ashwith cemetn kiln. In J. Li & H. Hu (Eds.), 5th International Conference on Waste Managementand Technology (ICMWT 5) (pp. 559–564). Beijing, China: Sci Res Publ.

Wang, L., Jin, Y., Nie, Y., & Li, R. (2010). Recycling of municipal solid waste incineration fly ash forordinary Portland cement production: A real-scale test. Resources, Conservation and Recycling,54(12), 1428–1435. doi:10.1016/j.resconrec.2010.06.006

Wang, R., Chen, R., & Shi, L. (2009). Beneficial use of stainless steel EAF slag as composite cementadmixture & heavy metals leaching risk analysis. Baosteel Technical Research, 3(4), 1418.

Wang, Lei; Jin, Yiying;Liu, J. N. Y. (2009). Wang (2009) Co-processing of MSWI fly ash with cementkiln.pdf. Environmental Engineering, 27(Supplement), 527–532.

WBCSD/CSI. (2005). Guidelines for the Selection and Use of Fuels and Raw Materials in the CementManufacturing Process (p. 38).

WEISWEILER, W., & KRCMAR, W. (1989). ARSENIC AND ANTIMONY BALANCES OF A CEMENT KILNPLANT WITH GRATE PREHEATER. ZEMENT-KALK-GIPS, 42(3), 133–135. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=95&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=3&colName=WOS

WEISWEILER, W., & KRCMAR, W. (1990). HEAVY-METAL BALANCES OF A CEMENT KILN PLANT WITHGRATE PREHEATER. ZEMENT-KALK-GIPS, 43(3), 149–152. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=92&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=2&colName=WOS

WEISWEILER, W., LINNER, B., & KRCMAR, W. (1990). ANALYSIS OF PRECIPITATOR DUST FROM THECEMENT INDUSTRY FOR DIFFERENT CHROMIUM COMPOUNDS. ZEMENT-KALK-GIPS, 43(12),596–600. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=MarkedList&qid=101&SID=Q1dElqT9yxZUWPuBgIE&page=1&doc=5&colName=WOS

Wichman, H., Sprenger, R., Wobst, M., & Bahadir, M. (2000). Combustion-induced transport of heavymetals in the gas phase- A review. Fresenius Environmental Bulletin, 9(1-2), 72–125.

Page 23: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Wieland, E., Bonhoure, I., Fujita, T., Tits, J., & Scheidegger, A. (2003). Combined wet chemistry andEXAFS studies on the radionuclide immobilisation by cement and calcium silicate hydrates.GEOCHIMICA ET COSMOCHIMICA ACTA, 67(18), A532–A532. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=25&SID=X1OVsoEyZWtWF5aVIZd&page=2&doc=12

Wieland, E., Tits, J., Spieler, P., Dobler, J., & Scheidegger, A. (n.d.). Uptake of nickel and strontium bya sulphate-resisting Portland cement. APPLIED MINERALOGY, VOLS 1 AND 2: RESEARCH,ECONOMY, TECHNOLOGY, ECOLOGY AND CULTURE, 705–708. Retrieved fromhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=25&SID=X1OVsoEyZWtWF5aVIZd&page=2&doc=19

WRAP. (2012). A Classification Scheme to Define the Quality of Waste Derived Fuels (p. 37). Retrievedfrom www.wrap.org.uk

Wu, K., Shi, H., de Schutter, G., Guo, X., & Ye, G. (2012). Preparation of alinite cement frommunicipal solid waste incineration fly ash. Cement and Concrete Composites, 34(3), 322–327.doi:10.1016/j.cemconcomp.2011.11.016

Xin, M., & Yang, X. (2005). Influence of heavy metal in the domestic waste on cement performance.Cement Works, 3, 9–12.

Xue, J., Yang, Y., & Huang, Q. (2011). Distribution Characters Research of Cd and Ni in Cement PasteUsing Electron Probe Microanalysis. Huanjing Kexue, 32(6), 1825–2830.

Yan, D., Karstensen, K. H., Huang, Q., Wang, Q., & Cai, M. (2010). Coprocessing of industrial andhazardous wastes in cement kilns: A review of current status and future needs in China.Environmental Engineering Science, 27(1), 37–45. doi:10.1089/ees.2009.0144

Yang, Y., Huang, Q., Yang, Y., Huang, Z., & Wang, Q. (2011). Formulation of criteria for pollutioncontrol on cement products produced from solid wastes in China. Journal of EnvironmentalManagement, 92(8), 1931–7. doi:10.1016/j.jenvman.2011.03.036

Yang, Y., Huang, Q., Yang, Y., & Wang, Q. (2008). Characterization of the release potential of heavymetals in cement products from co-processing waste in cement kilns. Research ofEnvironmental Sciences, 21(6), 47–51.

Yang, Y., Xue, J., & Huang, Q. (2013). Microscale investigation of arsenic distribution and species incement product from cement kiln coprocessing wastes. The Scientific World Journal, 2013, 1–6.doi:10.1155/2013/518676

Yang, Y., Yang, Y., Huang, Q., Zhang, X., & Wang, Q. (2008). pH-dependence test study on the releaseof heavy metals in cement product from co-processing waste in cement kiln. Research ofEnvironmental Sciences, 21(6).

Yang, Y., Yang, Y., Wang, Q., & Huang, Q. (2011). Release of heavy metals from concrete made withcement from cement kiln co-processing of hazardous wastes in pavement scenarios.Environmental Engineering Science, 28(1), 35–42. doi:10.1089/ees.2010.0066

Yang, Y.-F., Huang, Q.-F., Zhang, X., Yang, Y., & Wang, Q. (2009). Release amount of heavy metals incement product from co-processing waste in cement kiln. Huan Jing Ke Xue, 30(5), 1539–1544.

Page 24: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Yu, Q., Lin, J., Hisada, M., Saeki, T., & Nagataki, S. (2002). Environmental compatibility of fly ashincorporated construction materials. In 5th International Symposium on the Cement andConcrete (pp. 903–911). Shanghai, China.

Zemba, S., Ames, M., Green, L., Botelho, M. J., Gossman, D., Linkov, I., & Palma-Oliveira, J. (2011).Emissions of metals and polychlorinated dibenzo (p) dioxins and furans (PCDD/Fs) fromPortland cement manufacturing plants: Inter-kiln variability and dependence on fuel-types.Science of the Total Environment, The, 409(20), 4198–4205.doi:10.1016/j.scitotenv.2011.06.047

Zhang, H., Pang, L., He, P., & Shao, L. (2010). Feasibility analysis for utilization of sewage sludgeincineration ash as cement replacement. In J. Z. Xiao, Y. Zhang, M. . Cheung, & R. P. K. Chu(Eds.), 2nd International Conference on Waste Engineering and Management - ICWEM 2010(pp. 332–339). RILEM Publications SARL.

Zhang, J., Liu, J., Li, C., Jin, Y., Nie, Y., & Li, J. (2009). Comparison of the fixation effects of heavymetals by cement rotary kiln co-processing and cement based solidification/stabilization.Journal of Hazardous Materials, 165(1-3), 1179–85. doi:10.1016/j.jhazmat.2008.10.109

Zhang, J., Liu, J., Li, C., Nie, Y., & Jin, Y. (2008). Comparison of the fixation of heavy metals in rawmaterial, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test.Cement and Concrete Research, 38(5), 675–680. doi:10.1016/j.cemconres.2007.09.004

Zhang, T., Gao, P., Gao, P., Wei, J., & Yu, Q. (2013). Effectiveness of novel and traditional methods toincorporate industrial wastes in cementitious materials—An overview. Resources, Conservationand Recycling, 74, 134–143. doi:10.1016/j.resconrec.2013.03.003

Zhu, F., Takaoka, M., Oshita, K., & Morisawa, S. (2011). The Calcination Process in a System forWashing, Calcinating, and Converting Treated Municipal Solid Waste Incinerator Fly Ash intoRaw Material for the Cement Industry. Journal of the Air & Waste Management Association,61(7), 740–746. doi:10.3155/1047-3289.61.7.740

Ziegler, F., Scheidegger, A. M., Johnson, C. A., Dähn, R., & Wieland, E. (2001). Sorption Mechanismsof Zinc to Calcium Silicate Hydrate: X-ray Absorption Fine Structure (XAFS) Investigation.Environmental Science & Technology, 35(7), 1550–1555. doi:10.1021/es001437+

Branscome M, Westbrook W, Mournighan R, Bolstad J & Chehaske J (1985) Summary oftesting at cement kilns co-firing hazardous waste. In Incineration and Treatment ofHazardous Waste: Proceedings of the 11th Annual Research Symposium, EPA 600/9-85-028, 199.

Mournighan RE & Branscome M (1987) Hazardous Waste Combustion in Industrial Processes-

Cement and Lime Klins. Environmental Protection Agency, Cincinnati, Ohio, EPA/600/2-87/095.

Gougar ML, Scheetz BE and Roy DM (1996) Ettringite and C-S-H portland cement phases for waste

ion immobilization: A review, Waste Management, 16 (4): 295-303.

Johnson CA (2002) Metal Binding in the Cement Matrix: An Overview of our Current Knowledge,

Department of Water Resources and Drinking Water, Water-rock Interaction Group, EAWAG, for

Cemsuisse, Switzerland.

Page 25: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Lothenbach B , Scrivener K and Hooton RD (2011) Supplementary cementitious materials, Cement

and Concrete Research 41(12) 1244–1256. http://dx.doi.org/ 10.1016/10.1016/j.cemconres.

2010.12.001.

Rose J, Moulin I, Hazemann JL, Masion, A, Bertsch PM, Bottero J-Y, Mosnier F and Haehnel C (2000)

X-ray absorption spectroscopy study of immobilization processes for heavy metals in calcium silicate

hydrates: 1. Case of lead, Langmuir, 16: 9900-9906.

Tommaseo CE and Kersten M (2002) Aqueous solubility diagrams for cementitious waste,

Environmental Science and Technology, 26(13): 2919-2925.

Zhang M and Reardon EJ (2003), Removal of B, Cr, Mo, and Se from wastewater by incorporation

into hydrocalumite and ettringite, Environmental Science & Technology, 37 (13): 2947-2952.

Ministry of environmental protection of the PRC. National environmental statistics bulletin, 2012. [In

Chinese]

SINTEF. Formation and release of POPs in the cement industry (2ed Ed.). 2006.

http://www.wbcsdcement.org/pdf/formation_release_pops_second_edition.pdf

Karstensen K. Formation, release and control of dioxins in cement kilns. Chemosphere, 2008,70: 543-

560.

Cui SP, Lan MZ, et al. Effect and incorporation mechanism of heavy metal elements in hazardors

industrial wastes during clinker formation. Journal of The Chinese Ceramic Society, 2004,32(10):

1264-1269. [In Chinese]

Liu Q, Wang J, Wang X J, et al. Emission analysis of heavy metals in paint slag waste gas from co-

processing waste by cement kiln. Journal of Changchun University of Science and Technology(

Natural Science Edition). 2010,33(2): 107-109. [In Chinese]

Lan MZ, Cui SP, et al. Discussion on leachability of Pb2+、Zn2+ in cement and concrete. Cement,

2006(1): 18-20. [In Chinese]

Li B, Cai YL, et al. Research on the leaching of heavy metals of cement-based materials produced by

cement kiln co-processing municipal solid waste. Chinese cement, 2010(3): 45-48. [In Chinese]

Lan MZ, Zhang D. Valence changes of heavy metal in clinker. Journal of Qingdao Technological

University, 2009,30(4): 31-33. [In Chinese]

Lin SM, Su DG, et al. Influence factors of lead emission during cement calcinations. Journal of the

Chinese Ceramic Society, 2006,34(7): 851-854. [In Chinese]

Page 26: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Lin SM, Su DG, et al. Emission and pollution of heavy metal during cement production in different

kilns. Journal of the Chinese Ceramic Society, 2007,35(8): 113-116. [In Chinese]

Run DH, Li L, et al. Distribution of heavy metals during co-processing hazardous wastes in new dry

cement kilns. China Environmental Science, 2009,2(9): 977-984. [In Chinese]

Su DG, Lin SM, et al. Research on emission of Pb in cement kiln. Cement, 2005(12): 1-2.

Su DG, Lin SM, et al. Pollution and prevention of heavy metals such as lead and cadmium in cement

kalians. Journal of the Chinese Ceramic Society, 2007,35(5): 558-562. [In Chinese]

Wu WH, Xie ZM. A preliminary study on production of eco-cement using sludge and its risk of heavy

metals release. Journal of Hangzhou Dianzi University. 2010,26(6): 62-65. [In Chinese]

Wang L, Li RD, et al. Modeling of lead migration in MSWI fly ash during the co-processing with

cement kiln. Journal of Shenzhen University, 2012,29(6): 509-514. [In Chinese]

Wan Y, Wan L, et al. Incorporation features of Cu2+、Zn2+、Cr6+、Cd2+and Pb4+ ions in cement

clinker. Bulletin of the Chinese Ceramic Society, 2013,32(9): 1856-1861. [In Chinese]

Wang J, Li B, et al. effect of curing condition on the leaching of heavy metals of cement-based

materials. Chinese Cement, 2010(5): 65-69. [In Chinese]

Wan L, Jin YY, et al. Equilibrium analysis of lead in hazardous waste during co-processing with

cement kiln. Journal of Combustion Science and Technology, 2011, 17(3): 224-230. [In Chinese]

Xue JC, Yang YF, et al. Heavy metal species in cement products from co-processing waste in cement

kilns. Research of Environmental Sciences, 2010,23,(10): 1300-1305. [In Chinese]

Y L, Shi HS, et al. Leaching behaviors of heavy metals in MSWI fly ash and the immobilization

mechanism of cement. Journal of Building Materials, 2004,7(1): 76-80. [In Chinese]

Yang YF, Huang QF, et al. Release amount of heavy metals in cement product from co-processing

waste in cement kiln. Environmental Science, 2009,30(5): 1539-1544. [In Chinese]

Yang LY, Lei L, Ma JT. Study on leaching behavior of heavy metals and properties of combustion

residue of municipal solid waste Portland cement. Concrete. 2012(3): 12-14. [In Chinese]

Yang Y, Huang QF, et al. Study on release characteristics of Pb in cement product from co-processing

waste in cement kiln. Environmental Engineering, 2009,27(S): 416-420. [In Chinese]

Yang LY, Xu YL, et al. Influence of sludge utilization during cement calcination on heavy metal

solidification. Bulletin of the Chinese Ceramic Society, 2008,27(5): 1023-1027. [In Chinese]

Page 27: UK China Collaborative Literature Review on Toxic Metals in Industrial Symbiosis in the Cement Industry (DRAFT)

Zhang JL, Liu JG, et al. Comparison of fixation effects of heavy metals between cement rotary kiln

co-processing and cement solidification/stabilization. Environmental Science, 2008,29(4): 1138-1142.

[In Chinese]

Zhu WJ, Fang HH, et al. Curing of heavy metals in cement clinker and the impact on burn ability and

mineral composition. Building of the Chinese Ceramic Society, 2013,32(5): 824-828. [In Chinese]

European Commission. Integrated pollution prevention and control reference document on best

available techniques in the cement and lime manufacturing industries [EB/OL]. 2008

Chiang KY, Wang KS, et al. Chloride effects on the speciation and partitioning of heavy metal during

the municipal solid waste incineration process. The Science of the Total Environment, 1997,203(2):

129-140.

Wang KS, Chiang KY, et al. Effects of chlorides on emissions of toxic compounds in wastes

incineration: Study of partitioning characteristics of heavy metal. Chemosphere, 1999,38(8): 1833-

1849.

Luan J, Li R, Zhang Z, et al. Influence of chlorine, sulfur and phosphorus on the volatilization

behavior of heavy metals during sewage sludge thermal treatment. Waste Management & Research,

2013, 31(10): 1012-1018.

Guo Y. Investigations on the use of industrial wastes in cement production. Arid Environmental

Monitoring 2003;17(3):177–9.

Huang K. Use of copper slag in cement production, Sichuan Cement, No. 4; 2001. p.25–7.

Liu, et al. Using Mo ore tailings and copper slag as cement raw materials, blast furnace slag and

phosphorus slag as blending components to produce blended cements, Chinese Building Materials,

No. 5; 2007. p. 98–100.

5 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic

of China and National Standardization Management Committee of China(2013) Technical

specification for co-processing of solid waste in cement kiln (draft for approved).

Wu WH et al (2006). A preliminary study on production of eco-cement using sludge and its risk of

heavy metals release. Journal of Hangzhou Dianzi University, 26(6): 62-65

Yan DH et al (2009). Distribution of heavy metals during co-processing hazardous wastes in new dry

cement kilns. China Environmental Science, 29(9):977-984

Su et al (2006) Several problems about heavy metal emission during clinker calcinations. Cement,

2006(12): 19-20