unidad i. cantidades fisicas y vectores. introducción medidas sistemas de unidades análisis...

56
Unidad I. Cantidades fisicas y vectores

Upload: venceslas-perla

Post on 28-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Unidad I. Cantidades fisicas y vectores

Page 2: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Introducción• Medidas• Sistemas de unidades• Análisis dimensional• Estimación y orden de magnitud• Incertidumbre y cifras significativas• Como resolver problemas de física• Vectores

Page 3: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Introducción• La física es una ciencia fundamental.• La física es una ciencia experimental.• Los físicos desarrollan teorías que describen los fenómenos naturales. Todo

teoría es tentativa, que tiene un intervalo de validez determinado.• Los seis campos principales de la física son:

– Mecánica clásica: estudia el movimiento a tamaños relativamente grande comparado con los átomos y a velocidades mucho menores que la velocidad de la luz.

– Relatividad: estudia movimiento a cualquier velocidad y escala.– Termodinámica: estudia calor, trabajo, temperatura y comportamiento estadístico de

muchas partículas.– Electromagnetismo: estudia las propiedades e interacción de la electricidad y

magnetismo.– Óptica: estudia la luz y su interacción con materiales.– Mecánica cuántica: estudia el comportamiento de la materia a escala microscópica y

su relación con observaciones macroscópicas.

Page 4: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Introducción

• Modelo idealizado: es un sistema físico simplificado que facilita comprender lo esencial del mismo. Todo modelo es aproximado de la realidad. La utilización del modelo depende del ámbito de aplicación y el cumplimiento de las premisas. Ejemplos:– Partícula

Page 5: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Medición

Experimento TeoríaMedición

inferenciaFenómeno físico observable

Método científico

Cantidad física

Page 6: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Estándares y unidades

• Cantidad física: es un número y un patrón que describe cuantitativamente un fenómeno físico. Ejemplo, masa, tiempo.

• Las cantidades físicas son descritas con patrones o estándares que tienen definiciones operativas: procedimiento o reglas para obtenerlos. Los patrones son arbitrarios pero adoptados por convenio en la comunidad de científicos y mantenidos por organismos de metrología.

• Al medir una cantidad siempre la comparamos con un estándar de referencia. El estándar define una unidad de la cantidad. Ejemplo:– El metro es una unidad de distancia.– La cantidad física es un número y una unidad. Ej. 6 metros.

Page 7: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cantidades físicas (en mecánica)

Cantidades básicas: En mecánica hay tres cantidades fundamentales:

Longitud (L), masa (M), tiempo (T)

Cantidades derivadas: todas aquellas cantidades físicas que pueden ser expresadas en términos de las cantidades básicas.

Area Volumen VelocidadAcceleraciónFuerzaCantidad de movimiento linealTrabajoDensidadPresiónPotenciaEtc.

Page 8: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

MasaLa unidad SI de masa es el kilogramo, que se define como la masa de una aleación específica de platino-iridio.

TiempoLa unidad SI de tiempo es el segundo, que es el tiempo requerido para que el átomo de de cesio-133 tenga 9192631770 vibraciones.

LongitudLa unidad SI de longitud es el metro, que es la distanca que viaja la luz en el vacío durante un tiempo de 1/2999792458 segundo.

Page 9: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Sistema de unidades

Sistema Internacional de unidades SI):

Longitud: metro (m), masa: kilogramo (kg), tiempo: segundo (s) *Este sistema se basó en el denominado sistema mks para metro-kilogramo-

segundo.

Unidades gaussianas

longitud: centímetro (cm), masa: gramo (g), tiempo: segundo (s) *Este sistema también es denominado cgs por centímetro-gramo-segundo.

Sistema inglés o británico:

Longitud: pie, masa: slugs (, fuerza en libras), tiempo: segundos. (Para longitud utilizan además pulgada, yarda, milla)

Usaremos el sistema SI y tendremos que convertir de un sistema a otro de manera adecuada.

Page 10: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

El sistema SI es de uso obligatorio en República Dominicana

Page 11: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

¿Cuáles de estas cantidades son derivadas?

•Densidad•Longitud•Fuerza•Area•Volumen

Page 12: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Conversión de unidadesNecesitamos que las unidades sean consistentes (de un mismo sistema

de unidades) o convertirlas a otro sistema de unidades.Las unidades se pueden tratar como cantidades algebraicas ordinarias.

1 milla = 1609 m = 1.609 km1 pie = 0.3048 m = 30.48 cm1m = 39.37 pulgada = 3.281pie1pulgada= 0.0254 m = 2.54 cm

1 milla = 5280 pie

Ejemplo: Convierta millas por hora a metros por segundo:

sm

21

sm

447.0s 3600

hora 128.3

m 1milla

pie 5280horamilla 1

horamilla

1 pie

Preguntas:1. Convierta 500 milimetros a metros.2. Convierta 1litro a mililitros.3. Convierta 1.45 metros a pulgadas.4. Convierta 65 millas por hora a

kilómetros por segundo

Page 13: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Procedimiento de conversión de unidades

El procedimiento de conversión consiste en:– Determine los factores de conversión necesarios

– Plantee la igualdad

– Multiplique por el factor de conversión (éste, siempre es igual a la 1) apropiado

– Cancele unidades y haga los cálculos correspondientes.

1 milla = 5280 pie 1m = 3.281pie

1hora = 3600 s

horamilla 1

horamilla

1

sm

21

sm

447.0s 3600

hora 128.3

m 1milla

pie 5280horamilla 1

horamilla

1 pie

sm

21

sm

447.0s 3600

hora 128.3

m 1milla

pie 5280horamilla 1

horamilla

1 pie

1 milla1

5280 pie

5280pie1

1milla

11

3.281

m

pie 3.281

11

pie

m

11

3600

hora

s

36001

1

s

hora

Page 14: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

PrefijosPrefijos corresponden a potencias de 10Cada proefijo tiene un nombre y abreviatura específica

Potencia Prefijo Abrev.

1015 peta P109 giga G106 mega M103 kilo k10-2 centi c10-3 mili m10-6 micro m10-9 nano n10-12 pico p10-15 femto f

Distancia desde la Tierra a la estrella más cercana 40 PmRadio promedio de la Tierra 6 MmTamaño de una célula viva 10 mmTamaño de un átomo 0.1 nm

Page 15: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

http://physics.nist.gov/cuu/Units/prefixes.html

Page 16: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Dimension[L=]L

[M=]M[T=]T

CantidadLongitudMasaTiempo

[A = ]L2 Área

[V=]L3 Volume

[ v =]L/T Velocidad

[a = ]L/T2

[f=]M L/T2

AcceleraciónFuerza

Análisis dimensional

Definición: La Dimension is la naturaleza cualitativa de una cantidad física (longitud, masa, tiempo). Las dimensiones pueden ser tratadas como cantidades algebraicas.

Los corchetes ] [ denotan la dimension o unidades de una cantidad física. También se denota la dimensión por dim. Es decir, ]x[=dim x

Page 17: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

El análisis dimensional se utiliza para verificar si las fórmulas están correctas revisando las dimensiones como cantidades algebraicas. Las cantidades pueden ser pueden ser sumadas o restadas sólo si tienen las mismas dimensiones, y las cantidades de ambos miembros de una ecuación deben tener las mismas dimensiones.

Ejemplo :Usando el análisis dimensional verfique que la ecuación x = ½ at2 Es correcta, donde x es la distancia, a es la aceleración y t es el tiempo.

L]x[ Miembro izquierdo

LTT

L]at

2

1[ 2

22 Miembro derecho

Esta ecuación es correcta porque la dimensión del miembro derecho es igual a la dimensión del miembro izquierdo.

Solución

Page 18: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Ejercicio:1. Demuestre que la expresión x = vt +1/2 at2 es dimensionalmente consistente, donde x es la coordenada y tiene unidades de longitud, v es velocidad, a es aceleración y t es el tiempo.

2. Verifique que el período T de un péndulo simple se mide en unidades de tiempo dado por:, siendo l longitud y g aceleración.

g

lT 2

Page 19: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cifras significativas

• Las mediciones tienen incertidumbre que depende del instrumento de medición, las condiciones ambientales, el proceso de medición.

• La medida de la incertidumbre se denomina error. Error puede ser absoluto o relativo.

• El error es la máxima diferencia probable entre el valor medido y el valor real.

• La exactitud de una medición es el valor medido que estima el valor real.

• La precisión de una medición se refiere al nivel de error de la medición y del instrumento de medida.

Page 20: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cifras significativas• Son aquellos dígitos seguros y uno aproximado de una medida

directa.• Siempre se debe expresar un número indicando sólo las cifras

significativas.• Al multiplicar o dividir número el resultado tiene igual número de

cifras significativas que el menos preciso de ellos.• Cuando sumamos o restamos, los lugares decimales del resultado

debe ser igual que el que tenga el menor número de éstos.

Page 21: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Una medida se denota por:

mm02.047.56

mm

mm

)21(6454.1

0021.06454.1

%1047.56

Page 22: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Ejercicio: cuántas cifras significativas tiene:• A) 5.65 mm• B) 2.340 x105 m• C) 2.31 kg /1.6 m3

• D)2.345 s + 23.5 s + 1.345 s• E) 1.00 x 106 kg

Page 23: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Ejemplo. Un rectángulo tiene una longitud de (21.3 ±0.2)cm y un ancho de (9.80 ±0.1)cm. Encuentre el área y la

incertidumbre del área.Solución:

2

2

)4209(

)80.92.01.03.2180.93.21(

)1.080.9()2.03.21(

cm

cm

cmcmbhArea

Page 24: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Precisión y exactitud

• Exactitud: se refiere a cuán cerca está un valor del valor verdadero.

• Precisión: se refiere al grado de dispersión de los valores respecto a un valor medio.

Ejemplo, Medición de tiempo:a) Reloj exacto y poco precisob) Reloj exacto pero precisoc) Reloj exacto y precisod) Reloj poco exacto y poco preciso

Page 25: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Estimaciones y orden de magnitud

• Orden de magnitud: es la potencia de 10 más cercana al número. Se denota por o(x), x ~.

• Estimaciones: a partir de informacion disponible, planteando premisas razonables y calculos sencillos. Tambien se denominan problemas de Fermi, en honor a Enrico Fermi.

Page 26: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Ejemplo:• Estime el numero de respiraciones durante la

vida promedio de una persona.Solución:

Premisas:1. Una persona vive aproximadamente 70 años.2. Una persona unas 10 veces por minuto.

min106min

60254001 5hdia

hañodias

añoNúmero de minutos de un año:

nesrespiracionesrespiracio

años 85 104min

10min)106)(70(

Número de respiraciones

Page 27: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cómo resolver problemas de física• Identificar

– Modelo idealizado– Tipo de problema– Variables, datos, supuestos– Construir diagrama, gráfico, marco de referencia, de la situación física

• Plantear– Estrategias u opciones de solución– Fórmulas

• Ejecutar– Realizar los cálculos, despeje de variables, etc.– Control de unidades de medida, análisis dimensional, cifras significativas

• Evaluar– ¿es razonable la solución?– Comprobación rápida por otro camino u opción identificada en Planteamiento.– Buscar el orden de magnitud y comparar con los resultados.

Page 28: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Sistema de coordenadas y vectores

Page 29: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Sistemas de coordenadas y marcos de referencia

La ubicacion de un punto en una linea se puede describir por una coordenada; un punto en el plano se puede describir con dos coordenadas; un punto en tres dimenensiones se puede describir por tres coordenadas. En genera, el numero de coordenadas es igual al numero de dimensiones espaciales. Un sistema de coordenadas consiste de:

1. Un punto fijo de referencia denominado origen.

2. Un conjunto de ejes con direcciones y escalas especificas

3. Instrucciones que especifican como designar un punto en el espacio relativo al origen y los ejes.

Page 30: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y
Page 31: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Sistema de coordenadas cartesianas• También se llama sistema de

coordenadas rectangulares• Ejes x (abscisas) e y (ordenadas)• Los puntos se designan por (x,y)

Sistema de coordenada polar El origen y la linea de referencia

se señalan en la figura un punto se representa como

una distancia r desde origen en la dirección del ángulo

Los puntos se designan por (r,)Línea de referencia

Page 32: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

La relación entre las coordenadas polares y rectangulares es:

x rcos rseny

22 yxr

x

ytan

Por el Teorema de Pitágoras:

Ejercicio: Un punto se localiza en un sistema de coordenadas polares con direccion y distancia .

Encuentre las coordenadas x e y de este punto, asumiendo que ambos sistemas de coordenadas tienen el mismo origen.

5.2r 35

Page 33: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Ejemplo :Las coordenadas cartersianas de un punto son (x,y)= (-3.5,-2.5) metro. Encuentre la coordenada polar de este punto.

Solución:

21636180

36714.0tan

714.05.35.2

tan

1

xy

myxr 3.4)5.2()5.3( 2222

Note que debe utilizar los signos de x y de y para encontrar que se encuentra en el tercer cuadrante del sistema de coordenadas, es decir . Lo cual no es 36 216

Page 34: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Escalares y vectores Los escalares tiene solamente magnitud. Ejemplo de escalares son la longitud, el tiempo, la masa, la densidad, el volumen.

Los vectores tienen magnitud y dirección. La magnitud del vector se escribe como  Son cantidades vectoriales la posición, el desplazamiento, la velocidad, la aceleración, la fuerza, entre otros.

v

v

Page 35: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Propiedades de Vectores

Igualdad de vectoresDos vectores son iguales si tienen la misma magnitud y la misma

dirección

Movimiento de vectores en un diagramaCualquier vector puede moverse de manera paralela a él mismo sin

que sea afectado (no cambia la magnitud ni la dirección).

Page 36: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Vectores negativosDos vectores son negativos si tienen la misma magnitud pero

dirección opuesta, es decir, 180°

Multiplicación o división de un vector por un escalar resulta en un vector en el cual (a) Sólo cambia la magnitud si el escalar es positivo. (b) La magnitud cambia y la dirección es opuesta si el escalar es negativo

Page 37: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Suma de vectores

Métodos para sumar vectores:

Métodos gráficos• Método del triágulo• Método del polígono• Método del paralelogramo

Métodos analíticos o método de componentes

Page 38: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Métodos Gráficos de suma de vectores (Método del triángulo)

Los vectores se dibujan a escala colocando “cabeza” de uno con la “cola” del siguiente, manteniendo las direcciones de cada vector.

La resultante R o vector suma se traza del origen de A a la cabeza o extremo final del último vector (B)

Se mide la longitud de R y su ángulo.

Page 39: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

La suma de vectores se hace a escala

Este vector es el resultado de sumar los tres vectores en cualquier orden.Escala en km

Page 40: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cuando se tienen varios vectores, se repite el proceso hasta que se incluya al último vector

La resultante es el vector trazado desde el origen del primer vector al extremon final o cabeza del último vector.

Métodos Gráficos de suma de vectores (Método del polígono)

Page 41: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Métodos gráficos(Método del paralelogramo)

Para dos vectores, se puede utilizar el método del paralelogramo

Todos los vectores, incluyen la resultante, se dibujan desde un origen común.

Los lados que restan del paralelogramo se dibujan para determinar la diagonal, que es el vector suma, R

Page 42: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Resta de vectores

Es un caso especial de la suma de vectores

A – B, es equivalente a A+(-B)Y se suma con el

procedimiento estándar de suma vectorial

Page 43: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Relaciones importantes en la suma de vectores

• Ley de los senos

• Ley de los cosenosA

B

C

b a

c

Sea el triangulo ABC de angulos A, B y C y lados a, b y c, como se muestra en la Figura.

a b c

sen A sen B sen C

2 2 2 2 cosc a b ab C

Page 44: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Componentes de un vector

Son las proyecciones del vector en los ejes x e y.

Page 45: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

La componente -x- de un vector es la proyección en dirección al eje x

La componente –y de un vector es la proyección en dirección del eje y

entonces

cosxA A

x yA A A

x

yyx A

AyAAA 122 tan

AsenAy

Donde es el vector componente horizontal y es el vector componente vertical. xA

yA

Page 46: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Suma de vectores por el método analítico o método de componentes

(1) Elija el sistema de coordenadas y dibuje los vectors (2)Encuentre los componentes x e y de todos los vectores(3) Sume todas las componentes x

Así resulta Rx: xx vR

yy vR

(4)Sume todas las componentes y

Esto da a Ry

Page 47: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

(5) Encuentre la magnitud de la Resultante

(6) Busque la tangente inversa para encontrar la dirección de R:

2y

2x RRR

x

y1

R

Rtan

Page 48: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

• Es conveniente crear un cuadro para facilitar la suma de las componentes:

Vector Magnitud Dirección Componente x Componente y

A

B

C

Total Rx= Ry=

2y

2x RRR

x

y1

R

Rtan

Page 49: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Vectores unitarios

• Un vector unitario es un vector con magnitud igual a 1 y sin unidades

• Se utiliza para especificar la dirección.• Un vector u apunta en la dirección de U

– Se denota por un “sombrero“: u = û o bien , para el vector A, el vector unitario es

U = |U| û

û

x

y

z

i

j

k

Ejemplos de vectores uintarios son los vectores unitarios cartesianos i, j, k

Apuntan en la dirección de los ejes x, y z.

R = rx i + ry j + rz k

Ae

Page 50: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y
Page 51: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Ejemplo :Una partícula realiza tres desplazamientos consecutivos dados por:

,cm)kj3i(d1 cm)k3ji2(d 2 cm)ji(d3

Encuentre el desplazamiento resultante de la partícula.

cm)k4j3i2(R

k)031(j)113(i)121(dddR 321

cm4R,cm3R,cm2R zyx

cm39.5RRRR z2

y2

x2

Solución:

El desplazamiento resultante tiene las componentes

La magnitud es

Page 52: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Problema 1: Encuentre la suma de los vectores A y B ubicados en el plano xy y dados por

Problema 2: Una partícula ejecuta tres desplazamientos consecutivos :

Encuentre las componentes del desplazamiento resultante ,y la magnitud y dirección

mjiBmjiA )42(,)22(

cmjid

cmkjidcmkjid

)1513(

,)51423(,)123015(

3

21

Page 53: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Propiedades de operaciones con vectores

• Suma de vectores– Ley conmutativa de la adición:

– Ley asociativa de la adición:

a b b a

( ) ( )a b c a b c a b c

Page 54: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Marco de referencia

• El marco de referencia es un sistema de coordenadas y un reloj para medir el tiempo

Page 55: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Cómo resolver problemas de física

• Método general de resolución de problemas– Identificar– Plantear– Ejecutar y controlar– Evaluar

• Plantilla de resolución de problemas

Page 56: Unidad I. Cantidades fisicas y vectores. Introducción Medidas Sistemas de unidades Análisis dimensional Estimación y orden de magnitud Incertidumbre y

Plantilla para resolver problemas de física1. Identificar•Situación física•Pregunta (s)•Tipo de problemas (tema)•Modelo del problema (represente la situación física mediante uno o varios de los siguientes: dibujo, diagrama, gráfico, marco de referencia, esquema, mapa)

2. Plantear•Definición de variables •Clasificar variables en dependiente e independiente, si es necesario•Datos conocidos•Incógnitas•Premisas o suposiciones•Opciones de solución (estrategias distintas para resolver el problema)•Elección de opción de solución•Método matemático a utilizar

4. Evaluar•¿La solución es razonable?•Compare resultados con la pregunta del paso 1. Identificación, ¿se respondieron las preguntas?•Haga comprobación rápida, aproximada, por otra de las estrategias identificadas en el paso 2.

3. Ejecutar •Resolver con la estrategia seleccionada•Controlar: a) consistencia de dimensiones, b) consistencia de unidades de medida, c) cifras significativas, d) escribir número y unidad de medida si es escalar, y además dirección si es vector.