ultrafast nanophotonics - optical control of coherent...

62
Ultrafast nanophotonics - optical control of coherent electron - ICTP 18.2.8 Hirofumi Yanagisawa LMU, MPQ

Upload: others

Post on 22-Oct-2020

5 views

Category:

Documents


1 download

TRANSCRIPT

  • Ultrafast nanophotonics

    - optical control of coherent electron -

    ICTP 18.2.8

    Hirofumi Yanagisawa

    LMU, MPQ

  • Hirofumi Yanagisawa

    Japan (Tokyo) ⇒ Switzerland (Zurich) ⇒ Germany (Munich)

    http://roundtripticket.me/world-map-labled.html/best-image-of-diagram-world-map-and-labeled-for-labled

  • Laser-induced electron emission

    from a metallic tip

  • 1973 1987 2006

    CW

    laser

    Pulse

    Laser (ps)

    Pulse

    Laser (fs)

    Slow response

    Phonon system

    nano-, pico- sec

    Ultrafast response

    Electronic system

    femto-, atto- sec

    PRL 30, 1193

    Nucl. Instr. And Meth.

    A 256,191

    PRL 96, 077401

    5 Nature series

    10 PRL

  • Ultrafast nanophotonics? Time Size

    Size m um nm mm

    Time

    milli-sec

    pico-nano

    atto-femto Here!

  • Nano structure

    Ultrafast nanophotonics

    Light

  • http://thescienceofwaves.weebly.com/uploads/2/5/7/8/25786734/1239513_orig.jpg

  • k

    ~wavelength (800nm)

    Nano-sphere

    r=100nm

  • 10-18

    Atto

    10-15

    Femto

    10-12

    Pico

    10-9

    Nano

    sec

    Phonon (lattice) Electron

    Coherent phonon

    Melting

    Laser absorption

    El-Ph scattering (heating Ph)

    Phase transition

    El-El scattering (heating El)

    Tunnelling

    Rescattering

    Quiver

    Sub-cycle

    Surface Diffusion

    Plasmonics

    Strong field El: Electron

    Ph: Phonon

    1st 2nd

    2nd

    Weak field

  • Tip

    Sphere

    Bowtie

    Star

    Adv. Mater. 26, 2353

    Nano-structures

  • Laser-induced electron emission

    from a metallic tip

  • Reference books

    - Principles of Nano-Optics

    Novotny and Hecht

    - Physics of Surface and Interfaces

    Harald Ibach

    - Field Emission and Field Ionization

    Robert Gomer

  • We learn today

    1. Characeterization of tip apex

    2. Beauty of nanophotonics

    in laser-induced electron emission from tip

    3. Optical control of coherent electron wave

  • Why electron source?

    Let’s learn more about

    tip and electron emission

  • Electron

    Best probe for

    Nano-object

    The TEM picture is taken from

    http://www.york.ac.uk/res/nanocentre/facilities/fetem.htm

    Electron Microscopy

    Nano-object Atom

    Dete

    cto

    r

    Electron gun

    1nm = 10-9m

  • Tip Laser

    pulse

    B. Cho, PRL 92, 246103 (2004)

    C. Oshima, Nature 396, 557 (1998)

    Brightness

    Coherence

    Space

    Time

    Introduction 2 –Electron gun-

    P. Hommelhoff, PRL 96, 077401 (2006)

    ~1fs

    M. Aeschlimann, Nature 446, 301 (2007)

    ~100nm and ~100fs

    Electron gun

    Pulsed laser

    lens

    Tip

    1fs = 10-15sec 3D Dynamical information

    ⇒New Phenomena

  • How can we get electrons?

    Surface and work function

  • Work function

    Work functions ⇔ Ionization Energy

    (surface) (atom)

    Vacuum

    EF

    Evac

    Metal

    Work

    function Φ

    Change

    surface to surface

    2-6eV

  • How can we get electrons?

    1. Thermal emission

    2. Photoemission

    3. Field emission

    4. Photo-field emission (fs)

    5. Optical field emission (as)

  • How can we get electrons?

    Thermionic

    emission Photoemission

    photon Evac

    EF

    Evac

    EF

    J∝T2exp(-Φ/kT) J∝In (n order photon)

    e-x

  • Mesh Grid

    -1~-2kV Tip

    Field emission

    EF

    Metal Vacuum

    Nanometer sharpness

    Surface

    Barrier

  • EF

    Metal Vacuum

    How thin barrier has to be?

    ~1nm

    Φ 3-6eV F=3-6V/nm

    J∝F2exp(-aΦ3/2/bF)

  • Photo-field emission

    photoemission

    x

    EF

    E

    optical fieldemission

    x

    E

    Weak field Strong field

  • Various way to characterize tip apex

  • Photon and Particle Interactions with Surfaces in Space

    Volume 37 of the series Astrophysics and Space Science Library pp 323-330

    M. Bujor

    1 Langmuir

    10-6mbar x 1 second

    1.6eV !!

  • How to make and keep clean surface?

    Heating

    Ar+

    Ar+

    Ar+

    10-7mbar -> 10 sec

    10-8mbar -> 2 min

    10-9mbar -> 20 min

    10-10mbar -> 3 hr

    10-6mbar -> 1 sec

    1 Langmuir

    10-6mbar x second

  • Characterization of tip apex

    Erwin Mueller (German physist)

    First time in history,

    individual atoms and their arrangement.

    A Biographical Memoir Vol 82

    by ALLAN J. MELMED

    1. Field emission microscopy (FEM)

    Around 1935

    2. Field ion microscopy (FIM)

    Around 1950

    3. Atom probe field ion microscopy

    (APFIM)

  • Field Emission and Field Ionization: Robert Gomer

    Magnification: x/br b~1.5

    105-106

    FEM

  • Vtip=-2250V

    Without laser

    Field emission pattern with and without laser

    Radius ~ 100nm

    Side

    Intensity high

    low

    Tungsten

    Tip

    (011)

    (111)

    (111)

    (310) (310)

    Field Emission and Field Ionization: Robert Gomer

  • Various Field emission image from W[011]

    N2

    O2

    Clean

    FEM pattern

    change depending

    on adsorbate

    Phys. Rev. Lett. 45,

    1856 (1980).

  • Graphene Simulation, Edited by Jian Ru Gong, ISBN 978-953-307-556-3

    Spatial resolution => 1 – 2nm

  • View from

    Nano-tip?

    Power of FEM

    Vtip=-900V

    FEM

  • Nano-tip? Power of FEM

    Vtip=-900V

    FEM

  • Positive

    bias

    Positively

    charged

  • http://labman.phys.utk.edu/phys222core/modules/m2/conductors_in_electrostatics.htm

  • Experimental set up Field Emission Microscopy

    Pre amplifier

    Position computer

    Resistive

    anode

    MCP

    (Chevron)

    Mesh

    Grid

    High voltage

    (negative)

    Heating

    φ θ

    z

    y

    x

    Lens : f=15mm

    y

    Vacuum

    (UHV)

    Sample : Tungsten wire

    focus

    4μm

    Air

    Oscillator

    800nm, 76MHz, 55fs

    θp

    Laser Polarization

    PC

  • 30nm

    PL=20mW

    Vtip=-2250V

    Without laser With laser (800nm)

    Vtip=-1600V

    Field emission pattern with and without laser

    Radius ~ 100nm

    Side

    Intensity high

    low

    Tungsten

    Tip

    (011)

    (111)

    (111)

    (310) (310)

  • What is physics behind?

  • Surface electromagnetic wave

    Electromagnetic wave couples with surface charge

    Surface plasmon polariton: Epsilon_R 0, Epsilon_Im >>0

    ⇒Phys. Rev. B 44, 5855 (1991).

  • Photo-field emission Time average

    Rapex

    =100nm

    Max

    Min

    MaX-1: C. Hafner

    http://alphard.ethz.ch/

    θp=0 θp=30 θp=60 θp=90 θp=120 θp=150

    Propagation of surface electromagnetic waves

    k

    With laser

    Propagation of

    Laser

    E k

  • Let’s simulate

    laser-induced field emission images

  • ⇒Φ

    jexp-jcalc=0

    Evac

    EF

    Photo-field emission

    FEM

    e-

    Field emission

    jexp

    FDC F=FDC

    Work

    function

    MaX-1: C. Hafner

    Simulation of LFEM (photo-field emission model)

  • Simulation of LFEM (photo-field emission model)

    ⇒Φ, FDC

    jexp-jcalc=0

    Evac

    EF

    Photo-field emission

    FEM

    ∝F2laser

    jcalc ⇒ LFEM

    f(E)

    Flaser

    e-

    FDC

  • Experiment

    Simulation

    θp=0 θp=30 θp=60

    θp=90 θp=120 θp=150

    Simulations : Photo-field emission model

    Exp.

    Sim.

    Exp.

    Sim.

    Exp.

    Sim.

    Exp.

    Sim.

    Exp.

    Sim.

    Top

    PRL 103, 257603 (2009)

  • Time ave.

    k

    With laser

    Q1: Upon laser irradiation, which side of apex will be hotter,

    laser exposed side or shadow side?

  • Phys. Rev. B 86, 035405 (2012)

    E field

    Deposited energy

    J/cm3

    Electron

    Temp.

  • At 30K

    B. Cho, Phys. Rev. Lett. 92, 246103 (2004)

    Coherence length ~200nm

    Coherence time ~200fs

    Tip

    What’s nice?

    Coherence length ~10nm

    At room temperature

    Spatio-temporal

    control of

    coherent electron

    emission

  • Optical control of

    Young’s interference

  • Without laser With laser (7fs, 40mW)

    Interference

    (111)

    (111)

    (310) (310)

  • Pol=10

    Pol=90 Pol=110

    Pol=40

    C

    A

    B

    C

    A

    D

    B B

    A

    Polarization dependence of interference pattern

    Interference

    A-B

    C-D

  • 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8

    1

    1.2

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6x 10

    5

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.5

    1

    1.5

    2

    2.5

    3x 10

    5

    L

    I S

    Pol=150 Line profile

    L I S

    Gaussian

    fitting

    Data analysis: Gaussian fitting

  • 0 100 2000

    1

    2

    3

    4

    5x 10

    -3 S

    0 100 2000

    0.002

    0.004

    0.006

    0.008

    0.01

    L

    0 100 2000

    1

    2

    3

    4

    5x 10

    -3

    0 100 2000

    0.002

    0.004

    0.006

    0.008

    0.01

    0 100 2000

    1

    2

    3

    4

    5

    6

    7

    8x 10

    -4 I

    0 100 2000

    1

    2

    3

    4

    5

    6

    7

    8x 10

    -32*sqrt(S)*sqrt(L)

    0 100 2000

    1

    2

    3

    4

    5

    6

    7

    8x 10

    -4

    0 100 2000

    1

    2

    3

    4

    5

    6

    7

    8x 10

    -3

    0 100 2000

    0.002

    0.004

    0.006

    0.008

    0.01

    S+L

    0 100 2000

    0.002

    0.004

    0.006

    0.008

    0.01

    Polarization angle (degree)

    (A+B)2=A2+B2+2AB

    L S 2*(L*S)0.5

    0 0 0 0 0 100 100 100 100 100

    L

    I S

    S L I 2*(L*S)0.5

    L+S

    Polarization dependence of electron intensity

  • Potential landscape Simulations : Interference

    (111)

    (013) Interference

    peak

    2D TDSE

    Far field

  • Simulations : Energy dependence of interference

    Energy

    Dependence

    Scientific Reports 7, 12661 (2017)

  • Transmission Probability

    Photoemission

    Photon Evac

    EF

    Q2: Do we need quantum mechanical treatment for

    transmission probability of photoemission?

    Photo-field emission

    Photoemission

    x

    EF

    E

  • 10eV

    0eV

    Surface

    9eV

    Electron

    DeVries, P. L.

    A First Course in Computational Physics

    (John Wiley & Sons, Inc., 1994)

  • 10eV

    0eV

    Surface

    11eV

    Electron

  • 10eV

    0eV

    Surface

    15eV

    Electron

  • k k

    Delay

    line

    Time-resolved electron holography

  • A k

    B k

    Delay line

    ?

    Beam Splitter

    Such a dense electron source cannot be available.

  • Introduction of myself

    Electron emission from a nano-tip

    ○How can we get electrons?

    -work function

    -various ways to emit electrons

    ○ How to characterize tip apex: FEM

    Laser-induced field emission

    ○Site-selective technique

    ○Optical control of Young’s interference

    Summary

  • Tomorrow

    More about electron dynamics