unary adaptive subtraction of joint multiple models with complex wavelet frames

1
Unary adaptive subtraction of joint multiple models with complex wavelet frames TaM0: Non-stationary, wavelet-based, adaptive multiple removal TaM1: “Complex” wavelet transform + simple one-tap (unary) filter TaM2: Redundancy selection: noise robustness and processing speed TaM3: Smooth adaptation to adaptive joint multiple model filtering S. Ventosa (1) , S. Le Roy, I. Huard, A. Pica (2) , H. Rabeson, L. Duval* (3) (1) IPGP, (2) CGGVeritas, (3) IFP Energies nouvelles Contacts: [email protected],[email protected] Motivation: Multiple model data Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Data and three multiple models, common offset plane (need for a model-based, non-stationary, adaptive multiple filtering). Complex wavelet frame decomposition Complex Morlet wavelet definition: ψ (t)= π 1/4 e 0 t e t 2 /2 0 : central frequency (1) Discretized time r , octave j , voice v : ψ v r,j [n]= 1 2 j +v/V ψ nT r 2 j b 0 2 j +v/V ,b 0 : sampling at scale zero (2) Time-scale analysis: d = d v r,j = d[n]v r,j [n] = n d[n] ψ v r,j [n] (3) Time-scale data and model trace representations Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Data and model trace Morlet wavelet scalograms. Redundancy selection 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (s) primary multiple noise sum 0 0.5 1 1.5 2 2.5 3 3.5 4 -0.1 -0.05 0 0.05 0.1 0.15 Time (s) true multiple adapted multiple Key features fast off-line parameter selection realistic synthetics varying random noise realizations SNR-based wavelet parameter selection controllable redundancy allows: simple stable synthesis dual frame resistance to field noise computational efficiency balanced Morlet wavelet frame approximately analytic sliding window processing along scales 4 6 8 10 12 14 16 5 10 15 20 10 12 14 16 18 20 Redundancy S/N (dB) Median S/N adapt (dB) 10 11 12 13 14 15 16 17 18 19 Complex wavelet domain adaptation Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Time (s) Scale 2.8 3 3.2 3.4 3.6 3.8 4 4.2 2 4 8 16 0 500 1000 1500 2000 Adapted joint and individual model trace Morlet wavelet scalograms. Unary filter estimation Windowed adaptation: complex a opt compensates local delay/amplitude mis- matches: a opt = arg min {a k }(k K ) d k a k x k 2 (4) Vector Wiener equations for complex signals: d, x m = k a k x k , x m (5) Time-scale synthesis: ˆ d[n]= r j,v ˆ d v r,j ψ v r,j [n] (6) Results: field data multiple filtering Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Shot number Time (s) 1200 1400 1600 1800 2000 2200 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Subtraction results: (top) model 3 (bottom) joint multi-model multiple removal. Some multiples better attenuated around 3s, random noises reduced. References [1] Herrmann, F. J. and D. Wang and D. J. Verschuur, 2008, Adaptive curvelet-domain primary-multiple separation: Geophysics, 73, A17–A21. [2] Donno, D., H. Chauris, and M. Noble, 2010, Curvelet-based multiple prediction: Geo- physics, 75, WB255–WB263. [3] Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction using complex-valued curvelet transforms: Geophysics, 75, V51–V60. [4] Jacques, L., L. Duval, C. Chaux, and G. Peyr ´ e, 2011, A panorama on multiscale geo- metric representations, intertwining spatial, directional and frequency selectivity: Signal Process., 91, 2699–2730. [5] Ventosa, S., H. Rabeson, P. Ricarte, and L. Duval, 2011, Complex wavelet adaptive multiple subtraction with unary filters: Proc. EAGE Conf. Tech. Exhib. [6] Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012, Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geo- physics, 77, V183–V192. SEG Annual Meeting, Las Vegas, Nevada, USA, 4-9 November 2012

Upload: laurent-duval

Post on 04-Jul-2015

134 views

Category:

Technology


2 download

DESCRIPTION

Multiple attenuation is one of the greatest challenges in seismic processing. Due to the high cross-correlation between primaries and multiples, attenuating the latter without distorting the former is a complicated problem. We propose here a joint multiple model-based adaptive subtraction, using single-sample unary filters' estimation in a complex wavelet transformed domain. The method offers more robustness to incoherent noise through redundant decomposition. It is first tested on synthetic data, then applied on real-field data, with a single-model adaptation and a combination of several multiple models. Read More: http://library.seg.org/doi/abs/10.1190/segam2012-0440.1

TRANSCRIPT

Page 1: Unary adaptive subtraction of joint multiple models with complex wavelet frames

Unary adaptive subtraction of joint multiple models with complex wavelet framesTaM0: Non-stationary, wavelet-based, adaptive multiple removalTaM1: “Complex” wavelet transform + simple one-tap (unary) filterTaM2: Redundancy selection: noise robustness and processing speedTaM3: Smooth adaptation to adaptive joint multiple model filtering

S. Ventosa(1), S. Le Roy, I. Huard, A. Pica(2), H. Rabeson, L. Duval*(3)(1)IPGP, (2)CGGVeritas, (3)IFP Energies nouvellesContacts: [email protected],[email protected]

Motivation: Multiple model dataShot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Data and three multiple models, common offset plane (need for a model-based, non-stationary, adaptive multiple filtering).

Complex wavelet frame decomposition•Complex Morlet wavelet definition:

ψ(t) = π−1/4e−iω0te−t2/2, ω0: central frequency (1)

•Discretized time r, octave j, voice v:

ψvr,j[n] =1√

2j+v/Vψ

(nT − r2jb02j+v/V

), b0: sampling at scale zero (2)

•Time-scale analysis:

d = dvr,j =⟨d[n], ψvr,j[n]

⟩=∑

n

d[n]ψvr,j[n] (3)

Time-scale data and model trace representations

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Data and model trace Morlet wavelet scalograms.

Redundancy selection

0 0.5 1 1.5 2 2.5 3 3.5 4Time (s)

primarymultiplenoisesum

0 0.5 1 1.5 2 2.5 3 3.5 4−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

true multipleadapted multiple

Key features• fast off-line parameter selection

– realistic synthetics– varying random noise realizations– SNR-based wavelet parameter selection

• controllable redundancy allows:

– simple stable synthesis dual frame– resistance to field noise– computational efficiency balanced

•Morlet wavelet frame

– approximately analytic– sliding window processing along scales

46

810

1214

16

5

10

15

2010

12

14

16

18

20

RedundancyS/N (dB)

Med

ian

S/N

adap

t (dB

)

10

11

12

13

14

15

16

17

18

19

Complex wavelet domain adaptation

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Time (s)

Sca

le

2.8 3 3.2 3.4 3.6 3.8 4 4.2

2

4

8

16

0

500

1000

1500

2000

Adapted joint and individual model trace Morlet wavelet scalograms.

Unary filter estimation•Windowed adaptation: complex aopt compensates local delay/amplitude mis-

matches:

aopt = argmin{ak}(k∈K)

∥∥∥∥∥d−∑

k

akxk

∥∥∥∥∥

2

(4)

•Vector Wiener equations for complex signals:

〈d,xm〉 =∑

k

ak 〈xk,xm〉 (5)

•Time-scale synthesis:d[n] =

r

j,v

dvr,jψvr,j[n] (6)

Results: field data multiple filtering

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Shot number

Tim

e (s

)

1200140016001800200022001.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Subtraction results: (top) model 3 (bottom) joint multi-model multiple removal.

Some multiples better attenuated around 3s, random noises reduced.

References[1] Herrmann, F. J. and D. Wang and D. J. Verschuur, 2008, Adaptive curvelet-domain

primary-multiple separation: Geophysics, 73, A17–A21.

[2] Donno, D., H. Chauris, and M. Noble, 2010, Curvelet-based multiple prediction: Geo-physics, 75, WB255–WB263.

[3] Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction usingcomplex-valued curvelet transforms: Geophysics, 75, V51–V60.

[4] Jacques, L., L. Duval, C. Chaux, and G. Peyre, 2011, A panorama on multiscale geo-metric representations, intertwining spatial, directional and frequency selectivity: SignalProcess., 91, 2699–2730.

[5] Ventosa, S., H. Rabeson, P. Ricarte, and L. Duval, 2011, Complex wavelet adaptivemultiple subtraction with unary filters: Proc. EAGE Conf. Tech. Exhib.

[6] Ventosa, S., S. Le Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, and L. Duval, 2012,Adaptive multiple subtraction with wavelet-based complex unary Wiener filters: Geo-physics, 77, V183–V192.

SEG Annual Meeting, Las Vegas, Nevada, USA, 4-9 November 2012