ultrathin gate dielectrics on sige/sigec heterolayers by siddheswar maikap

39
1 Ultrathin Gate Dielectrics on SiGe/Si GeC Heterolayers By Siddheswar Maikap Department of Physics Indian Institute of Technology (IIT), Kharag pur India

Upload: aiko-perez

Post on 30-Dec-2015

44 views

Category:

Documents


0 download

DESCRIPTION

Ultrathin Gate Dielectrics on SiGe/SiGeC Heterolayers By Siddheswar Maikap Department of Physics Indian Institute of Technology (IIT), Kharagpur India. Who am I ?. IIT, Kharagpur, 1950 IIT, Kanpur, 1963 IIT, Bombay, 1958 IIT, Guwahati, 1994 - PowerPoint PPT Presentation

TRANSCRIPT

1

Ultrathin Gate Dielectrics on SiGe/SiGeC

Heterolayers

By

Siddheswar Maikap

Department of Physics

Indian Institute of Technology (IIT), Kharagpur

India

2

Who am I ?

IIT, Kharagpur, 1950 IIT, Kanpur, 1963

IIT, Bombay, 1958 IIT, Guwahati, 1994

IIT, Delhi, 1961 IIT, Roorkee, 2001

IIT, Madras, 1961

3

Present Supervisor: Professor C. W. Liu, National Taiwan

University, Taiwan 11th February 2003-

Ph.D Supervisors: Prof. S. K. Ray (Dept. of Physics) and

Prof. C. K. Maiti (Dept. of E & ECE), IIT Kharagpur,

India July 1997 - October 2001

Postdoc Supervisors: Prof. Nong. M. Hwang and Prof. Doh. Y.

Kim, Dept. of Material Science, Seoul National University,

South Korea October 2001 - December 2002

4

 

Outline of the Work

Introduction

Growth of group-IV alloy layers

Ultrathin oxides on partially strained layers

Extraction of material parameters for

SiGe/SiGeC heterolayers

High-k gate dielectric for alternative SiO2

Conclusion and Future work

5

Technology Roadmap

Moore’s law: the gate length and cost production lines as a function time. Source: National Technology Roadmap for semicon-ductors, Semiconductor Industry Association, San Jose, USA, 1997 (After D. J. Paul, Adv. Mater., vol. 11, p. 191).

Year 

1998 2001 2004 2007 2010

Channel length (m) 

0.2 0.14 0.1 <0.10 <0.07

Oxide thickness (nm) 

4-6 4-5 4-5 <4 <4

6

Requirements of gate quality ultrathin oxide

High quality Si/SiO2 interface

Low defect density

Stability under hot carrier stress

Low thermal budget

Good barrier properties against impurity diffusion

Reduced B-penetration from doped poly-Si gate

7

Band-gap engineered semiconductor devices

for VLSI/ULSI technology

Enhancement of low field hole mobility:

CMOS devices

Heterojunction bipolar transistor (HBT) for high

speed digital and microwave circuits

Modulation doped field effect transistor (MODFET)

Quantum well detectors

Resonant tunneling diodes

Why SiGe?

8

Growth of Group-IV Alloy Layers on Si

Schematic diagram of strained and relaxed epilayer on a Si substrate. In the relaxed layer, many dislocations are seen at the epi/substrate interface.

According to Vegard’s rule:   

where, aSi=5.43 Å, aGe=5.65 Å and ac=3.57 Å

SiGeSiSiGe aaxaa SiCSiGeSiSiGeC aayaaxaa

9

Critical Layer Thickness

Critical layer thickness of Si1-xGex films as a function of Ge mole fraction.

Lines show theoretical kinetic model for various growth temperature. Figure is after D. C. Houghton et al., J. Appl. Phys., vol. 70, 1991, p. 2136.

10

Role of C in SiGe System

Strain compensation by substitutional C in SiGe:

1 at % C compensates 8.2-10 at % Ge

Possibility of SiGeC system with either compr-

essive or tensile strain: Additional flexibility in

strain & band-gap engineering

Better surface smoothness

Higher critical layer thickness

Higher strain relaxation temperature

According to Vegard’s rule:   

where, aSi=5.43 Å, aGe=5.65 Å and ac=3.57 Å

SiGeSiSiGe aaxaa SiCSiGeSiSiGeC aayaaxaa

11

Strain Compensation

Critical layer thickness of Si1-x-yGexCy as a function of Ge and C

concentration. Figure is after Amour et al., Thin Solid Film., vol. 294, 1997, p. 112.

12

High Resolution X-ray Diffraction

(004) HRXRD spectra from Si0.8Ge0.2 and Si0.69Ge0.3C0.01 films

According to Vegard’s rule:  

 

where, aSi=5.43 Å, aGe=5.65 Å and ac=3.57 Å

SiGeSiSiGe aaxaa SiCSiGeSiSiGeC aayaaxaa

13

Atomic Force Microscopy

AFM (5 m x 5 m) scan of film surface. (a) Si0.6Ge0.4 sample (~22 Å

rms), (b) Si0.56Ge0.4C0.04 sample (~1.3 Å rms).

Sample Zrms (Å) 

Si0.6Ge0.4 22

Si0.56Ge0.4C0.04 1.3

Si0.74Ge0.26 7.58

Si0.69Ge0.3C0.01 11.8

14

Gate oxides on group-IV alloy layers

Problem in conventional thermal oxidation:  High temperature oxidation: Not suitable for group-IV alloys due to strain relaxation  Selective oxidation of Si: Ge segregation and C precipitation  Misfit dislocations due to high temperature process  Degradation of mobility due to relaxed layer at processing temperature 

Solution:  Low temperature oxidation  Minimize the misfit dislocation

15

Low Thermal Budget Methods for Oxidation

Why Microwave Plasma Oxidation

Rapid thermal oxidation (RTO)  Low pressure chemical vapor deposition (LPCVD)  Plasma oxidation

Electrodeless, Low self bias and High ionization efficiency  Low temperature (<200oC) growth  Reduced impurity distribution

Absence of Ge segregation

Absence of C precipitation

16

Experimental Setup

Schematic diagram of microwave discharge cavity system 

Oxidation time: 2 min Initial Pressure: 10-3 Torr Growth Pressure: 1.0 Torr Temperature: ~200oC Growth rate: 405 Å/min Refractive index: 1.44-1.46 (Ellipsometry)

17

High Resolution X-ray Diffraction

High resolution X-ray diffraction characteristics for (a) as-grown, (b) plasma grown and (C) thermal (750oC, 100 min) oxides on

Si0.685Ge0.3C0.015 samples.

18

Location of Different Trap Charges

Location of trapped charges at different regions in the MOS structures.

19

Fixed Oxide Charge and Interface State Density

))(.( FBFmsoxf VqACqQ

])/1()/[()/)(./(2 22maxmax oxmoxit CCCGGAqD

where, A is the gate area, ms is the work function between metal and semiconductor, Gmax is the

maximum conductance, is the angular frequency, and Cm is the capacitance at Gmax.

-5 -4 -3 -2 -1 0 1 2 3 4 50.0

0.5

1.0C

/C o

x

Gate Voltage (V)

0.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

C-V and G-V characteristics for plasma grown Si0.69Ge0.3C0.01 sample.

Qf/q= -2.7x1011 cm-2 Dit= 5.4x1011 cm-2 eV-1

20

Extraction of Material Parameters of SiGe/SiGeC Heterolayers

Hole confinement characteristics

Extraction of Si-cap layer thickness  Extraction of buried and surface channel threshold voltages  Determination of valence band offset: Si1-xGex and Si1-x-yGexCy heterolayers

  Generation lifetime of group-IV alloy layers

21

-4 -2 0 2 4

0.0

0.5

1.0

Expt. Sim. (HFCV) Sim. (LFCV)

Hole confinement plateau E

v

Deep depletion

InversionAccumulation

C/C

ox

Gate voltage (V)

Hole confinement characteristics

High frequency (1 MHz) C-V characteristics of a MOS capacitor. Simulated HF and low frequency C-V characteristics are also shown.

22

Extraction of Si-cap Layer Thickness

0 1000 2000 30001016

1017

1018

1019

1020

NB = 4.0 x 1016 ( cm -3)N

appH

F

( cm

-3 )

XdHF

( A )

0 100 200 300 400 500 6001016

1017

1018

1019

1020

30 A Si-CAP

Nap

pH

F (

cm

-3 )

XdHF

( A )

Apparent doping concentration vs. distance from the Si/SiO2 interface.

oxHFSidHF CVC

VX1

)(

1)(

V

VCq

VNHFSi

appHF

)(

1

2)(

12

Unconsumed Si-cap layer thickness: 30A

23

Extraction of Threshold Voltages

-4 -2 0 2 41016

1017

1018

1019

1020

1021

VTS

= -0.8 VV

TH = 0.7 V

VTH

VTS

Nap

pHF

( cm

-3)

Gate voltage (V)

Experimental apparent doping vs. gate voltage characteristics.

1-D numerical simulation of hole charge in buried channel

(QH, SiGe) and in surface channel

(Qs, Si-cap) as a function of gate

voltage.

3 2 1 0 -1 -2 -3 -4 -50

20

40

60

80V

TS = -0.75 V

VTH

= 0.5 V

(Q H )

(Q S )

SiGe channel

Si-cap

VTS

VTHQ

S ,

Q H

(

10

11 c

m -

2 )

Gate voltage (V)

24

Effect of Ge Concentration

-4 -3 -2 -1 0 1 20.0

0.5

1.0 n+-poly gate

20% Ge 30% Ge 40% Ge

C /

C ox

Gate voltage (V)-1 -2 -3 -4

0

20

40

60

80n+-poly gate

10% Ge 20% Ge 30% Ge 40% Ge

Ho

le d

en

sity

(x1

011 cm

-2)

Gate voltage (V)

SiGe-well

Si-cap

Low frequency C-V characteristics Hole concentration in Si-cap and SiGe-well

25

Extraction of Valence Band Offset (Ev)

2

2

)/(2

1)(

1

ln2dmBBSiGe

dmB

vTox

Si

capox

FHv XqNkTN

XqN

EVCtC

q

kTE

2

2

)/(2

1)2(

lndmBBSiGe

capdmB

FHSi

THH XqNkTN

tXqN

q

kT

q

EvFTH

2where, and

where H Potential at top heterointerface

F Fermi potential

TH Potential at threshold at the top heterointerface

tcap Thickness of Si cap layer

Si Permittivity of Si

Xdm Maximum depletion layer width

VT=VTH-VTS, gate voltage window

26

Valence Band Offset: SiGe and SiGeC

Summary of experimentally measured Ev in strained Si1-xGex and

partially strain compensated Si1-x-yGexCy heterolayers.

27

Generation Lifetime in Si-based Heterolayers

Sample Doping (cm-3) g (s)

<100> CZ Si (Schwartz et al.)

5x1015 9

Control Si (this work) 5x1015 5.6

Si0.82Ge0.18 (Schwartz et al.) 3x1017 1.45

Si0.9Ge0.1 (Riley et al.) 2.5x1017 2.6

Si0.8Ge0.2 (this work) 2x1017 1.4

Si0.8Ge0.18C0.02 (Lippert et al.) 5x1017 0.12

Si0.795Ge0.2C0.005 (this work) 2x1017 1.2

Transient response of capacitance-time plot for a partially strained Si0.795Ge0.2C0.005

MOS capacitor.

28

Why high-k dielectric ?

• High leakage current• Low breakdown field• Poor reliability

Problem in conventional ultrathin SiO2 ( <2 nm):

Solution: • High-k dielectric as a gate material

29

Why ZrO2 and HfO2?

High dielectric () constant: 17-30

Thermodynamically stable on Si

High breakdown field: ~ 10-15 MV/cm

Large band gap: 5 -8 eV

Low leakage current

J. Robertson, MRS Bull. March 217 (2002)

30

Deposition conditions of ZrO2 films on SiGe/SiGeC by

RF magnetron sputtering

Substrate temperature: 350oC

Base pressure: 5x10-6 Torr

Deposition pressure: 0.2 Torr

Ar:O2: 4:1

Deposition time: 20 min

RMS roughness: ~ 6.5 nm for 1hr

~ 8.0 nm for 1.5 hr SiGe

Vg

Al

ZrO2 /HfO2

Interfacial layer

31

-2 -1 0 1 2

0.4

0.6

0.8

1.0

No

rmal

ized

cap

acit

ance

Gate voltage (V)

0

2

4

6

8

10

12

Con

duct

ance

(S

)

Cox = 1116 pF

Glue

ZrO2 ~ 8.5 nmIL ~ 3.9 nm

Si0.69Ge0.3C0.01~ 40 nm

Si epilayer

32

0 10 20 30 40 50 60 70 80

102

103

104

105

106

ZrO+

Zr+

YO+

SiGe+

Ge+

C+

Lo

g (

cou

nts

)

Depth (nm)

536 532 528 524 520

(b) O 1s

Inte

nsi

ty (

arb

. un

it)

Binding energy (eV)

Experimental Resultant Deconvoluted

O2 in ZrO

2 layer

Interfacial layer

1218 1216 1214 1212 1210

x 1

Inte

nsi

ty (

arb

. un

it)

x 4

Zr-Ge-silicate

1216 eV

1217.9 eV

Ge in SiGeC layer

Interfacial layer

Binding energy (eV)

33

0

2

4

6

8

10

12

Co

nd

uct

ance

(S

)

-3 -2 -1 0 1 2 30.0

0.5

1.0

1.5

2.0

2.5

Cap

acit

ance

(n

F)

Gate voltage (V)

ZrO2 with interfacial layer

Interfacial layer

0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.01E-10

1E-9

1E-8

1E-7

1E-6

1E-5Breakdown

ZrO2 with interfacial

layer (3.9 nm) SiO

2 (4.0 nm)

Cu

rren

t d

ensi

ty (

A/c

m2 )

Gate voltage (V)

0.0 -0.2 -0.4 -0.6 -0.8 -1.01E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

Haussa et al. (2000)

Interfacial layer

Zr-Ge-Silicate (2.0 nm) SiO

2 (2.1 nm )

Cu

rren

t d

ensi

ty (

A/c

m2 )

Gate voltage (V)

1/Ceq= 1/CZrO2+ 1/Cinterfacial layer

teq= (3.9/kIL)tIL + (3.9/khigh-k)thigh-k

ZrO2 (k) ~ 17.5

IL (k) ~ 7.0

Effective k ~ 12.2

EOT ~ 3.9 nm

0 20 40 60 80 100-0.5

-0.4

-0.3

-0.2

-0.04

-0.03

-0.02

-0.01

0.00

- 5 mA/cm2

- 10 mA/cm2

- 10 mA/cm2

- 5 mA/cm2

Interfacial layer

ZrO2 with interfacial layer

Vg (

volt

s)

Stress time (sec)

34

Ultra-thin HfO2 films on p-Si

0 5 10 15 20101

102

103

104

105

Lo

g (

cou

nts

)

0 5 10 15 20

0 5 10 15 20

Depth (nm)

(a) (b) (c)

HfSiO HfSiO HfSiO

HfO HfO HfO

Hf Hf Hf

N N

Samples IL VFB (Volts) Dit(cm-2 eV-1) EOT

(a) HfO2 on Si 6.0 -0.9 2.0 x1011 ~2.8 nm

(b) HfO2 on NH3-treated Si 9.0 -1.2 5.5 x1011 ~ 2.6 nm

(c) HfO2 on N2O-treated Si 11.0 -2.1 3.0 x 1011 ~ 2.1 nm

35

-4 -3 -2 -1 0 1 20

400

800

1200

1600

2000

HfO2 on Si

HfO2on NH

3 treated Si

HfO2 on N

2O treated Si

Cap

acit

ance

(p

F)

Gate voltage (V)

H-related trap

4 6 8 10 12 14

0

1

2

3

4 HfO

2 on Si

HfO2 on NH

3-treated Si

HfO2 on N

2O-treated Si

Ato

mic

co

nce

ntr

atio

n (

%)

Depth (nm)

Substrate temperature: 350oC

Base pressure: 5x10-6 Torr

Deposition pressure: 13.5 mTorr

Ar/N2 : 19 sccm: 7 sccm

Deposition time: 3 min

36

Conclusion

High quality strained Si1-xGex and partially strain

compensated Si1-x-yGexCy heterolayers: UHVCVD

Strained layer characterization:  Composition and thickness of group-IV alloy layers: SIMS analysis

Crystalline quality: HRXRD study  Surface roughness: AFM study

Low-temperature plasma oxidation: Preserve the strain in group-IV alloy layers

37

Extraction of material parameters for SiGe and SiGeC heterolayers: Threshold voltages of buried and surface channel, valence band offset, and carrier generation lifetime

ZrO2 and HfO2 high-k gate dielectrics Physical characterization: HRTEM, ToF-SIMS, XPS and AES measurements

Electrical characterization: C-V, G-V, I-V and gate voltage shift

38

Future scope

Annealing effect on ZrO2 and HfO2 high-k dielectrics on Si, SiGe, SiGeC and strained-Si heterolayers

Stacked gate dielectrics, NH3/HfO2 /N2O, on Si, SiGe, SiGeC and strained-Si heterolayers

39

Acknowledgments:

The author is grateful to Professor S. K. Banerjee, The University of Texas at Austin, for providing experimental support for the growth of strained Si1-xGex and Si1-x-yGexCy samples used in this study.

The author gratefully acknowledge financial support from the Creative Research Initiatives Program of the Korea Ministry of Science and Technology, South Korea