une histoire de la conjecture de gessel (en combinatoire … · context and statement of gessel’s...

92
Une histoire de la conjecture de Gessel (en combinatoire ´ enum´ erative) Kilian Raschel Travail commun avec A. Bostan & I. Kurkova eminaire de combinatoire du LIX 7 mai 2014

Upload: trinhnhu

Post on 07-Oct-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Une histoire de la conjecture de Gessel(en combinatoire enumerative)

Kilian Raschel

Travail commun avec A. Bostan & I. Kurkova

Seminaire de combinatoire du LIX7 mai 2014

Page 2: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 3: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Since when do we count paths?

. Chevalier de Mere’s problemL’impatience me prend aussi bien qu’a vous et, quoique je sois encoreau lit, je ne puis m’empecher de vous dire que [. . . ]. Voici a peu prescomme je fais pour savoir la valeur de chacune des parties, quanddeux joueurs jouent, par exemple, en trois parties, et chacun a mis 32pistoles au jeu [. . . ].

Extrait de la lettre de Pascal a Fermat du 29 juillet 1654

. Bertrand’s Ballot problemIn combinatorics, Bertrand’s ballot problem (solved in 1878) is thequestion:

In an election where candidate A receives p votes and candidate Breceives q votes with p > q, what is the probability that A will bestrictly ahead of B throughout the count?

The answer isp − q

p + q.

Page 4: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Since when do we count paths?

. Chevalier de Mere’s problemL’impatience me prend aussi bien qu’a vous et, quoique je sois encoreau lit, je ne puis m’empecher de vous dire que [. . . ]. Voici a peu prescomme je fais pour savoir la valeur de chacune des parties, quanddeux joueurs jouent, par exemple, en trois parties, et chacun a mis 32pistoles au jeu [. . . ].

Extrait de la lettre de Pascal a Fermat du 29 juillet 1654

. Bertrand’s Ballot problemIn combinatorics, Bertrand’s ballot problem (solved in 1878) is thequestion:

In an election where candidate A receives p votes and candidate Breceives q votes with p > q, what is the probability that A will bestrictly ahead of B throughout the count?

The answer isp − q

p + q.

Page 5: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

50’s, 60’s and 70’s

. Fun with lattice paths, Howard Grossman (1950)

. How many roads, Bob Dylan (1962)

.Sur une classe de problemes lies au treillis despartitions d’entiers, Germain Kreweras (1965)

.An Introduction to Probability Theory and ItsApplications, William Feller (1950–1966)

Page 6: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

50’s, 60’s and 70’s

. Fun with lattice paths, Howard Grossman (1950)

. How many roads, Bob Dylan (1962)

.Sur une classe de problemes lies au treillis despartitions d’entiers, Germain Kreweras (1965)

.An Introduction to Probability Theory and ItsApplications, William Feller (1950–1966)

Page 7: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

50’s, 60’s and 70’s

. Fun with lattice paths, Howard Grossman (1950)

. How many roads, Bob Dylan (1962)

.Sur une classe de problemes lies au treillis despartitions d’entiers, Germain Kreweras (1965)

.An Introduction to Probability Theory and ItsApplications, William Feller (1950–1966)

Page 8: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

50’s, 60’s and 70’s

. Fun with lattice paths, Howard Grossman (1950)

. How many roads, Bob Dylan (1962)

.Sur une classe de problemes lies au treillis despartitions d’entiers, Germain Kreweras (1965)

.An Introduction to Probability Theory and ItsApplications, William Feller (1950–1966)

Page 9: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane).

. Example withS = {↙, ←, ↗, →}.

fS(0; 0, 0) = 1fS(2n + 1; 0, 0) = 0fS(2; 0, 0) = 2fS(4; 0, 0) = 11 -

6�����-�

-����

-���

-���

Page 10: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane).

. Example withS = {↙, ←, ↗, →}.

fS(0; 0, 0) = 1fS(2n + 1; 0, 0) = 0fS(2; 0, 0) = 2fS(4; 0, 0) = 11 -

6�����-�

-����

-���

-���

Page 11: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane).

. Example withS = {↙, ←, ↗, →}.

fS(0; 0, 0) = 1fS(2n + 1; 0, 0) = 0fS(2; 0, 0) = 2fS(4; 0, 0) = 11 -

6�����-�

-����

-���

-���

Page 12: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane). Complete generating function

QS(t; x , y) =∞∑

n=0

∞∑i ,j=0

fS(n; i , j)x i y j

tn ∈ Q[x , y ][[t]].

Questions: Given S, what can be said about QS(t; x , y)?Structure? (algebraic/holonomic) Explicit form? Asymptotics?

QS(t; 0, 0) ; counts S-walks returning to the origin (excursions);QS(t; 1, 1) ; counts S-walks with prescribed length.

Page 13: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane). Complete generating function

QS(t; x , y) =∞∑

n=0

∞∑i ,j=0

fS(n; i , j)x i y j

tn ∈ Q[x , y ][[t]].

Questions: Given S, what can be said about QS(t; x , y)?Structure? (algebraic/holonomic) Explicit form? Asymptotics?

QS(t; 0, 0) ; counts S-walks returning to the origin (excursions);QS(t; 1, 1) ; counts S-walks with prescribed length.

Page 14: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context: enumeration of lattice walks

. Nearest-neighbor walks in the plane Z2; admissible steps

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

. S-walks: walks in Z2 starting at (0, 0) and using steps in S.

. fS(n; i , j): number of S-walks ending at (i , j) and consistingof exactly n steps, possibly confined to some subdomain of Z2

(for us: the quarter plane). Complete generating function

QS(t; x , y) =∞∑

n=0

∞∑i ,j=0

fS(n; i , j)x i y j

tn ∈ Q[x , y ][[t]].

Questions: Given S, what can be said about QS(t; x , y)?Structure? (algebraic/holonomic) Explicit form? Asymptotics?

QS(t; 0, 0) ; counts S-walks returning to the origin (excursions);QS(t; 1, 1) ; counts S-walks with prescribed length.

Page 15: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

First example: Kreweras walk

-

6����?

����

?���

���

Theorem [Kreweras (1965); 100 pages combinatorial proof!]

QS(t; 0, 0) = 3F2

(1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3

)=∞∑

n=0

4n(3n

n

)(n + 1)(2n + 1)

t3n.

Theorem [Gessel (1986), Bousquet-Melou (2005), . . . ]The trivariate generating function QS(t; x , y) is algebraic.

Page 16: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

First example: Kreweras walk

-

6����?

����

?���

���

Theorem [Kreweras (1965); 100 pages combinatorial proof!]

QS(t; 0, 0) = 3F2

(1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3

)=∞∑

n=0

4n(3n

n

)(n + 1)(2n + 1)

t3n.

Theorem [Gessel (1986), Bousquet-Melou (2005), . . . ]The trivariate generating function QS(t; x , y) is algebraic.

Page 17: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

First example: Kreweras walk

-

6����?

����

?���

���

Theorem [Kreweras (1965); 100 pages combinatorial proof!]

QS(t; 0, 0) = 3F2

(1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3

)=∞∑

n=0

4n(3n

n

)(n + 1)(2n + 1)

t3n.

Theorem [Gessel (1986), Bousquet-Melou (2005), . . . ]The trivariate generating function QS(t; x , y) is algebraic.

Page 18: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Second example: the simple random walk (1/2)

SRW in the plane

-

66

?-� Polya (1921):

. Formula for the excursions

. Rational generating function

SRW in the half-plane and in the quarter-plane

-

66

?-�

-�6 -

66

?-�

-�6

-6

?

-6

. Algebraic (Bousquet-Melou and Petkovsek, 2003) and holonomicgenerating functions (Bousquet-Melou and Mishna, 2010),respectively

Page 19: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Second example: the simple random walk (1/2)

SRW in the plane

-

66

?-� Polya (1921):

. Formula for the excursions

. Rational generating function

SRW in the half-plane and in the quarter-plane

-

66

?-�

-�6 -

66

?-�

-�6

-6

?

-6

. Algebraic (Bousquet-Melou and Petkovsek, 2003) and holonomicgenerating functions (Bousquet-Melou and Mishna, 2010),respectively

Page 20: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Second example: the simple random walk (2/2)

SRW in the angle 45◦

-������� 6

?-�

�6-

-?

- -

6@@I@@R-�

-�@@I

@@R-

-

. Formula for the excursions (Gouyou-Beauchamps, 1986)

. Holonomic generating function (Bousquet-Melou and Mishna,2010)

What about the SRW in the angle 135◦?

-@@@

@@@I 6

?-�

�6-

-6

-6 -

6���

��-�

-����

-���

-���

Page 21: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Second example: the simple random walk (2/2)

SRW in the angle 45◦

-������� 6

?-�

�6-

-?

- -

6@@I@@R-�

-�@@I

@@R-

-

. Formula for the excursions (Gouyou-Beauchamps, 1986)

. Holonomic generating function (Bousquet-Melou and Mishna,2010)

What about the SRW in the angle 135◦?

-@@@

@@@I 6

?-�

�6-

-6

-6 -

6���

��-�

-����

-���

-���

Page 22: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Statement of Gessel’s conjecture

-@@@

@@@I 6

?-�

�6-

-6

-6 -

6���

��-�

-����

-���

-���

Conjecture [Gessel (2001)]

QS(t; 0, 0) = 3F2

(5/6 1/2 1

5/3 2

∣∣∣∣ 16t2

)=∞∑

n=0

(5/6)n(1/2)n

(5/3)n(2)n(4t)2n.

Opinion in the combinatorics communityThe generating function QS(t; 0, 0) (thus a fortiori QS(t; x , y))is not algebraic.

Page 23: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 24: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Melou (2001)

. Bousquet-Melou and Petkovsek (1998) Linear recurrences withconstant coefficients: the multivariate case (Nature of thegenerating function)

. Bousquet-Melou (2000) Counting walks in the quarter plane(Basis of a new approach for studying walks in the quarter plane,based on functional equation for generating functions)

Denoting the kernel

KS(t; x , y) = xyt[∑

(i ,j)∈S x i y j − 1/t]

,

one has the functional equation

KSQS(t; x , y) =

KSQS(t; x , 0) + KSQS(t; 0, y)− KSQS(t; 0, 0)− xy .

Page 25: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Melou (2001)

. Bousquet-Melou and Petkovsek (1998) Linear recurrences withconstant coefficients: the multivariate case (Nature of thegenerating function)

. Bousquet-Melou (2000) Counting walks in the quarter plane(Basis of a new approach for studying walks in the quarter plane,based on functional equation for generating functions)

Denoting the kernel

KS(t; x , y) = xyt[∑

(i ,j)∈S x i y j − 1/t]

,

one has the functional equation

KSQS(t; x , y) =

KSQS(t; x , 0) + KSQS(t; 0, y)− KSQS(t; 0, 0)− xy .

Page 26: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Melou (2001)

. Bousquet-Melou and Petkovsek (1998) Linear recurrences withconstant coefficients: the multivariate case (Nature of thegenerating function)

. Bousquet-Melou (2000) Counting walks in the quarter plane(Basis of a new approach for studying walks in the quarter plane,based on functional equation for generating functions)

Denoting the kernel

KS(t; x , y) = xyt[∑

(i ,j)∈S x i y j − 1/t]

,

one has the functional equation

KSQS(t; x , y) =

KSQS(t; x , 0) + KSQS(t; 0, y)− KSQS(t; 0, 0)− xy .

Page 27: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

The conjecture is shared (and made public)

Gessel sends the conjecture to Bousquet-Melou (2001)

. Bousquet-Melou and Petkovsek (1998) Linear recurrences withconstant coefficients: the multivariate case (Nature of thegenerating function)

. Bousquet-Melou (2000) Counting walks in the quarter plane(Basis of a new approach for studying walks in the quarter plane,based on functional equation for generating functions)

Denoting the kernel

KS(t; x , y) = xyt[∑

(i ,j)∈S x i y j − 1/t]

,

one has the functional equation

KSQS(t; x , y) =

KSQS(t; x , 0) + KSQS(t; 0, y)− KSQS(t; 0, 0)− xy .

Page 28: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane(Bousquet-Melou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-

6

��

-

6���

-

6���-@@R?

6

-

6

@@R�6@@I-?

trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane(Mishna, 2003–2009)

Page 29: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane(Bousquet-Melou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-

6

��

-

6���

-

6���-@@R?

6

-

6

@@R�6@@I-?

trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane(Mishna, 2003–2009)

Page 30: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (1/2)

Systematic study of walks with small steps in the quarter plane(Bousquet-Melou and Mishna, 2003–2010)

There are 28 models of walks in the quarter plane:

S ⊆ {↙, ←, ↖, ↑, ↗, →, ↘, ↓}.

Some of these 28 models are:

-

6

��

-

6���

-

6���-@@R?

6

-

6

@@R�6@@I-?

trivial, simple, half-plane, symmetrical.

Finally, it remains 79 problems!

Classifying lattice walks restricted to the quarter plane(Mishna, 2003–2009)

Page 31: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑(i ,j)∈S x i y j =

∑1i=−1 Bi (y)x i =

∑1j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(x ,

A−1(x)

A+1(x)

1

y

), φ(x , y) =

(B−1(y)

B+1(y)

1

x, y

),

and thus under any element of the group⟨ψ,φ

⟩.

Classification of the 79 = 22 + 1 + 56 models(Bousquet-Melou and Mishna, Bostan and Kauers, 2010)

-

6

?

6�-

-

6���

?�

-

6-����

��

-

6

?

6�-���

Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)

Page 32: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑(i ,j)∈S x i y j =

∑1i=−1 Bi (y)x i =

∑1j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(x ,

A−1(x)

A+1(x)

1

y

), φ(x , y) =

(B−1(y)

B+1(y)

1

x, y

),

and thus under any element of the group⟨ψ,φ

⟩.

Classification of the 79 = 22 + 1 + 56 models(Bousquet-Melou and Mishna, Bostan and Kauers, 2010)

-

6

?

6�-

-

6���

?�

-

6-����

��

-

6

?

6�-���

Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)

Page 33: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑(i ,j)∈S x i y j =

∑1i=−1 Bi (y)x i =

∑1j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(x ,

A−1(x)

A+1(x)

1

y

), φ(x , y) =

(B−1(y)

B+1(y)

1

x, y

),

and thus under any element of the group⟨ψ,φ

⟩.

Classification of the 79 = 22 + 1 + 56 models(Bousquet-Melou and Mishna, Bostan and Kauers, 2010)

-

6

?

6�-

-

6���

?�

-

6-����

��

-

6

?

6�-���

Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)

Page 34: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑(i ,j)∈S x i y j =

∑1i=−1 Bi (y)x i =

∑1j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(x ,

A−1(x)

A+1(x)

1

y

), φ(x , y) =

(B−1(y)

B+1(y)

1

x, y

),

and thus under any element of the group⟨ψ,φ

⟩.

Classification of the 79 = 22 + 1 + 56 models(Bousquet-Melou and Mishna, Bostan and Kauers, 2010)

-

6

?

6�-

-

6���

?�

-

6-����

��

-

6

?

6�-���

Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)

Page 35: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Walks with small steps in the quarter plane (2/2)

The group of the walk (Malyshev, 1970)

The polynomial∑(i ,j)∈S x i y j =

∑1i=−1 Bi (y)x i =

∑1j=−1 Aj (x)y j

is left invariant under

ψ(x , y) =

(x ,

A−1(x)

A+1(x)

1

y

), φ(x , y) =

(B−1(y)

B+1(y)

1

x, y

),

and thus under any element of the group⟨ψ,φ

⟩.

Classification of the 79 = 22 + 1 + 56 models(Bousquet-Melou and Mishna, Bostan and Kauers, 2010)

-

6

?

6�-

-

6���

?�

-

6-����

��

-

6

?

6�-���

Order 4 (16) Order 6 (5) Order 8 (2) Order ∞ (56)

Page 36: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 37: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Manuel Kauersand Doron Zeilberger (2008)Illustration by Kreweras walksFirst written appearance of Gessel’sconjecture

No proof of the conjecture

Page 38: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Kauers and Zeil-berger (2008). Illustration by Kreweras walks. First written appearance of Gessel’sconjecture

. No proof of the conjecture

Page 39: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Kauers and Zeil-berger (2008)

. Illustration by Kreweras walks

. First written appearance of Gessel’sconjecture

. No proof of the conjecture

Page 40: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Kauers and Zeil-berger (2008). Illustration by Kreweras walks

. First written appearance of Gessel’sconjecture

. No proof of the conjecture

Page 41: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Kauers and Zeil-berger (2008). Illustration by Kreweras walks. First written appearance of Gessel’sconjecture

. No proof of the conjecture

Page 42: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

January 28, 2008

Two talks in seminar “Algorithms” (Philippe Flajolet’s team)at Inria Paris-Rocquencourt

.Establishing Non-D-finiteness of Combinatorial Generating Functions,

Marni Mishna

.Integration of Algebraic Functions using Grobner Bases, Manuel Kauers

Computer-aided approach to guessand prove recurrence relations.The quasi-holonomic ansatz and re-stricted lattice walks, Kauers and Zeil-berger (2008). Illustration by Kreweras walks. First written appearance of Gessel’sconjecture

. No proof of the conjecture

Page 43: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summer 2008: proof of Gessel’s conjecture

Proof of Ira Gessel’s lattice path conjecture

(Kauers, Koutschan and Zeilberger)

To that end, D.Z. offers a prize of one hundred (100) US dollars for a short, self-contained, human-generated (andcomputer-free) proof of Gessel’s conjecture, not to exceed five standard pages typed in standard font. The longerthat prize would remain unclaimed, the more (empirical) evidence we would have that a proof of Gessel’sconjecture is indeed beyond the scope of humankind.

The complete generating function for Gessel walks is algebraic

(Bostan and Kauers)

Page 44: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summer 2008: proof of Gessel’s conjecture

Proof of Ira Gessel’s lattice path conjecture

(Kauers, Koutschan and Zeilberger)

To that end, D.Z. offers a prize of one hundred (100) US dollars for a short, self-contained, human-generated (andcomputer-free) proof of Gessel’s conjecture, not to exceed five standard pages typed in standard font. The longerthat prize would remain unclaimed, the more (empirical) evidence we would have that a proof of Gessel’sconjecture is indeed beyond the scope of humankind.

The complete generating function for Gessel walks is algebraic

(Bostan and Kauers)

Page 45: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summer 2008: proof of Gessel’s conjecture

Proof of Ira Gessel’s lattice path conjecture

(Kauers, Koutschan and Zeilberger)

To that end, D.Z. offers a prize of one hundred (100) US dollars for a short, self-contained, human-generated (andcomputer-free) proof of Gessel’s conjecture, not to exceed five standard pages typed in standard font. The longerthat prize would remain unclaimed, the more (empirical) evidence we would have that a proof of Gessel’sconjecture is indeed beyond the scope of humankind.

The complete generating function for Gessel walks is algebraic

(Bostan and Kauers)

Page 46: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in ddt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic(closure properties of holonomic functions), but problem ofdetermining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operatorkilling QS(t; x , y), a surprising result suggests that the functionsare in fact algebraic!

. August 26: They find vanishing polynomials for the generatingfunctions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)not discovered earlier?)

Page 47: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in ddt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic(closure properties of holonomic functions), but problem ofdetermining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operatorkilling QS(t; x , y), a surprising result suggests that the functionsare in fact algebraic!

. August 26: They find vanishing polynomials for the generatingfunctions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)not discovered earlier?)

Page 48: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in ddt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic(closure properties of holonomic functions), but problem ofdetermining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operatorkilling QS(t; x , y), a surprising result suggests that the functionsare in fact algebraic!

. August 26: They find vanishing polynomials for the generatingfunctions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)not discovered earlier?)

Page 49: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in ddt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic(closure properties of holonomic functions), but problem ofdetermining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operatorkilling QS(t; x , y), a surprising result suggests that the functionsare in fact algebraic!

. August 26: They find vanishing polynomials for the generatingfunctions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)not discovered earlier?)

Page 50: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

History of the algebraicity

(waste of time because of the rumor of the non-algebraicity)

. January 28: talk of Manuel Kauers

. February 22: guessed diff. eq. for QS(t; x , 0) and QS(t; 0, y).

I The diff. eq. are huge: degree 11 in ddt , 96 in t, 78 in x , and

integers of 61 decimal digits.

I In principle, sufficient to prove that QS(t; x , y) is holonomic(closure properties of holonomic functions), but problem ofdetermining 1.5 billon integer coefficients. . .

. July 29: testing one more property expected from the operatorkilling QS(t; x , y), a surprising result suggests that the functionsare in fact algebraic!

. August 26: They find vanishing polynomials for the generatingfunctions, and make their result public.

. People were surprised. (Why was the algebraicity of QS(t; 0, 0)not discovered earlier?)

Page 51: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 52: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 53: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 54: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 55: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 56: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 57: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Complex analysis methods

Fayolle, Iasnogorodski and Malyshev (70’s)

An analytical method in the theory of two-dimensional positiverandom walks, Malyshev (1972)Two coupled processors: the reduction to a Riemann-Hilbertproblem, Fayolle and Iasnogorodski (1979)

. Functional equation

. Boundary value problem

. Expression for the generating function in terms of Cauchyintegrals

Kurkova and R. (2009)

Explicit expression for the generating function counting Gessel’swalks, Kurkova and R. (2009)

. Explicit expression

QS(t; x , 0) =

∫Ct

f (t; u)

u − xdu.

Page 58: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other methods

Petkovsek and Wilf (2008)

On a conjecture of Gessel. Expression of Gessel’s numbers in terms of determinants

Ping (2009)

Proof of two conjectures of Petkovsek and Wilf on Gessel walks. Probabilistic approach of Gessel’s conjecture (reflection principle,etc.)

Ayyer (2009)

Towards a human proof of Gessel’s conjecture. Representation theory and walks on alphabets

Fayolle and R. (2009)

On the holonomy or algebraicity of generating functions countinglattice walks in the quarter plane. Algebraic methods (Galois theory)

Page 59: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other methods

Petkovsek and Wilf (2008)

On a conjecture of Gessel. Expression of Gessel’s numbers in terms of determinants

Ping (2009)

Proof of two conjectures of Petkovsek and Wilf on Gessel walks. Probabilistic approach of Gessel’s conjecture (reflection principle,etc.)

Ayyer (2009)

Towards a human proof of Gessel’s conjecture. Representation theory and walks on alphabets

Fayolle and R. (2009)

On the holonomy or algebraicity of generating functions countinglattice walks in the quarter plane. Algebraic methods (Galois theory)

Page 60: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other methods

Petkovsek and Wilf (2008)

On a conjecture of Gessel. Expression of Gessel’s numbers in terms of determinants

Ping (2009)

Proof of two conjectures of Petkovsek and Wilf on Gessel walks. Probabilistic approach of Gessel’s conjecture (reflection principle,etc.)

Ayyer (2009)

Towards a human proof of Gessel’s conjecture. Representation theory and walks on alphabets

Fayolle and R. (2009)

On the holonomy or algebraicity of generating functions countinglattice walks in the quarter plane. Algebraic methods (Galois theory)

Page 61: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other methods

Petkovsek and Wilf (2008)

On a conjecture of Gessel. Expression of Gessel’s numbers in terms of determinants

Ping (2009)

Proof of two conjectures of Petkovsek and Wilf on Gessel walks. Probabilistic approach of Gessel’s conjecture (reflection principle,etc.)

Ayyer (2009)

Towards a human proof of Gessel’s conjecture. Representation theory and walks on alphabets

Fayolle and R. (2009)

On the holonomy or algebraicity of generating functions countinglattice walks in the quarter plane. Algebraic methods (Galois theory)

Page 62: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 63: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 64: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 65: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 66: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 67: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 68: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Summary of our approach

Bostan, Kurkova and R. (2013)

A human1 proof of Gessel’s lattice path conjecture

. Finding QS(t; x , y) amounts to finding QS(t; x , 0) andQS(t; 0, y).

. To find the expression of the generating function QS(t; x , 0),find its expressions (its branches, or its Riemman surface).

. A rewriting of the functional equation gives that there is only afinite number of branches and allows to compute the poles of thebranches.

. With the theory of elliptic functions, we obtain an expression ofQS(t; x , 0) in terms of ζ-Weierstrass functions.

. (Relatively) standard identities from the theory of specialfunctions give QS(t; 0; 0) as a sum of hypergeometric functions.

1Of the XIXth century.

Page 69: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main result (in terms of ζ-Weierstrass functions)

Bostan, Kurkova and R. (2013)

2z2Q(0, 0) =+1ζ(1

3ω3

)−3ζ

(2

3ω3

)+2ζ

(3

3ω3

)+3ζ

(4

3ω3

)−5ζ

(5

3ω3

)+2ζ

(6

3ω3

),

with

I ζ(ω) = 1ω+∑

(n1,n3)∈Z2\(0,0)

(1

ω−(n1ω1+4n3ω3) + 1n1ω1+4n3ω3

+ ω(n1ω1+4n3ω3)2

),

I ω1 = i∫ x2

x1

dx√−d(x)

∈ iR,

I ω3 = 34

∫ 1/x2

x2

dx√d(x)∈ R,

I d(x) = (zx2 − x + z)2 − 4z2x2,

I x1 = 1+2z−√

1+4z2z , x2 = 1−2z−

√1−4z

2z .

Page 70: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main result (in terms of ζ-Weierstrass functions)

Bostan, Kurkova and R. (2013)

2z2Q(0, 0) =+1ζ(1

3ω3

)−3ζ

(2

3ω3

)+2ζ

(3

3ω3

)+3ζ

(4

3ω3

)−5ζ

(5

3ω3

)+2ζ

(6

3ω3

),

with

I ζ(ω) = 1ω+∑

(n1,n3)∈Z2\(0,0)

(1

ω−(n1ω1+4n3ω3) + 1n1ω1+4n3ω3

+ ω(n1ω1+4n3ω3)2

),

I ω1 = i∫ x2

x1

dx√−d(x)

∈ iR,

I ω3 = 34

∫ 1/x2

x2

dx√d(x)∈ R,

I d(x) = (zx2 − x + z)2 − 4z2x2,

I x1 = 1+2z−√

1+4z2z , x2 = 1−2z−

√1−4z

2z .

Page 71: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main result (in terms of ζ-Weierstrass functions)

Bostan, Kurkova and R. (2013)

2z2Q(0, 0) =+1ζ(1

3ω3

)−3ζ

(2

3ω3

)+2ζ

(3

3ω3

)+3ζ

(4

3ω3

)−5ζ

(5

3ω3

)+2ζ

(6

3ω3

),

with

I ζ(ω) = 1ω+∑

(n1,n3)∈Z2\(0,0)

(1

ω−(n1ω1+4n3ω3) + 1n1ω1+4n3ω3

+ ω(n1ω1+4n3ω3)2

),

I ω1 = i∫ x2

x1

dx√−d(x)

∈ iR,

I ω3 = 34

∫ 1/x2

x2

dx√d(x)∈ R,

I d(x) = (zx2 − x + z)2 − 4z2x2,

I x1 = 1+2z−√

1+4z2z , x2 = 1−2z−

√1−4z

2z .

Page 72: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main result (in terms of ζ-Weierstrass functions)

Bostan, Kurkova and R. (2013)

2z2Q(0, 0) =+1ζ(1

3ω3

)−3ζ

(2

3ω3

)+2ζ

(3

3ω3

)+3ζ

(4

3ω3

)−5ζ

(5

3ω3

)+2ζ

(6

3ω3

),

with

I ζ(ω) = 1ω+∑

(n1,n3)∈Z2\(0,0)

(1

ω−(n1ω1+4n3ω3) + 1n1ω1+4n3ω3

+ ω(n1ω1+4n3ω3)2

),

I ω1 = i∫ x2

x1

dx√−d(x)

∈ iR,

I ω3 = 34

∫ 1/x2

x2

dx√d(x)∈ R,

I d(x) = (zx2 − x + z)2 − 4z2x2,

I x1 = 1+2z−√

1+4z2z , x2 = 1−2z−

√1−4z

2z .

Page 73: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Context and statement of Gessel’s lattice path conjecture

The conjecture spreads out and other questions appear

A first (computer-aided) proof

Other approaches, without proof

A human (computer-free) proof

Conclusions

Page 74: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other Gessel’s conjectures

Page 75: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Other Gessel’s conjectures

Page 76: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Open questions

. Combinatorial proof of Gessel’s conjectureTowards a combinatorial understanding of lattice pathasymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimensionOn lattice walks confined to the positive octant, byBousquet-Melou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of thegenerating function

Page 77: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Open questions

. Combinatorial proof of Gessel’s conjectureTowards a combinatorial understanding of lattice pathasymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimensionOn lattice walks confined to the positive octant, byBousquet-Melou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of thegenerating function

Page 78: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Open questions

. Combinatorial proof of Gessel’s conjectureTowards a combinatorial understanding of lattice pathasymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimensionOn lattice walks confined to the positive octant, byBousquet-Melou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of thegenerating function

Page 79: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Open questions

. Combinatorial proof of Gessel’s conjectureTowards a combinatorial understanding of lattice pathasymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimensionOn lattice walks confined to the positive octant, byBousquet-Melou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of thegenerating function

Page 80: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Open questions

. Combinatorial proof of Gessel’s conjectureTowards a combinatorial understanding of lattice pathasymptotics, by Johnson, Mishna and Yeats (2013)

. How to win the 100 dollars?

. Combinatorics of walks with big jumps

. Combinatorics of walks with in higher dimensionOn lattice walks confined to the positive octant, byBousquet-Melou, Bostan, Kauers and Melczer

. Link between the finiteness of the group and the nature of thegenerating function

Page 81: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Merci pour votre attention !

Page 82: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of univariate power series

Page 83: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equationwith polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =∑

n sntn such that sn+1

sn∈ Q(n). E.g.

2F1

(a b

c

∣∣∣∣ t

)=∞∑

n=0

(a)n(b)n

(c)n

tn

n!, (a)n = a(a + 1) · · · (a + n− 1).

Page 84: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equationwith polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =∑

n sntn such that sn+1

sn∈ Q(n). E.g.

2F1

(a b

c

∣∣∣∣ t

)=∞∑

n=0

(a)n(b)n

(c)n

tn

n!, (a)n = a(a + 1) · · · (a + n− 1).

Page 85: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equationwith polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =∑

n sntn such that sn+1

sn∈ Q(n). E.g.

2F1

(a b

c

∣∣∣∣ t

)=∞∑

n=0

(a)n(b)n

(c)n

tn

n!, (a)n = a(a + 1) · · · (a + n− 1).

Page 86: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of univariate power series

algebraic

hypergeom

Holonomic series

Holonomic : S(t) ∈ Q[[t]] satisfying a linear differential equationwith polynomial coefficients cr (t)S (r)(t) + · · ·+ c0(t)S(t) = 0.

Algebraic : S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T ].

Hypergeometric : S(t) =∑

n sntn such that sn+1

sn∈ Q(n). E.g.

2F1

(a b

c

∣∣∣∣ t

)=∞∑

n=0

(a)n(b)n

(c)n

tn

n!, (a)n = a(a + 1) · · · (a + n− 1).

Page 87: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of multivariate power series

algebraic series

Holonomic series

S ∈ Q[[x , y , t]] is holonomic if the set of all partial derivatives of Sspans a finite-dimensional vector space over Q(x , y , t).

S ∈ Q[[x , y , t]] is algebraic if it is the root of a P ∈ Q[x , y , t, T ].

Page 88: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Important classes of multivariate power series

algebraic series

Holonomic series

S ∈ Q[[x , y , t]] is holonomic if the set of all partial derivatives of Sspans a finite-dimensional vector space over Q(x , y , t).

S ∈ Q[[x , y , t]] is algebraic if it is the root of a P ∈ Q[x , y , t, T ].

Page 89: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main methods for proving holonomy andnon-holonomy

Page 90: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Main methods

(1) for proving non-holonomy

(1a) Infinite number of singularities, or lacunary(1b) Asymptotics

(2) for proving holonomy

(2a) Diagonals, or positive parts, of rational functions(2b) Guess’n’Prove

. All methods are algorithmic.

Page 91: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

“Guess and Prove” approach

Page 92: Une histoire de la conjecture de Gessel (en combinatoire … · Context and statement of Gessel’s lattice path conjecture The conjecture spreads out and other questions appear A

Methodology for proving algebraicity

Experimental mathematics—Guess’n’Prove—approach:

(S1) high order expansion of the generating series FS(t; x , y);

(S2) guessing candidates for minimal polynomials of FS(t; x , 0)and FS(t; 0, y), based on Hermite-Pade approximation;

(S3) rigorous certification of the minimal polynomials, based on(exact) polynomial computations.