unit 1mmc.rmee.upc.edu/documents/gwu_grau/chapter8_gwu.pdf · unit 2 –solution 1 2 10 eell <...

46
Unit 1 A displacement is imposed at the right end of the three bars forming the structure depicted in the figure below. The elastic limit for the three bars is___ and the hardening modulus H for each bar is indicated in the figure. Determine the plastic strain and total stress at each bar. The length of the three bars is l. d e s 2 where = e l E s d H = ¥ 0 H = /2 H E = - d d d 1 2 3 l

Upload: others

Post on 12-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 1

A displacement is imposed at the right end of the three bars forming thestructure depicted in the figure below. The elastic limit for the three bars is___and the hardening modulus H for each bar is indicated in the figure. Determinethe plastic strain and total stress at each bar. The length of the three bars is l.

des

2where = e lEsd

H =¥

0H =

/ 2H E= -

d

d

d

1

2

3

l

Page 2: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 1 – Solution

epHE E

E H=

+

The evolution of the stress-strain curve in an elastoplastic material can berepresented as:

s

eE E

epE

Elastic regime:

Elastoplastic regime – Loading:

Elastoplastic regime – Unloading:

d Eds e=

epd E ds e=

d Eds e=

Where the elastoplastic tangent modulus can be calculated as: epE

Since H is different for each bar, will also be different for each bar.Þ epE

Page 3: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 1 – Solution

εT = δ

l=

2σ e

E

BAR 1 H =¥

epH E E=¥ Þ =

2 0ep T e

p

E E s s

e

= Þ =

Þ =

s

e

es

2 es

/e Es 2 /e Es

E

epE E=

The total strain in each of the three bars is: 2= e lEsd

Then, for each bar, once the elastoplastic tangent modulus has beencalculated, the total stress and the plastic strain can be determined:

epEs pe

1

Page 4: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 1 – Solution

BAR 2 0H =

0 0epH E= Þ =

BAR 3 / 2H E= -

s

e

es

2 es

/e Es

E

2 /e Es

s

e

es

2 es

/e Es

E

2 /e Es

0 /ep T e

p e

EE

s s

e s

= Þ =

Þ =

/ 2 epH E E E= - Þ = -

0 2 /ep T

p e

E EE

s

e s

= - Þ =

Þ =

2 3

Eep = E H

E + H

Page 5: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2

The truss structure OA, OB and OC is composed of concrete, which is assumedto behave as a perfectly elastoplastic material with a tensile elastic limit anda compressive elastic limit . An increasing vertical load P is applied atpoint O, starting at until a vertical displacement is reached atsaid point. Then, the load decreases back to .

a) Draw the diagram of the process, indicating the most significantvalues and the state of plastification of the bars at each instant.

b) Calculate the displacement value at point O at the end of the process.

es10 es

0P = 20 e LEsd =

0P =

P d-

Page 6: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2

45° 45°

P

L

L L

d

A

CB

s

ees

−10σ e

Page 7: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

45° 45°

P

L

L L

d

A

CB

1

2 2

Due to symmetry of thestructure and loads, the twodiagonal bars will behave in thesame way.

While bar 1 will be under compression , bar 2will be under tension.

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 8: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

Applying equilibrium of vertical forces in the node that joins the threebars, the following equality is obtained:

2N 2N

1N

2 2

1

P2N 2N

1N

FV = 0 → ∑ 2 2

2N2 − (P + N1) = 0

P = 2N2 − N1

ΔP = 2ΔN2 − ΔN1

Next step is to apply compatibility of displacements and calculates the strain at each of the bars:

u1 = −δ

2 2

δ = −u1

δ2= u2

1 u2 = δ cos 45°( ) = δ

2 →

u2 =

δ2

1) EQUILIBRIUM

s

ees

10σ e

E

e

Es

s

ees

−10σ e

45° 45°

P

L

L L

d

A

CB

1

2 2

2) COMPATIBILITY

Page 9: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

u1 = −δ → ε = − δ

L u2 =

δ2

→ ε2 =δ2L

The displacement value at which the elastic limit is reached can be obtained as:

110 10 < e e L

L E Ed s se d= < ® Bar will be in elastic regime.

22 <

2e e LE EL

d s se d= < ® Bars will be in elastic regime.2

Then, concerning the whole structure, three stages must be considered:

1

45° 45°

P

L

L L

d

A

CB

1

2 2

s

ees

10σ e

E

e

Es

s

ees

−10σ e

The following sign criteria for strains and stresses are established:

+ Traction

Compression

Þ

- Þ

Page 10: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

1

2 10 < e eL LE Es s d< Þ

Bar is in elastic regime.

Bars are in plastic regime.2

1

2 10 e eL LE Es sd< < Þ

Bar is in plastic regime.

Bars are in plastic regime.2

Now, considering the possible sates above, four deformation stages are studied.

12 10 e eL LE Es sd < < Þ

Bar is in elastic regime.

Bars are in elastic regime.2

State II: While the vertical bar is in elastic regime, inclined bars are in plastic regime.

State III: The three bars of the structure are in plastic regime.

State I: The three bars of the structure are in elastic regime.

s

ees

10 es

10 e

Es

e

Es

s

ees

10 es

45° 45°

P

L

L L

d

A

CB

1

2 2

Page 11: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

2 12 2P N N E S E S E SL L Ld d d

= - = + = P = 2ES

20 e LEsd£ £ 0 2 2 eP Ss< <

12 0e

Es e- < < 12 0es s- < <

20 e

Ese< < 20 es s< £

STAGE I 2 e LEsd <

1 1 1 1 1 1 E E N SL Ld de s e s s= - Þ = ® = - Þ = 1N E S

Ld

= -

2 2 2 2 2 2 2 2

E E N SL L

d de s e s s= Þ = ® = Þ = 2 2N E S

Ld

=

Substituting the values of and into the equality previously obtained fromthe equilibrium of vertical forces, the value of P, as a function of , is:

1N 2Nd

Variation of P during the first stage

s

ees

10 es

10 e

Es

e

Es

s

ees

10 es

45° 45°

P

L

L L

d

A

CB

1

2 2

Page 12: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

P - δ

2 2 eSs

2 /eL Es

P

d

Ι

1s

1e

− 2σ e

− 2σ e / E

Ι

2s

2e

es

1 1σ - ε 2 2σ - ε

Ι

e

Es

2E SL

EE

s

ees

10 es

10 e

Es

e

Es

s

ees

10 es

45° 45°

P

L

L L

d

A

CB

1

2 2

Δσ2

Δε2

ΔP

Δδ

Page 13: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

ΔP = 2ΔN2 − ΔN1 = E Δδ

LS = ES

LΔδ

ΔP = ESL

Δδ

2 10 e eL LE Es sd< < Þ ( )2 2 10 2e eS P Ss s< < +

110 2 e e

E Es se- < < - Þ 110 2e es s s- < < -

210

2e e

E Es se< < Þ 2 es s=

STAGE II 2 10 e eL LE Es sd< <

Δε1 = − Δδ

L Elastic( ) ⇒ Δσ 1 = −E Δδ

L

ΔN1 = −E Δδ

LS

Δε2 =

Δδ2L

Plastic( ) ⇒σ 2 =σ e ⇒ Δσ 2 = 0 ΔN2 = Δσ 2S = 0

45° 45°

P

L

L L

d

A

CB

1

2 2

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 14: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

P - δ

2 2 eSs

2 /eL Es

P

d10 /eL Es

( )2 10 eSs+

Ι

ΙΙ

1s

1e

− 2σ e

−10σ e

− 2σ e / E −10σ e / E

Ι

ΙΙ

2s

2e

es

1 1σ - ε 2 2σ - ε

ΙΙΙ

e

Es 10

2e

Es

2E SL

E SL

E

E

45° 45°

P

L

L L

d

A

CB

1

2 2

ΔP

Δδ

ΔP

Δδ

Δσ2

Δε2

Δσ1

Δε1

Δσ2

Δε2

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 15: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

STAGE III 10 20e eL LE Es sd< <

Δε1 = − Δδ

L Plastic( ) ⇒ σ 1 = −10σ e ⇒Δσ 1 = 0

Δε2 =

Δδ2L

Plastic( ) ⇒ σ 2 =σ e ⇒Δσ 2 = 0 ΔN2 = Δσ 2S = 0⇒ΔN2 = 0

ΔP = 2ΔN2 − ΔN1 = 0 ΔP = 0

10 20 e eL LE Es sd< < Þ ( )2 10 eP Ss= +

120 10 e e

E Es se- < < - Þ 1 10 es s= -

210 20

2 2e e

E Es se< < Þ 2 es s=

45° 45°

P

L

L L

d

A

CB

1

2 2

ΔN1 = Δσ 1S = 0⇒ΔN1 = 0

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 16: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

P - δ

2 2 eSs

2 /eL Es

P

d10 /eL Es 20 /eL Es

( )2 10 eSs+

Ι

ΙΙΙΙΙ

1s

1e

− 2σ e

−10σ e

− 2σ e / E −10σ e / E −20σ e / E

Ι

ΙΙ

ΙΙΙ

2s

2e

es

1 1σ - ε 2 2σ - ε

ΙΙΙ ΙΙΙ

e

Es 10

2e

Es 20

2e

Es

2E SL

E SL

E

E

s

ees

10 es

10 e

Es

e

Es

s

ees

10 es

45° 45°

P

L

L L

d

A

CB

1

2 2

ΔP

Δδ

ΔP

Δδ

Δσ1

Δε1

Δσ1

Δε1

Δσ2

Δε2

Δσ2

Δε2

Page 17: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

STAGE IV Unloading

1 1 1 1 1 1 * *

E EL L Ld d de s s s s sD D D

D = - Þ D = - Þ = +D = -

ΔN1 = −E Δδ

LS

Δε2 =Δδ2L

⇒ Δσ 2 = E Δδ2L

⇒ σ 2 =σ 2 *+Δσ 2 =σ 2 *+E Δδ2L

Perfect plasticity( )

Elastic br

h a c n

e

eEe es e

ì D = DÞ í D = Dî

⇒ N1 = N1 *+ΔN1 = N1 *−E Δδ

LS

⇒ N2 = N2 *+ΔN2 = N2 *+E Δδ

2LS

ΔN2 = E Δδ

2LS ⇒ N2 = N2 *+E Δδ

2LS

10 es= -

10 eSs= -

es=

eSs=

45° 45°

P

L

L L

d

A

CB

1

2 2

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 18: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 2 – Solution

ΔP = 2Δ2 − ΔN1 = E Δδ

2LS

⎛⎝⎜

⎞⎠⎟− −E Δδ

LS

⎛⎝⎜

⎞⎠⎟= 2E Δδ

LS = 2E S

LΔδ

* 2P P E SLdD

= +

For * 0P P Dd= Þ =

For 2 100 * 2 2

eLP P LES E

sDd += Þ = - = -

* 0P P Dd< Þ <

20 2 10* 2

e eL LE Es sd d Dd +

Þ = + = - δ = 20− 2 +10

2

⎝⎜

⎠⎟σ e

EL = 14.29

σ e

EL

1 1 12 10 2 10

2 2e

eEL E

sde s e sD + +ÞD = - = Þ D = D = Þ

2 2 22 10 2 10

2 2 2 2 2e

eEELsde s e sD + +

ÞD = = - Þ D = D = - Þ

σ 1 =

2 −102

σ e = −4.29σ e

σ 2 = 1− 2 +10

2 2

⎝⎜

⎠⎟ σ e = −3.03σ e

1

2

14,29 /4,293,04

e

e

e

E Ld ss ss s

=

= -= -

45° 45°

P

L

L L

d

A

CB

1

2 2

s

ees

10σ e

E

e

Es

s

ees

−10σ e

Page 19: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Δσ1

Δε1

Unit 2 – Solution

P - δ

2 2 eSs

2 /eL Es

P

d10 /eL Es 20 /eL Es

( )2 10 eSs+

Ι

ΙΙΙΙΙ

1s

1e

− 2σ e

−10σ e

− 2σ e / E −10σ e / E −20σ e / E

Ι

ΙΙΙ

2s

2e

es

1 1σ - ε 2 2σ - ε

ΙΙ ΙΙΙ

e

Es 10

2e

Es 20

2e

Es

14.29σ eL / E

ΙV

−4.29σ eΙV

−3.03σ e

ΙV

2E SL

2E SL

E SL

ΙΙ

Ι

E

E

s

ees

10 es

10 e

Es

e

Es

s

ees

10 es

45° 45°

P

L

L L

d

A

CB

1

2 2

ΔP

Δδ

Δσ2

Δε2

Page 20: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 3

Indicate the shape of the following surfaces in the three dimensional space ofprincipal stresses:

a) σ m = constant

b) τ oct = constant

c)

σ m

τ oct

= constant

Page 21: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 3 – Solution

a) σ m = const.

σ m = 1

3σ 1 +σ 2 +σ 3( ) = const. → σ 1 +σ 2 +σ 3 = const.

The surface is a octahedral plane, which isa plane perpendicular to the hydrostaticstress axis.

1 2 3 1 1 3 3 3oct m

I Ids s ss s + += = = ® =

The distance, d, from the origin to the plane is:

3 octd s=

Where is the normal octahedral stressocts

1s

σ 3

σ 2

Hydrostatic stress axis

1 2 3s s s= =

Octahedral plane

σ 1 +σ 2 +σ 3 = const.

Π3 octd s=

Þ

Page 22: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 3 – Solution

b) τ oct = const.

The surface is a cylinder with constant radius andaxis in the hydrostatic stress axis.

The radius of the cylinder is:

3 octR t=

Where is the tangential octahedralstress:

octt

( )1222 2 2

1 2 3 1 2 31 1

33octt s s s s s sé ù= + + - + + =ê úë û

[ ] [ ]1 12 2

2 22 23J R J¢ ¢= ® =

Þ

1s

σ 3

σ 2

Hydrostatic stress axis

1 2 3s s s= =

3 octR t=

Page 23: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 3 – Solution

c)

σ m

τ oct

= const.⇒σ m

τ oct

= const. In this case, the radius of the cylinder varieslinearly with the distance from the origin.

The surface is a cone with axison the hydrostatic stress axisand vertex in the origin.

1s

σ 3

σ 2

Hydrostatic stress axis

1 2 3s s s= =

θ

3 octR t=

q3 octt

3 octs

σ oct

τ oct

= 1tanθ

= cotθ

The angle of the cone is constant and itsvalue is :

θ = a cot

τ oct

σ oct

Þ

d = 3σ oct

Page 24: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 4

An elastoplastic material is subjected to a pure shear stress and anuniaxial tensile stress . Plastification occurs, respectively, at ___ and--------. Determine the values for the cohesion c and internal friction angle---, assuming a Mohr-Coulomb yield criterion. Assume also plane stressconditions.

( )Ι( )ΙΙ at =

bs =f

Ιt t

t

t

ΙΙs s

Page 25: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 4 – Solution Ιt t

t

t

ΙΙs s

: PURE SHEAR STRESSI

( ) ( ) ( )1 3 1 3 sin 2 cos 0F c= s -s + s +s f- f =σThe yield surface takes the form:

Where:

1 1 3

1 33

0

2 a

aas = s +s =ù é

Þú ê s -s =s = - ëû

( ) 2 2 cos 0F a cÞ = - f =σ

cosac =f

1s3s 2 0s =

at =

f

PLASTIC ZONE

t

s

Page 26: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 4 – Solution Ιt t

t

t

ΙΙs s

: UNIAXIAL TENSILE STRESSII

( ) ( ) ( )1 3 1 3 sin 2 cos 0F c= s -s + s +s f- f =σThe yield surface takes the form:

Where:

1 1 3

1 33

0

b bb

s = s +s =ù éÞú ê s -s =s = ëû

( ) ( ) 1 sin 2 cos 0F b cÞ = - f - f =σ

2sin 1ab

f = -

1 bs =3 2 0s s= =

f

PLASTIC ZONE

t

s

2 2sin 1 1 1 1 0 2 0 1a a ab b b

f < ® - < - < ® < < Þ < <

Page 27: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 5

Formulate in terms of the stress invariant the equation of theyield surface that, in the principal stress space, is an ellipsoid of revolutionaround the hydrostatic axis with semi-axes a and b :

1 2 3, , and I J J¢ ¢

a

bb

1s 2s

3s

Intersection with the octahedral plane at (0,0,0)

Page 28: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 5 – Solution a

b

b

1s 2s

3s

Since the surface is a surfaceof revolution with axis on thehydrostatic axis, its equationdoes not depend on ¢3J :

( ) ( )1 2 3 1 2, , ,F I J J F I J¢ ¢ ¢Þ

In the x-y-z axis, theequation of a revolutionellipsoid can be written as:

2 2 2

1x y za b bæ ö æ ö æ ö+ + =ç ÷ ç ÷ ç ÷è ø è ø è ø 1s

2s

3s

3 octt

3 octs

xy

z

( )1 2 3, ,F I J J¢ ¢

Page 29: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 5 – Solution a

b

b

1s 2s

3s

2 2 2 2 2 2

2 21 1x y z x y za b b a b

+æ ö æ ö æ ö+ + = Þ + =ç ÷ ç ÷ ç ÷è ø è ø è ø

The equation of a circumference composing the cross-section of the ellipsoid, in the z-y-z axis, is:

R

z

y 2 2 2 2 22 2 2

2 2 2 2 1 1x y z x Ry z Ra b a b

++ = Þ + = ® + =

In the axis: 1 2 3s s s- -

221 1 13 3 x

3 33octI I Ix t= = = ® =

22 2

23 3 2 23octR J J R Jt ¢ ¢ ¢= = = ® =

212 22 1

3I Ja b

¢+ =

Then, the equation of theyield surface is:

Page 30: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 6

Justify which of the yield functions (Von-Mises, Tresca, Mohr-Coulomb andDrucker-Prager) would be suitable for the following cases:

a) The material does not plastify under any hydrostatic stress state.

b) The material only plastifies when the maximum shear stress reaches acertain value.

c) The material behaves significantly different in tension than incompression.

Page 31: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 6 – Solution

( ) 23 0eF J s¢= - =σ ( ) ( )1 2

max2

0eFt

s s s= - - =σ!"#"$

Von-Misesgeneralization

Trescageneralization

Von-Mises Tresca

Drucker-Prager Mohr-Coulomb

Page 32: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 6 – Solution

a) The materials does not plastify under any hydrostatic stress state.

Von-Mises and Tresca

b) The material only plastifies when the maximum shear stress reaches acertain value.

Von-Mises

c) The material behaves significantly different in tension than incompression.

Mohr-Coulomb and Drucker-Prager

Page 33: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7

The body delimitated by points A,B,C and D is a perfectly elastoplasticmaterial which is tested in the devise illustrated in Figure 1. The action-response curve is shown in Figure 2. An uniaxial stress-strain state isassumed such that:

Consider a thickness b in the out of plane direction. The following values thatlimit the graph in Figure 2 are requested:

a) The value of the elastic load and the corresponding displacement

b) The value of the ultimate tensile and compressive loads in the plasticregime.

c) The value of the ordinate and abscissa corresponding to points 1 and 2 in thegraph at Figure 2.

P d-

0x y z xy xz yzyhLde e e g g g= = = = = =

0 0x y z xy xz yzs s s t t t¹ = = = = =

eP .ed

pP qP

Page 34: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7P

qP

eP

pP

ed 2 eLEs

1

2

d

Figure 2

y

x

P

h

A B

CD

d

Infinitely rigid

Figure 1

L

e

s

es

es

E

Figure 3

Page 35: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

1. ELASTIC REGIME : eP P<

P

R

21 1210 3 332BE EEM P h bh P bhhbhL LLd dd æ öæ ö= Þ × = × = Þ =ç ÷ ç ÷

è ø è øå

sup e eey h L E

d se ee == = = = Þ ee L

Esd =

1 3e eP bhs=

/ Le d=

h

/E Ls d=

y

es

/e Es

( Strain ) ( Stress)

P

qP

eP

pP

ed 2 eLEs

1

2

d

Page 36: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

2. PLASTIC REGIME : eP P>

h

es s=

max ee E

se =

P

R

y

es

/e Es ed e s s®¥ Þ ®¥ Þ ®

In the case where: d ®¥

P

qP

eP

pP

ed 2 eLEs

1

2

d

Page 37: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

2. PLASTIC REGIME : eP P>

P

R

( ) 2110 · 22B e eM P h bh bhhs sæ ö= Þ = × = Þç ÷

è øå 1 2p eP bhs=

1 2q eP bhs= -

y

es s=

es

/e Es

q pP P= - Þ

P

qP

eP

pP

ed 2 eLEs

1

2

d

Page 38: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

3. POINT 1

max2 2 e eeL

E L Es sdd d e= > Þ = =

21111 3 10 · · · 2432 4 4B ee eM P h bhhbh h bh ss s æ öæ ö æ ö æ ö= Þ = + =ç ÷ ç ÷ ç ÷ ç ÷

è ø è ø è ø è øå

111 24 eP bhs= 1

2 e LEsd =

Displacement at point 1 is:

es

/e Es 2 /e Es Þ

P

qP

eP

pP

ed 2 eLEs

1

2

d

es s=

ye

Ese =

max 2 /e Ee s=P

R2h

Page 39: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

4. POINT 2

Unloading: ( ) is linear ( ) ( ) is lineary y E ye s eD Þ D = D

es

es-2 e

Ese

Es

Limit case: 2 0 2e e e es s s s s s s-D = - Þ -D = Þ D =

P

qP

eP

pP

ed 2 eLEs

1

2

d

es s=

y

eD

h

sDes s-D

2ess D

-

2h

Page 40: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 7 – Solution y

x

P

h

A B

CD

dL

4. POINT 2

2 es sD =In the limit case where:

es-P

R

es

es-2 e

Ese

Es

25510 · · 2464B eeM P h bhhbh ss æ öæ ö= Þ = = - Þ-ç ÷ ç ÷

è ø è øå 25

24 eP bhs= -

sup2 22 2 / 0 e e

e e E E Es ss s e s eD = Þ D = Þ = - = Þ 2 0 d =

P

qP

eP

pP

ed 2 eLEs

1

2

d

2h

Page 41: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 8 – Exam question

A complete loading-unloading cycle is applied on a steelbar with Young’s Modulus E, initial yield stress and hardening parameter______. It is known that the maximum total strain achieved through theprocess is .The maximum plastic and elastic strain are denoted by___ and respectively. In this situation, it is fulfilled that:

(1) (2) (3) (4)- - -

es

2EH ¢ =

max32

e

Ese =

maxpe max

pe

a c

b d

max76 es s=

max max27

p ee e=

16

epE E=

None of theother answers.

s

e

es

maxe

1

2

3

4

Page 42: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 8 – Solution

The elastoplastic tangent modulus is:

1 1 3 3ep ep

HE E E E EE H

¢= = Þ =

¢+

epHE E

E H¢

=¢+

Answer C is UNCORRECT

The value of the maximum stress can be computed as:

max max3 7

3 3 2 6ep e e e

e e e e eE EE

E E Es s ss s s s e s e s sæ ö æ ö= + D = + D = + - = + - =ç ÷ ç ÷

è ø è ø

max es s s= + D

max7 6 es sÞ = Answer A is CORRECT and D is UNCORRECT

The relation between the maximum and elastic strains is: max max maxp ee e e= -

maxmax max max max

3 3 7 1 1 2 2 6 3 3

p e pe e e e e

E E E E E Es s s s s se e e e= - = - = - = Þ =

max maxmax27

7 6

p ee e

Ee e

se == Þ Answer B is CORRECT

s

e

es

maxe

1

2

3

4

Page 43: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 8 – Solution

A complete loading-unloading cycle is applied on a steelbar with Young’s Modulus E, initial yield stress and hardening parameter______. It is known that the maximum total strain achieved through theprocess is .The maximum plastic and elastic strain are denoted by___ and respectively. In this situation, it is fulfilled that:

(1) (2) (3) (4)- - -

es

2EH ¢ =

max32

e

Ese =

maxpe max

pe

a c

b d

max76 es s=

max max27

p ee e=

16

epE E=

None of theother answers.

s

e

es

maxe

1

2

3

4

Page 44: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 9 – Exam question

Indicate which of the following statement/s is/are correct concerning differentyield surfaces:

a c

b d

The Von-Mises criterion issuitable for materials that do notplastify upon hydrostatic stressstates.

The Drucker-Prager criterion issuitable for materials that do notplastify upon hydrostatic stressstates.

The Mohr-Coulomb criterion issuitable for materials thatbehave differently in tensionand compression.

The Tresca criterion is suitablefor materials that show adifferent behaviour in tensionand compression.

Page 45: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 9 – Solution

Von-Mises Tresca

Drucker-Prager Mohr-Coulomb

Statements A and B are CORRECT and statement C and D are UNCORRECT

Page 46: Unit 1mmc.rmee.upc.edu/documents/GWU_Grau/Chapter8_GWU.pdf · Unit 2 –Solution 1 2 10 eeLL < EE ss

Unit 9 – Solution

Indicate which of the following statement/s is/are correct concerning differentyield surfaces:

a c

b d

The Von-Mises criterion issuitable for materials that do notplastify upon hydrostatic stressstates.

The Drucker-Prager criterion issuitable for materials that do notplastify upon hydrostatic stressstates.

The Mohr-Coulomb criterion issuitable for materials thatbehave differently in tensionand compression.

The Tresca criterion is suitablefor materials that show adifferent behaviour in tensionand compression.