unit 2 heredity: inheritance and variation

55
Unit 2 Heredity: Inheritance and Variation Table of Contents Introduction 3 Essential Questions 4 Review 4 Lesson 2.1: Genes 5 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 5 5 6 11 11 12 13 Lesson 2.2: Laws of Heredity and the Punnett Square 14 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 14 14 15 27 27 28 29 Lesson 2.3: Non-Mendelian Inheritance 30 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 30 30 31 40 40 40 42

Upload: others

Post on 25-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Essential Questions  4 
Lesson 2.1: Genes  5 
Objectives  Warm-up  Learn about It  Key Points  Web Links  Check Your Understanding  Challenge Yourself 
5  5  6 
Lesson 2.2: Laws of Heredity and the Punnett Square  14 
Objectives  Warm-up  Learn about It  Key Points  Web Links  Check Your Understanding  Challenge Yourself 
14  14  15  27  27  28  29 
Lesson 2.3: Non-Mendelian Inheritance  30 
Objectives  Warm-up  Learn about It  Key Points  Web Links  Check Your Understanding  Challenge Yourself 
30  30  31  40  40  40  42 
 
 
Lesson 2.4: Multiple Genes  43 
Objectives  Warm-up  Learn about It  Key Points  Web Links  Check Your Understanding  Challenge Yourself 
43  43  44  46  46  46  47 
Laboratory Activity  48 
Performance Task  50 
Self Check  52 
Key Words  52 
Wrap up  54 
 
 
 
 
 
 
 
 
At the end of this unit, you should be able to answer the following questions.  How are genes related to heredity?  Why are genes important to human beings and other living organisms?  How can the structure of genes affect the amino acid sequences?  How were the pea plants used to generate the Mendelian laws?  How are Punnett squares used to solve genetic problems?  How did non-Mendelian patterns of inheritance occur?  How are Mendelian laws different from non-Mendelian inheritance?  Why is the environment a significant factor for traits considered under                     
multiple genes?   
The deoxyribonucleic acid (or DNA) is the molecule responsible for carrying                      the genetic blueprint for the general identity of living organisms. 
During meiosis, DNA is replicated, and the recombination between pairs of                      homologous chromosomes happen. Meiosis allows the exchange of genetic                  materials between chromosomes, leading to variations in the genetic                  makeup of the resulting haploid daughter cells. These haploid daughter cells                      are the gametes or sex cells. 
 
 
 
 
 
    Have you ever observed yourself in a mirror and wondered why you are the way                              you are? Or maybe, you have been fascinated at times, at how you are almost a                                carbon copy of your father, your mother, or a relative? Most of the times, people                              will tell you that you have the same traits as your parents because they passed their                                genes to you. What are genes, why are they important, and how do they affect                              you? 
  The Folk Hunt  In this activity, you        will roam around the        room and guess      whose parents are      indicated in the      picture.    Materials: 
picture of parents  notebook 
  Procedure: 
1. Have tables in a circle formation.  2. Take note of the letter that is assigned to you by your teacher.  3. Make sure to keep the photos of your parents hidden from your classmates                         
and indicate your assigned letter. 
 
 
 
 
4. Randomly put the picture of your parents in different tables.  5. For five minutes, you will roam around the room and guess whose parents                         
are placed on the tables. Remember to indicate the letter for each picture                          that you are guessing. 
  Guide Questions: 
1. How were you able to identify the parents of your classmates without                        meeting them? 
2. What are the things that you have considered to accomplish the activity?    
 
 
 
 
   
 
 
 
 
 
The gene consists of a specific nucleotide sequence and has a definite position in a                              given chromosome. This particular sequence codes for a specific protein for                      phenotype expression.    A gene has four major units. 
Exons are the coding regions, which are translated to a specific sequence of                          amino acids  
Introns are the non-coding regions, which do not specify any amino acid                        sequence for protein synthesis. 
The promoter region is the regulatory sequence that regulates the                    activation of genes, which also determines when and where the protein                      should be synthesized. The CAT and TATA boxes are components that are                        found in the promoter region.  
 
     
 
 
 
 
 
  Fig. 4. Chromosomes, DNA, and genes 
  Do not confuse chromosome with chromatin and chromatid. The chromosome is                      just the condensed version of chromatin. It means that chromatin is only evident                          during prophase while chromosome is evident during metaphase. The one that you                        can see in the microscope is chromosome, not chromatin. On the other hand, the                            chromatid is one version of the duplicated chromosome. Since there are 46                        chromosomes in humans, the number of chromatids is 92. To help you remember                          the difference, bear in mind that a chromosome is also the same as sister                            chromatids.   
  Fig. 5. Difference of chromatin, chromatid, and chromosome. 
 
 
 
 
  Fig. 6. Chromatin and condensed chromosome structure 
     
 
 
 
 
   
The deoxyribonucleic acid (or DNA) is considered the blueprint of life.  A gene is a segment of the DNA that serves as a unit of heredity. 
In eukaryotes, the genetic material is all stored within the nucleus                      bound by the nuclear membrane. In prokaryotes, the genetic material                    is suspended in the cytoplasm known as the nucleoid region. 
The DNA wrapped in histones is termed as the chromosomes.   The chromatid is one version of the duplicated chromosome.  The chromatin is just the uncondensed counterpart of chromosomes.  A genotype is a set of genes that influence and control the expression of                           
biological traits.  A phenotypes is an observable trait expressed in an individual.  A gene has four major units: exons, introns, promoter region, and enhancer                       
region.   
 
 
 
 
 
 
 
 
A. Arrange the following levels of organization in the genetic materials within                     
organisms. Write your answer inside the stacked Venn below.    
 
   
B. Match the following parts of a gene with their respective function.      1. Enhancer region a. coding region of the gene 
2. Promoter region b. non-coding region of the gene  3. Introns c. regulates the activation of a gene  4. Extrons d. interacts to the transcription factor 
5. Gene  e. controls phenotypes   
 
phosphate  group 
sugar   group 
 
 
 
 
  4. 
  9. 
  Read the following questions carefully. Then, answer briefly. 
   
 
 
 
 
 
    With his work on the pea plant, an Austrian monk, Gregor Mendel, discovered the                            basic principles of inheritance. He spent a lot of his time crossing pea plants and                              noticed some patterns of inheritance of traits coming from one generation to the                          next. With his experiments, he was able to establish concepts known today as the                            laws of heredity. What are these laws of heredity?   
  Who Am I?  Through this activity you will get to know yourself better through your classmates                          eyes.    Materials: 
bond paper  pen  clear tape 
  Procedure: 
1. Using clear tape, place a whole sheet of paper on your back. (You may ask                              your classmates to help you with this.) 
2. Try to scan the faces and physical attributes of your classmates.  3. On the papers placed on your classmates’ backs, write a specific physical                       
attribute for each of them. (Remember you are not allowed to give hurtful                          remarks.) 
 
 
 
 
5. Remove the papers from your backs after the activity.  6. Compare the answers on your paper with a seatmate and make conclusions                       
per pair by answering the following questions below:      Guide Questions: 
1. Looking at your papers, were there traits that are similar? What are those?                          Infer some reasons as to why it is possible. 
2. What are the traits that are different? List them down. What do you think                            contributes to your differences? 
3. How can these similarities and differences benefit us?    
 
 
 
 
with the terms below so that so you could understand the experiment very well.   
Parental generation (P generation) – the initial generation.  First filial generation (F1 generation) – the first set of offsprings from parent                         
generation. The F1 generation can reproduce to make the F2 generation and                        so on. 
Pure-bred plants - these refer to plants that “always” produce an offspring                        with identical trait as the parent for many generations. For example, a parent                          plant with a tall trait crossed by a plant with the same trait will produce a                                100% offspring with the tall trait. 
Self-fertilization – some plants can fertilize by themselves. It is possible                      because some plants such as pea plants possess both reproductive organs                      (stamen and pistil) 
  Mendel did the pea plant experiment by first crossing two pure-bred plants. In                          Fig. 7., the purebred purple flower is crossed by a purebred white flower.    
  Fig. 8. The process on how Mendel did the pea plant experiment 
 
 
 
 
two flowers using a paintbrush. He planted the seeds from the resulting matured                          pod. If the blending theory of inheritance is correct, the offspring should be a pea                              plant with a color in between the purple and white since the trait is mixed.                              However, the result of Mendel’s experiment after the cross, also called the F1                          generation, is a 100% purple flower. As a result, this experiment disproved the                          former blending theory of inheritance.    The resulting plants in the F1 generation were allowed to self-fertilize. If the                          blending theory of inheritance is correct, the result should be 100% purple flowers                          since the parent is just one which is the purple flower. However, the result is 75%                                purple and 25% white flower. This result is another proof that the blending theory                            of inheritance is incorrect.   
  Fig. 9. Result of the pea plant experiment 
 
 
 
 
A dominant trait exists when a dominant allele masks the expression of the                          recessive allele, if present. Dominant alleles are often denoted by two                      uppercase letters or one uppercase, one lowercase letter. For example, tall is                        dominant for the height trait. Therefore, it is represented by TT or Tt. 
A recessive trait exists if the dominant allele is not present. This trait has a                              pair of recessive alleles. It is written in small letters. For example, short is                            dominant for the height trait. Therefore, it is represented by tt. 
  In his pea plant experiment, Mendel found out the following dominant and                        recessive traits of pea plants.   
 
 
 
 
 
The law of dominance states that a pure line (homozygous) dominant trait                        crossed with a recessive trait will result in the expression of the dominant                          trait for all the resulting offsprings. It is shown in the F1 generation of Mendel’s                              pea plant experiment. Purebred tall crossed by short pea plant result to the                          expression of the dominant trait which is tall in all the resulting offsprings.    
Table 1. Pairing of alleles for genes controlling certain traits. 
Genotype symbol  Genotype classification  Phenotype* 
TT  homozygous dominant  tall 
Tt  heterozygous dominant  tall 
tt  homozygous recessive  short 
  * assuming that “t” is the gene that controls the height phenotype   
 
 
 
 
   
  Fig. 11. Resulting genes in each gametes after meiosis. 
  During sex cell formation, two alleles that code for a certain trait separate from one                              another to form sex cells that contain only one gene of the pair. During fertilization,                              the offspring tend to get one genetic allele from each parent, the egg and the                              sperm cells. The cell with the combined alleles from both parents now forms the                            offspring.   
 
 
 
 
 
    Law of Independent Assortment  With Mendel’s work on several cross breeds of pea plants, he observed that the                            height of the plant (T), color (Y) and shape (R) of the seeds did not affect the                                  inheritance of one another. A plant which is tall does not automatically mean that                            the plant will have yellow pods, nor did yellow seeds to have round shape. Mendel                              derived a conclusion that the different traits are inherited independently.     The law of independent assortment explains that genes responsible for the                      expression of different traits are sorted independently from each other. This                      means that the inheritance of each trait is highly independent of the inheritance of                            other traits. 
  Fig. 13. Independent inheritance of pod shape (round = R; wrinkled = r) and  
Color (yellow = Y; green = y) in pea plants. 
 
 
 
 
Fig. 13 shows that different genes controlling for different traits such as pod shape                            and pod color are distributed in each gamete independently. One trait does not                          affect the inheritance of the other.   
    The three laws of Mendel explain how meiosis works. If you have a deep                            understanding on meiosis, the laws of Mendel are not a problem to you. Fig. 14.                              summarizes the three laws using the meiosis model.   
  Fig. 14. Meiosis and the laws of Mendel 
 
 
 
 
A Punnett square is a graphical representation for predicting all possible resulting                        genotype combination of a specific cross or breeding experiment.     To predict the resulting genotype combination, follow the steps below.  Step 1 Draw a Punnett square by setting up a grid of perpendicular lines.  Step 2 Place the genotype of one parent on the top.  Step 3 Place the genotype of the other parent down the left side.  Step 4 Fill the spaces at the center by copying the letters on the row and                           
column headings across or down into the empty squares.     
   
 
 
 
 
   
     
Example 1  One dog is heterozygous for black haired trait (Bb), and its partner is homozygous                            white-haired trait (bb). Using the Punnett square, determine the ratio for the                        phenotype of their offspring.    Solution  Step 1  Identify the genotype both parents. 
heterozygous black-haired traits × homozygous white-haired traits  Bb × bb 
  Step 2  Construct the Punnett square for the cross. 
  
2 Bb = Heterozygous black-haired trait  2 bb = Homozygous white-haired trait 
 
 
 
 
 
Let us Practice  Mendel crossed red flowered pea plants with white flowered pea plants. (Red                        flowers are dominant to white.) Both stocks of plants were homozygous. What                        color flowers will the offspring plants have? 
  Example 2  A red and a white flower were crossed and it resulted to a 0% probability for a                                  white color flower. Red is dominant over white. Using the Punnett square,                        determine the possible phenotype of parents. 
    Solution 
Step 1  Identify the genotype of the offspring.  There are two genotype RR and Rr will result to red.  
  
  Step 3 Interpret the result.  
 
       
 
 
 
 
  Example 3  Two individuals who are carriers of the recessive allele for cystic fibrosis were                          crossed. Determine the probability of the offspring to inherit the said disease.     Solution  Step 1  Identify the genotype of both parents. Both of them are carrier of a   recessive disease. Therefore, their genotype is heterozygous for the   expression of cystic fibrosis. 
   
   
Step 3: Interpret the result.  25% chance of having the cystic fibrosis (cc)  50% chance of to be a carrier of the disease (Cc)  25% chance of being healthy and not carrier of the recessive allele (CC) 
  Therefore, 25% of their offspring can inherit cystic fibrosis. 
 
 
 
 
 
Mendel proposed three laws of heredity: the law of dominance, the law of   
  segregation, and the law of independent assortment.  An allele controls similar traits but exhibits different phenotypes.  A Punnett square is a graphical representation for predicting all possible  
resulting genotype combination of a specific cross or breeding experiment.    
    For further information, you can check the following links: 
 
 
 
 
 
 
 
    A. Identify which Mendelian principle is being described below. Use A-law of                     
dominance, B-law of segregation, and C-law of independent assortment.  1. It states that the recessive trait is being masked.  2. Two alleles that code for a certain trait separate from one another during                         
sex cell formation.  3. The cell with the combined alleles from both parents forms the offspring.  4. There is a stronger gene in heterozygous pairing.  5. The inheritance of each trait is highly independent on the inheritance of                       
other traits.  6. The height of the plant (T), color (Y) and shape (R) of the seeds had no                               
effect on the inheritance of one another.  7. Alleles must segregate somewhere between the production of sex cells                   
and fertilization.  8. When there is a dominant homozygous gene, the resulting offspring will                     
only exhibit the dominant trait.  9. In the process of fertilization, the offspring tend to get one genetic allele                         
from each parent when the egg cell and the sperm cell unite.  10. Mendel derived a conclusion that the different traits are inherited                   
independently.     B. Determine the resulting offspring and the percentage of the genotype based on   the parents’ alleles.   
Trait  Parents’ Alleles  Resulting  Offspring 
Percentage of  the Genotype 
   
Widow’s Peak  E (widow’s peak)  e (without widow’s peak) 
EE × ee 
 
 
 
Ll × ll 
DD × dd 
Hh × Hh 
Read the following questions carefully. Then, answer briefly. 
1. What are the differences among the Mendelian principles?  2. How do these principles help in the study of genetics?  3. Why did Mendel choose pea plants for his experiment on inheritance?  4. Green seed color is dominant over yellow. If you conducted a cross between                         
homozygous yellow plants (gg) and heterozygous green plants (Gg), what are                      the resulting genotypic and phenotypic ratios of the offspring? 
   
 
 
 
 
  
 
   
pen and paper    Procedure: 
1. Find a partner.   2. Observe the flowers shown. List down your observations on a piece of                       
paper.  3. After 2 to 3 minutes, exchange papers with your partner and identify the                         
similar answers from your observations.     Guide Questions: 
1. What are your observations from the three pictures below ?  2. What are the possible reasons for your observation? Identify their                   
advantages.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shown below is a cross through a Punnett square that exhibits the equal chances of                              having a female and a male offspring.   
  X  Y 
 
    When the trait is linked to the X chromosome, it is called X-linked trait while if the                                  trait is linked to the Y chromosome, it is called Y-linked trait.     The x-linked trait is most common in males than females. It is because the males                              only have one X chromosome. Therefore, if a trait is linked to their single X                              chromosome, they will already exhibit it in their phenotype. In the case of females,                            it is less common since females have two X chromosome. It means that before the                              female express the X-linked trait, the trait should be linked in both X chromosomes.                            If only one of the chromosome is affected, the female is just a carrier of the trait but                                    does not possess it in their phenotype. As a whole, the X-linked trait is more                              common in males because they have 1/2 or 50% chance for them to express the                              trait while females only have 1/3 or 33.3% chance of acquiring the trait.     Table 2. Possible color blindness genotypes and phenotypes of males and females. 
Female    Male 
XCX  Carrier female    XCY  Colorblind male 
XCXC  Colorblind female       
 
 
 
 
 
An example of a recessive x-linked trait in humans is hemophilia and                        colorblindness. Hemophilia is a genetic disorder that disallows the body to make                        blood clots. Hence, bleeding will not stop. On the other hand, color blindness is a                              trait wherein a person cannot distinguish colors properly. Both traits are found on                          the X chromosome, not on the Y. Table 2 shows the possible color blindness                            genotypes and phenotypes of males and females. Same genotypes could be used if                          dealing with the hemophilia trait. Just change the letter ‘C’ to ‘H’ to avoid confusion.    The Y-linked trait is only common in males since only males have Y chromosome.                            Therefore, if the father possessed the Y-linked trait, all the male offsprings will                          acquire the trait. The female offspring will never acquire the trait. An example is the                              hypertrichosis pinnae auris trait. This trait is characterized by having a hairy ear.     Sex-Influenced Trait  Sex-influenced trait is an autosomal trait. As opposed to sex-linked trait,                      sex-influenced trait is not located on the sex chromosomes. However, the sex of a                            person influences the trait. It means that sex-influenced trait can be found in                          both sexes but expressed more in one sex than the other. An example of this is                                the baldness trait. Baldness is more common in males than females because they                          have 2/3 or 66.7 % chance of acquiring the trait. As shown in Table 3, the possibility                                  of a male to acquire the trait is 2 (XBYB and XBXb) out of 3 genotypes. On the other                                      hand, females only have 1/3 or 33.3 % chance of acquiring the trait. It is because                                the possibility of a female to acquire the trait is 1 (XBXB) out of 3 genotypes.    Table 3. Possible baldness genotypes and phenotypes of males and females 
Female    Male 
XBXB  Bald    XBYB  Bald 
XBXb  Non-bald (normal)    XBYb  Bald 
XbXb  Non-bald (normal)    XbYb  Non-bald (normal) 
  Sex-Limited Trait  Sex-limited trait is also an autosomal trait. Similar to sex-influenced trait, the sex                          of a person has something to do with the expression of the trait. It means that                                sex-limited traits could be found in both sexes but only one sex expresses it                            on their phenotype. An example of this trait is the lactation trait. This trait is both                                 
Copyright © 2018 Quipper Limited  35 
 
 
 
found in males and females. However, only the females express it on their                          phenotype. Table 4 shows that the trait is found in male genotypes but any                            genotype could not express the lactation trait in the phenotype of males.    Table 4. Possible Lactation Genotypes and Phenotypes of Males and Females 
Female    Male 
Genotypes  Phenotypes    Genotypes  Phenotypes 
XLXl  Lactating    XLYl  Not lactating 
XLXl  Lactating    XLYl  Not lactating 
XlXl  Not lactating    XlYl  Not lactating 
  Multiple Alleles  In some traits, a certain gene can have more than a pair of alleles that controls the                                  expression of traits. This is evident in the patterns of inheritance in human blood                            type. The ABO blood type has three alleles (A, B, and O) governing this                            characteristic.  
Table 5. Blood types and their corresponding genotypes 
Blood Type  Genotype 
 
As shown in Table 5, genetic inheritance of blood type works in this manner: 
Both the A and B are dominant alleles over O.  Blood type O can be expressed by homozygous recessive, OO.  Blood type A can have a homozygous dominant AA or heterozygous                     
dominant AO   
 
 
 
Blood type B can have homozygous dominant BB or heterozygous                    dominant BO. 
Blood type AB has codominant AB alleles because both are expressed                      equally in the phenotype of the individual with heterozygous gene. 
  Fig. 18. Multiple alleles controlling human blood type inheritance.      
  Example 1   Cross two pink snapdragons. Using the Punnett square, determine the percentage                      for the pink genotypic and phenotypic traits. 
   Solution  Step 1  Identify the genotype of both parents. 
heterozygous pink × heterozygous pink  Rr × Rr     
 
 
 
 
  
  Step 3   Interpret the results. 
2 Rr = Heterozygous pink snapdragons  1 rr = Homozygous white snapdragons  1 RR = Homozygous red snapdragons 
  The percentage for pink phenotype and genotype is both 50%.   
Let us Practice  What is the result of a cross between a pink snapdragon and a white snapdragon?  Follow the same concept above. 
  Example 2  A woman who is a carrier of colorblindness trait marries a man who is colorblind (a                                recessive sex-linked trait). What are the chances of them having a son or daughter                            who is colorblind? Using the Punnett square, determine the probability of the                        offspring that is colorblind. Express your answer in percentage.    Solution  Step 1  Identify the genotype both parents. 
Heterozygous normal vision × Homozygous colorblind  XC X × XCY 
   Step 2:  Construct the Punnett square for the cross. 
  
X  XC X  XY 
 
 
 
 
   Step 3:  Interpret the result. 
1 XC XC = color blind daughter  1 XC X = carrier of colorblindness trait daughter   1 XC Y= color blind son  1 XY = son with normal vision  
  There is a 50% probability that the offspring will be colorblind.   
Let us Practice  Both parents have normal color vision. They had a daughter with normal vision                          and a son who is colorblind. What is the probability that the daughter is a carrier                                for the color-blindness allele? 
  Example 3  Mr. Anderson has straight hair while Mrs. Anderson has wavy hair. (The curly hair                            gene shows incomplete dominance. There are two alleles, curly- dominant and                      straight- recessive. The heterozygote has wavy hair.) The Andersons have a child                        with curly hair. Mr. Anderson accuses Mrs. Anderson of being unfaithful to him. Is                            he necessarily justified? Why or why not? Show your Punnett square and the                          corresponding solutions.     Solution  Step 1  Identify the genotype of both parents. Remember that Mr. Anderson   has straight hair and Mrs Anderson has wavy hair.   
 
  Step 3   Interpret the result. 
 
 
 
 
    Mr. Anderson’s justification could justified since they have 0% chance of having a                          child with curly hair.   
   
A non-Mendelian inheritance is a complex pattern of inheritance that does                      not follow the laws of heredity by Gregor Mendel. 
Incomplete dominance is a pattern of inheritance characterized by the                    formation of a trait that is in between the phenotypes of the parents. 
Codominance is a non-Mendelian type of dominance where the alleles of a                        gene pair in a heterozygote are fully expressed. 
Genes that go along with either sex chromosome is said to be sex-linked.   
  For further information, you can check the following links:
 
 
 
 
 
 
  A. Identify the phenotypes of the given genotypes. 
 
10.  XY  __________________________________________________ 
  B. Compute for the possible blood type of child based from the given data below.   
Family  name 
Possible blood type of  the child 
 
 
 
 
 
Read the following questions carefully. Then, answer briefly.  1. How did the concept of non-Mendelian genetics come about?  2. What type of inheritance results in long radishes crossed with round                     
radishes results in all oval radishes? Explain your answer.  3. Hemophilia is a recessive sex-linked trait associated with the X                   
chromosomes in humans. If an unaffected male and carrier female were                      crossed, what is the probability of their children inheriting the disease?  
4. A woman has a daughter and she claims that one of the three men is the                                biological father of her child. A paternity judge in the court requested that                          the woman, the daughter, and all three men have their blood types                        identified. The results are mother, Heterozygous Type A; Daughter, Type O;                      Man #1, Type AB; Man #2, Homozygous Type B; Man #3, Type O based on                              the blood types. The mother affirms that the results confirm that Man #3                          is her daughter's father. Is she right? Why or why not? 
       
 
 
 
 
    Not all traits are governed by a single gene. Most of the time, the control in the                                  expression of a single trait is affected by multiple genes. These genes may have a                              single or multiple pairs of alleles responsible for the high variation in the                          phenotype. How does multiple gene inheritance work?   
Around and Around  Materials: 
color wheel    Procedure: 
1. Create a color wheel. Make a circle and                divide it into four parts. Use the colors red,                  blue, yellow and green for each part. Fasten                one arrow to a metal brad and place at the                    center of the circle. 
2. Record the color for each time the wheel                stopped. 
       
 
 
 
1  2  3  4  5  6  7  8  9  10 
Color                     
 
 
 
 
 
 
   
  A monogenic inheritance involves only one gene and gives two possible                     
         
 
 
 
 
 
Compare polygenic traits to other non-mendelian inheritance              traits by watching this video.  
User: Amoeba Sisters. 2015. ‘Incomplete dominance, codominance, polygenic traits,    and epistasis.’ https://www.youtube.com/watch?v=YJHGfbW55l0 
 
Wondering how polygenic traits work? Click on this link.  User: Great Pacific Media. 2009. ‘Polygenic Inheritance.’    https://www.youtube.com/watch?v=gouqTq5p168 
A. Put a check on the traits that are considered under polygenic inheritance.  1. dimples  2. fur color  3. flower color  4. seed shape  5. weight  6. height  7. hemophilia  8. eye color  9. spots on animals 
10. behavior    B. Analyze the given statements below. Write MGI for monogenic inheritance, PGI                       
 
 
 
 
8. Genes are inherited independently from each other.  9. The inheritance that greatly contributes to very high variation among                   
 
Read the following questions carefully. Then, answer briefly. 
1. Genes undergo a series of processes to be utilized in controlling the                        expression of traits among individuals. Is it possible for living organisms to                        have the same genes?  
2. How do genes located on a single chromosome affect heredity?  3. Is eye color controlled by a single gene? Explain your answer.  4. Two different foster parents adopted a monozygotic identical twins at birth.                     
One child raised by a wealthy family in Canada while a low-income family                          adopted the other child in the Philippines. After 30 years, they met each                          other and observed differences in their phenotypes. What are the possible                      factors that have caused these differences in the identical twins? 
 
 
 
 
 
   Activity 2.1 
Modelling Probability of Allele Inheritance    Objectives  At the end of this laboratory activity, the students should be able to: 
determine how the parent’s alleles are segregated in the resulting gametes                      of the offsprings.  
  Materials and Equipment 
2 small ziplock bags  chocolate candies (2 red and 2 white) 
  Procedure 
1. Put one red and one white chocolate candy on the first bag. The red candy  represents a dominant allele while the white represents recessive allele.  Label the bag as "mother's allele". 
 
 
Table 1. F1 Generation. 
Draw  Allele from Mom  Allele from Dad  F1 Genotype  F1 Phenotype 
1         
2         
 
 
 
Class  Total 
  Guide Questions 
1. What does each bean represent?  2. What trait is being studied in this experiment?  3. Which genotype and phenotype would most likely be expressed by the                     
offspring of F1 generation. 
 
 
 
 
Tracing the Cause of Genetic Disorder    Goal 
You are tasked to do a case study for a family who would wish to trace one                                  genetic disorder. 
  Role 
You are a geneticist in a hospital who specializes with family heredity.    Audience 
Your audience include the students and teachers from your school.    Situation 
You were assigned to work on case study of a family who would wish to                              determine their family’s genetic disorder. You are to assess the prevailing                      problem of the disorder and find solution/s to the stated dilemma. It will also                            require a survey questionnaire for the family’s interview. The case study                      should consider one genetic disease. The proposed study should be feasible                      and supported by scientific research. The final paper should be compiled in a                          long folder and should follow the guidelines for an academic paper. 
  Product, Performance, and Purpose:  
               
 
 
 
  Standards and Criteria:  Your performance will be graded based on the rubric below.   
Criteria  Below 
Exemplary   100% 
Content  Contents are related  to the tasks 
Less than 49% of  the required  components of  assigned contents  were presented in  the case study. 
50% - 70% of the  the required  components of  assigned contents  were presented in  the case study. 
75% - 90%of the  required  components of  assigned contents  were presented in  the case study. 
100%.of the  required  components of  assigned contents  were presented in  the case study. 
Organization  Detailed facts are  presented completely  and in a cohesive  flow.     
Details shown in  the plan were few  and not cohesive  throughout the  submitted paper.   
Details shown in  the plan were few  and began to show  cohesiveness  throughout the  submitted paper.   
Details shown in  the plan were  mostly complete  and showed  cohesiveness  throughout the  submitted paper.   
Details shown in  the plan were  completed,  provided  additional details,  and shows  cohesiveness  throughout the  submitted paper. 
Quality  The paper has  complete  components and is  neatly presented. 
The product had  incomplete  components and  relationships are  inaccurately  represented.  
The product had  components and  relationships  represented. 
The product was  neat, components  and relationships  are well  represented. 
The product was  neat, components  and relationships  are accurately  detailed and  clearly  represented. 
Integrating  concepts in  Genetics  Subject matter is  integrated and  properly used in  presenting facts.  
No concept of  Genetics is not  discussed in the  tasks.  
 
 
 
 
    Reflect on your understanding of the topic by completing the sentences below.   
Reflect 
 
Chromatin  This is a thread-like structure made up of DNA. 
Chromosome  It is a condensed structure that came about due to the                      coiling of chromatin structures. 
Codominance  This is a form of dominance wherein the gene pair is                      expressed simultaneously in an individual. 
Deoxyribonucleic   acid (DNA) 
This is a long chain of nucleotide comprising of a                    phosphate group, a sugar group and nitrogenous bases                (adenine, thymine, guanine and cytosine). 
Dominant trait  It is an allele that masks recessive traits. This is                    represented by a capital letter. 
Enhancer region  This is the one that interacts with the transcription factor                    to help the promoter region becomes activated 
Exons   These are coding regions of a gene. 
 
 
 
 
Gene  This is a unit of heredity that contains DNA segments. 
Genotype  These are set of genes that influences the expression of                    traits (phenotype) 
Hemophilia  It is a recessive genetic disorder that disables blood clot                    to occur. 
Heterozygous  It is also called as hybrids. This comprises of one                    dominant and one recessive allele. 
Homozygous  This set of allele is composed of both dominant or both                      recessive traits. 
Incomplete  dominance 
It is a pattern of inheritance where the dominant alleles                    are not fully expressed and traits are blended. 
Introns  These are non-coding regions of a gene. 
Law of dominance  It is a mendelian principle that states that dominant traits                    will always masks the recessive traits. 
Law of independent      assortment 
This states that traits are independently inherited from                one another. 
Law of segregation  It is a law that states that alleles are segregated during                      gamete formation and fertilization. 
Monogenic  inheritance 
It is a pattern of inheritance that involves only one gene.    
Multiple gene  inheritance 
This is also called as polygenic inheritance. It is a trait of                        an individual controlled by more than one gene.   
Multiple allele  These are genes that have more than a pair of allele that                        controls the expression of traits. 
Phenotype  This is the observable traits which are controlled by                  genotype. 
Promoter region  It is a the regulatory sequences that regulate the                  activation of genes, which determine when and where the                  protein should be synthesized. 
Punnett square  This is a graphical representation used for predicting                possible genotype and phenotypes. 
 
 
 
 
Johnson, G.B., and Raven, P.H. 2001. Biology: Principles & Explorations. Austin:                     
Holt, Rinehart and Winston.    Klug, W.S., Spencer, C.A., and Cummings, M.R. 2016. Concepts of Genetics. Boston:                       
Pearson.    Mader, S.S. 2014. Concepts of Biology. New York: McGraw-Hill Education.    Reece, J.B. and Campbell, N.A. 2011. Campbell Biology. Boston: Benjamin                   
Cummings/Pearson. 
 
 
 
Tamarin, R.H. 2004. Principles of Genetics. Boston: McGraw-Hill.    "Facts About Genetics: Chromosome18". 2018. Chromosome18.Org.           
https://www.chromosome18.org/facts-about-genetics/. 
 
Table of Contents
Objectives
Warm-Up