ultrafast optics - physik.hu-berlin.de

31
Ultrafast Optics Christoph Feest December 10, 2007 Christoph Feest () Ultrafast Optics December 10, 2007 1 / 25

Upload: others

Post on 12-Mar-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Ultrafast Optics

Christoph Feest

December 10, 2007

Christoph Feest () Ultrafast Optics December 10, 2007 1 / 25

What are characteristic scales in quantum systems?

classical approach

v =

√2Ry

me=

c

137= α · c

virial-theorem

〈T 〉 = −1

2〈V 〉 = Ebinding

a0 = 0.53 · 10−10m

→ torbit ≈ 150 · 10−18s = 150as

Attosecond-scale means electron motion!

What are characteristic scales in quantum systems?

classical approach

v =

√2Ry

me=

c

137= α · c

virial-theorem

〈T 〉 = −1

2〈V 〉 = Ebinding

a0 = 0.53 · 10−10m

→ torbit ≈ 150 · 10−18s = 150as

Attosecond-scale means electron motion!

Contents

1 General ConsiderationsBeam PropertiesGain medium

2 fs-TechniquesChirpMode-lockingOptical Kerr-effect, SPM, SAM

3 as-TechniqueHigh Harmonic Generation

4 MeasurementTHz-SamplingThe Zoo: FROG, SPIDER, (CRAB, TIGER,) ...SEA-SPIDER

Christoph Feest () Ultrafast Optics December 10, 2007 3 / 25

Contents

1 General ConsiderationsBeam PropertiesGain medium

2 fs-TechniquesChirpMode-lockingOptical Kerr-effect, SPM, SAM

3 as-TechniqueHigh Harmonic Generation

4 MeasurementTHz-SamplingThe Zoo: FROG, SPIDER, (CRAB, TIGER,) ...SEA-SPIDER

Christoph Feest () Ultrafast Optics December 10, 2007 3 / 25

Contents

1 General ConsiderationsBeam PropertiesGain medium

2 fs-TechniquesChirpMode-lockingOptical Kerr-effect, SPM, SAM

3 as-TechniqueHigh Harmonic Generation

4 MeasurementTHz-SamplingThe Zoo: FROG, SPIDER, (CRAB, TIGER,) ...SEA-SPIDER

Christoph Feest () Ultrafast Optics December 10, 2007 3 / 25

Contents

1 General ConsiderationsBeam PropertiesGain medium

2 fs-TechniquesChirpMode-lockingOptical Kerr-effect, SPM, SAM

3 as-TechniqueHigh Harmonic Generation

4 MeasurementTHz-SamplingThe Zoo: FROG, SPIDER, (CRAB, TIGER,) ...SEA-SPIDER

Christoph Feest () Ultrafast Optics December 10, 2007 3 / 25

General Considerations Beam Properties

What do we want?

Confine energy in small spatial region!

Roundtrip:tRT = 2L

c

Longitudinal modes:δν = c

2L = 1tRT

time-bandwidth-product:∆t∆ν ≥ 0.441

Christoph Feest () Ultrafast Optics December 10, 2007 4 / 25

General Considerations Gain medium

Ti:Sapphire, (Ti3+ : Al2O3)

Ti:Sa parametersn = 1.76 τfluo = 3.2µs FWHM ≈ 200nm λmax ≈ 790nm

→ Issues: temporal & spatial coherence, dispersion

Christoph Feest () Ultrafast Optics December 10, 2007 5 / 25

fs-Techniques Chirp

Chirp

Christoph Feest () Ultrafast Optics December 10, 2007 6 / 25

fs-Techniques Mode-locking

Basic Ideas

Pulses:

emitted as trains tRT = 1δν

peak power P ∝ P0 · N2

∆t ≈ 1Nδν = 1

∆ν

key parameter: φn(t)

Christoph Feest () Ultrafast Optics December 10, 2007 7 / 25

fs-Techniques Mode-locking

Basic Ideas, visualised

Christoph Feest () Ultrafast Optics December 10, 2007 8 / 25

fs-Techniques Optical Kerr-effect, SPM, SAM

Optical Kerr-effect

high intensities > 1014 Wcm2 nnl = n0 + n2 · I

n2 ≈ +(10−16 . . . 10−15) cm2

Wnew wave vector knl = k(ω0) + ω0

cn2

A |g(t)|2

time-dependent response → Self-Phase-Modulation, SPM

Figure: RP Encyclopedia of Laser Physics and Technology

Christoph Feest () Ultrafast Optics December 10, 2007 9 / 25

fs-Techniques Optical Kerr-effect, SPM, SAM

+ Self-Amplitude-Modulation, SAM

beam intensity ∝ e−r2

Figure: Ferenc Krausz, Photonics II Lecture

Christoph Feest () Ultrafast Optics December 10, 2007 10 / 25

fs-Techniques Optical Kerr-effect, SPM, SAM

State of affairs

pulse rep. rate crystal energy/pulse e

commercial 7 fs 80 MHz Ti:Sa 2 · 10−9J 120.000commercial 25 fs 3 kHz Ti:Sa 7 · 10−4J 500.000

labs: single cycle regime reached

→ as-pulses require different technique

Christoph Feest () Ultrafast Optics December 10, 2007 11 / 25

as-Technique High Harmonic Generation

3-Step-Model

Figure: Corkum, Phys. Rev. Lett. 71, 1994 (1993)

Christoph Feest () Ultrafast Optics December 10, 2007 12 / 25

as-Technique High Harmonic Generation

Experimental setup

Figure: Cavalieri, New Journal of Physics 9 (2007) 242

Christoph Feest () Ultrafast Optics December 10, 2007 13 / 25

as-Technique High Harmonic Generation

HHG, results

Figure: Macklin, Phys. Rev. Lett. 70, 766 (1993)

Christoph Feest () Ultrafast Optics December 10, 2007 14 / 25

as-Technique High Harmonic Generation

3-Step-Model, Remarks

nonlinear response is not instantaneous

nonlinear response almost constant at high orders

maximum electron energy 3.17 UP = 3.17E 2

0

4ω2

up to 1000th order → keV

XUV pulses reach

E=90eV t=250as I = 1011 Wcm2

Christoph Feest () Ultrafast Optics December 10, 2007 15 / 25

Measurement THz-Sampling

fs-MIR-pulses, setup

Figure: Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70 (14), 7 April 1997

I1−I2I1+I2

= sin(Γ) Γ ∝ EIR(t)

Christoph Feest () Ultrafast Optics December 10, 2007 16 / 25

Measurement THz-Sampling

THz Results

Figure: Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70 (14), 7 April 1997

Christoph Feest () Ultrafast Optics December 10, 2007 17 / 25

Measurement THz-Sampling

Next Step: XUV Probe

Figures: E. Goulielmakis, et al., Science 305 1267 (2004)

Christoph Feest () Ultrafast Optics December 10, 2007 18 / 25

Measurement The Zoo: FROG, SPIDER, (CRAB, TIGER,) ...

sub-10-fs-Methods

Figure: Stibenz, Steinmeyer et al., Appl. Phys. B 83, 511-519 (2006)

Christoph Feest () Ultrafast Optics December 10, 2007 19 / 25

Measurement SEA-SPIDER

Sea-Spider, schematic

Spatially Encoded Arrangement forSpectral Phase Interferometry for Direct Electric-field Reconstruction

Figure: A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett. 31,1914-1916 (2006)

S(x , ω) = |E (x , ω + ω0)|2 + |E (x , ω + ω0 + Ω)|2 +

2|E (x , ω + ω0)| · |E (x , ω + ω0 + Ω)|cos(φ(x , ω + ω0)− φ(x , ω + ω0 + Ω) + Kx)|

Christoph Feest () Ultrafast Optics December 10, 2007 20 / 25

Measurement SEA-SPIDER

Sea-Spider, schematic

Spatially Encoded Arrangement forSpectral Phase Interferometry for Direct Electric-field Reconstruction

Figure: A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett. 31,1914-1916 (2006)

S(x , ω) = |E (x , ω + ω0)|2 + |E (x , ω + ω0 + Ω)|2 +

2|E (x , ω + ω0)| · |E (x , ω + ω0 + Ω)|cos(φ(x , ω + ω0)− φ(x , ω + ω0 + Ω) + Kx)|

Christoph Feest () Ultrafast Optics December 10, 2007 20 / 25

Measurement SEA-SPIDER

Sea-Spider, results

Figure: A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett. 31,1914-1916 (2006)

Christoph Feest () Ultrafast Optics December 10, 2007 21 / 25

Measurement SEA-SPIDER

Sea-Spider, processing the results

Figure: Ellen M. Kosik, Aleksander S. Radunsky, Ian A. Walmsley, and ChristopheDorrer, Opt. Lett., 30 (3), 326-328, (2005)

Christoph Feest () Ultrafast Optics December 10, 2007 22 / 25

Measurement SEA-SPIDER

Sea-Spider, enjoying the results

Figure: A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett. 31,1914-1916 (2006))

Christoph Feest () Ultrafast Optics December 10, 2007 23 / 25

Applications & Conclusions

Applications

communications (1, 4µm gap)

THz-Imaging & -Sampling (low absorption)

medical & biological microscopy (increased resolution)

structuring & cutting (no heat diffusion)

ultrafast metrology (exiting and probing with short pulses, dynamics)

control of chemical reactions (valence electrons, shaped pulses)

Conclusion

Ultrafast optics breaks new ground in

high-field science

frequency and time metrology

industrial, medical and biological technologies

Applications & Conclusions

Applications

communications (1, 4µm gap)

THz-Imaging & -Sampling (low absorption)

medical & biological microscopy (increased resolution)

structuring & cutting (no heat diffusion)

ultrafast metrology (exiting and probing with short pulses, dynamics)

control of chemical reactions (valence electrons, shaped pulses)

Conclusion

Ultrafast optics breaks new ground in

high-field science

frequency and time metrology

industrial, medical and biological technologies

Sources

A. S. Wyatt, I. A. Walmsley, G. Stibenz, and G. Steinmeyer, Opt. Lett. 31,1914-1916 (2006)

Stibenz, Steinmeyer et al., Appl. Phys. B 83, 511-519 (2006)

Corkum, Phys. Rev. Lett. 71, 1994 (1993)

E. Goulielmakis, et al., Science 305 1267 (2004)

Ellen M. Kosik, Aleksander S. Radunsky, Ian A. Walmsley, and ChristopheDorrer, Opt. Lett., 30 (3), 326-328, (2005)

Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 70 (14), 7 April (1997)

Macklin, Phys. Rev. Lett. 70, 766 (1993)

Cavalieri, New Journal of Physics 9 (2007) 242

Springer Handbook of Lasers and Optics, 2007

RP Encyclopedia of Laser Physics and Technology(http://www.rp-photonics.com/)