unconformity surfaces in pelagic carbonate...

15
Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295. UNCONFORMITY SURFACES IN PELAGIC CARBONATE ENVIRONMENTS: A CASE FROM THE MIDDLE BATHONIAN OF THE BETIC CORDILLERA, SE SPAIN Luis M. NIETO 1 , Francisco J. RODRÍGUEZ-TOVAR 2 , José M. MOLINA 1 , Matías REOLID 1 & Pedro A. RUIZ-ORTIZ 1 1 Departamento de Geología and CEACTierra, Universidad de Jaén, 23071 Jaén, Spain; e-mails: [email protected], [email protected], [email protected], [email protected] 2 Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18002 Granada, Spain; e-mail: [email protected] Nieto, L.M., Rodríguez-Tovar, F.J., Molina, J.M., Reolid, M. & Ruiz-Ortiz, P.A., 2014. Unconformity surfaces in pelagic carbonate environments: A case from the Middle Bathonian of the Betic Cordillera, SE Spain. Annales Societatis Geologorum Poloniae, 84: 281–295. Abstract: Integrative studies of sedimentary and palaeontological topics for unconformity surfaces are useful in basin analysis. A middle Bathonian unconformity surface in the Ammonitico Rosso facies cropping out in the La Mola Unit (Subbetic Domain, Betic External Zone) was studied by integrating ichnological, palaeotectonic, and sedimentological analyses to decipher sea-level, tectonic, and palaeogeographic conditions during its develop- ment. The trace-fossil assemblage mainly consists of the Glossifungites (Thalassinoides, Arenicolites, and Gastro- chaenolites) and Trypanites ichnofacies elements. Probable Ophiomorpha represents previous softground stages, Thalassinoides and Arenicolites were formed in firmground, Gastrochaenolites reflects an evolved firmground or early hardground, and Trypanites can be attributed to an incipient hardground. The degree of firmness, relative sea-level position, and continuity of deposition were related. The softground stage corresponds to a fall in relative sea level and continued deposition. The firmground (semi-consolidated substrate) probably reflects an extremely low sea level characterized by non-deposition, whereas the incipient hardground stage indicates an initial phase of relative sea-level rise, with an increase in marine current energy. The presence of two neptunian dyke systems reflects significant tectonic activity related to the transtensional deformation that affected the South Iberian Palaeomargin. Lateral variations in sedimentological and ichnological features recorded at similar discontinuity surfaces in nearby areas were considered and related to differences in bottom topography, with associated changes in sedimentation, and to the variable duration of the hiatus. Key words: Unconformity, pelagic swell, softground, firmground, hardground, Middle–Late Jurassic, Betic External Zone. Manuscript received 4 July 2014, accepted 5 November 2014 INTRODUCTION A comparison between Jurassic pelagic swells, mainly characterized by the Ammonitico Rosso facies (red, nodular limestones or nodular, marly limestones, both with and without ammonites), and current examples is complicated, mainly owing to changing palaeoceanographic conditions between the Jurassic Tethys and Recent marine pelagic en- vironments (e.g., Jenkyns, 1974; Mullins et al., 1980; Bernoulli and Jenkyns, 2009; among others). A recent com- parison between the pelagic swells in the External and Inter- nal Subbetic zones (Betic Cordillera, Southeast Spain) and the Hancock Seamount (Hawaiian Ridge) and the Fie- berling Guyot (at 32° N, off the U.S. Pacific coast) reveals that a delicate balance between sediment deposition and winnowing determined the sediment accumulation rate in these settings (Coimbra et al., 2009). This agrees with the general genetic model proposed for the Ammonitico Rosso facies (Jenkyns, 1974; Seyfried, 1978; Martire, 1992, 1996; Bertok and Martire, 2009, among others), which considers four main factors: (a) bottom currents, (b) early cementa- tion, (c) bioturbation, and (d) gravitational processes. Ammonitico Rosso facies are common in Mediterra- nean Alpine chains and typified the Middle and Upper Ju- rassic of the External Subbetic (Seyfried, 1978; Molina, 1987; Rey, 1993; Nieto, 1997; Coimbra et al., 2009), as in other pelagic Tethyan domains (e.g., Elmi, 1981; Martire, 1992; Santantonio, 1993; Martire and Pavia, 2004; Ba- silone, 2009; Bertok and Martire, 2009). In the Betic Cordil- lera, these facies form the Upper Ammonitico Rosso For-

Upload: others

Post on 27-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295.

UNCONFORMITY SURFACES IN PELAGIC CARBONATEENVIRONMENTS: A CASE FROM THE MIDDLE BATHONIAN

OF THE BETIC CORDILLERA, SE SPAIN

Luis M. NIETO1, Francisco J. RODRÍGUEZ-TOVAR2, José M. MOLINA1, Matías REOLID1

& Pedro A. RUIZ-ORTIZ1

1Departamento de Geología and CEACTierra, Universidad de Jaén, 23071 Jaén, Spain; e-mails: [email protected],[email protected], [email protected], [email protected]

2 Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18002 Granada, Spain;e-mail: [email protected]

Nieto, L.M., Rodríguez-Tovar, F.J., Molina, J.M., Reolid, M. & Ruiz-Ortiz, P.A., 2014. Unconformity surfaces inpelagic carbonate environments: A case from the Middle Bathonian of the Betic Cordillera, SE Spain. AnnalesSocietatis Geologorum Poloniae, 84: 281–295.

Abstract: Integrative studies of sedimentary and palaeontological topics for unconformity surfaces are useful inbasin analysis. A middle Bathonian unconformity surface in the Ammonitico Rosso facies cropping out in the LaMola Unit (Subbetic Domain, Betic External Zone) was studied by integrating ichnological, palaeotectonic, andsedimentological analyses to decipher sea-level, tectonic, and palaeogeographic conditions during its develop-ment. The trace-fossil assemblage mainly consists of the Glossifungites (Thalassinoides, Arenicolites, and Gastro- chaenolites) and Trypanites ichnofacies elements. Probable Ophiomorpha represents previous softground stages,Thalassinoides and Arenicolites were formed in firmground, Gastrochaenolites reflects an evolved firmground orearly hardground, and Trypanites can be attributed to an incipient hardground. The degree of firmness, relativesea-level position, and continuity of deposition were related. The softground stage corresponds to a fall in relativesea level and continued deposition. The firmground (semi-consolidated substrate) probably reflects an extremelylow sea level characterized by non-deposition, whereas the incipient hardground stage indicates an initial phase ofrelative sea-level rise, with an increase in marine current energy. The presence of two neptunian dyke systemsreflects significant tectonic activity related to the transtensional deformation that affected the South IberianPalaeomargin. Lateral variations in sedimentological and ichnological features recorded at similar discontinuitysurfaces in nearby areas were considered and related to differences in bottom topography, with associated changes in sedimentation, and to the variable duration of the hiatus.

Key words: Unconformity, pelagic swell, softground, firmground, hardground, Middle–Late Jurassic, BeticExternal Zone.

Manuscript received 4 July 2014, accepted 5 November 2014

IN TRO DUC TION

A com par i son be tween Ju ras sic pe lagic swells, mainlychar ac ter ized by the Ammonitico Rosso fa cies (red, nod u lar lime stones or nod u lar, marly lime stones, both with andwith out ammonites), and cur rent ex am ples is com pli cated,mainly ow ing to chang ing palaeoceanographic con di tionsbe tween the Ju ras sic Tethys and Re cent ma rine pe lagic en -vi ron ments (e.g., Jenkyns, 1974; Mul lins et al., 1980;Bernoulli and Jenkyns, 2009; among oth ers). A re cent com -par i son be tween the pe lagic swells in the Ex ter nal and In ter -nal Subbetic zones (Betic Cor dil lera, South east Spain) andthe Han cock Seamount (Ha wai ian Ridge) and the Fie-berling Guyot (at 32° N, off the U.S. Pa cific coast) re vealsthat a del i cate bal ance be tween sed i ment de po si tion andwin now ing de ter mined the sed i ment ac cu mu la tion rate in

these set tings (Coimbra et al., 2009). This agrees with thegen eral ge netic model pro posed for the Ammonitico Rossofa cies (Jenkyns, 1974; Seyfried, 1978; Martire, 1992, 1996;Bertok and Martire, 2009, among oth ers), which con sid ersfour main fac tors: (a) bot tom cur rents, (b) early ce men ta -tion, (c) bioturbation, and (d) grav i ta tional pro cesses.

Ammonitico Rosso fa cies are com mon in Med i ter ra -nean Al pine chains and typ i fied the Mid dle and Up per Ju -ras sic of the Ex ter nal Subbetic (Seyfried, 1978; Molina,1987; Rey, 1993; Nieto, 1997; Coimbra et al., 2009), as inother pe lagic Tethyan do mains (e.g., Elmi, 1981; Martire,1992; Santantonio, 1993; Martire and Pavia, 2004; Ba-silone, 2009; Bertok and Martire, 2009). In the Betic Cor dil -lera, these fa cies form the Up per Ammonitico Rosso For -

Page 2: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

ma tion (Molina, 1987), dated as Bajocian–Lower Berria-sian (Vera, 2001). A typ i cal fea ture of these fa cies is theirlow sed i men ta tion rate (ref er ences above). In the Aus trianAlps, Jenkyns (1986) es ti mated sed i men ta tion rates be -tween 0.5 and 1.5 mm/kyr and in the Apennines, sed i men ta -tion rates be tween <1 and 6.5 mm/kyr. In the Subbetic Do -main, Vera (1989) cal cu lated sed i men ta tion rates be tween 1 and 5 mm/kyr, whereas Nieto (1997) de duced val ues rang -ing from 1 to 2 mm/kyr for the east ern Ex ter nal SubbeticDo main. In the case of the Oxfordian con densed de pos its inthe neigh bour ing Prebetic Do main, Rodríguez-Tovar et al.(2010) in ter preted a sed i men ta tion rate of 1.5–1.6 mm/kyr.These low sed i men ta tion rates fa voured synsedimentary ce -men ta tion and the de vel op ment of firmgrounds and hard-grounds (Tucker and Wright, 1990; Coimbra et al., 2009)as so ci ated with very long hi a tuses, in the or der of mil lionsof years, but with out marked fa cies con trasts and/or an gu larun con formi ties that might in di cate sig nif i cant tec toni callydriven en vi ron men tal changes. Fre quently, these hi a tusesare as so ci ated with a sin gle dis con ti nu ity sur face that splitslat er ally into sev eral mi nor dis con ti nu ities, sep a rated bycon densed lev els.

Ammonitico Rosso fa cies are usu ally as so ci ated with are cord of di verse omis sion sur faces (Nieto et al., 2012 andref er ences herein). In the Ex ter nal Subbetic Do main, dif fer -ent au thors have re ported un con formi ties in the Ju ras sic re -cord and in the Up per Ammonitico Rosso For ma tion (Mo-lina, 1987; García-Hernández et al., 1989; Ruiz-Ortiz et al.,1997; O’Dogherty et al., 2000). Re cently, Reolid et al.(2010) and Nieto et al. (2012) have char ac ter ized fiveuncon for mity sur faces within this for ma tion in sev eral tecto-nic units (the Quípar, Lúgar-Corque, Cantón, Crevillente,and Reclot units) lo cated in the Lower–Mid dle Bathonian(Hg1), the Mid dle–Up per Bathonian (Hg2), the Lower– Mid -dle Callovian (Hg3), the Mid dle–Up per Callovian (Hg4), and the Callovian–Oxfordian (Hg5). In some out crops, these au -thors de fine a strati graphic break as Mid dle Bathonian–Mid -dle Oxfordian, in ter preted as the su per po si tion of the Hg1 toHg5 un con formi ties.

The aim of this pa per is to im prove the in ter pre ta tion ofun con formity sur faces de vel oped on car bon ate pe lagicswells on the ba sis of the in te gra tion of ichnological, pala-eotectonic (nep tu nian dykes), and sedimentological (fa ciesand microfacies) anal y sis. An un con formity sur face in LaMola Unit out crops (east ern Subbetic Do main) was stud iedfor this pur pose. The best out crop of this un con formity sur -face is lo cated in the north west faulted limb of the anticline,made up of Ju ras sic rocks (Fig. 1). The char ac ter iza tion andevo lu tion of sub strate firm ness, from softground to firm-ground and then hardground con di tions are of ma jor in ter est for the in ter pre ta tion of sed i men tary evo lu tion, on the ba sisof their re la tion ship with sea-level con di tions (Christ et al.,2012; Nieto et al., 2012). The con clu sions could be ap pliedto other West ern Tethys do mains where the sed i men ta tionof Ammonitico Rosso fa cies was im por tant dur ing the Ju -ras sic and un con formity sur faces were abun dant (Martire,1992, 1996; Bertok and Martire, 2009; Basilone, 2009;among oth ers).

SED I MEN TARY CON TEXT

La Mola Unit lies in the east ern most Subbetic Do main(Nieto, 1997) (Prov ince of Alicante, south ern Spain;Fig. 1A, B). From a tec tonic point of view, it can be de finedas a Ju ras sic tec tonic win dow sur rounded by Tri as sic rocks(Fig. 1B). The Ju ras sic suc ces sion (Fig. 1C) shows strati -graphic fea tures typ i cal of the Ex ter nal Subbetic and of theIn ter me di ate Do main, which in di cates that this unit had apalaeogeographic lo ca tion in the tran si tion be tween the Ex -ter nal Subbetic Do main and the In ter me di ate Do main(Fig. 2). The Ex ter nal Subbetic Do main has been de fined asa row of shal low, pe lagic swells char ac ter ized by Mid -dle–Up per Ju ras sic Ammonitico Rosso fa cies (e.g., Vera etal., 1988; Molina and Ruiz-Ortiz, 1993; Vera, 2001). TheIn ter me di ate Do main, north of the Ex ter nal Subbetic Do -main, was a pe lagic trough where cal car e ous turbidites were de pos ited dur ing the Up per Ju ras sic (Ruiz-Ortiz, 1983). Ac -cord ing to the pro posed model for the South Ibe rianPalaeomargin (Vera, 2001), the tran si tion be tween the twodo mains is made up of sev eral half-graben struc tures ar -ranged in a se ries of steps. These struc tures were con trolledby listric faults. Lat eral fa cies changes be tweenAmmonitico Rosso fa cies and cal car e ous turbidites are ob -served there.

In the La Mola Unit, the low er most Ju ras sic stratigra-phic for ma tion is the Gavilán (Fig. 1C), dated as Hettan-gian–Lower Pliensbachian. This for ma tion cor re sponds toshal low car bon ate-plat form fa cies, which crop out in the In -ter me di ate and Ex ter nal Subbetic Do mains (Molina, 1987;Nieto, 1997; Ruiz-Ortiz et al., 2004). The over ly ing BaÔosFor ma tion (Mid dle Toarcian–Aalenian) char ac ter izes theIn ter me di ate Do main (Fig. 1C) and en com passes a lowermem ber of marlstones and marly lime stones and an up permem ber of thin-bed ded dolostones. These fa cies rep re senthemipelagic sed i ments (Ruiz-Ortiz, 1980). The dolostonesde vel oped through sec ond ary dolomitization pro cesses(Nieto, 1997).

The Mid dle–Up per Ju ras sic Up per Ammonitico RossoFor ma tion (UAR For ma tion) is the most typ i cal for ma tionof the Ex ter nal Subbetic Do main (Figs 1C, 3). This unitcom prises two mem bers. The lower mem ber is 10 m thickand de void of ammonites and macrofossils (Fig. 3). It hasbeen dated as Bajocian–Lower Bathonian on the ba sis ofcor re la tions with the near est tec tonic units (Nieto, 1997).Ac cord ing to the ter mi nol ogy of Martire (1996), this mem -ber is made up of red, bioturbated, pseudonodular marly-lime stones with in ter ca lated nod u lar or pseudonodularlime stones with lo cal par al lel lam i na tion (Fig. 3). All theselithologies are wackestone with “fil a ments” (F1 fa cies inTa ble 1). This mem ber ends with a 40-cm-thick lime stonebed with F2 fa cies (in Ta ble 1).

The up per mem ber is 5 m thick and from base to topcon sists of thin-bed ded lime stones, marly lime stones, rednod u lar marly lime stones, a thick lime stone ho ri zon andpseudonodular lime stones. All these lithologies cor re spondto wackestone to packstone of bioclasts (F3 fa cies in Fig u -re 3 and Ta ble 1). This mem ber has been dated as Up per

282 L. M. NIETO ET AL.

Page 3: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 283

Fig. 1. Geo graphic and geo logic fea tures of study area. A. Lo ca tion of La Mola Hill. B. Geo log i cal sketch map of La Mola Unit.C. Com pound strati graphic sec tion of Ju ras sic suc ces sion of La Mola Unit.

Page 4: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Oxfordian on the ba sis of ammonites (Nieto, 1997). In thelower and mid dle parts of the mem ber (Figs 1C, 3), the pres -ence of Sowerbyceras tortisulcatum and Ochetoceras sp. al -lows as sig na tion to the Bifurcatus Zone (first biozone of the Up per Oxfordian, af ter Ogg, 2004, Fig. 4). In the up per partof this mem ber, Idoceras planula, Taramelliceras sp., andMesosimoceras sp. iden tify the Planula Zone, which is thelast biozone of the Up per Oxfordian biostratigraphy, af terOgg (2004) (Fig. 4). The bound ary be tween the lower andup per mem bers of the UAR For ma tion is a sur face withtrace fos sils and nep tu nian dykes that rep re sents the Mid dleBathonian–Mid dle Oxfordian un con formity.

The up per most Ju ras sic for ma tion in the La Mola Unit isthe Toril For ma tion (Kimmeridgian–Lower Berriasian, Nieto,1997), which is made up of cal car e ous turbidites and peb blymudstones. This is the most rep re sen ta tive for ma tion of the In -ter me di ate Do main (Ruiz-Ortiz, 1980); it cor re sponds to anapron de pos ited on the slope of an Ex ter nal Subbetic swell(Nieto, 1997). The Villares For ma tion (Fig. 1C) is the firststrati graphic unit of the Cre ta ceous, made up of al ter nat ingmarls and marly lime stones with sev eral sand stone in ter ca la -tions, es pe cially at the bot tom of the for ma tion.

METH ODS

Dif fer ent meth ods were ap plied to ana lyse the fa cies,nep tu nian dykes, and trace fos sils in or der to char ac ter izethe Mid dle Bathonian–Mid dle Oxfordian un con formity inthe La Mola Unit.

The geo log i cal map (scale 1:50,000) 871 Elda (IGME,1978) was re viewed and mod i fied (Fig. 1B). Field work wascar ried out to log two crit i cal sec tions of the tec tonic unitand 80 rock sam ples were col lected for thin-sec tion study to com plete field fa cies anal y sis of the Ju ras sic for ma tions.Twenty sam ples were taken at the un con formity sur face toana lyse the (mi cro)fa cies and the tex ture of the ma te ri alsform ing the nep tu nian dykes. Macrofauna (ammonites) aregen er ally scarce in all the Ju ras sic for ma tions of the La

284 L. M. NIETO ET AL.

Fig. 2. Palaeogeographic re con struc tion of the South Ibe rianPalaeomargin. A. Palaeogeographic map of the South Ibe rianPalaeomargin for the Late Kimmeridgian (sim pli fied from Vera,2001). B. Palaeogeographic sec tion of the South Ibe rianPalaeomargin with lo ca tion of the La Mola Unit (slightly mod i fied from Vera, 2001).

Fig. 3. De tailed strati graphic sec tion of the Up per AmmoniticoRosso For ma tion (UAR Fm) in the La Mola Unit.

Page 5: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Mola Unit. How ever, around 12 spec i mens were col lectedto date the up per mem ber of the UAR For ma tion. Otherstrati graphic units were dated by fa cies cor re la tion with thenear est tec tonic unit (Reclot Unit). The biozonation used isthat es tab lished by dif fer ent au thors for the Subbetic, cor re -lated with that pro posed by Ogg (2004) for the Sub-Med i -ter ra nean Do main (Fig. 4).

Only nep tu nian dykes at right an gles to bed ding (andthere fore orig i nally subvertical) were con sid ered. The orig i -nal strike of the dykes was re corded at the sur face af ter re -stor ing the un con formity sur face to the hor i zon tal (i.e., af ter cor rect ing for tilt ing). The ro ta tion of the tec tonic unit dur -ing the Al pine Orog eny was not con sid ered ow ing to the ab -sence of palaeomagnetic data from the Ex ter nal Subbeticunits in this area.

Ichnological anal y sis of the un con formity sur face in -volved de tailed out crop ob ser va tions, in clud ing quan ti ta tive and qual i ta tive fea tures, such as ori en ta tion, shape, length,and di am e ter of in di vid ual bur rows, branch ing an gles, bur -row walls, as well as den sity, dis tri bu tion, and cross-cut tingre la tion ships. Ichnofossil sam ples were taken for petrogra-phic stud ies, es pe cially in thin sec tion to ana lyse bur rowtexture (mar gins and infill). More data about ichnologicalanal y sis were dis cussed by Rodríguez-Tovar and Nieto(2013).

SEDIMENTOLOGICALAND ICHNOLOGICAL FEA TURES

OF THE MID DLE BATHONIAN–MID DLEOXFORDIAN UN CON FORMITY

SUR FACE

The un con formity sur face oc curs at the top of a 40-cm-thick highly lithified lime stone bed, com pris ing packstonewith dis or ga nized “fil a ments” (Bositra buchi) (F2 fa cies,Ta ble 1; Fig. 5A), lo cated in the up per most part of the lower mem ber of the UAR For ma tion. This lime stone bed lo callydis plays a pseudonodular tex ture ac cord ing to the ter mi nol -ogy of Martire (1996). The main fea ture of this tex ture is the tran si tional bound aries be tween the nod ules and the sur -round ing ma trix. The up per mem ber of the UAR For ma tionover ly ing the un con formity sur face (Figs 1C, 3) has abun -dant ammonites (Figs 3, 5B). The tex tures are wackestoneto packstone with dif fer ent bioclasts and some Globulige-rina tests (F3 fa cies, Ta ble 1).

The un con formity sur face has a flat mor phol ogy anddoes not show ev i dence of min er al iza tion (crusts or im preg -na tions). The sur face is char ac ter ized by the ab sence of ma-crofossils and by rel a tively abun dant trace fos sils. Ac cord -ing to the geo chron ol ogy pro posed by Ogg (2004), the hi a -tus re lated to the strati graphic break had a du ra tion of9.2 Ma (Fig. 6).

Nep tu nian dykes

Two types of nep tu nian dykes with straight, sharp rimswere rec og nized. The first type in cludes thin dykes, with amean dis tance of 5 mm be tween the mar gins and an infill ofred micrite (mudstone). Some dykes have dog tooth whitesparite that de vel oped on the mar gins and grew into the

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 285

Ta ble 1

Main fea tures of fa cies re corded in the lower and up per mem ber of the Up per Ammonitico Rosso For ma tion in the La Mola Unit

No Facies Allochems Sedimentary structures Member

F1 Wackestones of “filaments”“Filaments” (Bositra buchi), peloids, spicules,foraminifera (Globochaete sp., Valvulina sp.,

Lenticulina sp.)

Burrows infilled by peloids, parallellamination

Lower

F2 Packstones of “filaments”“Filaments” (Bositra buchi), aptychi, sponge

spicules, gastropods, ammonite embryos, radiolaria,foraminifera (Dimorphina sp., Lenticulina sp.)

Disorganized “filaments”Lower (40 cm thick

limestone bed)

F3Wackestones to packstones

of bioclastGlobuligerina sp., gastropods, ammonite embryos,

sponge spicules, aptychiBurrows infilled by peloids Upper

Fig. 4. Cor re la tion be tween the biozonation pro posed for theEx ter nal Subbetic Zone by dif fer ent Span ish au thors and that pro -posed by Ogg (2004) for the Sub-Med i ter ra nean do main. Geo -chron ol ogy ac cord ing to the same au thor. L – lower, M – mid dle,U – up per.

Page 6: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

dyke cen tre; red micrite fills the rest of the dyke (Fig. 7A,B). The sec ond type of dyke is wider nep tu nian dykes, witharound 10–40 mm be tween the mar gins. They are filled by a packstone com posed of “fil a ments” (Bositra buchi) withpeloids, radiolaria, cri noids, foraminifera (Globuligerina),and other bioclasts (Fig. 7C, D), sim i lar to the F2 fa cies.

Af ter re stor ing the un con formity sur face to the hor i zon -tal, two main nep tu nian dyke strikes were re corded: N–Sand N140–150 E (Fig. 7E). The lat ter cut the N–S dykes and some branched trace fos sils. The an gle be tween the twonep tu nian dyke sys tems is about 35°.

Trace-fos sil com po si tion

Ichnological anal y sis of the sur face by Rodríguez-To-var and Nieto (2013) was mainly based on the mor pho log i -cal fea tures of the trace fos sils. De spite the poor pres er va -tion of trace fos sils on the sur face due to diagenetic ef fects(which makes ichnotaxonomic de ter mi na tion dif fi cult), sev -eral ichnogenera were iden ti fied (see Rodríguez-Tovar andNieto, 2013, for a de tailed char ac ter iza tion of the ichno-taxa). These ichnogenera be long to two well-dif fer en ti ated

mor pho log i cal groups: branched and cir cu lar struc tures. Ta -ble 2 shows the size of each of these mor pho log i cal groups,ac cord ing to Rodríguez-Tovar and Nieto (2013).

The branched struc tures are char ac ter ized by poorlypre served T- and Y-shaped, tu bu lar hor i zon tal forms, withonly oc ca sional net works. Iso lated, sim ple struc tures areprob a bly the seg ments of branched forms. Two ichnogenera have been dif fer en ti ated in this group (Rodríguez-Tovarand Nieto, 2013): (a) Ophiomorpha, with ir reg u lar mar gins, a ferruginous halo be tween the bur row and the sur round ingsed i ment (Fig. 8A, B), and a sed i ment infill of sim i lar com -po si tion to the host ma te rial (Fig. 8C, D); this ichnofossilhas pel let-lined walls to re in force bur rows. (b) Thalassi-noides, with Y- to T-shaped branched struc tures, sharp mar -gins, and nei ther a ferruginous halo nor in fill ing.

The cir cu lar struc tures have been ob served as paired oras in di vid ual holes (Fig. 8E, F), and as signed to Arenicoli-tes, Gastrochaenolites, and Trypanites. Paired struc tureschar ac ter ized by sharp, cir cu lar open ings and the ab sence of spreite be tween the pairs of holes are prob a bly Arenicolites(Fig. 8E, F). In in di vid ual holes, the ab sence of ver ti calcross-sec tions pre cludes the ob ser va tion of clavate or tearsdrop-like forms, but the lo cal pres ence of a cal car e ous lin -ing of the holes, ar ranged as paired or sim ple ap er tures, al -ways with in di vid ual holes touch ing one an other, al lowstheir as sig na tion to Gastrochaenolites (Fig. 8A). Sim ple,nar row cir cu lar struc tures with sharp bor ing mar gins and no co her ent, cal car e ous lin ing were as signed to the bor ing Try-panites (Fig. 8E).

Lo cally, Thalassinoides is cross-cut by both nep tu niandykes and cir cu lar struc tures (Fig. 7A, B), prob a bly Gas tro- chaenolites. Arenicolites is also cross-cut by nep tu niandykes.

IN TER PRE TA TION

Evo lu tion of the sub strate con sis tencyof the un con formity sur face

The in te gra tion of sedimentological and ichnologicalfea tures per mits the in ter pre ta tion of the sur face evo lu tion.One of the most im por tant con trol ling fac tors of the tracefos sils at this sur face is sub strate con sis tency, with clear dif -fer ences as so ci ated with each ichnotaxa.

Ophiomorpha is a prod uct of bur row ing in sands; thepel let lin ing re in forces walls and aids in sta bi li za tion (Shinn,1968; Frey et al., 1978). The ichnofossils Ophiomorphanodosa are re corded in softgrounds prior to the de vel op mentof firmgrounds (e.g., MacEachern et al., 1992). Un like sand -stone en vi ron ments, in car bon ates the lithification pro cess isquick, so the soft-sub strate stage is usu ally brief and firm-ground con di tions are achieved rap idly. There fore, Ophio-morpha prob a bly de vel oped mainly in the fi nal stages ofsoftground con di tions (Fig. 9A).

Thalassinoides is found in a wide va ri ety of sub stratesfrom soft- to hardgrounds (Fig. 9A, B, C and D), with vari a -tions in bur row ge om e try ac cord ing to firm ness, and is com -mon dur ing the early and mid dle stages of hardground de -vel op ment (Myrow, 1995). Thalassinoides is one of themost com mon ichnotaxa in the Glossifungites ichnofacies,

286 L. M. NIETO ET AL.

Fig. 5. Some ex am ples of microfacies. A. Packstone of “fil a -ments” (F2 fa cies, Ta ble 1) of the lime stone level (up per most bedof the lower mem ber of the UAR For ma tion), at the top of whichthe strati graphic break stud ied is lo cated. B. Wackestone topackstone of bioclasts (F3 fa cies, Ta ble 1) in the lower part of theup per mem ber of the UAR For ma tion.

Page 7: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

which de vel oped in sta ble, co he sive sub strates (firm-grounds), unlithified, es pe cially semi-con sol i dated car bon -ate firmgrounds (Fig. 9B, C, D) or sta ble, co he sive, par tially dewatered muddy sub strates (Pem ber ton and Frey, 1985;Lewis and Ekdale, 1992; MacEachern et al., 1992, 2007;Pem ber ton et al., 1992, 2001, 2004; Pem ber ton and MacEachern, 2005; Rodríguez-Tovar et al., 2007). In the casestud ied, the time re la tions be tween Ophiomorpha and Tha-lassinoides are un cer tain. How ever, these two ichnofossilswere prob a bly not con tem po rary be cause Ophiomorpha in -di cates unlithified sed i ment, whereas Thalassinoides nee-ded a sta ble, co he sive sub strate (semi-con sol i dated, Fig. 9),ac cord ing to the above au thors.

Arenicolites was re corded from softgrounds to firm-grounds (Fig. 9A, B), but not in hardgrounds, be ing a char -ac ter is tic trace of the Glossifungites ichnofacies (Pem ber ton et al., 2001). Con sid er ing that the sed i men ta tion rate is verylow in pe lagic car bon ate en vi ron ments, par tial lithificationof the sub strate is quick. There fore, the softground stage isshort, which makes it likely that Arenicolites were pro duced in firmgrounds (Fig. 9A, B).

Gastrochaenolites has usu ally been in ter preted as a re -sult of bor ing in lithic sub strates (Kelly and Bromley,1984), and is there fore re lated to rockgrounds and hard-grounds. How ever, this ichnogenus also has been rec og -nized in firm sub strates, in some cases to gether with typ i calcom po nents of the firmground as so ci a tions, such asThalassinoides isp. (Carmona et al., 2006, 2007). More -

over, firmground Gastrochaenolites is con sid ered a com -mon struc ture in the Glossifungites ichnofacies (e.g., Pem -ber ton et al., 2001). Ekdale and Bromley (2001) showedthat the tracemaker of Gastrochaenolites could work in sub -strates with dif fer ent de grees of con sis tency. In the studycase, the pres ence of car bon ate lin ing in some spec i menscould cor rob o rate par tial sub strate lithification. In ad di tion,this ichnofossil cuts Thalassinoides (Fig. 9A), prov ing thatGastrochaenolites de vel oped later and prob a bly in anevolved firmground sub strate, nearly at hardground con di -tions (Fig. 9A, C).

The pres ence of Trypanites could ev i dence a sig nif i cant change in sub strate firm ness re lated to an in crease in sub -strate con sis tency (Fig. 9A, B, D). Trypanites is an ichno-taxon ex clu sive to lithified sub strates such as hardgroundsand rockgrounds, be ing the ep o nym trace fos sil of the Try-panites ichnofacies (Seilacher, 1967) and the Entobia ich-nofacies (ac cord ing to Bromley and Asgaard, 1993). Thepres ence of Trypanites is as so ci ated with trace-fos sil as sem -blages dom i nated by deep-tier bor ing (e.g., Lewis andEkdale, 1992), re veal ing long-term bioerosion on a sur faceex posed for an ex tended pe riod (in this ex am ple over 9.2Ma; Fig. 6). This is the max i mum pos si ble time span, butthe sur face could have formed in a much shorter time af tersev eral events not reg is tered in the rock re cord. Very smallbor ings are ev i dence of shal low bioerosion, and phys i calabra sion is dis counted, given the ab sence of ex am ples ofdeeper-tier ac tiv ity (Fig. 9A, B).

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 287

Fig. 6. Chronostratigraphic chart where the Mid dle–Up per Ju ras sic suc ces sion at the La Mola Unit is cor re lated with other strati -graphic sec tions (see num bers) within dif fer ent tec tonic units in the Subbetic Do main (par tially mod i fied from Nieto et al., 2012). Geo -chron ol ogy af ter Ogg (2004). BEZ – Betic Ex ter nal Zones, L – lower, M – mid dle, U – up per.

Page 8: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Con se quently, the trace-fos sil as sem blage re veals sub -strate evo lu tion at the top of a pe lagic swell (Fig. 9A):Ophiomorpha char ac ter izes softgrounds; Arenicolites, Tha- lassinoides, and Gastrochaenolites are com mon in the Glo-ssifungites ichnofacies firmgrounds (Pem ber ton andMacEachern, 1995; Pem ber ton et al., 2004); and onlyTrypanites in di cates in cip i ent hardground de vel op ment.The ab sence of char ac ter is tic fea tures of ma rine hard-grounds, such as macroencrusters or min er al iza tion (Für-sich, 1979), prob a bly in di cates an ex tremely low sed i men ta -tion rate or even a mi nor ero sional phase (sug gested by theab sence of ver ti cal shafts in Thalassinoides).

Glossifungites is the most com mon ichnofacies, used tode limit semi-lithified sub strates that orig i nated ei ther bysubae rial ex po sure or by burial and sub se quent ex hu ma tion. Col o ni za tion of the dis con ti nu ity sur face by the Glossifun-gites suite oc curs un der ma rine con di tions dur ing a deposi-tional hi a tus. This re la tion ship be tween the Glossifungitesichnofacies and strati graphic dis con ti nu ities has been ana -lysed in nu mer ous pa pers (e.g., MacEachern et al., 1992,1999; Pem ber ton et al., 1992, 2001, 2004; Pem ber ton andMacEachern, 1995; MacEachern and Bur ton, 2000;Zonneveld et al., 2001; Gingras et al., 2002; Holz, 2003; DiCelma and Cantalamessa, 2005; Gibert and Robles, 2005;Buatois and Encinas, 2006; Cantalamessa et al., 2006;Rodríguez-Tovar et al., 2007).

Eustatic con text

Pe lagic swells have been con sid ered sed i ment-starveden vi ron ments, with the Ammonitico Rosso re garded as themost char ac ter is tic fa cies (Bosellini, 1989; Martire, 1992).Along these lines, Martire (1992) pro posed a se quen tialstrati graphic model to ex plain the gen e sis of this fa cies thatcan be ap plied to the in ter pre ta tion of the UAR For ma tion(Fig. 10). This au thor pro poses that Ammonitico Rosso se d -i men ta tion in pe lagic swells oc curred in transgressive and,es pe cially, highstand sea-level con di tions. In this con text,cur rent ac tiv ity was lower and the prod ucts of pe lagic sed i -men ta tion may be pre served. The lower mem ber of theUAR For ma tion, char ac ter ized by wackestone with “fil a -ments”, could be re lated to sim i lar sea-level con di tions.

The highly lithified bed at the top of the lower mem berof the UAR For ma tion, with a pseudonodular tex ture, couldhave formed in shal low seas. In this en vi ron ment, bot tomwa ters were prob a bly well ox y gen ated, so infauna shouldbe abun dant and bioturbation of the sed i ment sig nif i cant, asin di cated by the tex ture of the bed (“fil a ments” andpeloids). The par tial lithification of the de pos ited sed i mentwas the re sult of the low sed i men ta tion rate (0.20 mm/kyrfor the lower mem ber of the UAR For ma tion; Nieto, 1997;Nieto et al., 2012); there fore, softground con di tions and thefirst stage of firmground con di tions de vel oped at the top ofthe highly lithified bed.

The softground con di tions could in di cate a rel a tivelylow sea level, with a slight in crease in ma rine cur rent en ergy prob a bly con trol ling win now ing of fine-grained sed i mentor con cen tra tion dur ing a low sed i men ta tion stage (Fig. 10). These con di tions fa voured the pres ence of Ophiomorpha, in which wall re in force ment aided in bur row sta bi li za tion(Fig. 10). The sed i ment sur face evolved into a semi-con sol i -

288 L. M. NIETO ET AL.

Fig. 7. Ex am ples of trace fos sils cut by nep tu nian dykes (ND).A. Nep tu nian dyke infilled by white sparite. B. Nep tu nian dykemade up of red micrite. C, D. Packstone com posed of “fil a ments”(Bositra buchi) of nep tu nian dykes. E. Di a gram show ing the mainstrikes of nep tu nian dykes af ter re stor ing strat i fi ca tion to the hor i -zon tal (n – num ber of mea sure ments).

Ta ble 2

Sizes of dif fer ent ichnofossils re corded at the un con formity sur face stud ied (data from Rodríguez-Tovar and Nieto, 2013)

Diameter (mm) Length (mm) Width (mm) Thickness of the lining (mm)

Branched structures 25–15, usually 20 180–130, maximum 250 – –

Circular structuresPaired holes 10–20 – 85–35 1–2

Individual holes 20–30 – – 2

Page 9: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 289

Fig. 8. Some ex am ples of ichnofossils in the stud ied un con formity sur face. A. Hor i zon tal trace fos sil show ing Y-shaped branches(Ophiomorpha) with a limonitic halo and bor ing with a cir cu lar sec tion (prob a bly Trypanites). B. T-shaped trace fos sil and limonitic halo.C. Microfacies (“fil a ment” wackestone) with bioturbation in the infills. D. Thin-sec tion show ing the re la tion be tween the infill with bur -row and the hardground sur face. E. Poorly pre served branched struc ture and cir cu lar struc tures as signed to Gastrochaenolites. F. Cir cu larsec tions grouped by pairs (Arenicolites) and Y-shaped trace fos sil (Thalassinoides).

Page 10: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

dated firmground and early hardground, with Thalassinoi-des, Arenicolites, and Gastrochaenolites ichnofossils(Fig. 10). Cur rent en ergy prob a bly in creased, caus ing sed i -ment win now ing and lead ing to firmer sub strates, a halt tosed i men ta tion, and ero sion ex hum ing the con cealed firm-ground. These con di tions are typ i cal of very low sea lev els,but with out karstification struc tures. Fi nally, the de vel op -ment of a hardground, with Trypanites, was likely as so ci -ated with en hance ment of these prior con di tions: a near-ab -sence of sed i men ta tion and a com par a tive in crease in ero -sion of the seafloor, cut ting the ver ti cal gal ler ies of someichnofossils and fa vour ing the ex hu ma tion of firmer sub -strates. The lat ter phase re veals a sig nif i cant in crease in ma -rine cur rent en ergy, pos si bly as so ci ated with the ini tialstages of a rel a tive sea-level rise (Fig. 10).

The com plex un con formi ties re corded at the Mid dle–Up per Ju ras sic tran si tion of the Tethyan do mains were re -lated to dif fer ent transgressive-re gres sive cy cle bound aries.Hardenbol et al. (1998) rec og nized a ma jor se quencebound ary (Bat5), dated as Late Bathonian, that bounds twosec ond-or der se quences, cor re spond ing to Early–LateAalenian to Mid dle–Late Bathonian and Mid dle–LateBathonian to Mid dle Oxfordian. These au thors rec og nize aeustatic sea-level fall prior to the Bat5 se quence bound ary

and a sub se quent sea-level rise. Also in the Subbetic Do -main, Nieto et al. (2012) cor re late the Hg1 un con formitywith a rel a tive sea-level fall, fol lowed by a sea-level rise.The sur face stud ied in the La Mola Unit could be in ter preted as the re sult of low sea-level con di tions to gether with thepro cesses re lated to the sub se quent sea-level rise (in creaseden ergy, sed i ment by-pass ing and po ten tial ero sion). Dif fer -ent au thors (Cecca et al., 2005; Ramajo and Aurell, 2008)have shown that a low sed i men ta tion rate is typ i cal of theMid dle Ju ras sic pe riod in the Tethyan do mains, be causethere is a tran si tion from rift ing to post-rift ing; as a con se -quence, a global re duc tion in car bon ate pro duc tiv ity is de -tected dur ing the Late Bathonian–Early Oxfordian.

How ever, some lo cal con di tions re lated to tilted tec -tonic blocks can not be ex cluded. Ar eas where the con -densed lev els were pres ent can be in ter preted as be ing morepro tected from ma rine cur rents, sed i ment win now ing, andero sion, thereby pre serv ing the scarce sed i ment. Where thecon densed sec tions are ab sent, as in the La Mola Unit, thehi a tus as so ci ated with a strati graphic break was long. Itcould be ex plained as hav ing arisen in shal lower ar easwhere the ac tiv ity of ma rine cur rents as well as low pro duc -tion of the car bon ate fac tory did not fa vour sed i ment ac cu -mu la tion.

290 L. M. NIETO ET AL.

Fig. 9. Model for change of the un con formity sur face in the La Mola Unit. Com par i son with other mod els. A. Change model of the un -con formity sur face in the La Mola Unit mainly ac cord ing to dif fer ent de grees of firm ness. B. Change model of the un con formity sur facein the Reclot Unit (East ern Ex ter nal Subbetic; data from Reolid et al., 2010). C. Change model of a dis con ti nu ity sur face in the High At lasDo main (data from Christ et al., 2012). D. Change model of the dis con ti nu ity sur face at the top of the Amuri Lime stone (Mid dleOligocene, New Zea land. Mod i fied af ter Lewis & Ekdale, 1992). Oph – Ophiomorpha, Are – Arenicolites, Tha – Thalassinoides, Gas –Gastrochaenolites, Try – Trypanites.

Page 11: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Tec tonic con text

At the dis con ti nu ity stud ied, nep tu nian dykes are in dic a -tive of synsedimentary tec ton ics, prob a bly re lated to ten -sional de for ma tion sys tems (Basilone, 2009; Bertok andMartire, 2009; Nieto et al., 2012). Data from the same in ter -val stud ied in this re search in other Subbetic tec tonic unitsalso in di cate that synsedimentary tec ton ics was an im por tantcon trol in sed i men ta tion in the east ern Subbetic (Fig. 6). Thesuc ces sions stud ied in the La Mola Unit, Reclot Unit (sec -tion 1; GPS co or di nates: 38°20'52.83" N; 0°55'26.68" W),Cantón Unit (sec tion 5; GPS co or di nates: 38°17'49.75" N;1°00'52.27" W), and Lúgar-Corque Unit (sec tion 8; GPSco or di nates: 38°12'15.17" N; 1°11'25.60" W) only re cord along hi a tus. How ever, in sec tion 9 of the Quípar Unit (GPSco or di nates: 38°04'27.86" N; 1°48'32.79" W) and sec tion 6of the Lúgar-Corque Unit (GPS co or di nates: 38°14'12.77"N; 1°07'49.04"W; Fig. 6), five un con formi ties (Hg1 to Hg5) bound ing con densed se quences have been de scribed (Nietoet al., 2012). These sig nif i cant strati graphic dif fer encesplain could be the re sult of half-graben de vel op ment as acon se quence of block ro ta tion by listric faults (Vera, 2001;Nieto et al., 2012).

This in ter pre ta tion is in ac cor dance with Ziegler (1989),who showed that the Mid dle–Late Ju ras sic tran si tion was atec toni cally ac tive pe riod with a change from extensional totranstensional con di tions in the West ern Tethys. In the East -ern Ex ter nal Subbetic (Quípar Unit; Fig. 6), Nieto et al.(2012) char ac ter ized nep tu nian dykes re lated to Hg1 (top ofthe Lower Bathonian), Hg2 (top of the Mid dle Bathonian),

and Hg5 (top of the Callovian). In the un con formity sur facestud ied here, cor re lated to Hg1, the pres ence of nep tu niandykes re vealed that the pe lagic swell prob a bly was af fectedby a mixed ten sional and shear de for ma tion phase. Ac cord -ing to Han cock (1985, 1994), this type of frac ture sys tem,form ing a di hed ral an gle rang ing be tween 10° and 50°, arehy brid frac tures with mixed ten sional and shear de for ma -tion, which is in agree ment with the hy poth e sis of Nieto etal. (2012). How ever, it should be noted that the La MolaUnit, like other Subbetic units, was af fected by sev eral tec -tonic stages, only re corded at a sin gle un con formity. On theba sis of the re la tion ship be tween the nep tu nian dykes andthe ichnofossils (es pe cially the branched ichnofossils), themost im por tant de for ma tion stage should be sub se quent tothe de vel op ment of these trace fos sils. Vera (2001) andNieto et al. (2012) show that around Mid dle Bathonian toOxfordian, the South Ibe rian Palaeomargin was af fected bytranstensional de for ma tion re lated to crustal sep a ra tion be -tween the Af ri can, Ibe rian, and Mesomediterranean plates.In the Subbetic, this sit u a tion in volved an in crease in pe -lagic swell de vel op ment and there fore a sig nif i cant re duc -tion in sed i men ta tion rates and a rel a tive sea-level fall.

DIS CUS SION: COM PAR I SON WITHOTHER GEO LOG I CAL DO MAINS

De tailed anal y ses of Mid dle–Up per Ju ras sic hard-ground sur faces re corded in the East ern Ex ter nal Subbetic

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 291

Fig. 10. Changes at the un con formity sur face in re la tion to the sea-level curve.

Page 12: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

(de vel op ing in pe lagic swells in the South Ibe rian Palaeo-mar gin; West ern Tethys; Fig. 6) re veal sig nif i cant lat eral fa -cies changes, mainly re lated to spe cific lo ca tions and dif fer -ences in palaeobathymetry (Reolid et al., 2010; Nieto et al.,2012). Lat eral vari a tions can also be ob served in the trace-fos sil as sem blages (Fig. 9).

In pre vi ously stud ied sur faces, es pe cially those in theReclot Unit sec tions (Fig. 9B), the most abun dant trace fos -sil is Thalassinoides, co-ex ist ing with other trace fos sils re -corded as paired ver ti cal tubes, as signed to Arenicolites orDiplocraterion, and iso lated tubes, in ter preted as bor ings ofthe Trypanites ichnofacies (Reolid et al., 2010; Nieto et al.,2012). On the ba sis of the dif fer ent kinds of ichnofossils re -corded (Trypanites with ei ther Arenicolites or Thalassinoi-des), the pro gres sive sub strate lithification went from a soft- ground to a firmground or hardground (Reolid et al., 2010;Nieto et al., 2012). Sev eral sig nif i cant dif fer ences can berec og nized with re spect to the sur face stud ied in the LaMola Unit, par tic u larly the re cord of Ophiomorpha andGastrochaenolites and the less abun dant Trypanites(Fig. 9A, B). The sig nif i cance of sub strate con sis tency re -lated to trace-fos sil as sem blage and its evo lu tion prob a blyre flect a change from com par a tively softer, more un sta blesub strates as so ci ated with the sur face in the La Mola Unit to in cip i ent hardground con di tions. These ichnological fea -tures, and their cor re spond ing in ter pre ta tions, are in agree -ment with other sedimentological data re corded in theReclot Unit (Reolid et al., 2010; Nieto et al., 2012), but ab -sent in the sec tion at the La Mola Unit. For in stance, in thedis con ti nu ity sur face at the La Mola Unit, there is an ab -sence of fea tures, such as Fe-Mn oncoids and crusts re latedto well-de vel oped strati graphic breaks, and of taphonomicfea tures of the macroinvertebrate as sem blages, ev i denc inglong ex po sure of the re mains on the seafloor (such ascorrasion, fac et ing, and encrustation).

In com par i son with other car bon ate en vi ron ments, thedi ver sity of trace fos sils as so ci ated to dif fer ent steps inseafloor evo lu tion is higher. For in stance, in the Ju ras sic ofthe Cen tral High At las (West ern Tethys, Mo rocco), Christet al. (2012) show that Thalassinoides is the trace fos sil thatchar ac ter izes soft- and firmground stages in seafloor evo lu -tion, and Gastrochaenolites is re lated to hardground con di -tions (Fig. 9C). Lewis and Ekdale (1992) ana lysed theAmuri Lime stone (Mid dle Oligocene, New Zea land; Fig.9D), de pos ited in a pe lagic en vi ron ment. These au thorsshow that Thalassinoides is the trace fos sil as so ci ated withsoftgrounds to hardgrounds (see Lewis and Ekdale, 1992,fig. 14); this last ground also is ac com pa nied by Trypanites.

CON CLU SIONS

An in te gra tive anal y sis of sedimentologic, stratigra-phic, palaeotectonic, and es pe cially ichnological data ob -tained from un con formity sur faces in the Ex ter nal SubbeticZone (La Mola Unit, Betic Cor dil lera) de vel oped in pe lagiccar bon ate-swell en vi ron ments re veals the im por tance ofsea-level con di tions, tec tonic con text, and palaeogeogra-phic lo ca tion in their gen e sis. The use of trace fos sils forchar ac ter iz ing the evo lu tion of seafloor fea tures is clearly

ex em pli fied in the mid dle Bathonian–mid dle Oxfordian un -con formity sur face stud ied, and has wide ap pli ca bil ity to the Ju ras sic Ammonitico Rosso fa cies, where un con formi tiesare fre quently re corded.

The pres ence of Ophiomorpha char ac ter izes softground con di tions and un sta ble sub strates. The as so ci a tion of Tha-lassinoides, Arenicolites, and Gastrochaenolites re veals anin crease in firm ness, with firmground de vel op ment. Fi nally, Trypanites de notes an in cip i ent hardground stage. The evo -lu tion in sub strate con sis tency is re lated to dif fer ent sea-level phases and, there fore, to char ac ter is tic ma rine-cur renten er gies and vari able con ti nu ity of de po si tion. Softgroundto early firmground stages could in di cate rel a tively low sealev els, with low-en ergy cur rents and com par a tively con tin -u ous de po si tion. Sub se quent firmgrounds or early hard-grounds de vel oped at ex tremely low sea lev els (rel a tively)with higher-en ergy cur rents, which could be re spon si ble for sed i ment win now ing and there fore for non-de po si tion. Theini tial phases of sea-level rise were marked by hardgroundcon di tions, with higher-en ergy cur rents that re sulted in sea-floor ero sion. Dif fer ences in sedimentological and ichno-logical fea tures with re gard to pre vi ously stud ied dis con ti -nu ity sur faces from nearby ar eas (e.g., the Reclot Unit), arere lated to vari a tions in the palaeogeographic lo ca tion andbot tom to pog ra phy, de ter min ing changes in de po si tion andin the prob a ble du ra tion of the as so ci ated hi a tus. Ichnofossil abun dance is very high in the Subbetic com pared with othercar bon ate en vi ron ments, which aids the im proved es tab lish -ment of se quences in seafloor evo lu tion.

Ac knowl edg ments

This re search was car ried out with the fi nan cial sup port of re -search pro jects CGL2012-33281, CGL2009-10329 (both of theMinisterio de Economía y Competitividad), P08-RNM-03715(Junta de Andalucía), UJA2011/12/17 (Universidad de Jaén) andthe Re search Groups RNM-178 and RNM-200 (Junta de Anda-lucía). We would like to thank A. Uchman, L. Martire, and the ref -er ees (B. Bádenas and R. Aubrecht) for their com ments, which im -proved the orig i nal manu script. We are also grate ful to An to nioPiedra, a tech ni cian at the Laboratorio de Geología of the Univer-sidad de Jaén for prep a ra tion of the thin-sec tions. We are also in -debted to Chris tine Laurin for the Eng lish ver sion of the text.

REF ER ENCES

Basilone, L., 2009. Me so zoic tectono-sed i men tary evo lu tion ofRocca Busambra in west ern Sic ily. Fa cies, 55: 115–135.

Bernoulli, D. & Jenkyns, H. C., 2009. An cient oceans and con ti -nen tal mar gins of the Al pine-Med i ter ra nean Tethys: de ci -pher ing clues from Me so zoic pe lagic sed i ments and ophio-lites. Sedimentology, 56: 149–190.

Bertok, C. & Martire, L., 2009. Sed i men ta tion, frac tur ing and slid -ing on a pe lagic pla teau mar gin: the Mid dle Ju ras sic to LowerCre ta ceous suc ces sion of Rocca Busambra (West ern Sic ily,It aly). Sedimentology, 56: 1016–1040.

Bosellini, A., 1989. Dy nam ics of Tethyan car bon ate plat forms. In: Crevello, P. D. et al. (eds), Con trols on Car bon ate Plat formand Ba sin De vel op ment. SEPM Spe cial Pub li ca tion, 44:3–13.

Bromley, R. G. & Asgaard, U., 1993. Two bioerosion ichnofacies

292 L. M. NIETO ET AL.

Page 13: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

pro duced by early and late burial as so ci ated with sea-levelchange. Geologische Rundschau, 82: 276–280.

Buatois, L. A. & Encinas, A., 2006. Las icnofacies de Glossifun-gites en el contacto en tre las formaciones Navidad (miembroRapel) y La Cueva, Plioceno de la Cor dil lera de la Costa,Chile: su significado estratigráfico-secuencial. Ameghiniana,43: 3–9.

Cantalamessa, G., Di Celma, C. & Ragaini, L., 2006. Tec toniccon trols on se quence stack ing pat tern and along-strike ar chi -tec ture in the Pleis to cene Mejillones For ma tion, north ernChile: Im pli ca tions for se quence strati graphic mod els. Sed i -men tary Ge ol ogy, 183: 125–144.

Carmona, N. B., Mángano, M. G., Buatois, L. A. & Ponce, J. J.,2007. Bi valve trace fos sils in an early Mio cene dis con ti nu itysur face in Patagonia, Ar gen tina: Bur row ing be hav ior and im -pli ca tions for ichnotaxonomy at the firmground-hardgrounddi vide. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol -ogy, 255: 329–341.

Carmona, N. B., Ponce, J. J., Mángano, M. G. & Buatois, L.A.,2006. Variabilidad de la icnofacies de Glossifungites en ellímite en tre las Formaciones Sarmiento (Eoceno medio–Mioceno temprano) y Chenque (Mioceno temprano) en elGolfo San Jorge, Chubut, Ar gen tina. Ameghiniana, 43: 413–425.

Cecca, F., Mar tin-Garin, B., Marchand, D., LathuiliÀre, B. &Bartolini, A., 2005. Paleoclimatic con trol of biogeographicand sed i men tary events in Tethyan and peri-Tethyan ar easdur ing the Oxfordian (Late Ju ras sic). Palaeo ge ogra phy,Palaeoclimatology, Palaeo ec ol ogy, 222: 10–32.

Christ, N., Immenhauser, A., Amour, F., Mutti, M., Tomás, S.,Agar, S. M., Al ways, R. & Kabiri, L., 2012. Char ac ter iza tionand in ter pre ta tion of dis con ti nu ity sur faces in a Ju ras sic rampset ting (High At las, Mo rocco). Sedimentology, 59: 249–290.

Coimbra, R., Immenhauser, A. & Olóriz, F., 2009. Ma trix micrited13C and d18O re veals synsedimentary ma rine lithification inUp per Ju ras sic Ammonitico Rosso lime stones (Betic Cor dil -lera, SE Spain). Sed i men tary Ge ol ogy, 219: 332–348.

Di Celma, C. & Cantalamessa, G., 2005. Syn-depositional tec tonic con trols on the in ter nal ar chi tec ture of a mid-Pleis to cene de-po si tional se quence (Mejillones For ma tion, north ern Chile).6th In ter na tional Sym po sium on An dean Geodynamics (ISAG2005, Bar ce lona) Ex tended Ab stracts. Univ. Bar ce lona, pp.222–225.

Ekdale, A. A. & Bromley, R. G., 2001. Bioerosional in no va tionfor liv ing in car bon ate hardgrounds in the Early Or do vi cian of Swe den. Lethaia, 34: 1–12.

Elmi, S., 1981. Clas si fi ca tion typologique et génétique des Am-monitico Rosso et des fa cies noduleux ou grumeleux: essai de synthÀse. In: Farinacci, A. & Elmi, S. (eds), Pro ceed ings ofthe Rosso Ammonitico Sym po sium. Tecnoscienza, Roma, pp.233–249.

Frey, R. W., Howard, J. D. & Pryor, W. A., 1978. Ophiomorpha:its mor pho log i cal, tax o nomic, and en vi ron men tal sig nif i -cance. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 23: 511–528.

Fürsich, F. T., 1979. Gen e sis, en vi ron ments, and ecol ogy of Ju ras -sic hardgrounds. Neues Jahrbuch für Geologie und Paläon-tologie, Abhandlungen, 158: 1–63.

García-Hernández, M., López-Garrido, A. C., Martín-Algarra, A.,Molina, J. M., Ruiz-Ortiz, P. A. & Vera, J. A., 1989. Lasdiscontinuidades mayores del Jurásico de las Zonas Externasde las Cor dil leras Béticas: análisis e interpretación de losciclos sedimentarios. Cuadernos de Geología Ibérica (Jour -nal of Ibe rian Ge ol ogy), 13: 35–52.

Gibert, J. M. de & Robles, J. M., 2005. Firmground ichnofacies re -

cord ing high-fre quency ma rine flood ing events (Langhiantrans gres sion, VallÀs-PanedÀs Ba sin, Spain). Geologica Acta, 3: 295–305.

Gingras, M. K., Räsänen, M. E., Pem ber ton, S. G. & Romero, L.P., 2002. Ichnology and sedimentology re veal depositionalchar ac ter is tics of bay-mar gin parasequences in the Mio ceneAm a zo nian fore land ba sin. Jour nal Sed i men tary Re search,72: 871–883.

Han cock, P. L., 1985. Brit tle microtectonics: prin ci ples and prac -tice. Jour nal of Struc tural Ge ol ogy, 7: 437–457.

Han cock, P. L., 1994. From joints to paleostresses. In: Roure, F.(ed.), Peri-Tethyan Plat forms. Edi tions Technip, París, pp.145–158.

Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., DeGraciansky, P. C. & Vail, P. R., 1998. Ju ras sic se quencechoronostratigraphy. In: De Graciansky, P. C., Hardenbol, J.,Jacquin, T. & Vail, P. R. (eds), Me so zoic and Ce no zoic Se -quence Stra tig ra phy of Eu ro pean Bas ins. SEPM Spe cial Pub -li ca tion 60, charts 1 and 6.

Holz, M., 2003. Se quence stra tig ra phy of a la goonal estuarine sys -tem – an ex am ple from the lower Perm ian Rio Bo nito For ma -tion, Panamá Ba sin, Brazil. Sed i men tary Ge ol ogy, 162: 305–331.

IGME, 1978. Mapa y memoria explicativa de la hoja 871 (Elda)del Mapa Geológico Nacional a escala 1:50.000. IGME, Ma -drid.

Jenkyns, H. C., 1974. Or i gin of red nod u lar lime stones (Ammo-nitico Rosso, Knollenkalke) in the Med i ter ra nean Ju ras sic: adiagenetic model. In: Hsü, K. J. & Jenkyns, H. C (eds), Pe -lagic Sed i ments: On Land and Un der Sea. Spe cial Pub li ca -tion In ter na tional As so ci a tion of Sedimentologists, 1: 249–271.

Jenkyns, H. C., 1986. Pe lagic en vi ron ments. In: Read ing, H. G.(ed.), Sed i men tary En vi ron ments and Fa cies. Blackwell, Ox -ford, pp. 343–397.

Kelly, S. R. A. & Bromley, R. G. 1984. Ichnological no men cla ture of clavate bor ings. Palae on tol ogy, 27: 793–807.

Lewis, D. W. & Ekdale, A. A., 1992. Com pos ite ichnofabric ofmid-Ter tiary un con formity on a pe lagic lime stone. Palaios,7: 222–235.

MacEachern, J. A. & Bur ton, J. A., 2000. Firmground Zoophycosin the Lower Creataceous Vi king For ma tion, Al berta: A dis tal ex pres sion of the Glossifungites ichnofacies. Palaios, 15:387–398.

MacEachern, J. A., Pem ber ton, S. G., Gingras, M. K. & Bann, K.L., 2007. The ichnofacies par a digm: A fifty-year ret ro spec -tive. In: Miller, W., III (ed.), Trace Fos sils: Con cepts, Prob -lems, Pros pects. Elsevier, Am ster dam, pp. 52–77.

MacEachern, J. A., Raychaudhuri, I. & Pem ber ton, S. G., 1992.Strati graphic ap pli ca tions of the Glossifungites ichnofacies:de lin eat ing dis con ti nu ities in the rock re cord. In: Pem ber ton,S. G. (ed.), Ap pli ca tions of Ichnology to Pe tro leum Ex plo ra -tion: A Core Work shop. SEPM Core Work shop, 17: 169–198.

MacEachern, J. A., Zaitlin, B. A. & Pem ber ton, S. G., 1999. Asharp-based sand stone of the Vi king For ma tion, Joffre field,Al berta, Can ada: cri te ria for rec og ni tion of transgressively in -cised shoreface com plexes. Jour nal of Sed i men tary Re search, 69: 876–892.

Martire, L., 1996. Stra tig ra phy, fa cies and synsedimentary tec ton -ics in the Ju ras sic Rosso Ammonitico Veronese (Altopiano diAsiago, NE It aly). Fa cies, 35: 209–236.

Martire, L., 1992. Se quence stra tig ra phy and con densed pe lagicsed i ments. An ex am ple from the Rosso Ammonitico Vero-nese, north east ern It aly. Palaeo ge ogra phy, Palaeoclimato-logy, Palaeo ec ol ogy, 94: 169–191.

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 293

Page 14: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Martire, L. & Pavia, G., 2004. Ju ras sic sed i men tary and tec tonicpro cesses at Montagna Grande (Trapanese Do main, West ernSic ily, It aly). Rivista Italiana di Paleontologia e Stratigrafia,110: 23–33.

Molina, J. M., 1987. Análisis de fa cies del Mesozoico en el Sub-bético Externo (Provincia de Córdoba y Sur de Jaén). Ph.D.The sis, Uni ver sity of Granada, Spain, pp. 518.

Molina, J. M. & Ruiz-Ortiz, P. A., 1993. Stra tig ra phy and paleo-ge og ra phy of the Ex ter nal Betic Cor dil lera, South ern Spain.Dis cus sion. Ma rine and Pe tro leum Ge ol ogy, 10: 515–518.

Mul lins, H. T., Neuman, A. C., Wilber, R. J. & Bordan, M. R.,1980. Nod u lar car bon ate sed i ments on Ba ha mian slopes: pos -si ble pre cur sor to nod u lar lime stones. Jour nal of Sed i men taryPe trol ogy, 50: 117–131.

Myrow, P. M., 1995. Thalassinoides and the enigma of Early Pa -leo zoic open-frame work bur row sys tems. Palaios, 10: 58–74.

Nieto, L. M. 1997. La cuenca subbética mesozoica en el sec torori en tal de las Cor dil leras Béticas. Ph.D. The sis, Uni ver sityof Granada, Spain, pp. 544.

Nieto, L. M., Reolid, M., Molina, J. M., Ruiz-Ortiz, P. A.,Jiménez-Millán, J. & Rey, J., 2012. Evo lu tion of pe lagicswells from hardground anal y sis (Bathonian–Oxfordian, Eas- tern Ex ter nal Subbetic, south ern Spain). Fa cies, 58: 389–414.

O’Dogherty, L., Sandoval, J. & Vera, J. A., 2000. Ammonite fau -nal turn over trac ing sea-level changes dur ing the Ju ras sic(Betic Cor dil lera, south ern Spain). Jour nal of the Geo log i calSo ci ety Lon don, 157: 723–736.

Ogg, J. G., 2004. The Ju ras sic Pe riod. In: Gradstein, F. M., Ogg, J.G. & Smith A. G. (eds), A Geo logic Time Scale 2004. Cam -bridge Uni ver sity Press, Cam bridge, pp. 307–343.

Olóriz, F., 1979. El Kimmeridgiense en la Zona Subbética. Cua-dernos de Geología de la Universidad de Granada, 10: 475–488.

Pem ber ton, S. G. & Frey, R. W., 1985. The Glossifungitesichnofacies: mod ern ex am ples from the Geor gia coast, USA.In: Curran, H. A. (ed.), Biogenic Struc tures: Their Use in In -ter pret ing Depositional En vi ron ments. SEPM Spe cial Pub li -ca tions, 35: 237–259.

Pem ber ton, S. G. & MacEachern, J. A., 1995. The se quence stra -tig ra phy sig nif i cance of trace fos sils: ex am ples from the Cre -ta ceous fore land ba sin of Al berta, Can ada. In: Van Wag oner,J. C. & Bertram, G. (eds), Se quence stra tig ra phy of fore landba sin de pos its: out crop and subsurface ex am ples from theCre ta ceous of North Amer ica. AAPG Mem oirs, 64: 429–475.

Pem ber ton, S. G. & MacEachern, J. A., 2005. Sig nif i cance ofichnofossils in ap plied stra tig ra phy. In: Koutsoukos, E. A.(ed.), Ap plied Stra tig ra phy. Springer, Dordrecht, pp. 281–302.

Pem ber ton, S. G., MacEachern, J. A. & Frey, R. W., 1992. Tracefos sil fa cies mod els: en vi ron men tal and allostratigraphic sig -nif i cance. In: Walker, R. G. & James, N. P. (eds), Fa ciesMod els: Re sponse to Sea Level Change. Geo log i cal As so ci a -tion of Can ada, On tario, pp. 42–72.

Pem ber ton, S. G., MacEachern, J. A. & Saunders, T., 2004. Strati -graphic ap pli ca tions of sub strate-spe cific ichnofacies: de lin -eat ing dis con ti nu ities in the rock re cord. In: McIlroy, D. (ed.), The Ap pli ca tion of Ichnology to Palaeoenvironmental andStrati graphic Anal y sis. Geo log i cal So ci ety Lon don, Spe cialPub li ca tion, 228: 29–62.

Pem ber ton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Rob bins, D. & Sinclair, I. K., 2001. Ichnologyand sedimentology of shal low to mar ginal ma rine sys tems.Geo log i cal As so ci a tion of Can ada, Short Course Notes, 15:1–342.

Ramajo, J. & Aurell, M., 2008. Long-term Callovian-Oxfordiansea-level changes and sed i men ta tion in the Ibe rian car bon ate

plat form (Ju ras sic, Spain): pos si ble eustatic im pli ca tions. Ba -sin Re search, 20: 163–184.

Reolid, M., Nieto, L. M. & Rey, J., 2010. Taphonomy of cepha-lopod as sem blages from Mid dle Ju ras sic hardgrounds of pe -lagic swells (South-Ibe rian Palaeomargin, West ern Tethys).Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 292:257–271.

Rey, J. 1993. Análisis de la cuenca subbética du rante el Jurásico y el Cretácico en la transversal Caravaca-Vélez Rubio. Ph.D.The sis, Uni ver sity of Granada, Spain, pp. 460.

Rodríguez-Tovar, F. J. & Nieto, L. M., 2013. Com pos ite TraceFos sil As sem blage in Dis tal Car bon ate Swell Set tings fromthe Pe lagic Tethyan Do main (Mid dle Ju ras sic, Betic Cor dil -lera, South ern Spain). Ichnos, 20: 43–53.

Rodríguez-Tovar, F. J., Pérez-Valera, F. & Pérez-López, A., 2007. Ichnological anal y sis in high-res o lu tion se quence stra tig ra -phy: The Glossifungites ichnofacies in Tri as sic suc ces sionsfrom the Betic Cor dil lera (south ern Spain). Sed i men tary Ge -ol ogy, 198: 293–307.

Rodríguez-Tovar, F. J., Reolid, M. & Pardo-Igúzquiza, E., 2010.Plank tonic ver sus ben thic foraminifera re sponse to Mi lan-kovitch forc ing (Late Ju ras sic, Betic Cor dil lera): test ing me-thods for cyclostratigraphic anal y sis. Fa cies, 56: 459–470.

Ruiz-Ortiz, P. A., 1980. Análisis de fa cies del Mesozoico de lasUnidades Intermedias (en tre Castril – provincia de Granada- y Jaén). Ph.D. The sis, Uni ver sity of Granada, Spain, pp. 272.

Ruiz-Ortiz, P. A., 1983. A car bon ate sub ma rine fan in a fault-con -trolled ba sin of the Up per Ju ras sic, Betic Cor dil lera, South ern Spain. Sedimentology, 30: 33–48.

Ruiz-Ortiz, P. A., Bosence, D. W. J., Rey, J., Nieto, L. M., Cas tro,J. M. & Molina, J. M., 2004. Tec tonic con trol of fa cies ar chi -tec ture, se quence stra tig ra phy and drown ing of a Li assic car -bon ate plat form (Betic Cor dil lera, south ern Spain). Ba sin Re-search, 16: 235–257.

Ruiz-Ortiz, P. A., Nieto, L. M., Cas tro, J. M., Molina, J. M. & ReyJ., 1997. Discontinuidades mayores y otros eventos jurásicosen el Subbético Externo. Correlación con otros dominios delas Cor dil leras Béticas. Sur de España. Memorias del I Con-greso Latinoamericano de Sedimentología Porlamar, Isla deMargarita, Ven e zuela, vol ume II. Sociedad Venezolana deGeologos, Ca ra cas, pp. 239–248.

Sandoval, J., 1983. Bioestratigrafía y paleontología (Stephanoce-rataceae y Perisphinctaceae) del Bajocense y Bathonense enlas Cor dil leras Béticas. Ph.D. The sis, Uni ver sity of Granada,Spain, pp. 613.

Santantonio, M., 1993. Pe lagic car bon ate plat forms in the geo log i -cal re cord: their clas si fi ca tion and sed i men tary and paleo-tec tonic evo lu tion. AAPG Bul le tin, 78: 122–141.

Seilacher, A., 1967. Bathymetry of trace fos sils. Ma rine Ge ol ogy,5: 413-428.

Sequeiros, L., 1979. El Calloviense en la Zona Subbética. Cua-dernos de Geología de la Universidad de Granada, 10: 453–462.

Sequeiros, L. & Olóriz, F., 1979. El Oxfordense en la Zona Sub-bética. Cuadernos de Geología de la Universidad de Gra-nada, 10: 463–474.

Seyfried, H., 1978. Der Subbetische Jura von Murcia (SüdostSpanien). Geologisches Jahrbuch, 29: 3–204.

Shinn, E. A., 1968. Bur row ing in re cent lime sed i ments of Floridaand Ba ha mas. Jour nal of Pa le on tol ogy, 42: 879–894.

Tucker, M. E. & Wright, V. P., 1990. Car bon ate Sedimentology.Blackwell, Ox ford, pp. 482.

Vera, J. A., 2001. Evo lu tion of the Ibe rian Con ti nen tal Mar gin.Mémoires du Muséum Na tional d’Histoire Na tu rel de Paris,186:109–143.

Vera, J. A., 1989. Sedimentación pelágica. In: Arche, A. (ed.),

294 L. M. NIETO ET AL.

Page 15: UNCONFORMITY SURFACES IN PELAGIC CARBONATE …asgp.pl/sites/default/files/volumes/84_3_281_295.pdf · 2017. 5. 30. · Annales Societatis Geologorum Poloniae (2014), vol. 84: 281–295

Sedimentología, vol. II. CSIC. Nuevas Tendencias, Ma drid,pp. 179–257.

Vera, J. A., Ruiz-Ortiz, P. A., García-Hernández, M. & Molina, J.M., 1988. Palaeokarst and re lated sed i ments in the Ju ras sic ofthe Subbetic Zone, South ern Spain. In: James, N. P. & Cho-quette, P. W. (eds), Paleokarst. Springer, New York, pp.364–384.

Ziegler, P. A., (1989). Evo lu tion of the North At lan tic – an over -view. In: Tan kard, A. J. & Balkwill, H. R. (eds), Extensional

Tec ton ics and Stra tig ra phy of the North At lan tic Mar gins.AAPG Mem oirs, 46, 111–129.

Zonneveld, J.-P. & Gingras, M. K., Pem ber ton, S. G., 2001. Tracefos sil as sem blages in a Mid dle Tri as sic mixed siliciclastic-car bon ate mar ginal ma rine depositional sys tem, Brit ish Co -lum bia. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol -ogy, 166: 249–276.

UN CON FORMITY SUR FACES IN PE LAGIC CAR BON ATE EN VI RON MENTS 295