uncertainty quantification in computational fluid dynamics

28
Uncertainty Quan-fica-on in Computa-onal Fluid Dynamics CWI Scien*fic Mee*ng Thursday, April 4, 13.00 14.00 Room Z009 (Euler) Jeroen WiIeveen TenureTrack Scien*fic Staff Member Computa*onal Energy Systems Scien*fic Compu*ng group

Upload: ngoque

Post on 04-Jan-2017

229 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Uncertainty Quantification in Computational Fluid Dynamics

Uncertainty  Quan-fica-on  in  Computa-onal  Fluid  Dynamics  

CWI  Scien*fic  Mee*ng  Thursday,  April  4,  13.00  -­‐  14.00  Room  Z009  (Euler)  

Jeroen  WiIeveen    

Tenure-­‐Track  Scien*fic  Staff  Member    Computa*onal  Energy  Systems  Scien*fic  Compu*ng  group  

Page 2: Uncertainty Quantification in Computational Fluid Dynamics

Fluid  Dynamics  Flow  of  fluids  in  contact  with  objects  

2  

Air  over  airplane  wings   Wind  around  turbines  

Oil  in  reservoirs  and  pipes   Blood  in  veins  

Page 3: Uncertainty Quantification in Computational Fluid Dynamics

Experimental  Fluid  Dynamics  

3  Smoke  visualiza:on  around  car   Largest  wind  tunnel  at  NASA  Ames  

Tes-ng  sta-onary  objects  in  moving  air  flow  is  expensive  

First  flight  by  Wright  brothers   Wright  wind  tunnel  

Page 4: Uncertainty Quantification in Computational Fluid Dynamics

Computa-onal  Fluid  Dynamics  (CFD)  

4  

Simula-ng  fluid  flow  by  solving  equa-ons  on  computers  

Sequoia  supercomputer  at  Lawrence  Livermore  Na:onal  Laboratories  

Jet  engine  exhaust  simula:on    on  1  million  computer  processors  

Page 5: Uncertainty Quantification in Computational Fluid Dynamics

CFD  process  

5  

Real-­‐world  object   Geometrical  descrip:on  

Computer  solu:on   Spa:al  discre:za:on  

Computer  implementa-on  of  a  discre-zed  geometry  

Page 6: Uncertainty Quantification in Computational Fluid Dynamics

Navier-­‐Stokes  equa-ons  Mathema-cal  model  of  the  flow  physics  

 Physical  laws  of  classical  mechanics:  •  Conserva*on  of  mass  •  Conserva*on  of  energy  •  Conserva*on  of  momentum:  

   A  system  of  nonlinear,  *me-­‐dependent,  par*al  differen*al  equa*ons  (PDEs)   6  

:me   iner:a  terms   pressure   gravity  viscous  effects  

Page 7: Uncertainty Quantification in Computational Fluid Dynamics

Computer  algorithms  based  on  mathema-cal  methods  from  numerical  analysis:  •  Finite  difference  •  Finite  element  •  Finite  volume  

Robustness  concepts:  •  Local  Extremum  Diminishing  (LED)  •  Total  Varia*on  Diminishing  (TVD)  •  Monotonicity  Preserving  (MP)  •  Essen*ally  Non-­‐Oscillatory  (ENO)  •  Subcell  Resolu*on  (SR)  

Robust  discre-za-ons  for  discon-nuous  solu-ons  

7  

Transonic  shock  wave  at  a  jet  fighter  causes  water  vapor  condensa:on  

Example  of    temporal  discre:za:on  

Page 8: Uncertainty Quantification in Computational Fluid Dynamics

8  

Graphical  user  interface    of  commercial  soPware  

Page 9: Uncertainty Quantification in Computational Fluid Dynamics

9  

Specifying  boundary  condi-ons  

Page 10: Uncertainty Quantification in Computational Fluid Dynamics

Input  parameters  not  exactly  known  Sources  of  uncertainty:  •  Atmospheric  fluctua*ng  wind  •  Manufacturing  tolerances  on  the  geometry  •  Wear  and  tear  of  surface  roughness  •  Insufficient  measurements    Uncertain  boundary  and  ini-al  condi-ons,  and  model  parameters:  •  Fluid  velocity  u,  air  density  ρ,  ambient  pressure  p  •  viscosity  μ  

10  

Page 11: Uncertainty Quantification in Computational Fluid Dynamics

Wind  turbine  performance  degenerates  faster  than  expected  

11  

Surface  roughness  wear  and  tear  of  wind  turbine  blades:  •  Ice  forma*on  •  Sand  blas*ng  •  Insect  contamina*on  •  Bird  and  bat  impact      

Insect  contamina:on  

Ice  forma:on  

Page 12: Uncertainty Quantification in Computational Fluid Dynamics

Descrip-on  of  uncertainty  

12  

Membership  func:on   Cumula:ve  distribu:on  Interval  

Fuzzy  logic  

 

Probability  theory  

 

Interval  analysis  

Increasingly  quan*ta*ve  

 

Page 13: Uncertainty Quantification in Computational Fluid Dynamics

Uncertainty  quan-fica-on:    performing  mul-ple  simula-ons  

Conven-onal  CFD  simula-ons:        Uncertainty  quan-fica-on  in  CFD:        

13  

Computer  code  

Numerical  solu*on  

•  Model  parameters  •  Ini*al  condi*ons  •  Boundary  condi*ons  

Computer  code  

Input  probability    distribu*ons  

Exis*ng  black-­‐box  CFD  simula*on  

socware  

Output  quan*ty  

 of  interest  

Pre-­‐processing   Post-­‐processing  

Page 14: Uncertainty Quantification in Computational Fluid Dynamics

Discre-za-on  of  spa-al  and  stochas-c  dimensions  

14  spa*al  

coordinates  stochas*c  dimensions  

output  of  interest  

spa-al  discre-za-on   stochas-c  discre-za-on  

Page 15: Uncertainty Quantification in Computational Fluid Dynamics

Monte  Carlo  simula-on    too  expensive  for  CFD  

Monte  Carlo  simula-on:  •  Pre-­‐processing:        Random  sampling  points  •  Uncertainty  propaga*on:  Many  CFD  simula*ons  •  Post-­‐processing:        Ensemble  sta*s*cs  

15  Random  sampling  ξ1  

ξ2  

Page 16: Uncertainty Quantification in Computational Fluid Dynamics

Reduce  number  of    expensive  CFD  simula-ons  

Stochas-c  Colloca-on  with  sparse  grids:  •  Pre-­‐processing:        Choice  of  quadrature  points  •  Uncertainty  propaga*on:    Small  number  of  CFD  simula*ons  •  Post-­‐processing:        Global  polynomial  interpola*on  

16  Determinis:c  sampling   Interpola:on  overshoots  at  discon:nui:es  

Page 17: Uncertainty Quantification in Computational Fluid Dynamics

Simplex  Stochas-c  Colloca-on:  •  Pre-­‐processing:        Minimal  number  of  sampling  points    •  Uncertainty  propaga*on:    Solu*on-­‐adap*ve  refinement    •  Post-­‐processing:        Robust  piecewise  interpola*on    Robustness  concepts:  •  Local  Extremum  Diminishing  (LED)  •  Total  Varia*on  Diminishing  (TVD)  •  Monotonicity  Preserving  (MP)  •  Essen*ally  Non-­‐Oscillatory  (ENO)  •  Subcell  Resolu*on  (SR)  

Same  robustness  as  in    spa-al  discre-za-on  

17  Robust  adap:ve  approxima:on  

Page 18: Uncertainty Quantification in Computational Fluid Dynamics

Computa-onal  fluid    dynamics  example  

Transonic  flow  over  wing  cross-­‐sec-on:  •  Mach  number  0.8  •  Random  flow  angle  •  Beta  distribu*on  on  [1o,3o]  

18  

Sta:c  fluid  pressure  for  2o  

Page 19: Uncertainty Quantification in Computational Fluid Dynamics

Shock  wave  loca-on  sensi-ve    for  uncertain  flow  angle    

Uncertainty  quan-fica-on  findings:  •  Mean  shock  wave  smeared  •  Local  maximum  in  standard  devia*on  

19  

Mean  pressure   Standard  devia:on  

Page 20: Uncertainty Quantification in Computational Fluid Dynamics

Combus-on  simula-ons  with  parameter  and  model  uncertain-es  Supersonic  combus-on  engine  for  hypersonic  flight:  •  Parameter  uncertainty:    Uncertainty  boundary  condi*ons  •  Model  uncertainty:      Turbulence  model  uncertainty  •  Numerical  error:        Spa*al  discre*za*on  

20  

Hyshot  II  scramjet  flight  experiment  

Page 21: Uncertainty Quantification in Computational Fluid Dynamics

Uncertain  flow  angle  and  flight  al-tude  boundary  condi-ons  

21  

mean  pressure  

standard  devia:on  

Page 22: Uncertainty Quantification in Computational Fluid Dynamics

Model  uncertainty  dominates  turbulent  flow  simula-ons  

By  an  order  of  magnitude  es-mated  using  two  different  turbulence  models  

22  

Parameter  uncertainty  and  numerical  error  

Wall  pressure  simula:ons,  measurements,  and  uncertainty  bars  

Parameter  and  model  uncertainty  

Page 23: Uncertainty Quantification in Computational Fluid Dynamics

23  

50kW  AOC  15/50  wind  turbine   Acqua  Spruzza  site  in  Italy  

Wind  turbine  robust  design  op-miza-on  under  uncertainty  

Page 24: Uncertainty Quantification in Computational Fluid Dynamics

Uncertain  wind  condi-ons  given    by  measured  histograms  

Uncertain  condi-ons:  •  Wind  condi*ons  •  Manufacturing  tolerances  •  Insect  contamina*on  

24  

Input  probability  density  func*ons  for  the  uncertain  wind  condi*ons  

Magnitude   Turbulence  intensity   Direc*on  

Page 25: Uncertainty Quantification in Computational Fluid Dynamics

Determinis-c  op-miza-on:    Significant  reduc-on  in  noise  

25  

~8  dB  

Determinis*c  rank-­‐one  Pareto  front  op*miza*on  using  gene*c  algorithm  

Page 26: Uncertainty Quantification in Computational Fluid Dynamics

Op-miza-on  under  uncertainty:  Peak  probability  at  maximum  output  

26  

Density  of  power  coefficient  for  op*mum  and  trade-­‐off    

Page 27: Uncertainty Quantification in Computational Fluid Dynamics

Conclusions  Computa-onal  Fluid  Dynamics:  •  Numerically  solving  the  Navier-­‐Stokes  equa*ons  •  Robust  numerical  methods  for  discon*nui*es    Uncertainty  Quan-fica-on:  •  Robust  discre*za*on  methods  in  probability  space  •  Parameter  uncertainty,  model  uncertainty,  numerical  error  •  Robust  performance  by  op*miza*on  under  uncertainty  

27  

Page 28: Uncertainty Quantification in Computational Fluid Dynamics

Ques-ons?  Thank  you  

                   

hIp://www.jeroenwiIeveen.com