uniform polynomial approximation of even and odd …

36
UNIFORM POLYNOMIAL APPROXIMATION OF EVEN AND ODD FUNCTIONS ON SYMMETRIC INTERVALS by CHARLES BURTON DUNHAM B.A., The University of British Columbia, 1959 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS In the Department of MATHEMATICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January, 1963

Upload: others

Post on 03-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

UNIFORM POLYNOMIAL APPROXIMATION OF EVEN AND ODD FUNCTIONS ON

SYMMETRIC INTERVALS

by

CHARLES BURTON DUNHAM B.A., The U n i v e r s i t y of B r i t i s h Columbia, 1 9 5 9

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

In the Department

of

MATHEMATICS

We accept t h i s t h e s i s as conforming to the r e q u i r e d standard

THE UNIVERSITY OF BRITISH COLUMBIA • January, 1 9 6 3

In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of

the requirements f o r an advanced degree at the U n i v e r s i t y of

B r i t i s h Columbia, I agree tha t the L i b r a r y s h a l l make i t f r e e l y

a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission

f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be

granted by the Head of my Department or by h i s representatives.

It i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r

f i n a n c i a l gain s h a l l not be alloxred without my written permission.

Department of ^\ ajfcAyao^J^w*-*

The U n i v e r s i t y of B r i t i s h Columbia, Vancouver S, Canada.

Date fcAh^/t^ 1% j H<3

ABSTRACT

An odd or even continuous f u n c t i o n on a symmetric i n t e r v a l C-a,a] can

be evaluated i n two d i f f e r e n t ways, each using only one uniform polynomial

approximation. I t i s of p r a c t i c a l importance t o know which method of

e v a l u a t i o n takes fewer a r i t h m e t i c operations. This i s a s p e c i a l case of a

more general problem, which i s concerned w i t h the opt i m a l s u b d i v i s i o n o f

the i n t e r v a l of e v a l u a t i o n of a f u n c t i o n f i n t o s u b - i n t e r v a l s , on each o f

which f has a uniform polynomial approximation.

In the f i r s t three chapters a method o f computing the number of

a r i t h m e t i c operations f o r e v a l u a t i o n i s developed. Expansions i n Chebyshev

polynomials are s t u d i e d , w i t h emphasis on the p r a c t i c a l problem o f computing

c o e f f i c i e n t s , and then i t i s shown how the expansion i n Chebyshev polynomials

may be used t o o b t a i n t r u n c a t i o n e r r o r bounds f o r the uniform polynomial

approximation. From these bounds the r e q u i r e d degree f o r the approximation

and the r e q u i r e d number of m u l t i p l i c a t i o n s f o r e v a l u a t i o n may be e a s i l y

determined. Tables o f computed r e s u l t s are given.

In Chapter k t h e o r e t i c a l r e s u l t s are developed from the theory of

Lagrange i n t e r p o l a t i o n and these r e s u l t s are i n agreement w i t h the computed

r e s u l t s o c t a i n e d p r e v i o u s l y . In the problem of e v a l u a t i o n of even and odd

fu n c t i o n s on £-a,aJ , use of the uniform polynomial approximation on £-a,aJ

i s advantageous unless the r a t e of increase o f the d e r i v a t i v e o f f i s r a p i d .

In the general case of e v a l u a t i o n o f a continuous f u n c t i o n , use of approximat­

ions on s u b - i n t e r v a l s becomes more advantageous the more r a p i d l y the

d e r i v a t i v e s of f increase.

Ill TABLE OF CONTENTS

I n t r o d u c t i o n . . . . . . . . . . . . 1

Chapter 1.- Expansion of a'Function,in Chebyshev 6 Polynomials • Table 1 . C o e f f i c i e n t s of the Expansion of f ( x ) = a r c t a n x and f ( x ) = cos: x.-in Chebyshev Polynomials . . . . . . . . . . . . . . . 10

Chapter. 2. Uniform Polynomial' Approximations 13

Chapter 3- Computation.of the•Reduction of Required Polynomial Degree by-Shortening the I n t e r v a l of Approximation . . . . . . l8-

Table 2. Degree Required to.'Approximate the f u n c t i o n s f ( x ) . = cos x, f ( x ) , = s i n h x ^ a n d f( x ) . = a r c t a n x on £-l,l] and [b,l~]. ... .... . . • 19

Table :3- Degrees Required to'Approximate the f u n c t i o n f (x) -A- .en £-1,1^ and,its.sub-i n t e r v a l s . x + 2 . . 2 1

Table k. Degrees Required to Approximate .the f unction f ( x ) = e x on Q-1,1^ and i t s sub-i n t e r V a l s . 22

Chapter:k. T h e o r e t i c a l Considerations.on Shortening the I n t e r v a l of Approximation ... . . . ... . . . . . 2k

B i b l i o g r a p h y 30

i v

• ACKNOWLEDGEMENT

The author-wishes, to acknowledge h i s indebtedness, to Dr. T.E. H u l l , f o r

h i s p a t i e n t .guidance, i n f o r m u l a t i n g t h i s t h e s i s .

\To the s t a f f of the Computing Centre of the U n i v e r s i t y of B r i t i s h

Columbia,,the.author expresses h i s thanks. T h e i r e f f o r t s , made p o s s i b l e

the v e r i f i c a t i o n i n p r a c t i c e of t h e o r e t i c a l r e s u l t s .

F i n a l l y , the author thanks the N a t i o n a l Research C o u n c i l of Canada

f o r - t h e i r f i n a n c i a l support.

INTRODUCTION

Let f be a f u n c t i o n which i s continuous on a given f i n i t e i n t e r v a l

Ca,bl . In t h i s t h e s i s we consider some problems i n approximating f on th a t

i n t e r v a l u s i n g polynomial approximations.

A polynomial approximation f o r use i n the approximation o f f on a d i g i t a l

computer should s a t i s f y two c o n d i t i o n s . Let P be a polynomial approximation

to f on Cajb1 > and de f i n e

A P = f | f - P l l = sup |f(x) - P(x) / (0.1) x € Ca,b]

In a computing problem, we are given £ , Z. > 0, and the f i r s t c o n d i t i o n

which we impose on the polynomial approximation P i s th a t < E • The

Weieratrass approximation theorem s t a t e s t h a t i f f i s continuous on £a,b^J

and £. > 0 i s given, then there e x i s t s a polynomial P such t h a t AP < £

I f AP <• L , we say t h a t P approximates f u n i f o r m l y on £a,b]] w i t h i n accuracy

£. , or simply , P approximates f w i t h i n accuracy £ .

The second c o n d i t i o n t h a t the polynomial approximation P should s a t i s f y

i s t h a t machine time f o r the e v a l u a t i o n o f P be minimal, or e q u i v a l e n t i y , t h a t

the number of a r i t h m e t i c operations r e q u i r e d f o r the e v a l u a t i o n o f P be minimal.

Normally t h i s merely i m p l i e s t h a t the degree o f P i s minimal.

Given E > 0, we would l i k e t o o b t a i n a polynomial P such t h a t A P < £ .

and P i s minimal i n degree. A theorem o f Chehyshev s t a t e s t h a t i f the f u n c t i o n

f i s continuous on the f i n i t e i n t e r v a l La, , then the c l a s s of a l l

polynomials o f degree n or l e s s c o n t a i n s a unique polynomial P f o r which A P

i s minimal. We c a l l t h i s polynomial P the best uniform polynomial approximation

of degree n, or simply, the best approximation o f degree n. C l e a r l y , i f we

have a sequence of best polynomial approximations of i n c r e a s i n g degree we can

e a s i l y f i n d a polynomial P of minimal degree such t h a t AP < t. •

I n . p r a c t i c e the best polynomial approximation i s d i f f i c u l t to o b t a i n ,

and we use other polynomial approximations, which. can .be•• determined more

e a s i l y . For these approximations. A P i s only s l i g h t l y h igher, f o r the same

degree,.than f o r the best approximation. .Any, such approximation w i l l be

c a l l e d a uniform approximation.

The p r i n c i p a l problem .inves t i g a t e d i n t h i s paper concerns the

approximation of odd-and even f u n c t i o n s on a symmetric : i n t e r v a l C-a,a~3 . We

can evaluate one-of the uniform polynomial, approximations to • the f u n c t i o n on

[_-a,a"] . There i s , . however, . an ; a l t e r n a t i v e method of approximation, which

.also uses only, one•uniform'polynomial.approximation. We observe that, i f ' P(x)

i s a - uniform polynomial, approximation to f.on Co, al then P(-x) i s - a uniform

polynomial approximation to f, on £-a ,0~].if f i s even, and -P(-x) i s a uniform

.polynomial approximation to f on C-a,o]] i f f i s . odd. • Thus to .approximate f

on C-a,a1 we merely evaluate P|( \x\), changing s i g n . only.-if f i s . odd. and x

i f negative. We would, l i k e - t o know which.of these•two procedures, i s b e t t e r

f o r the e v a l u a t i o n of f on C-a^a"] on,a d i g i t a l , computer. This problem c l e a r l y

reduces to the problem of f i n d i n g which, of the two e v a l u a t i o n procedures

requires fewer a r i t h m e t i c operations.

-This problem of e v a l u a t i o n o f odd.and-even f u n c t i o n s • i s . a s p e c i a l case of

a problem of much grea t e r computational s i g n i f i c a n c e . I f we wish to

approximate a continuous, f u n c t i o n f on a f i n i t e • i n t e r v a l CAJD1 > we may

evaluate a s i n g l e uniform .polynomial approximation•P to f on [ a , b j . We

•may.-instead prefer-a-more complex e v a l u a t i o n procedure which can reduce

e v a l u a t i o n time c o n s i d e r a b l y . We p a r t i t i o n i n t o m i n t e r v a l s ,

I i .= £^Xj_ , xi+1~3 , i = l , ...m, where

We-obtain a uniform polynomial approximation P- t o f on.Ij_ f o r i = I , ...m.

a - x i x 2 • • • • < <. Xm+i = b

Approximation of f ( x ) on £a,b~| on a d i g i t a l computer would r e q u i r e two steps..

In the f i r s t . s t e p the i n t e r v a l 1 1^ which contains, x would be found... In the

second s t e p P j _ ( x ) would be evaluated. • This, e v a l u a t i o n procedure w i l l be

of advantage i f the degrees of Pj_(x) are much l e s s ' t h a n the • degree .of; P,

the uniform .polynomial approximation t o - f on Ca>b~] . This procedure of

e v a l u a t i o n .on p a r t i t i o n s of [a,b~] w i l l require-more machine memory. Our

problem .in . practice • i s , . f i r s t , . - t o choose m, , the -number. of. i n t e r v a l s i n the

p a r t i t i o n .

Once m i s chosen, . a p a r t i t i o n of , [a., b"] must be chosen. -Let £. 7 0. and.

an i n t e g e r m be given. L e t ^ ^ be the c l a s s of a l l p a r t i t i o n s IT of fa,bj

i n t o m i n t e r v a l s . On.each sub i n t e r v a l Ij_ .= [x^,, x +-[_^J. there e x i s t s • a

polynomial Pj_ of minimal degree such, t h a t P^ approximates f uniformly, on 1^

w i t h i n accuracy £. . Corresponding to e a c h : p a r t i t i o n there e x i s t s

.an approximation procedure which .consists of t h e - e v a l u a t i o n of the approximation

Pj_ on the interval'.Ij_ .. • Each of these procedures, approximates f uniformly, on

(2 a,b~J. w i t h i n , accuracy £.. Since the number of i n t e r v a l s i s the same f o r :

each .approximation .procedure, „• we-expect storage •requirements to be the same.

Thus the only, d i f f e r e n c e between,-approximation procedures.-will-be-in ,the

•number, of a r i t h m e t i c .operations, r e q u i r e d to •• approximate f. Assuming t h a t

the d i f f e r e n t values..of x a r e - e q u a l l y / l i k e l y , . we define, the mean degree of

the-approximation :procedure connected w i t h the p a r t i t i o n TTto be

m ,

D( TT) = -D( 7T , m. , e ) = ^ - d i ( x i + 1 - x i ) (0.2) 1=1 .

where d'.. i s the..degree .of the polynomial approximation 'Pj_ on: 1^ ,= f^iJ x±+i^] ••

Since the number.of m u l i t p l i c a t i o n s r e q u i r e d to - evaluate a polynomial i s equal

to the-degree of the -polynomial, D( "TT ) , i s the mean :number.of m u l t i p l i c a t i o n s

r e q u i r e d .in-.the - approximation procedure connected.with the p a r t i t i o n TT..

Thus a n a t u r a l c r i t e r i o n f o r the choice .of a p a r t i t i o n TT i s t h a t D( If , ft\ ,

he minimal.

An e f f i c i e n t method for. o b t a i n i n g .such a p a r t i t i o n 71 i s not yet .known,

nor do we. even know.whether, such :a p a r t i t i o n has any other p r o p e r t i e s , which

.characterize •. i t . These questions may be answered .soon, . since-the f o l l o w i n g

c l o s e l y , r e l a t e d problem,. which we w i l l c a l l the -minimax p a r t i t i o n i n g problem,

has been solved completely. • Let f be-a continuous, f u n c t i o n on /~a,bJ and

l e t i n t e g e r , » and n be given, rat TT £ P m , the c l a s 5 C a l l p a r t i t i o n s

of | ^ L,b^ i n t o m i n t e r v a l s . • Let be-the best-approximation .of degree n

o n l ^ to f,. and. define

i E n = sup ( f ( x ) . - P i ( x ) ( 0 . 3 ) x ^ T - i

= sup ^ (0,4) i = l , . . .m

The problem.is to.choose T T C Qm such.that A P • i s • minimal. I t can be

shown t h a t A P a t t a i n s i t s infimum when

l K n ' = 2 En " mEn —

andTTmay.be determined by l i n e a r programming.

I f we decide to p a r t i t i o n Ca,bj i n t o m i n t e r v a l s , . we should c l e a r l y . u s e

the p a r t i t i o n f o r which D( TT , 1Y\ , £..).• i s minimal. To make an i n t e l l i g e n t

c h o i c e , of m requires-.therefore t h a t we-compute f o r a l l m of i n t e r e s t

Sm = i n f D( TT , tn, t.) . ( 0 . 5 )

where ^ . i s the minimal mean number of m u l t i p l i c a t i o n s f o r the approximation

of f w i t h i n accuracy £ on a p a r t i t i o n of £a,bj i n t o m i n t e r v a l s , . a n d

.compute-also the storage r e q u i r e d f o r . t h i s e v a l u a t i o n procedure. • As m

inc r e a s e s , ^ . decreases and storage-requirements increase. - We weigh a

• '5-

decrease i n e v a l u a t i o n time against an.increased storage requirement i n

choosing m. Given £. >.0, we can choose, m s u f f i c i e n t l y l a r g e ' t h a t • a l l the

polynomial approximations would be constants • and", our e v a l u a t i o n procedure

would be a t a b l e • l o o k - u p ; t h i s would hardly.be•an e f f i c i e n t use of storage.

In Chapter 3 we give computed r e s u l t s r e l e v a n t to these problems.

Chebyshev.polynomials, on £-l,l] and the expansion of a f u n c t i o n . i n

Chebyshev.polynomials on £l,lj..are studied, in' d e t a i l , i n Chapter 1. An.

.important reason f o r t h i s study i s t h a t the methods, of o b t a i n i n g uniform

polynomial approximations depend on the p r o p e r t i e s , of expansions.in

• Chebyshev. polynomials, f o r t h e i r t h e o r e t i c a l j u s t i f i c a t i o n . • Further,. the

most u s e f u l of these methods, i s t r u n c a t i o n of. the expansion ,of. the-.(function

i n Chebyshev polynomials. Thus the computation of the c o e f f i c i e n t s of

the expansion of a f u n c t i o n i n Chebyshev polynomials, i s of great p r a c t i c a l

: importance,. and i s t r e a t e d . i n d e t a i l in.Chapter 1. At the end of Chapter.2

we - show how.the c o e f f i c i e n t s of the expansion of a f u n c t i o n i n Chebyshev

.polynomials can o f t e n be•used .to obtain.a good'estimate of AP f o r the

best uniform polynomial approximation.

I t i s o f t e n convenient to deal only w i t h approximation on the standard

i n t e r v a l f-l,l~J although sometimes we may f i n d , i t u s e f u l to d e a l w i t h

approximation on (0, 1~] a l s o . ; • By ' l i n e a r change - of v a r i a b l e we can . always

reduce the problem of uniform approximation on £a,b} to the problem .of

uniform approximation on a standard . i n t e r v a l . By using the standard

i n t e r v a l f-1, .il we need only, deal w i t h the•• Chebyshev polynomials, on

CHAPTER 1

EXPANSION OF A FUNCTION IN CHEBYSHEV POLYNOMIALS

F i r s t we summarize the pr o p e r t i e s , of the Chebyshev polynomials.which

we w i l l f i n d u s e f u l , l a t e r .

The k t h Chebyshev polynomial on [ r l , l j , T j £ ( x ) , ! i s d e f i n e d by

T ^ x ) = cos (k. arc cos x) - l * x i ' l (l»l)

From the a d d i t i o n formula f o r cosines • we ob t a i n the r e c u r s i o n . r e l a t i o n

T r + 1 (x) - 2 x T r ( x ) + T ^ U ) ,= 0 (1.2)

which, together w i t h the s t a r t i n g values

T 0 ( x ) .= 1 T-^x) .= x (1.3)

enables us t o express Chebyshev polynomials i n powers of x. Using ( l . 2 )

we can,show t h a t T k ( x ) i s a k t h degree polynomial and.that, i f k. i s .even

(odd)., so i s T k ( x ) . The values of T k ( x ) ; a t c e r t a i n . p o i n t s are of i n t e r e s t .

T k ( l ) . = 1 T k(:-1).= ( - l ) k T 2 k ( 0 ) . = ( - l ) k T 2 k + 1 ( 0 ) . = 0 (l.k)

We introduce n o t a t i o n which w i l l be used f r e q u e n t l y .

n 1 a j = -j + a l + •••• + S - l + ^ - 5 )

-J —u

t. 1 1 a i = !2. + a l +••••+ + f n (l -6) j=0 2 2

I f we wish to w r i t e powers of x i n terms of Chebyshev polynomials, we use

2k+l n k = ~^T I. ( 2 k + l ; ) T x ( x ) (1.8)

2 j=0 k-j d J

Frequently we f i n d the f o l l o w i n g t r a n s f o r m a t i o n u s e f u l

x = cos e Tk(x) = cos. k e - I ^ X ^ I oie^7r

The zeros of T n ( x ) (cos n, ©) are l o c a t e d at the n p o i n t s

cos ( 2 J - l ) - r r 2n (e,- = .(gJ -DTT. )

3 2n 1 3 " L> * *''n

(1 -9)

(1.1G)

The extremes of T n ( x ) (cos n O) ,alternate i n s i g n and are l o c a t e d at the

n+1 p o i n t s

" ~ ' j.= 0,1,...n . ( l . l l ) X . .= cos UL-• J

(ei .= -AIL. ) n n -'0

We have two o r t h o g o n a l i t y p r o p e r t i e s which are u s e f u l i n ..obtaining the

c o e f f i c i e n t s of an expansion i n Chebyshev polynomials.

1 T r ( x ) T s ( x ) d .

•1 41-x2

TT cos rG'cos sO d0 =

0

7f

JL 2

L 0

r = s = 0

r = s / 0 (1-12)

For 0 5 r ^-n, 0 i s i n we have

^ T 1 1 T k ( c o s i f . ) T s ( c o s i T ^ . ) =

• J=0

r 3=0

cos r j TT n cos s j TT

C n . r = s. = • 0

n 2

r.-= s / 0

r f s

(1-13)

We now consider expanding functions..in Chebyshev.polynomials on f - l , l j .

I f f ( x ) i s continuous and of bounded v a r i a t i o n . i n there i s an expansion

.of the form

(1.14) f(x)..« £ 1 c k T k ( x ) k=0

which converges u n i f o r m l y on . We w i l l show, i n Chapter 2 th a t uniform

polynomial approximations can be obtained most conveniently, by t r u n c a t i o n of

8.

( l . l U ) and we w i l l show t h a t the t r u n c a t i o n e r r o r bound AP f o r uniform

polynomial approximations can be computed easily."by. the use-of•formulas

i n v o l v i n g the c o e f f i c i e n t s of the expansion. Thus the problem of computing

the c o e f f i c i e n t s i s an :important p r a c t i c a l problem and we consider i t i n

d e t a i l .

From (l. 1 2 ) we ob t a i n the r e l a t i o n

c = 2 (~ T k ( x ) d x = g f (cos ©) cos ke d0 ( l - 1 5 )

C l e a r l y i f f i s even (odd) the odd.(even) c o e f f i c i e n t s w i l l v a nish because

T k(.x) i s even (oddX.if k i s even (0dd). E x p l i c i t expressions f o r the c o e f f i c ­

i e n t s C k of many, common functions-have been obtained using t h i s r e l a t i o n . In

the best c o l l e c t i o n [j3;.p.2l4~] of such r e s u l t s we f i n d a formula f o r the

c o e f f i c i e n t s C k of f ( x ) . = a r c t a n x on Q l , l J which we us e - i n the s p e c i a l form

. ? a J + 1 . . . 2(-l)' ( iS-lf^1 .o ( 1 . 1 6 )

2 j + l

.to prepare Table 2 i n Chapter 3. In general:(l. 1 5 ) cannot be e a s i l y i n t e g r a t e d

and use of the f o l l o w i n g methods i s p r e f e r a b l e to numerical i n t e g r a t i o n of

(1.15)-

^k n m a y - b e used as an.approximation,to C k , k-= 0, ....n,•where

= - V 1 1 f ( c o s JJL.) cos iKTf (1-17)

From an extension of (1.13) we o b t a i n an exact expression f o r tf, . K. y n

^ k , n " ..= . ZT c2mh"+k + ^ c2nm-k m=0 i:m=l ( l . l 8 )

•Ck ; + G 2n-k + C2n+k + C Un-k + CUn+k + C 6n-k + "C6n+k

. 9-

Since the coefficients. C k decrease rapidly i n magnitude,,we can obtain C k as

accurately, as we please by taking n large enough. In actual computation we

use formulas which minimize function.evaluations,. cosine evaluations, and

arithmetic. I f we take n •= 2m we obtain

*k,2m. = } Z 1 1 ( f ( c o s J J - ) . + - ( - l ) k f ( - c o s - ^ ) ) . c o B - ^ ^ = 0 2m v ' s -2m 2m

(1-19)

62m-k,2m - I I 1 1 ( f(coB^). + ( . l ) k f ( - c o B . ^ ) ) . c o s - ^ < - l ) J -

• Since :the terms of the two sums d i f f e r at most i n sign we,compute the two

sums, together. I f . f . i s even or odd we can obtain. special formulas from

(l . l 9 ) which enable us.to reduce computation to nearly half that required f o r

( l . l 9 ) . The - author, has written, a Fortran 2 program to compute - C k by. means

of (1.190; and the c o e f f i c i e n t s C .* for f(x),= arctan x on j j ) , l 3 i n Table-1 were

obtained with the use of double precision (sixteen .significant d i g i t s ) .

Often i f f has a Taylor series, which converges.rapidly, i n f j - l , l ] i t i s

more convenient to-use formulas, based on (1.7) and (1.8).

1 f ( ^ g j ) (0)

° k ~ 2 k " 1 ( k - l ) ! J = ° k(k+l)...(k+j) ti!l | 0 • C.1:20)

<ck = p r r - Z ( k+2J } (1'21)

• 3 3=0

where f has a Taylor series °* (k)

f(x) = Z a k,x k = 2" £ _ M x k (1.22) k=0 k=0 ^ !

Alternately we can truncate the Taylor series where the truncation error i s

neg l i g i b l e and rewrite the resulting polynomial as. a sum of Chebyshev

polynomials. The • author has written, a Fortran program to compute • C.. by means

of (1.20), and the c o e f f i c i e n t s C k for f(x) = cos x on LT-1>1^ and C k* for

f(x).= cos x on £o,l~] , both i n Table 1,. were computed i n t h i s manner.

TABLE 1

C o e f f i c i e n t s of the Expansion of f ( x ) . i n Chebyshev Polynomials

f ( x ) = arct a n x f ( x ) = cos x f ( x ) = cos x on f O , l ] on.£-l,ll on C 0 , l j

,8542. C 0 = 0.1530 X 1 0 1 C* = 0.l647.x 10 1

c ! = • •3947 C 2 = -.2298 c* =-.2323

c* =-. 2

•35^6 X 10" -1 C 4 =

0.4953 X 10' -2 -C* =-.5372 X IQ" 1

.1940 X 10" -2: V -.4188 X 10' -4 c* =0.2458 3

X IQ" 2

,1095 X 10' -2 c 8 = 0.1884 X 10' -6 •C7*. =0.2821 X 10" 3

c* =-. 5

.1026 X 10' -3 c •= .10

-.5261 X 10' -9 c* =-.7722 X 10-5

°? -.1897 X 10" -k 0.9999 X •10" -12 •c* =-.5899 X 10 " 6

c*.= . •T

.6367 X 10' -5 °lk~ -.1377 X 10' -14 c* =0.1152

7 X 10-T

C 8 = -.3319 X 10" -6

C16" 0.1437 X 10' -17 -c* =0.6596 X io - 9

c* 9

•1799 X 10' -6 C 1 8 -

-.1176 X 10' -20 C* =-.1002 9

X I Q " 1 0

C '*= . 10 •4157 X 10" -1 °20" 0.7747 X 10' -24 ^ = - . 4 5 8 7 X l O - 1 2

c *= . 11

.1316 X 10' -9 -.4196 X 10' -27 cx*= .5697 X io-lk

c •*=-. 12

.1650 X 10' -8 O.1902 X 10" -30 c *= .2174 12

X 10-15

c *=.• 13

C l t = •

.2684 X 10' -10 -.7321 X 10" -34 C *=-.2284 13

c *=-.7469 14

X 1 0 - " c *=.• 13

C l t = • .2174 X •10" -10 0.2423 X 10' -37

C *=-.2284 13

c *=-.7469 14

X l O " ^

c *=-15

.1458 X 10' -10 c = 30

-.6966 X 10' - 4 l C *=0.6802 15

X 1 0 - 2 1

C i 6 = .1562 X 10' -11 c *=o.i945

16 X 1 0 - 2 2

C 1 7 = .3414 X 10' -12 C^ - 0 . 1 5 6 4 X 1 0 - 2 4

Cl§=- .124 X 10' -12 0^=-0.3976 X 1 0 - 2 6

c i r .6 X 10' -14 c^= 0.2859 X 1 0 - 2 8

c 2 0 -.4 X 10 -14 • ( V * = O.6542

.20 ^ X 10-30

f

.•11.

In some cases we c a n ; o b t a i n e x p l i c i t formulas f o r C k ,. or bounds f o r - C k ,

through use .of (1.20).. Consider the problem .of. f i n d i n g the c o e f f i c i e n t s Ck.

f o r f (x) .= cos t x on C-1;J t,an-,arbitrary r e a l number.

f ( 2 k + 1 ) (o).= o f ( 2 k > (o).= ( - i ) k t 2 k

S u b s t i t u t i n g i n ( l . 2 0 ) we ob t a i n

C2k+1 = 0

c 2 k . _ ! — £ ( . i ^ . t ^ ; ( t ) ( i , 2 3 )

- 2 2 k - 1 ( 2 k - l ) ! ^5 .2k(2k+l)....(2k+j)a.'M " .

'We now. consider- the -problem of f i n d i n g bounds on Ck. f o r f (x) ,. = cos x on []-l,l"3

S u b s t i t u t i n g i n (1 .23) we o b t a i n C2k+1 = 0

_ i . T ( - l ' ) k + J = . J p k ( l ) (1.24) c 2 k

2 2 k _ 1 ( 2 k - l ) ! ' ^ 2k(2k+l) . . . (2k+j ) j!i+J

T his s e r i e s , i s a s e r i e s w'ith'alternating s i g n .and terms s t r i c t l y decreasing

i n absolute value. Thus the s e r i e s converges-and. the absolute value of the-sum

i s l e s s than the-absolute value of the f i r s t term. We thus have I 1

| C 2 k | < .-2«iK-±(2k)! (1-25)

S i m i l a r l y , we can show.that f o r f ( x ) . = cos 2 on L-l>lJ•we - have I 1 " (-n-/2) 2 k

C2k+1 = 0 | c 2 k | ^ - 2 2 k " 1 ( 2 k ) ! (1-26)

. Clenshaw has computed the c o e f f i c i e n t s of the expansion i n Chebyshev

polynomials f o r many mathematical.functions by. means of a method usi n g o r d i n a r y

l i n e a r d i f f e r e n t i a l equations. The r e s u l t s a n d . s p e c i f i c procedures are given

i n (17"].but the only adequate-account of the method i s . i n £V] •

Many r e s u l t s are known concerning t h e ; r a t e of decrease of the c o e f f i c i e n t s

of a F o u r i e r series-.and the author was • able to extend some of these to the

c o e f f i c i e n t s C ..

• 12.

Theorem 1 I f f i s a b s o l u t e l y continuous on £-l,l] , then C . •= o(g-)

'Theorem 2 I f f has a continuous nth d e r i v a t i v e - o f hounded.variation

on £-1,1~] , then there e x i s t s a constant , depending on Xi, . such t h a t

\c, I ^ M k' n

k 1 n

The p r o o f s f o l l o w those of .the c l a s s i c a l r e s u l t s [6; p. 'pO, p. 56 ] and we

use the tr a n s f o r m a t i o n (1-9)-

I f more i n f o r m a t i o n on Chebyshev polynomials and t h e i r a p p l i c a t i o n s i s

d e s i r e d , .the most comprehensive, account i s i n Cioj • • Other useful, sources are

£l2*] and j*8~J . Se v e r a l t o p i c s of i n t e r e s t n o t ' t r e a t e d .elsewhere-are found

i n [ l6] or [ I ? ] •

13-

• " • :'; • CHAPTER 2

UNIFORM POLYNOMIAL APPROXIMATIONS

Let f(x) be continuous on [a.,b] and l e t P be a polynomial of degree n or

less such that o'(x),

$(x),= f(x)-P(x) ..... ... ( 2 . 1 )

attains i t s greatest absolute value on at least n+2 points i n [a.b^j and i s

alternately, positive and negative on these points. Then P i s .the best uniform

polynomial approximation of degree n. A class of methods c a l l e d the direct

methods enables us to compute best approximations by constructing a polynomial

with t h i s alternating property. Fras'er and Hart [_2~j give the relevant theory,

one such method, and references to a l l . s i g n i f i c a n t l i t e r a t u r e . The direct

methods require double precision and very extensive computation. For t h i s reason

i f f had a Taylor series converging rapidly, i n £ - 1 , i j • Maeh-ly. preferred to use

his combined method [iVJ to obtain a best approximation. Hornecker

has obtained formulas which usually, enable us to compute best - approximations

from the c o e f f i c i e n t s Ck- 1

There i s also.a class of methods, the trigonometric interpolations,

which i s closely, related to truncation of an-expansion i n Chebyshev polynomials.

Two methods described i n ^ 5 T a r e Lagrange•interpolation.at.the zeros of the

n + 1 st Chebyshev. polynomial and ..best f i t t i n g a polynomial of degree n at the

extrema of the n + 1 st Chebyshev polynomial. The l a t t e r i s used .frequently, to

start the direct methods • Related methods are described i n .

The most convenient method i n practice for obtaining a uniform polynomial,

approximation i s truncation of the expansion i n Chebyshev polynomials.

We obtain an n th degree approximation

S n(x) .= ^ T 1 C kT k(x) (2.2)

k=0

1 4 .

which we r e w r i t e as a polynomial i f d e s i r e d . A v a r i a n t of t h i s method i s

the Lanczos t e l e s c o p i n g procedure, which c o n s i s t s of t r u n c a t i n g a Tayl o r

s e r i e s where the t r u n c a t i o n e r r o r i s n e g l i g i b l e , , r e w r i t i n g t h i s polynomial

as.a sum of Chebyshev polynomials, t r u n c a t i n g t h i s sum at degree n, and then

r e w r i t i n g the truncated.sum as a polynomial i f d e s i r e d . Minnick and

de Vogelaere have modifi e d t h i s method (j8;.p .2l] and t h i s m o d i f i c a t i o n has

been programmed by S p i e l b e r g \l9~] •

The t r u n c a t i o n e r r o r a s s o c i a t e d w i t h (2.2) i s

£(x) = f ( x ) - S n ( x ) ,= £ C k T k ( x ) (2.3)

k=n+l

I f the c o e f f i c i e n t s C k decrease r a p i d l y and the f i r s t . c o e f f i c i e n t i s non-zero,

the dominant term of (2.3) i s Cn+-j_ Tn+-j_ ( x ) , which has ri+2 extrema on which

i t a l t e r n a t e s i n sign and has the same magnitude. Hence S(x) behaves

s i m i l a r l y to the t r u n c a t i o n e r r o r of the best approximation. - We th e r e f o r e

expect t h a t S n ( x ) w i l l have i t s t r u n c a t i o n p-i-i-m- ••hnnri - ^ ^ V ^ ^ t ^ p j ^ ^

^ S n = sup I f ( x ) - S n ( x ) | (2.k)

^ t h e same magnitude as the t r u n c a t i o n e r r o r bound ^ o f the best.approximation.

From (2.3) we ob t a i n the bound

^ s n ^ £ lCkl (2.5) k=n+l

We now.consider the problem of computing ^ S n • We can.always determine

^aSn from the d e f i n i t i o n (2 .4) , but other procedures may be more convenient.

A S n can be computed e a s i l y whenever one of the f o l l o w i n g r e l a t i o n s

holds f o r a l l n a t u r a l numbers k:

( i ) C k = | c k |

( i i ) c k = ( - i ) k | c k |

( i i i ) c 2 k + 1 = 0 C 2 k = ( - i ) k ) c 2 k i

In t h i s case i t f o l l o w s from formulas (.1.4) and (2.3) that

^Sn = | f ( x 0 ) - S n ( x 0 ) | = |"Ck j (2.6) k=n+l

where.if r e l a t i o n s ( i ) , ( i i ) , a n d ( i i i ) . h o l d we have X Q = 1 , - 1 , and 0

r e s p e c t i v e l y . We can compute AS n.'by.simply, e v a l u a t i n g Jf(.XQ) -• Sn(xo) | I t i s o f t e n p o s s i b l e , ; however, t o . compute AS n."by e v a l u a t i n g the expression

$1 { C k| . We can use a p a r t i a l sum of the series, as an.approximation to

the sum of the s e r i e s , p r o v i d i n g we have bounds f o r the remainder which show

. us. how many, terms, are required, i n the p a r t i a l sum.. The case i n which one.of

• r e l a t i o n s ( i ) , ( i i ) , or ( i i i ) h o l d s - i s not r a r e . I t - i s c l e a r from .(1.20).that

r e l a t i o n s ( i ) , ( i i ) , and ( i i i ) , h o l d f o r the f u n c t i o n s - f ( x ) . = e x , f ( x ) , = ' y

and f(-x).= cos x r e s p e c t i v e l y .

i I n the case-where-the-right.side-of (2.5).can be-evaluated and.the

c o e f f i c i e n t s C . decrease r a p i d l y , i n ..magnitude,, we can . show th a t - the • r i g h t

hand side of. (2. 5) i s a good estimate of A.S n. Hornecker [ 5 ~] examines, the

most .important methods of o b t a i n i n g uniform .polynomial .approximations..and

obtains expressions f o r the t r u n c a t i o n e r r o r bounds A P ass o c i a t e d - w i t h ,each.

From these expressions i t i s c l e a r - t h a t . i f the decrease-of c o e f f i c i e n t s C k

i s r a p i d the t r u n c a t i o n e r r o r bounds A P as s o c i a t e d w i t h the-methods,.which

in c l u d e the d i r e c t methods, t r u n c a t i o n of an expansion i n Chebyshev.polynomials

and Lagrange i n t e r p o l a t i o n at the zeros,- w i l l / b e almost the same. Thus we

can use A S n as an,accurate estimate of E n.and. A L J ^ . ^ ^ ,. where these are AP

for. the best .approximation. and the L a g r a n g e - i n t e r p o l a t i o n polynomial, at the

zeros of the n + 1 s t Chebyshev polynomial r e s p e c t i v e l y . We give an example

to show t h a t these t h e o r e t i c a l r e s u l t s are c o n f i r m e d . i n . p r a c t i c e . We take

f(-x).= cos 2 a"-11 n = 5 - From Ll-5.; P» 193J we o b t a i n = O.OOO5968

A S c = 21 ( C-k. I = 0,00059670.+ 0.00000670 + 0.0000005 + ••»• -> • k=6

.= 0.0006034.5 Formula (I..26) gives bounds for. the neglected.terms.

In t h i s example the s l i g h t decrease i n truncation error bound by

using the best uniform approximation. instead, .of. the. truncated ..expansion , i n

Chebyshev polynomials i s not of p r a c t i c a l significance. • Kogbetliantz (jj

discusses t h i s matter i n more d e t a i l with•another, example.

I f the c o e f f i c i e n t s C k have rapidly, decreasing bounds,., say. for example

Cv = 0(2"^) , then ^ |-.Cv | can.be computed... • In. t h i s case we can k=n+.l

normally, determine the degree required .to approximate uniformly within

accuracy £.. by merely, inspecting a table of co e f f i c i e n t s C k.•For example,

i f we want an .accuracy. of £= 10-® f o r f (x) ,=• cos x on C-l>l"3 > - w e examine

Table 1, and.we f i n d that

^Sg,= , . J ^ I C k I = 0. • + . 0.1.884 x l O .+ 0. •+ O.526.I x .10"9 + 0.

00

= 21 |c k I - 0. + O.526::. x 10 " 9 + 0 + C.9999 r l C ' 1 2 + C.

•+ 0.9999 x - 1 0 " 1 2 +.0..+.0.1377 x -10" 1 4 +

•= 0.1889 x 1 0 - 6

A S 8

k=9 + .0,1377 x l G ~ i l + + 0. + 0.1.437••x'--10"17.- +

0..5271. x -10" 9

We require degree 8 to approximate f(x).= cos x within accuracy C.= 1 0 - 8

on [ j l , l j . The tables of degree.in Chapter 3 were prepared .in t h i s manner.

In .this example,, with f(x).= cos x, we can.use formula (.1.25), which

gives, bounds for. the c o e f f i c i e n t s C k, . to obtain a bound for the - remainder-of 00

the series ^1 | C v I • k=2m+.l '

.k=Ln I C k I * .kS+l - 2 ^ - i ( 2 k ) - < .2^(2m+2)'. . (2.7)

Thus the remainder i s negligible even when the p a r t i a l .sum contains only a

few terms.

Truncation of an .expansion:in.Chebyshev.polynomials-• i s s u p e r i o r i n many

respects t o the other methods of o b t a i n i n g uniform .polynomial approximations.

Once the c o e f f i c i e n t s C k are computed,. we can o f t e n c a l c u l a t e the degree

r e q u i r e d , f o r a given accuracy, d i r e c t l y , from the c o e f f i c i e n t s . With the other

methods we must compute approximations o f v a r y i n g degree i n order to find.,a

polynomial P of minimal degree w i t h < £. . A f u r t h e r advantage of t h i s

method i s .that i f we-want an approximation of. d i f f e r e n t degree --we can use .the

same .coefficients-Cv_. With the other methods- i f we change degree we have to

repeat the c a l c u l a t i o n s e n t i r e l y . There..are o f t e n advantages •-in e v a l u a t i n g

our approximation d i r e c t l y as a sum of•Chebyshev.polynomials-instead of as a

polynomial. Clenshawrdiscusses t h i s in. d e t a i l ; i n £l6; .pp.76-78*! and

C 1 7 ; .PP. 1 3-ih] •

18.

CHAPTER 3

COMPUTATION. OF THE REDUCTION. OF "REQUIRED POLYNOMIAL DEGREE BY SHORTENING THE INTERVAL OF:' APPROXIMATION

We expect t h a t i f we • shorten.the i n t e r v a l on which a given f u n c t i o n i s

to>be approximated.we can.use a polynomial .of. lower -degree. In t h i s chapter

we give f o r s e v e r a l f u n c t i o n s the degree r e q u i r e d f o r approximation on.the

i n t e r v a l Q-l,ij.and.its s u b - i n t e r v a l s .

We give, an . example to show. how.the t a b l e s may be read. In'Table 2. we

see t h a t to . approximate f ( x ) , = cos. x w i t h i n accuracy £j = 10"® . r e q u i r e s

degree 8 (5 m u l t i p l i c a t i o n s ) on £-l,l] and.degree 7 ( 7 . m u l t i p l i c a t i o n s ) on

Lo,il . Although, approximation on .shorter, interval's enables us t o reduce degree,

.the number of additions,.and m u l t i p l i c a t i o n s - m a y : increase i n the case :of an odd

or even, f u n c t i o n approximated on , the half.. i n t e r v a l (p, 1~\ i n s t e a d of on ( ~ - l , l J .

The reason .for t h i s , i s t h a t we-can take advantage of oddness or evenness.

-Normally a polynomial of degree-n r e q u i r e s n m u l t i p l i c a t i o n s and n a d d i t i o n s .

•By w r i t i n g an even polynomial of degree-2n as a;.polynomial, i n x 2 we-require

only, n+1 m u l t i p l i c a t i o n s and n a d d i t i o n s . • S i m i l a r l y , . odd polynomials of

degree 2n+l can be evaluated.in.n+2 m u l t i p l i c a t i o n s and n a d d i t i o n s . -Thus

approximation .on (o,l"3.and £-l,0~3 ,. i n s t e a d of on /-l,lD ,. i s • not advantageous

f o r odd.and even.functions unless the r e d u c t i o n i n degree i s s u b s t a n t i a l .

Table 2 shows th a t f o r f ( x ) = cos x and f ( x ) , = s i n h ; x,. approximation ;'

w i t h i n the accuracies given ; i n the t a b l e - r e q u i r e s a higher degree,,but fewer

- m u l t i p l i c a t i o n s , . on £l,lj • Thus the approximation on [-1, l l can be evaluated

more q u i c k l y and.thus i s p r e f e r a b l e - t o the approximation on £b,l3 . I t i s

more d i f f i c u l t t o make a d e c i s i o n i n the case of f ( x ) , = a r c t a n x,.since the

number of a r i t h m e t i c operations r e q u i r e d ..for e v a l u a t i o n , are n e a r l y equal.

For example, approximation w i t h i n accuracy £./= 1 0.^yields an approximation

19 ••

TABLE 2

d k = degree r e q u i r e d to approximate f ( x ) on the appropriate i n t e r v a l w i t h i n accuracy £ = 10~k

mk = number of m u l t i p l i c a t i o n s r e q u i r e d to evaluate the approximation of accuracy £ = 10~k

k :. f ( x) = cos x f ( : x).= s i n h x f ( : K ) , = a r c t a n x k

c- Co,il C-i,i1 C - l , l l foil mk 4k % = d k

'i m k d k mk= d k m k d k mk= d k

1 2 2 l .1 .1 1 1 .1 . .1 :1

.2 2 2 2 3 3 2 3 3 .2 2

3 3 .1+ 3 3 3 •3 ,4 •5 k 3 k •3 k h •5 .4 •5 •7 5 %

5 6 •k - ,k 5 5 7 l l 6 5 6 6 5 .5 7 5 . :8 •13 7 .6 7 5 .8 6 5 7 •6 9 15 9 7 ?8 5 8 7 •6 •9 7 10 17 . io 8

9 5 .8 7 6 •9 -7 .12 21 12 9 10 6 • 10 8 6 9 8 13 23 13 10

i l 6 10 9 •7 l l 9 ,1k 25 . 15 :11 12 7 .12 9 .7 . l l 9 15 .27 . 16 •12

on [-1, l ] . r e q u i r i n g .8 m u l t i p l i c a t i o n s and. 6.additions;.the approximation.on

£b,l"J r e q u i r e s 7 a d d i t i o n s , and 7 m u l t i p l i c a t i o n s .

In Table 3 are the degrees r e q u i r e d .to • approximate • f ( x ) ,= ^ 2 on

and s u b - i n t e r v a l s of [^J-^ ' We n o t i c e that, the degrees r e q u i r e d on the

s u b - i n t e r v a l s are; much:less than the degrees of the.approximations on.the

e n t i r e i n t e r v a l £-1., l ] . For example, ;to :approximate w i t h i n ,accuracy

£ = 10 -- 1-2 r e q u i r e s degree 21 on G-l,ll , degree I'-y on £-l>0~] , and degree

12 on [0,1~[ .

In Table k we have the degrees, required, to approximate f(x)..= e x on

Q - l , l ~ ] ; a n d s u b - i n t e r v a l s of [V l , l j • The re d u c t i o n i n degree•obtained

by approximating on a s u b - i n t e r v a l ; i s , comparatively, small; i n . t h i s case. For r -12

example,. i f we wish to approximate wit h i n . a c c u r a c y c - 10 we re q u i r e degree

12 on fj-l, l"] ,. degree 9 -on "both £-l,o"J.and £ o , l j [ , and degree 8 on each of

C-l , -£ l ,[-h,0] , l0,f], .and ft,l}.

The mean degree of the approximation a s s o c i a t e d . w i t h ,a p a r t i t i o n TT,

. denoted by D( TT , 1A , £ ), was defined, i n ..formula (0; 2) In.-the i n t r o d u c t i o n

we showed t h a t D( TT , ft\ , £ ).is. the mean number, of m u l t i p l i c a t i o n s r e q u i r e d

f o r the e v a l u a t i o n . of. the approximation, and thus mean evaluation,time f o r .

the approximation,is roughly p r o p o r t i o n a l to D( TT• } W\ } £. ). Using.Table : k

we can e a s i l y compute D( IT, h\ , £ ) f o r the f u n c t i o n f !(x) ,= e X and the three

• p a r t i t i o n s

jjjl,-^] , [ - l b 0 ! •> L°>h3 > Li'1!}" • For example,. from .formula (0.2)

we ob t a i n

•p( 7T 1 V 1 , 1 0 " 1 2 ) ,= 12 ,

j)( ]T 2, 2 , I O ' 1 2 ) ,= (9 + 9 ).= 9

D( TT 3, L , 1 0-I 2) = . - \ (i(8 . )4(8 )4 , (8 )4(8)) ,= 8-

21.

TABLE. 3 1

DEGREE REQUIRED TQ'APPROXIMATE f ( x ) , = • x+2

WITHIN. ACCURACY £= 1 0 _ k.on £"-l,l}-ANDTHE GIVEN'' SUB-INTERVALS

[-1,1] C-i,ol (PA! f l , -O.5J C-0,5,0] [0,0. 5] [ 0 . 5,l] k

1 2 •1 .: 0 -1 ,0 v ~0 .0 ..1

.2 3 .2 . 1 2 .- 1 • 1 ..• 1 •2

3 5 .4 2 •3 .2 ••'2 2 3

,4 7 . .5 :3 •4 3 :3 •2 •4

•5 • 9 ,6 4 5 k 3 .3 5

6 10 .8 5 .6 •5 4 '•4 ,6

' 7 . 12 9 .6 '7. 6 ' 5 5 •7 8 -ik 10 7 .8 7 •6 5 8

9 16 . 12 8 9 7 .7 6 9

-. 10 -17 . 13 .10 10 . 8 • 7 :7 .'10

n 19 . .14 ,11 11 .9 ,8 8 11

12 - 21 -15 • 12 12 ' .-10 9 • . "8 .12

13 .23 17 A 3 . 13 ,1.1 10 • 9 -13

Ik 2k . 18 -14 14 ,12 l l 10 .14

• 15 .26 19 15 15 13 l l : 11 • 15

16 • •28 • 21 :16 •16 :l4 12 11 16

•17 . 30 .22 '17 17 . 1 4 13 ;12 17

18 31 • 23 " 18 18 •15 14 -13 .18

-19 33 • 25 19 19 .16 15 .14 19

20 35 26 20 20 •1.7 15 ' :14 , 20

- 21 36 27 21 21 .18 - •16 15 •21

22 38' 29 • 22 22 19 17 .16 22

23 .40 30 23 23 20 .18 ' 17 23

2k 42 ; 3 l 24 24 f ' 21 ' •' : 19 17" 24

TABLE 4 22.

DEGREE REQUIRED TO APPROXIMATE f ( x ) , = e x

WITHIN ACCURACY t= 10"k ON THE. INTERVAL Q-l,l} AND THE GIVEN SUB-INTERVALS.

k foil Ml [-i,o~] EMI k

1 2 • i . 2 i : 1 i . 1 1

.2 3 .2 2 • i 2 . 2 2 2

3 k 3 3 . 2 •2 •2 •••3 3 4 5 .4 4 3 . 3 3 3 . 4

,5 . 6 5 5 ' 3 ;4 4 4 5

6 7 5 6 4 4 4 5 6

7 8 6 6 5 • 5 5 5 7

.'8 9 .7 . 7 . 5 6 6 6 8

9 9 7 8 6 .6 6 .6 9

10 •10 8 8 .6 •7 7 7 .10

i l . . l l 9 9 7 /7 " 7 " '7 l l

12 -12 9 9 8 8 - 8- . 8 .,12

13 . 12 10 10 . 8 8 8 .8 13

14 13 •10 • 11 - 9 ••9 9 9 .14

15 • :1k l l 11 9 • 9 9 10 15

16 .Ik ,12 . 12 • 10 . 10 • 10 . 10 16

17 . -15 . 12 12 • 10 • 10 10 .11 ' 17

18 16 13 •13 • 11 • l l . n i i .18

19 .16 13 14 , 11 : 11 : . l l .• 12 •19

20 •17 14 14 •12 •12 •1.2 12 . 20

21 18 14 15 ;12 12 12 13 21

22 .18 15 15 13 •13 13 13 .22

23 19 -16 . 16 13 13 13 14 23

2k • •19 . 16 :i6 14 • 14 :l4 ,14 .24

23.

Thus the approximation procedure based...on. the p a r t i t i o n of j j - l . , l ~ J . i n t o

four s u b - i n t e r v a l s of e q u a l ; l e n g t h r e q u i r e s 8 m u l t i p l i c a t i o n s for, an.accuracy -1 P

wi t h i n E= 10 ,.compared ..with. 12 m u l t i p l i c a t i o n s for.'the e v a l u a t i o n of the

uniform polynomial.approximation ,on . - This.would reduce machine time f o r

approximation by one-third,, which might not be worth t h e • a d d i t i o n a l storage requirements. Using Table -3, :we can. compute p( T , \y\ ,~Z ) . f o r the f u n c t i o n

1

f ( x ) = x+2 and the same p a r t i t i o n s - i n ; a s i m i l a r , manner. • We" obtain,. u s i n g

formula (0.2) .and ..letting £ = 1 0 ~ 1 2

-D(1T1 , .1,. 1 0 " 1 2 ) .= 21

D(TT2 , ) 2 , 1 0 - 1 2 ) ,.= \ (15.+ 12) .,= , 13.5

D(TT3 , . U , 1 0 - 1 2 ) ,= \ (12(£.).+ 1 0 ( | ) . + 9 (|),+ 8 (±)),=9»75

In t h i s c a s e , : t h e mean number of m u l t i p l i c a t i o n s r e q u i r e d to approximate f ( x ) , = —— -12

x+2 w i t h i n accuracy £.= 10 ..is reduced by more than a h a l f by approximation

on the p a r t i t i o n Tf^ . i n s t e a d ..of on the e n t i r e - i n t e r v a l .

It,.has been ..shown t h a t by-approximating on. s u b - i n t e r v a l s we can:reduce

the degree of the : approximation ..and a method has been. developed to c a l c u l a t e

the r e d u c t i o n . i n degree.. There remain problems - of a t h e o r e t i c a l nature w i t h

strongly, p r a c t i c a l i m p l i c a t i o n s . Given ,a function,., what can we - say about, the

r e d u c t i o n in.degree which w i l l r e s u l t from approximation on a s u b - i n t e r v a l

, i n s t e a d of on the f u l l , i n t e r v a l , without doing any, computations? 'In p a r t i c u l a r ,

i f f i s even or odd and .we are e v a l u a t i n g i t on C-l>l-I , . w i l l . t h e r e d u c t i o n

i n degree by approximating on |~0,ll be s u f f i c i e n t to reduce the number of

m u l t i p l i c a t i o n s ? 'In: Chapter k we use theory.to answer, these questions.

CHAPTER 4 2 4 *

THEORETICAL CONSIDERATIONS ON SHORTENING THE INTERVAL OF APPROXIMATION

In the c l a s s o f a l l polynomials of degree n there e x i s t s a unique polynomial

approximation, c a l l e d the best uniform polynomial approximation of degree n,

which minimizes AP. We denote t h i s minimal value of &P by E n or E n ^ a ^ i 3 .

For a given continuous f u n c t i o n f, • a,b i s a. f u n c t i o n of n,a,. and b. We

would l i k e t o estimate E ^ g ^ without extensive • computation. and we consider

e s t i m a t i o n of E n ^ a ^ by use-of e a s i l y determined upper bounds.

Jackson.has obtained s e v e r a l r e s u l t s £6, pp.13-18"] g i v i n g bounds f o r En,a,b ^ w o °^ 'these f o l l o w .

Theorem 1 I f f s a t i s f i e s the c o n d i t i o n |f ( x ^ ) - f ( x 2 ) | -6 >\ |..x-]_-x2 |

f o r a l l x x and Xg i n La^bJ , then E ^ ^ t , 4 L(b.-a)X

Theorem 2 I f f has a p t h d e r i v a t i v e f ^ ^ ( x ) s a t i s f y i n g

| f ( j f ) ( x 1 ) - f ( : P > ) ( x 2 ) I ^ X I. X - L - X 2 I f o r a l l x± and x 2 i n [a,b] ,

.then f o r a l l n a t u r a l numbers n, n ik..p,

E ^ ( P :+ I f L P + 1 ( b - a ) ^ + 1 \

n n P + 1 p!

L i s - a u n i v e r s a l constant and may be taken as L = \ i n these theorems.

Jackson gives other r e s u l t s . i n terms of the modulus of c o n t i n u i t y .

A bound f o r ^ ^ can a l s o be d e r i v e d from the remainder formula f o r

Lagrange i n t e r p o l a t i o n . The k t h Chebyshev polynomial on fa,b] i s defined to

be T k a b = c o s arc cos (^f— (2x-a-b))) .(4.1)

.= T k (_i_ (2x-a-b)) . (4.2) ' b-a

Let L ^ a ^ be the Lagrange i n t e r p o l a t i o n polynomial of degree n f i t t e d to f

at the zeros of the n+1 s t Chebyshev polynomial on [a,b~] . I t can e a s i l y be

shown th a t L ^ a ^ has-a t r u n c a t i o n e r r o r bound

^ ^ a ; t = S1±P _lf(x) - I^a, b< (x) ) (4.3) x 6 La,b J

25-

which i s a good, estimate of E N ^ A J D • By d e f i n i t i o n of E ^ g ^

En,a,b ^ A L n , a , b

I t can be shown 0-9"] that i f we • approximate f ( x ) on (ja,bT] by this-approximati

of degree n then i o n

^ , f f , b = 2 f,(.n+l) .(^) |,(b-a)n+l & ^ f < b ; ( k > 5 )

(n+1)!

I f jf(n+1) (x) j <-M for-a < x < b we obtain the bound

2 l , : ^ ) n + 1 ^ n + l ! V ^ ( ,„6) • (n+1)!

Often we can use the righ t side of (4.6), as a good estimate of AIfr,a,b o r

of En^a^-b . Take, for example, f ( x ) = cos on Q - l , l ] f o r n=5- Near

the end of Chapter 2 .the value of was given. Combining (4.4),and (4 .6) ,

and then substituting, we obtain

0.0005968 = ^ A L 5 ) . 1 ; 1 * - 2 sup | - ( X ) 6 C O B | L I (2)6 l ^ x ( C-l, l j

In comparison the bounds.of Jackson y i e l d poor estimates of E n a

For the same case as before, we have by Theorem'1

TT • 1 "TT E 5 , - l , l ^ i ' 2 « 2 * : 5 = •'•"io •= 0.314

For p = 4 we have

- fC*)(x2)| - |cf)f(=o.-^-.cM ) | ^ ( ")5 f x 1 -x 2 j

and so we have by Theorem 2

E 5 ^^Lihk^Ml - a m 5 = 0.07969

26.

The bounds of Jackson are easy to determine but are not s u f f i c i e n t l y good f o r

accurate estimates of IL „ y. . In p a r t i c u l a r , we are i n t e r e s t e d i n the

degree required, to approximate f w i t h i n a given accuracy on (a,b"l ,. and t o

estimate t h i s we need a good estimate of E n a . Hence i n the r e s t of t h i s

chapter we use A I ^ a ft . as • an estimate of a ,. and. use the r i g h t side

.of (4.6) as an estimate of A I ^ •

We have two ways of making A I ^ a -0 small. I t - i s - c l e a r from the - above

formulas t h a t shortening t h e • i n t e r v a l [a,b3 of approximation w i l l decrease

the t r u n c a t i o n e r r o r bound con s i d e r a b l y . Provided the d e r i v a t i v e s of f do

not grow r a p i d l y we can i n s t e a d decrease the t r u n c a t i o n e r r o r bound by

t a k i n g n , l a r g e r . Which of these procedures i s more u s e f u l depends, on the

f u n c t i o n to be evaluated. We w i l l , c o nsider the s p e c i a l . c a s e ,of e v a l u a t i o n

of even and odd.functions on Q-l,l] and then g e n e r a l i z e our r e s u l t s at the

end o f t h i s chapter.

We know from Chapter 3 .that LQ . 0 ]_ r e q u i r e s the same • number of

m u l t i p l i c a t i o n s f o r e v a l u a t i o n a s l < 2 n _ 2 - 1 1 ^ ^ is-odd.or even, . since

I j 2 n - 2 _2_ j_ : w i l l then.be odd or even. Since L ^ Q ^ r e q u i r e s more a d d i t i o n s

f o r e v a l u a t i o n , we w i l l f i n d I < 2 n _ 2 , - . 1 , 1 more convenient f o r approximation i f

i t s t r u n c a t i o n .error bound, - ^ I j 2 n - 2 , - . 1 , 1 i s l e s s than A l ^ o,l'"* l ' n other

words, i f ' t h e r a t i o

F n = A L n , 0 , l (4.7)

A L 2 n - 2 , - l ' , I

i s g r e a t e r than.one then the approximation on Q-l,l"3 i s c l e a r l y b e t t e r f o r

odd and even f u n c t i o n s . We wish t o estimate F n and t h i s r e q u i r e s e s t i m a t i o n

.of A l h a ^ In cases of p r a c t i c a l i n t e r e s t the r i g h t hand side of (4.6)

f u r n i s h e s an.adequate estimate and.we o b t a i n

V = 2 V i (i) n + 1( g"-l) ! = M n + 1 ( 2 n - l ) ( 2 n ) . . . ( n H - 3 ) ( n + 2 ) ( ^ g )

2 M 2 n _ i ( i ) 2 n - 1 ( n + l ) ! 8 -

27-

We now study two p a r t i c u l a r cases

I f sup |f<n+l) ( x ) | = MK n + 1 then

F-* = (2n-l)(2n-2) . . • (n+3)(n+2) ( k - 9 ) n 8 K n " 3

Now i f n 5 X and n £ 4 , c l e a r l y F N * > 1.

I f sup | f ( n + 1 ) ( x ) | ,=M(n+l)! then F n * .•= 1 (4.10)

Formula (4.8) and the formulas d e r i v e d f r o m . i t give us F n * as an e s t i m a t e

of F n. We compute F n i n a few-cases t o s e e . i f F n * i s a good e s t i m a t e • i n

p r a c t i c e . We use the t r u n c a t i o n e r r o r bounds A S n of the tru n c a t e d expansion

i n Chebyshev polynomials i n pl a c e of ^ I ^ a ^ i n c a l c u l a t i o n s , : s i n c e the two

q u a n t i t i e s are n e a r l y equal.

For f ( x ) = cos x we compute F^ = 1.14 x 10^ and F^Q = 7>4 x lO^.Weuse o

X = 1 i n (4.9) to o b t a i n F5* = 63 .and F 1 0 * - 3.7 x-10° . Experience shows t h a t

F* i s g e n e r a l l y lower than'F n and thus i f F n * . ; i s greater than one we-can

expect F n . t o be grea t e r than one. Hence we-can use F n * to f i n d the c a s e s - i n

which approximation on f l , l ] i s c l e a r l y s u p e r i o r . For example i f we consider

f ( x ) = cos x, formula (4.^) shows t h a t F n * > l f o r n ^ and shows-also t h a t

F n * increases r a p i d l y f o r i n c r e a s i n g n. Hence approximation, on £-l>l^is

c l e a r l y b e t t e r f o r n - . 4 . We- know from Table 2 t h a t approximation on £-l,l]

• i s i n f a c t b e t t e r f o r a l l degrees.

From (4.8) we see tha t the more r a p i d l y the bounds on d e r i v a t i v e s increase

the lower F n * becomes and hence-the lower we expect F n to become. In.other

words the more r a p i d l y the bounds on d e r i v a t i v e s grow the gre a t e r becomes the

advantage of u s i n g the approximations on £p,l"] and £-1,(5] .instead'of on £l,l~|.

For example, f ( x ) = cos x and f ( x ) = si n h x have a l l d e r i v a t i v e s bounded

r e s p e c t i v e l y by 1 and 3; i n t h i s case approximation on £-1,1-3 i s c l e a r l y b e t t e r .

In the case of f ( x ) = a r c t a n x , where d e r i v a t i v e s grow r a p i d l y , approximation

on (^l,l3:.has ho clear-advantage. Thus i f a f u n c t i o n i s even or odd the method

.28.

chosen ..for e v a l u a t i n g i t on Q-l,lJ depends on the d e r i v a t i v e s of the f u n c t i o n ,

s l o w l y i n c r e a s i n g hounds on d e r i v a t i v e s f a v o r i n g approximation on £l,l] •

We now study the more general case of approximation.on a p a r t i t i o n of

Ca,b~] . We can p a r t i t i o n [LajT l so t h a t the degree of the polynomial approx­

imation on each s u b i n t e r v a l i s l e s s than the degree of the polynomial approximation

on the e n t i r e i n t e r v a l . Thus we can evaluate the approximation on the p a r t i t i o n

more q u i c k l y than the approximation on the e n t i r e i n t e r v a l . J u s t as i n the

case of odd and even f u n c t i o n s on £-l,l] , the m e r i t s of approximation on ;a

p a r t i t i o n ,of (a,b^J depends on the bounds on the d e r i v a t i v e s of f. Formulas

( 4 . 5 ) .and (4.6).show the e f f e c t s of magnitude • of d e r i v a t i v e and l e n g t h of

i n t e r v a l .

The r i g h t side of (4-6) may be used as an estimate of E n ^ , and i t i s

o f t e n convenient t o estimate r e q u i r e d degree f o r uniform approximation of f

on fja,b"3 i n t h i s manner. We t h e r e f o r e have a convenient way of e s t i m a t i n g the

degrees connected w i t h approximation on.a p a r t i t i o n . . We f i n d , - however, t h a t

use of these estimates gives a b i a s i n f a v o r of f i n e r p a r t i t i o n s , j u s t as F n *

i s a b i a s e d estimator of F n. The r e d u c t i o n . i n degree obtained by.approximation

on a p a r t i t i o n ; i s not as great as we would expect from the r i g h t side of (4 .6) .

If. the bounds on d e r i v a t i v e s grow r a p i d l y , . t h e . r e q u i r e d degree i s reduced

g r e a t l y by shortening the i n t e r v a l of approximation. In Table 2 we see t h a t

•for f ( x ) . = a r c t a n x degree i s reduced by n e a r l y h a l f when we-divide the i n t e r v a l

of approximation i n two. In Table 3 we a l s o n o t i c e s u b s t a n t i a l decrease i n

degrees f o r f ( x ) = — i — o n . s u b - i n t e r v a l s of | - l , l ] . I f the bounds o n . d e r i v a t i v e s x+2

increase at most slowly, however, the r e d u c t i o n i n degree by s h o r t e n i n g i t h e

i n t e r v a l o f approximation i s small. In Table 2 we see t h a t f o r f ( x ) = cos x a ^ J

.l-(-x).;. 5.:,isinh:.x...'tue degree i s reduced by only a small amount when we d i v i d e

the i n t e r v a l o f approximation i n two. Table 4 shows t h a t the degree i s g e n e r a l l y

decreased by no more than a t h i r d i f we d i v i d e the i n t e r v a l of approximation

i n t o f o u r p a r t s f o r f (x) = e x. For the general case of approximation of a

continuous f u n c t i o n on.a p a r t i t i o n of £a b3 , we conclude t h a t a f i n e r

p a r t i t i o n of [a.,h\ D ecomes more advantageous the more r a p i d l y the bounds on

the d e r i v a t i v e s of f increase. I f the bounds on the d e r i v a t i v e s - o f f increase

s l o w l y , the use of approximation ; on, a p a r t i t i o n i s not of great b e n e f i t .

3©'.

BIBLIOGRAPHY

.1. Clenshaw, C-W., "The Numerical.Solution of- L i n e a r D i f f e r e n t i a l Equations i n Chebyshev S e r i e s " , • Proceedings of the Cambridge P h i l o s o p h i c a l S o c i e t y , v o l . 5 3 , 1957, pp.13 k - l49. ~

2. F r a s e r , W., and Hart, J.F.,,"On the Computation of R a t i o n a l . Approximations t o Continuous Functions",• Communications of the A s s o c i a t i o n f o r Computing Machinery, v o l . 5 , ' 1962, pp.401-403- ""

3. Hastings, C.,. Approximations f o r D i g i t a l ' Computers, P r i n c t o n U n i v e r s i t y Press,.1955. ' ' ' '

4. Hornecker, G.,."Evaluation approchee de l a m e i l l e u r e approximation polynomiale d'ordre n de f ( x ) sur un .segment f i n i ( a,b)",

. C h i f f r e s , v o l . . 1, 1958, pp.157-169.'

5-; Hornecker, ;C.,."Mlthodes p r a t i q u e s pour l a determination approchee de l a meileure approximation polynomiale ou r a t i o n e l l e , C h i f f r e s , v o l . 3 , i960,.pp.193-210.

6. Jackson, ; D . T h e Theory of Approximation, American Mathematical-Society C o l l o q u i u m - P u b l i c a t i o n s , v o l . 1 1 , New York,. American Mathematical S o c i e t y , 1930.

7- K o g b e t l i a n t z , •• E. G.,, "Generation of Elementary^Functions", i n R a l s t o n , ; A., and W i l f , H., ed., Mathematical Methods f o r D i g i t a l ^ Computers, New York, Wiley,. i960, pp .7-13. ~ ~

8. Lance, G.N., - Numerical Methods f o r High Speed-Computers, London, I l i f f c , i960. ' " ' ~

9- Lanczos, : C - " T r i g o n o m e t r i c I n t e r p o l a t i o n .of E m p i r i c a l ; a n d - A n a l y t i c a l F u n c t i o n s " , - J o u r n a l of Mathematics'and P h y s i c s , vol. 1 7 , 1938,' pp.123-199-

10. Lanczos, C., i n t r o d u c t i o n to Tables of Chebyshev Polynomials S^Cx)<and . n N a t i o n a l Bureau.of Standards, A p p l i e d Mathematics s e r i e s 9, Washington, .Government-Printing O f f i c e , , 1952.

11. Lanczos, • C.,. Approximations by Orthogonal; Polynomials, l e c t u r e s given .as p a r t of Mathematics 129, - UCLA, C a l i f o r n i a , summer session,.1952, notes by A. R a l s t o n and R.G. C o r n e l l .

12. L a n c z o s , C , A p p l i e d A n a l y s i s , Englewood C l i f f s, N.J.,. P r e n t i c e H a l l , . 1956-

13. Maehly, H . , : " R a t i o n a l : Approximations f o r Transcendental Functions," Information Processing,<Proceedings of the I n t e r n a t i o n a l . Conference on Information P r o c e s s i n g , UNESCO,•Paris,-June 15-20, 1959, Munchen, Unesco, i960.

31.

lk. Maehly, H.,,"The Combined Method",. I n t e r n a l Report on Methods, , A p p l i e d Mathematics Laboratory, David T a y l o r Model Ba s i n , Washington,. 1959-

15- Murnaghan, F.D., and Wrench, J.W.,,"The Determination of the Chebyshev Approximating Polynomial f o r a D i f f e r e n t i a b l e Function, Mathematical Tables and Aids t o Computation, v o l . 1 3 , 1959> PP-185-193-

16. N a t i o n a l P h y s i c a l Laboratory, Modern•Computing Methods, Notes on A p p l i e d Science No. 16, •• Second e d i t i o n , London, H.M. St a t i o n e r y " Office,. 1 9 6 1 .

17. N a t i o n a l P h y s i c a l Laboratory, Chebyshev S e r i e s f o r Mathematical • Functions, Mathematical Tables, Volume 5> London,•H.M. • S t a t i o n e r y

O f f i c e , 1962.

18. Shohat, J . , "The Best Polynomial.Approximation of Functions Possessing Derivatives",.Duke Mathematical J o u r n a l , v o l . 8 , 19kl, pp.376-385-

19. S p i e l b e r g , K.,."Representation of Power S e r i e s i n terms of Polynomials, R a t i o n a l Approximations, and Continued F r a c t i o n s " , J o u r n a l o f the A s s o c i a t i o n f o r Computing Machinery, v o l . 8 , 1961, pp .6 l3-620.