united states department of the interior … report 85-518 1 woods ... static triaxial test results...

184
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY STATIC AND CYCLIC STRENGTH PROPERTIES OF MOUNT ST. HELENS DEBRIS AVALANCHE AND ASH CLOUD MATERIALS by William J. Winters 1 and Robert E. Kayen 2 Open-File Report 85-518 1 Woods Hole, Massachusetts 02543 2 Menlo Park, California 94025 August 1985 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Upload: lethuy

Post on 22-May-2018

214 views

Category:

Documents


2 download

TRANSCRIPT

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

STATIC AND CYCLIC STRENGTH

PROPERTIES OF MOUNT ST. HELENS

DEBRIS AVALANCHE AND ASH CLOUD MATERIALS

by

William J. Winters 1

and

Robert E. Kayen2

Open-File Report

85-518

1 Woods Hole, Massachusetts 02543

2 Menlo Park, California 94025

August 1985

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

TABLE OF CONTENTS

Page

Introduction............................................................ 1Sample preparation and testing methodology.............................. 1

Sampling............................................................. 1Laboratory testing methodology....................................... 2

Results................................................................. 3Static triaxial tests................................................ 3Cyclic triaxial tests................................................ 3

Discussion.............................................................. 4Modeling field behavior in the laboratory with small-scale specimens. 4Static triaxial test results......................................... 4Sample preparation................................................... 5Anisotropic field stress state and reconstitution method............. 5Correction factors applied to cyclic triaxial test results........... 6

1. Membrane compliance............................................ 62. Isotropic consolidation........................................ 7

Normalized shear stress curves for use with the simplified method todetermine liquefaction potential.................................. 8

Liquefaction susceptibility assessment.................................. 8Conclusions............................................................. 9Acknowledgements........................................................ 10References.............................................................. 11Nomenclature and symbols ................................................ 14Tables.................................................................. 16Figures................................................................. 22Appendices A. Static triaxial test results............................. 43

B. Cyclic triaxial test results............................. 83

ii

INTRODUCTION:

On May 18, 1980 the northern flank of Mount St. Helens turned into an enormous debris avalanche that traveled up to 23 km in a period of approximately ten minutes and buried an area of about 60 km^ to an average depth of 45 m (Voight and others, 1983). The mass movement dammed a number of streams, created a blockage in front of Spirit Lake, and deposited approximately 0.4 km0 of material into Spirit Lake raising the water level 60 m (Glicken and others, in preparation). New impoundments were formed when natural drainage routes were blocked (Fig. 1). South Fork Castle Creek was dammed by the debris avalanche and formed a lake with a volume ofJ qapproximately 0.02 km0 . That lake level has been presently stabilized by the construction of a spillway. The mass flow consists of poorly sorted mixtures of material ranging from large boulders to clay size with a sand and gravel matrix (Meyer and others, 1985). Layers of volcanic ash cloud deposits are present in many locations, typically near the ground surface.

The physical properties, and static and dynamic strength of material obtained from the Spirit Lake and Castle Creek blockages are presented in this report. Two samples were obtained from each of those blockages (Table 1, Fig. 1). Surface grab samples were seived, reconstituted, and reconsolidated in the laboratory. Also, samples of the ash cloud deposit were obtained near the surface of the Spirit Lake blockage. The samples were subjected to static (in order to assess pre- or post-earthquake stability) and cyclic triaxial tests (to evaluate the effects of cyclic loading on material behavior). Sample consolidation stresses, overconsolidation ratios, dry densities, and grain sizes were varied to determine their effect on sample behavior.

The results of the test program can be used to assess the liquefaction susceptibility of the material. The liquefaction potential can then be determined by comparing the susceptibility of the material to anticipated earthquake loadings at Mount St. Helens.

Liquefaction of a significant amount of the debris flow material could lead to failure or overtopping of the recently formed dams by the impoundments during or immediately after an earthquake. Flooding and mud flows could then threaten both lives and property downstream. Many small and moderate earthquakes have occurred in the Mount St. Helens region both before and after the 1980 eruption (Voight and others, 1983).

SAMPLE PREPARATION AND TESTING METHODOLOGY

Sampling:

In August of 1982 and March of 1983 surface grab samples were collected on the north side of Mount St. Helens at the Spirit Lake (SL) and South Fork Castle Creek (CC) localities (Table 1). The debris flow material was bagged and allowed to dry. Particles greater than 64 mm in diameter were removed from the grab samples. The finer-grained ash cloud deposit (SL1) from Spirit Lake was sampled by vertically pushing a 48 mm inside-diameter thin-walled tube into a horizontal bench cut into the deposit.

Laboratory testing methodology:

Two subsamples were taken from each of the Spirit Lake and South Fork Castle Creek grab samples. The first subsample contained only particles finer than 5.6 mm in diameter, while the second contained particles finer than 3.3 mm in diameter. These grain sizes represent one-sixth and one-tenth of the reconstituted triaxial specimen diameter (36 mm) respectively. The grain size distributions from the grab sample and subsample with particles less than 5.6 mm in diameter were obtained by dry sieving in. a mechanical sieve shaker in accordance with the American Society for Testing and Materials (ASTM), Test for Particle-Size Analysis of Soils (D 422) (Fig. 2). Ash cloud material (SL1) was tested intact, without remolding or seiving. Intact samples were trimmed on a standard soil lathe to the appropriate dimensions.

Triaxial samples were prepared within a 0.3 mm thick commercial geotechnical membrane stretched inside a hollow cylindrical mold. Two procedures were employed to reconstitute the material within the confines of the membrane:

1) Material was pluviated through deaired water (i.e., the particles were allowed to fall through approximately 20 mm of standing water) until a 90 mm tall cylindrical sample was formed. The top soil was removed until a 70 mm high specimen remained.

2) Material was pluviated in 10 mm high layers through deaired water and tamped up to 25 times per layer with a 9 mm diameter rod. The initial 90 mm high sample was trimmed to a height of 70 mm.

Tamping was used to densify the material and to remove entrapped air bubbles. Once the sample was prepared, it was placed in a triaxial cell with deaired water as a confining fluid. Water was slowly flushed through the sample to expel interstitial air, until the sample was nearly saturated. The cell and sample water pressure were then raised similtaneously to 345 kPa in order to dissolve any remaining gas bubbles and fully saturate the sample. Skempton's B-coefficient values typically were greater than 0.95, indicating a nearly saturated condition existed (Skempton, 1954).

Upon completion of saturation (typically overnight), the material was consolidated by increasing the cell pressure and allowing pore water to drain. After consolidation was complete, the drainage valve was closed and the sample was tested by increasing the axial load on the cylindrical sample. Static triaxial shear tests were performed on 38 reconstituted samples. The water content and dry density of the sample were determined after each test was finished. Material from sample SL4 had the highest water content and lowest dry densities, followed by material from CC1 and CC2 (Fig. 3).

Fifty cyclic triaxial tests were performed using an electropneumatic cyclic loading system similar to the equipment discussed by Chan (1981). Uniform sinusoidal cyclic deviator stresses with almost full stress reversals were applied at a rate of 0.1 Hz. Pore water pressure, axial deformation and axial load were continually monitored and automatically recorded during the static and cyclic triaxial tests.

RESULTS:

Static triaxial tests:

Samples were isotropically and anisotropically consolidated to either 100 or 300 kPa (representative of field overburden stresses) and subsequently were sheared undrained with pore pressure measurements until 20 percent axial strain was reached. A few specimens were rebounded to a lower consolidation stress prior to shear in order to produce an overconsolidated sample. Failure occurred at the point of maximum shear stress, q, (Table 2).

Peak friction angles, <j> f , were determined at points of maximum obliquity, a'-j_/a ! 3> assuming no cohesion intercept. The peak friction angles ranged from 35.4 to 51.1 degrees for the reconstituted material (Table 2, Figs. 4-6). The intact (non-reconstituted) ash deposit from Spirit Lake (SL1) had the lowest peak friction angle, 34.1 degrees.

A quasi-residual friction angle, <j>' r> was determined from each test at the point of lowest obliquity after peak deviator stress was reached. The residual strength of material is typically determined from direct shear tests (Lambe and Whitman, 1969, p. 302; Huang, 1983, p. 31). In addition, residual strength can also be determined from consolidated-undrained triaxial tests (Bowles, 1979, p. 368). However, when the triaxial test is performed to high strain levels, in the order of 20 percent, the sample looses its right circular cylindrical shape, producing a variable cross-sectional area. Therefore, the validity of calculated stresses is lowered. Although many triaxial test stress paths have an approximate straight-line failure envelope, most of the Mt. St. Helens tests produced a backward flip at higher stains (Appendix A) and in this region the residual friction angle was often determined. The validity of comparing the calculated quasi-residual friction angles to residual friction angles determined from direct shear tests or consolidated-drained triaxial tests is questionable.

Results from four static triaxial tests are plotted on Figs. 7-9 showing the effect of dry density on the stress path, stress-strain, and pore-water pressure-strain response of the samples. Individual test results, including stress paths, shear stress versus strain, and pore-water pressure response versus strain, are plotted in Appendix A.

Cyclic triaxial tests:

Isotropically consolidated undrained cyclic triaxial tests were performed on reconstituted material from samples CC1, CC2, and SL4 (Table 3). The ash cloud deposit from sample SL1 was trimmed intact from material extruded from the sampling tube.

The cyclic stress ratio, T/a' c , where T is the maximum average peak cyclic shear stress and a' c is the consolidation stress, is plotted versus the number of cycles to reach two percent single-amplitude strain or 80 percent pore pressure equalization (values after which necking of the sample in tension became more common) for various dry densities (determined at the end of the tests) (Figs 10-17). Lines of approximately equal densities have been drawn on the figures. The maximum, minimum, and mid-point stress ratios at

ten loading cycles (approximately equal to a magnitude 6.75 earthquake, Seed and others, 1983) is shown in each figure and in Table 4. A stress ratio for SL1 material was not determined because of a lack of data. Minimum stress ratios are approximately equal for the material from CC1, CC2, and SL4.

Wide scatter exists in the data with respect to dry densities and effect of grain size and consolidation stress. The larger grain size material from CC1 and CC2 appears to be more susceptible to cyclic loading (Figs. 10 and 11), possibly because a looser structure (lower dry density) was formed during reconstitution. Individual test results are shown in Appendix B.

DISCUSSION:

Modeling field behavior in the laboratory with small-scale specimens:

Inherently, problems exist when trying to model the in-situ behavior of extremely coarse-grained material containing gravel and boulders by small- scale laboratory tests. A case can be made that the large-grained material exists within a matrix of finer-grained material and that it is the finer material that determines the overall behavior of the material; the boulders just "float" in the matrix.

The largest grain size tested from Mount St. Helens was 5.6 mm in diameter. That is one-sixth of the triaxial specimen diameter. According to the ASTM Test for Unconsolidated Undrained Compressive Strength of Cohesive Soils in Triaxial Compression (D2850-82), only particles one-tenth of the sample diameter, for specimens less than 71 mm, should be present. However, the larger grain sizes probably do not invalidate the test results; additionally, the larger particles indicate the trend of results as grain sizes increase. That may allow extrapolation of laboratory based results to field conditions.

The use of a maximum cut-off sieve size creates another problem when testing small samples. The gradation of the sample material differs from the parent material (Fig. 2). Alternatively, parallel grading, i.e., selectively removing certain grain sizes from the sieved sample to achieve a sieved grain- size curve that is parallel to the field curve, has been used by Banerjee and others (1979) to model cyclic behavior of coarse-grained material in the laboratory. However, that technique markedly changes the median grain size, D5Q, of the tested material. Townsend (1978) showed that the technique was not valid for cyclic testing. Also, parallel grading may not be applicable if a large difference exists between field and laboratory grain sizes.

The debris blockages consist of heterogeneous materials. Samples from the surface of the dams may not adequately represent the material at depth.

Static triaxial test results:

Peak friction angles, <f>', typically increased as the dry density of the tested material increased (Figs. 4-6). The quasi-residual frictionangles, <f>' r , exhibiting a more random distribution, were affected to a lesser degree by the dry density (Figs. 4-6).

At a dry density of 1.82 g/cm-% the debris avalanche material (for all test types) from sample CC1 had peak and quasi-residual friction angles of about 43 and 36 degrees, respectively. This is in very close agreement with peak and residual friction angles of 42.5 and 36.5 degrees, respectively, determined from direct shear tests performed on debris avalanche material finer than 2 mm in diameter reported by Youd and others (1981). Voight and others (1983) reported obtaining friction angles from 40 to 44 degrees from direct shear tests performed on material smaller than 4.75 mm. Youd and others (1981) determined a range of dry densities from 1.71 to 1.94 g/cm-* at eleven locations on the debris avalanche. Peak friction angles were within the typical range of coarse sand to fine gravel (Lambe and Whitman, 1969, p. 149; Bowles, 1979, p. 382). Quasi-residual friction angles were typically within, or somewhat higher than, the range reported for coarse sand to fine gravel reported by Lambe and Whitman (1969, p.149).

The results plotted in Figs. 7-9 show the effect of density on the static behavior of material from sample CC1. At the lowest density the material exhibited, upon shear, a contractive behavior (Fig. 7), low strength (Fig. 8), and positive pore pressure response. As the dry density increased, the material progressively increased in dilative behavior, possessed higher strength, and generated greater negative pore pressure response.

Sample preparation:

The method used to reconstitute the laboratory sample has an important effect on the cyclic behavior of material. Mulilis and others (1977) found that pluviating Monterey No. 0 sand through a water-filled mold and then vibrating the sample to the required density produced the second greatest liquefaction susceptibility out of 11 different compaction procedures. That method is similar to the techniques used in this study, except that rodding of the Mount St. Helens material was performed instead of vibrating the sample. This indicates that the results of this study imply a greater susceptibility to liquefaction than would have been obtained had another preparation method been used.

Anisotropic field stress state and reconstitution method;

Most parts of the Mt. St. Helens debris blockages probably exist with an anisotropic state of stress. Therefore, initial shear stresses are present on horizontal surfaces in the dams. Seed (1979) stated that the presence of initial shear stresses typically reduces the rate of pore pressure generation and that a critical condition exists when no initial shear stresses are present, i.e., under level ground. We have assumed that intial shear stresses on horizontal surfaces were negligible because of the isotropic consolidation condition of the triaxial samples. Therefore, the test results present conservative estimates of shear stress ratios, t/a ! t that would induce liquefaction.

Correction factors applied to cyclic triaxial test results:

1. Membrane compliance;

Ideally, cyclic triaxial tests are performed undrained with constant specimen volume. However, even with all drainage lines closed, a small amount of drainage occurs around the periphery of the sample because penetration of the rubber membrane into the voids between coarse particles decreases with a reduction in the effective confining stress (Raju and Sadasivan, 1974). In contractive soil, as pore pressure increases, the membrane flexes outward, away from the sample, (accompanied by a volume loss within the grain structure) thereby relieving some of the excess pore water pressure (Kiekbusch and Schuppener, 1977). Therefore, pore pressure builds to a lower level than it would in a truly undrained test. Because of the reduction in pressure response, test results are unconservative (i.e., without membrane compliance the sample would fail quicker, either from a lower number of loading cycles or from a lower stress ratio) .

Membrane compliance effects are a function of mean particle diameter, void ratio, effective confining stress, the change in pore pressure during shear, and the amount of surface area of the sample (Lade and Hernandez, 1977). As the grain size increases, more initial penetration of the membrane into the voids between grains occurs, thereby causing subsequent compliance errors to increase. A well graded (poorly sorted) soil, like the Mt St. Helens debris avalanche material, is affected less than a poorly graded soil because the void space between surface grains is reduced.

Soils with a mean particle diameter, D5Q} ies s than 0.1 mm generate negligible membrane compliance errors (Lade and Hernandez, 1977; Martin and others, 1978). However, because the material tested from Mt. St. Helens possessed 050 values larger than 0.1 mm corrections were applied to account for membrane compliance.

Most of the static triaxial tests generated negative pore pressures during shear. Those tests, therefore, were conservative with respect to membrane penetration. That is, the negative pore pressures would have become even more negative without membrane penetration. Cyclic tests, however, generate positive pore pressures and would, if not corrected for membrane compliance, lead to unconservative results. Ramana and Raju (1981) found little change in <f> f determined from static triaxial tests even with significant changes in pore pressure response. Therefore, we are correcting cyclic tests for membrane compliance but not static tests.

The profession is not consistent on how to correct tests for membrane penetration. Raju and Sadasivan (1974) improved a technique, first suggested by Roscoe and others (1963), of using brass rods surrounded by sample material to determine effects of membrane compliance. However, Vaid and Negussey (1984) indicated that those techniques were incorrect and proposed alternate methods. Kiekbusch and Schuppener (1977) indicated that undrained tests could not be simply corrected for membrane compliance, the way that drained tests could be. Instead, they suggested using liquid rubber that would harden around the periphery of the sample thereby reducing the amount of change in the membrane penetration as the test progressed.

Seed (1979) determined that a correction factor to the stress ratio of about 25 percent was required to account for membrane compliance of Monterey No. 0 uniform medium sand (D5Q equals 0.4 mm) (Mulilis and others, 1977) used in simple shear tests. However, Seed (1979) also stated that the need for such correction factors has not been widely recognized.

The Mount St. Helens samples were corrected for membrane compliance using the data of Martin and others (1978). The errors (defined as the percentage of the corrected stress ratio) in the cyclic stress ratios varied with the mean grain size, DCQ. The mean particle size of material from CC1 passing the 5.6 mm sieve is 0.8 mm, CC2 is 0.4 mm, and SL4 is about 1.0 mm (Fig. 2). According to Martin and others (1978) the error in cyclic stress ratios for 36 mm diameter samples of uniform grading with the mean grain sizes of the Mt. St. Helens samples are approximately 75 percent, 55 percent, and 80 percent respectively. Those values are inexact, however, and in-depth studies on actual Mt. St. Helens samples would be needed to better quantify the effect of system compliance.

The compliance correction values reported by Martin and others (1978) were arbitrarily reduced by 25 percent because the Mount St. Helens samples are well graded. Therefore, the error in stress ratios for the Mt. St. Helens samples were 0.55, 0.40, and 0.60 for CC1, CC2, and SL4, respectively. The corrected stress ratio equals the stress ratio determined from testing minus the estimated error. The error values reported by Martin and others (1978) of 0.55, 0.40, and 0.60 based on final (corrected) stress ratios correspond to membrane compliance coefficients 0.65, 0.71, and 0.63 based on initial test stress ratios. The initial cyclic stress ratios (Table 4) were multiplied by those coefficiants to account for membrane penetration (Table 5) .

2. Isotropic consolidation;

One of the largest variations between field and laboratory conditionsresults from using a coefficient of earth pressure at rest, Ko » equal to 1.0 in the laboratory (i.e., the horizontal and vertical effective stresses are equal prior to cyclic loading). Field conditions, however, typically have values of KQ iess than 1.0 for normally consolidated material. Seed (1979) suggested a correction factor of 0.57 for a KQ value of about 0.4. Seed's factor, that is applied to the cyclic stress ratio, corrects isotropically consolidated triaxial test results to agree with anisotropic simple shear behavior that is more representative of field conditions. The factor also accounts for multidirectional earthquake shaking in the field. A factor of about 0.6 was used with coarser-grained material by Banerjee and others (1979). Therefore, the cyclic stress ratios presented in Table 5 were multiplied by 0.57 to correct for field conditions (Table 6).

Test results (Tables 4-6, Figs. 10-17) show that similar results are derived from both failure criteria (2 percent strain or 80 percent pore pressure equalization). Additionally, the minimum stress ratios required to cause failure are very similar between CC1, CC2, and SL4. A greater difference between stress ratios is present for denser states.

Normalized shear stress curves for use with the simplified method to determine liquefaction potential:

The simplified method to determine liquefaction potential (Seed and Idriss, 1971; Seed, 1979; Seed and others, 1983) enables irregular field earthquake loadings to be modeled in the laboratory by uniform sinusoidally loaded cyclic triaxial tests. That method requires the use of a normalized shear stress versus number of cycles to reach failure plot (Fig. 18) in order to determine the cyclic stress ratio necessary to induce liquefaction in the field for different magnitude earthquakes.

The plot used by Seed and others (1983) (Fig. 19) is for sands and is not directly applicable to the Mt. St. Helens area. Therefore, using results from the cyclic triaxial tests, normalized curves were plotted for differentmaterials (Fig. 18). The normalized factor T/TJ_, where -q is tne estimated shear stress required to cause failure (two percent strain) in one cycle, is a representation of the slope of the stress ratio-cycle to failure plots (Figs. 10-13). Because of the lack of data in some areas the extrapolated value of T]_ is inexact. The family of curves (with the exception of the ash cloud deposit, SL1) shows a tight grouping up to 10 cycles. After 10 cycles, more divergence is apparent.

An average curve for the Mt. St. Helens material is shown in Fig. 19, weighted towards the tests from CC2 and SL4 because more data exists for those locations. The curves were also corrected for membrane compliance and isotropic consolidation as previously discussed, however those corrections were typically normalized out of the plot and had little effect on the curves. Results for the ash cloud deposit, SLl, are located well below the other materials and are more consistent with the data of Seed and others (1983) for sands. However, limited data were used to determine the curve for SLl, and the failure criterion used by Seed and others (1983) (pore water pressure equalization and ±5 percent strain) was different than the criterion used in this report.

The simplified method to determine liquefaction potential for the Mount St. Helens blockages, using the normalized shear stress curve (Fig. 19), is explained in more detail in a different publication (Chen and others, in press).

LIQUEFACTION SUSCEPTIBILITY ASSESSMENT:

The uncorrected midpoint cyclic stress ratios required to cause failure at 10 loading cycles for the Mt. St. Helens samples (Table 4) are approximately equal to or greater than the stress ratios (approximately 0.35) determined for Monterey sands No. 0 and No. 1 at a relative density of 60 percent (prepared by the wet tamping procedure) (Silver and others, 1976). The uncorrected minimum stress ratios (Table 4) for the Mt. St. Helens samples are somewhat lower than for the Monterey sand and the corrected minimum stress ratios (approximately 0.1) are substantially lower (Table 6). The corrected Mt. St. Helens stress ratios are also substantially lower than the stress ratios required to fail northern Bering Sea sediment in 10 loading cycles (Hampton and Winters, 1983).

Qualitatively, the loosest reconstituted Mt. St. Helens samples are defininely susceptible to liquefaction from moderately sized earthquakes. However, field conditions differ markedly from the laboratory setting. The Mt. St. Helens material grain sizes (Fig. 2) are substantially coarser than those reported to be the most easily liquefied (Finn, 1972) (Fig. 20). Townsend (1978) reported that the most liquefaction prone samples possessed aD^Q of approximately 0.1 mm with susceptibility decreasing as the mean grain size increased or decreased from that value.

With few exceptions, most of the static triaxial tests from CC1 and CC2 produced negative pore pressures upon substantial strain (Appendix A). Therfore, even if movement started to occur due to earthquake induced shaking, the material at those locations in all but the loosest condition would dilate after strain, reduce the excess positive pore pressures, and thereby stabilize itself. Tests performed on SL4 samples showed a greater tendency to produce positive pore pressures.

Drainage of pore water and subsequent reduction of excess pore pressures was not considered in this study. Due to the large grain sizes of the field material, some drainage may occur, thereby reducing the liquefaction potential.

Erosion at some locations will produce an overconsolidated stress history (thereby reducing the liquefaction susceptibility) in the remaining material, however that may be offset by the increased potential for creating an unstable geometry in the blockages. As time passes, the material's strength will probably increase due to aging effects (Mitchell and Solymar, 1984).

CONCLUSIONS:

Corrected results of cyclic triaxial tests performed on loose reconstituted, seived Mt. St. Helens debris avalanche material and on an intact ash cloud deposit indicate that low resistance to cyclic loading is present. However, major reductions in the cyclic strength were due to inexact membrane compliance correction factors that were used from another study. Membrane compliance correction factors for the actual Mt. St. Helens samples may not be as severe.

The laboratory samples possessed grain size distributions significantly different from those of the field material. Increased coarseness of field material will probably reduce the liquefaction susceptibility.

If failure does occur in any of the blockages, dilation of dense material will tend to stabilize the movement. Dilation will not occur in debris material present in a loose condition.

As time passes after the formation of the debris avalanche in 1980, the stability of the blockages will increase due to aging effects. However, that may be locally offset by the undercutting of individual slopes by erosion.

Future laboratory studies should utilize larger sample dimensions in order to better represent field conditions. Larger specimen sizes will also

reduce the effects of membrane penetration. Liquid rubber applied to the test membrane may be used to reduce the effect of membrane compliance.

In-situ density measurements, borings, seismic exploration, standard penetration tests, and cone penetration tests (if possible) would enable additional liquefaction susceptibility analyses to be made.

ACKNOWLEDGEMENTS:

The authors wish to thank the reviewer of this report, H. J. Lee, for his helpful comments. T. L. Youd, A. T. F. Chen, and R. L. Schuster provided suggestions and assistance. D. J. Bright performed much of the laboratory testing.

The cover photograph of Mount St. Helens was taken in April 1981 looking south across Spirit Lake. Lyn Topinka is thanked for giving permission to use the photograph.

10

REFERENCES

Banerjee, N.G., Seed, H.B., and Chan, C.K., 1979, Cyclic behavior of dense coarse-grained materials in relation to the seismic stability of dams. Earthquake Engineering Research Center Report 79/13, University of California, Berkeley, 252 p.

Bowles, J.E., 1979, Physical and Geotechnical Properties of Soils. New York, McGraw-Hill Book Company, 478 p.

Chan, C.K., 1981, An electropneumatic cyclic loading system. Geotechnical Testing Journal, ASTM, Vol. 4, No. 4, December, p. 183-187.

Chen, A. T. F., Youd, T. L. , Winters, W. J. , and Bennett, M. J., in preparation, Liquefaction resistance of debris dams. In: Schuster, R. L. and Meyers, W. (eds.), U.S. Geological Survey Professional Paper.

Finn, W.D., 1972, Soil dynamics liquefaction of sands. Proceedings International Conference on Microzonation for Safer Construction Research and Application, Vol. 1, Seattle, p. 87-111.

Glicken, H., Meyer, W., and Sabol, M., in preparation, Geohydrology of Spirit Lake blockage with reference to lake impoundment. U.S. Geological Survey Open-File Report.

Hampton, M.A. and Winters, W.J., 1983, Geotechnical framework study of the northern Bering Sea, Alaska. U.S. Geological Survey Open-File Report 83-404, 382 p.

Huang, Y.H., 1983, Stability Analysis of Earth Slopes. New York, Van Nostrand Reinhold Company, 305 p.

Kishida, H., 1969, A note on the liquefaction of hydraulic fill during theTokachi-Oki earthquake. Second Seminar on Soil Behavior and GroundResponse During Earthquakes, University of California, Berkeley, Aug.

Kiekbusch, Manfred and Schuppener, Bernd, 1977, Membrane penetration and itseffect on pore pressures. Journal of the Geotechnical EngineeringDivision, Vol. 103, No. GT11, Nov., p. 1267-1279.

Lambe, T.W. and Whitman, R.V., 1969, Soil Mechanics. New York, John Wiley & Sons, 553 p.

Lade, P.V. and Hernandez, S.B., 1977, Membrane penetration effects in undrained tests. Journal of the geotechnical Engineering Division, ASCE, Vol.103, No. GT 2, Feb., p. 109-125.

Lee, K.L. and Fitton, J.A., 1969, Factors affecting the cyclic loading strength of soil. In: Vibration Effects of Earthquakes on Soils and Foundations, ASTM Special Technical Publication 450, p. 71-95.

Martin, G.R., Finn, W.D.L., and Seed, H.B., 1978, Effects of system compliance on liquefaction tests. Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT 4, April, p. 463-479.

11

Meyer, W., Sabol, M.A., Glicken, H.X., and Voight, B., 1985, The effects of ground water, slope stability and seismic hazard on the stability of the South Fork Castle Creek blockage in the Mount St. Helens area, Washington. U.S. Geological Survey Professional Paper 1345.

Mitchell, J.K. and Solymar, Z.V., 1984, Time-dependent strength gain infreshly deposited or densified sand. Journal of GeotechnicalEngineering, ASCE, Vol. 110, No. 11, November, p. 1559-1576.

Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K., and Arulanandan, K. , 1977, Effects of sample preparation on sand liquefaction. Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT2, Feb., p. 91-108.

Ramana, K.V. and Raju, V.S., 1981, Constant-volume triaxial tests to study the effects of membrane penetration. Geotechnical Testing Journal, ASTM, Vol. 4, No. 3, Sept., p. 117-122.

Raju, V.S. and Sadasivan, S.K., 1974, Membrane penetration in triaxial tests on sands. Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT4, April, p. 482-489.

Roscoe, K.H., Schofield, A.M., and Thurairajah, A., 1963, An evaluation of test data for selecting a yield criterion for soils. Laboratory Shear Testing of Soils, ASTM, Special Technical Publication 361, p. 111-128.

Seed, H.B., 1979, Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT 2, Feb., p. 201-255.

Seed, H.B. and Idriss, I.M., 1971, Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, Vol. 97, No. SM9, Sept., p. 1249-1273.

Seed, H.B., Idriss, I.M., and Arango, I., 1983, Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, March, p. 458-482.

Silver, M.L., Chan, C.K., Ladd, R.S., Lee, K.L., Tiedemann, D.A., Townsend, F.C., Valera, J.E., and Wilson, J.H., 1976, Cyclic triaxial strength of standard test sand. Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT5, May, p. 511-523.

Skempton, A. W. , 1954, The pore-pressure coefficient A and B. Geotechnique, Vol. 4, p. 143-147.

Townsend, F.C., 1978, A review of factors affecting cyclic triaxial tests. In: Dynamic Geotechnical Testing, ASTM, Special Technical Publication 654, p. 356-383.

Vaid, Y.P. and Negussey, Dawit, 1984, A critical assessment of membrane penetration in the triaxial test. Geotechnical Testing Journal, ASTM, Vol. 7, No. 2, p. 70-76.

12

Voight, B., Janda, R.J., Glicken, H. and Douglass, P.M., 1983, Nature andmechanics of the Mount St Helens rockslide-avalanche of 18 May 1980.Geotechnique, Vol. 33, No. 3, Sept., p. 243-273.

Youd, T.L., Wilson, R.C., and Schuster, R.L., 1981, Stability of blockage in North Fork Toutle River. In: Lipman, P.W. and Mullineaux, D.R., (eds.), The 1980 Eruptions of Mount St. Helens, Washington, U.S. Geological Survey Professional Paper 1250, p. 821-828.

13

NOMENCLATURE AND SYMBOLS:

A Coeff. - Pore pressure parameter at failure (maximum q), equal to the change in pore pressure divided by the deviator stress.

ASTM - American Society for Testing and Materials.

DCJQ - Mean grain size.

DELTA u - The change in excess pore water pressure from the beginning of a shear test.

Dev Stress - The deviator stress or difference between the major and minor principal effective stresses, (0'^ - 0*3)

KQ - Coefficient of earth pressure at rest, (a'^/a^)

OCR - Overconsolidation ratio, (c^'vm^'vo^ *

p' - The normal effective stress acting on a plane inclined at 45 degrees from the horizontal in a triaxial test, (a' + v'

q - The shear stress acting on a plane inclined at 45 degrees from the horizontal in a triaxial test, (0' - a'

qmax - Maximum value of q reached during a static triaxial test, equal to Su .

SIG l c ' - The major (or vertical) principal stress applied to a triaxial test sample prior to shear.

SIG 3C T - The minor (or horizontal) principal stress applied to a triaxial test sample prior to shear.

TE - Prefix for a static triaxial test number.

w - Water content (weight of water/weight of solids).

a 'l - The major principal effective stress applied to a triaxial test sample.

a'^/a'o - obliquity factor; it is a maximum at the point of the largest friction angle during a triaxial test.

a '2 ~ The minor principal effective stress applied to a triaxial test sample.

o' c - The isotropic consolidation stress imposed on a triaxial test sample prior to shear.

= 0 T VO - The in-situ vertical effective stress exerted by the weight of overburden.

T - Shear stress.

14

^ - Estimated shear stress required to cause failure in one cycle during a cyclic triaxial test.

' - The peak friction angle expressed in terms of effective stresses.

' - The quasi-residual friction angle expressed in terms of effective stresses.

15

Table 1.

Sample in

form

atio

n.

Sample

Alternate

Location

Date

Field

Grain

Sample

Material

I.D.

I.D.

Obtained

Density

Specific

Type

Type

(g/c

m3

) Gravity

_____________________________________________________________(g/cm3)_______________

CC1

- S.F. Castle Creek

3-8-

83

- 2.75

Grab

Debris

Avalanche

CC2

JM-82-826-2

S.F.

Castle Creek

8-26-82

1.59

2.

76

Grab

Debris

Avalanche

SL1

- Spirit La

ke

3-8-83

- -

Tube

Ash

Cloud

Deposit

SL4

JM-82-825-7

Spirit Lake

8-25-82

1.79

2.65

Grab

Debris

Avalanche

Tabl

e 2.

Static triaxial teat results

Sa

mp

le

CC

1

CC

2

SL1

SL4

Tte

st

No

.

123

124

127

12

81

30

13

1132

133

13

41

36

125

12

61

35

176

17

8

137

13

81

39

14

01

43

14

41

55

164

147

148

14

9

15

0151

15

2179

18

3

12

9

170

173

175

17

71

84

18

5

Pa

ssin

g

Sie

ve

Siz

e (

mm

)

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

5.6

5.6

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

5.6

5.6 -

3.3

3.3

3.3

3.3

5.6

5.6

Con s

ol.

Str

ess

(kP

a)

101

103

10

0100

99

99

98 98

96

20

4/9

93

00

300

49

87

101 99

100

98

99

100

97

100

97

299

295

29

9

29

62

67

/10

745

97

97

101

97

103

298

29

69

69

9

Wa

ter

Conte

nt

Aft

er

Sh

ea

r

(%)

18.6

17.7

21.8

19

.01

7.0

17.6

18.9

17.9

17.7

18

.61

9.8

?18.1

18

.519.7

15

.0

15.9

15

.014.5

14.2

15

.41

6.6

17.2

16.4

14.0

13

.615.3

15.1

14.9

14.7

15.7

15.9

31.4

24.5

22.2

24.1

23.0

27

.02

0.7

A

Coef f.

-0.0

2-0

.19

0.4

1-0

.16

-0.1

8-0

.15

-0.2

4-0

.19

-0.2

1-0

.19

0.0

1-0

.05

-0.2

3-0

.03

0.1

3

-0.2

6-0

.24

-0.2

0-0

.17

-0.2

0-0

.21

-0.2

0-0

.17

-0.0

9-0

.1 2

-0.1

0

-0.1

1-0

.22

-0.2

5-0

.01

0.1

9

0.0

6

-0.1

2

-0.2

40

.09

0.3

41

.21

0.2

3

Str

ain

at

Failure

(%)

16.3

7.9

19

.61

9.2

7.5

5.7

17

.0

7.0

7.0

9.4

7.7

8.5

9.8

6.0

5.3

11 .

87

.89

.98

.49

.16

.5

8.7

8.3

5.3

7.9

6.2

7.0

6.5

7.2

9.3

7.5

13

.8

14

.51

1.2

12

.08

.011.3

10.2

OC

R

1.0

1.0

1 .0

1 .0

1 .0

1 .0

1.0

1 .0

1.0

1.0

1 .0

1 .0

6.1

1.0

1 .0

1 .0

1 .0

1.0

1 .0

1 .0

1 .0

1 .0

1 .0

1.0

1 .0

1 .0

1.0

1 .0

6.7

1 .0

1 .0

1 .0

1.0

1.0

1 .0

1 .0

1 .0

1 .0

qF

ailure

(k

Pa

)

168

63

96

4266

60

34

97

724

84

46

69

451

46

56

55

500

17

11

07

5

551

66

3909

11

85

927

471

514

30

61

25

01

45

61

26

2745

717

645

146

107

96

20

67

39

378

210

16

3583

P1

Fa

ilu

re

(kP

a)

275

980

110

452

914

74

01168

12

66

10

45

721

75

61

02

4780

26

71

46

0

932

1078

13

72

1697

13

95

761

81

65

06

1762

20

93

18

15

12

10

11

34

99

6244

164

185

35

31201

609

364

281

952

*'

Peak

(deg.)

38

.445.6

35.9

38.1

45

.04

6.2

43

.7

45

.44

3.6

43.9

42.0

42

.74

4.0

40.1

51 .

1

41

.74

2.6

44.6

46

.44

5.5

42.9

42.1

40.5

46.4

45

.345.1

41

.841.9

42

.536.9

41

.7

34

.1

39

.34

3.4

39

.53

5.4

37.3

42.4

*'

Re

s .

(de

g.)

36.6

34

.73

5.2

35.6

37.2

36.7

37.7

35

.3

34

.33

5.7

35.2

34.7

36.3

38.3

38.2

33.8

33

.73

9.0

40.2

36.9

35.2

36.6

34.5

35.5

39

.0

34

.331

.5

36

.33

5.5

34

.338.5

30.2

35

.03

2.2

35.4

29

.73

2.6

30

.9

Dry

D

ensity

(g/c

m3

)

1 .8

21.8

5

1 .7

21

.81

1.8

71

.85

1 .8

21

.84

1.8

5

1 .8

21.7

8?

1 .8

31

.82

1.7

81

.94

1 .9

21

.95

1 .9

7

1 .9

81

.94

1 .8

91

.87

1 .9

01

.99

2.0

11

.94

1 .9

51

.95

1 .9

61

.92

1 .9

2

1.3

4

1 .6

11.6

71

.62

1.6

51.5

41.7

1

Tab

le

3.

Cycl

ic

tnax

ial

test

resu

lts

00

Sample

CC1

CC2

SL1

SL4

Test

No.

130

131

132

133

134

135

136

197

198

137

138

139

140

141

142

143

144

145

161

162

146

147

148

149

179

180

181

182

183

184

195

185

186

187

188

155

156

163

164

165

166

169

170

189

190

191

192

196

193

194

Passing

Siev

e Size (mm)

3.3

3.3

3.3

3.3

3.3

3.3

3.3

5.6

5.6

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6

5.6 - - 3.3

3.3

3.3

3.3

3.3

3.3

5.6

5.6

5.6

5.6

5.6

5.6

5.6

Consolidation

Stress

(kPa

)

100 97 98 100

98 100

98 95 96 100 98 99 98 99 98 99 98 98 94 72

299

297

297

297 96 101

109 94 98 100 96

295

297

293

297 99 98 93 96 88 87 100 97 97 98 97 99 97

275

275

. .

Water Content

After Shear

_____ U) _____

17.2

20.8

19.0

16.6

16.5

18.9

18.0

19.8

18.1

17.0

14.8

14.7

14.8

13.4

13.8

13.9

14.2

14.4

15.9

17.6

13.9

13.0

13.6

14.5

18.8

16.2

22.4

16.7

17.0

17. J

16.3

16.3

15.8

15.7

14.2

30.8

28.0

25.8

26.3

23.8

22.4

24.7

17.3

21 .8

20.3

26.4

25.6

14.6

20.1

25.0

OCR

1.0

1 .0

1.0

1 .0

1.0

1 .0

1 .0

1.0

1 .0

1.0

1.0

1.0

1.0

1.0

1 .0

1.0

1.0

1.0

1 .0

1.0

1 .0

1.0

1 .0

1 .0

1 .0

1.0

1.0

1.0

1.0

1 .0

1 .0

1 .0

1 .0

1.0

1.0

1 .0

1.0

1.0

1.0

1.0

1 .0

1 .0

1 .0

1.0

1.0

1.0

1.0

1 .0

1 .0

1 .0

T°'c

(%) 97 57 33 24 50 48 60 40 27 33 41 31 48 29 48 23 35 51 37 55 33 40 35 45 53 27 36 46 43 22 44 39 31 34 27 80 48 41 22 29 28 38 50 29 42 32 40 34 48 32

Cycles to

2% Strain

-

7 - 1212

1 257 2 1

19 18 22 19 6 55 4344 237 141

13 8 222 1

34 3 2 4 33 3 3 6 550

1 3 713

1 16103 _

14 49 19 14 9 9 5 6

Cycles

70% 3 2 6 78 6 5 2 2 17 14 15 11 3403

309 124 7 - 9 4 12 _ _ 31 _ 2 3 28 2 4 5 3

38

2 3 51 14 11 958 7 42 14 14 9 6 5 6

" - - -

to Pore Pressure

80%

-

5 2 8 87 8 6 - _ 18 16 18 12 4 433

319 13 5 8 - 11 5 15 _ - 32 _ 3 4 30 3 5 6 4

42

2 3 7121 14 99 11 9 46 16 17 12 7 _ 7

Equalization

90%

.

- 10 95 11 - - _ 20 18 23 14 546 4

327 15 6 11 - - 7

22- - 34 _ 4 6 31 - _ 7 5

47

2 4 812

7 16102 18 _50 _ 20 - 9 _ -

Dry

Density

(g/cm3

)

1 .8

71.

751 .80

1 .89

1 .89

1.81

1.84

1.79

1.84

1.88

1 .9

61.

961 .9

62.

022.00

1 .9

91 .98

1 .97

1 .9

21 .8

61 .9

92.

032.01

1 .9

71.

821.

911.71

1 .89

1 .90

1.89

1 .90

1 .9

21 .9

21.

931 .9

8

.42

.56

.57

.59

.62

.66

.60

.82

.68

.72

.56

.58

.91

.75

.61

Tabl

e 4.

Cycl

ic stress ra

tios

, T/a

1 ,

at 10 lo

adin

g cycles de

term

ined

from Fi

gs.

10-1

7.

Samp

le

T/a

'c at

2

% strain

T/a'c

at ®®

^° Po

re pr

essu

re equalization

max.

midp

oint

rain.

max.

midp

oint

min.

CC1

0.76

0.50

0.24

0.

82

0.55

0.28

CC2

0.48

0.

37

0.26

0.46

0.36

0.26

SL1

0.3

- 0.

2 (?

) 0.3

- 0.

1 (?

)

SL4

0.54

0.

41

0.28

0.

48

0.38

0.28

Table

5.

Cycl

ic stre

ss ra

tios

, T/a

1 , at

10

loading

cycl

es determined from Fi

gs.

10-1

7 co

rrec

ted

for

membrane co

mpli

ance

.

Samp

le

T/a

'c at 2

% strain

T/a

'c at

**

0 %

pore pressure eq

uali

zati

on

__________max._________midpoint______mi n._________max.

midp

oint

min.

CC1

0.49

0.

33

0.16

0.

53

0.36

0.

18

CC2

0.34

0.

26

0.19

0.33

0.26

0.19

SL1

0.3

- 0.

2 (?)

0.3

- 0.1

(?)

SL4

0.34

0.

26

0.18

0.30

0.24

0.18

Tabl

e 6.

Cyclic stress ratios,

T/O'

C> at 10 lo

adin

g cy

cles

determined from Fi

gs.

10-1

7 co

rrec

ted

for

memb

rane

compliance an

d multiplied by 0.57 to si

mula

te fi

eld

conditions.

Samp

le

T/a'c

at 2

% st

rain

T/°'

c at

^

pore pr

essu

re equalization

max.

midpoint

rain.

max.

mi

dpoi

nt

rain.

CC1

0.28

0.

19

0.09

0.30

0.21

0.10

CC2

0.19

0.15

0.11

0.19

0.15

0.11

SL1

0.2

- 0.1

(?)

0.2

- 0.05 (?)

SL4

0.19

0.15

0.10

0.17

0.14

0.10

LIST OF FIGURES

Fig. 1. Sample location map.

Fig. 2. Grain size distribution curves.

Fig. 3. Water content versus dry density for seived triaxial samples after testing.

Fig. 4. Static triaxial test results for site CC1.

Fig. 5. Static triaxial test results for site CC2.

Fig. 6. Static triaxial test results for site SL4 .

Fig. 7. Stress paths for CC1 material (<3.3 mm) showing effect of dry density on static triaxial test behavior.

Fig. 8. Deviator stress versus strain for CC1 material (<3.3 mm) showing effect of dry density on static triaxial test behavior.

Fig. 9. Change in pore water pressure versus strain for CC1 material (<3.3 mm) showing effect of dry density on static triaxial test behavior.

Fig. 10. Cyclic stress ratio, T/a' c , versus cycles to 2 percent single-amplitude strain for site CC1.

Fig. 11. Cyclic stress ratio, T/a' c , versus cycles to 2 percent single-amplitude strain for site CC2.

Fig. 12. Cyclic stress ratio, t/a' c , versus cycles to 2 percent single- amplitude strain for site SL1 .

Fig. 13. Cyclic stress ratio, T/a' c , versus cycles to 2 percent single- amplitude strain for site SL4 .

Fig. 14. Cyclic stress ratio, T/a' c , versus cycles to 80 percent pore pressure equalization for site CC1 .

Fig. 15. Cyclic stress ratio, T /a ' c , versus cycles to 80 percent pore pressure equalization for site CC2.

Fig. 16. Cyclic stress ratio, T /^' c , versus cycles to 80 percent pore pressure equalization for site SL1 .

Fig. 17. Cyclic stress ratio, T /^' c , versus cycles to 80 percent pore pressure equalization for site SL4.

Fig. 18. T/T^ versus cycles to 2 percent single amplitude strain for Mt . St. Helens cyclic triaxial test samples.

Fig. 19. Weighted average T/T^ curve for Mt . St. Helens samples; Seed and others (1983) used a failure criterion of 100 percent pore pressure equalization and ±5 percent strain.

Fig. 20. Zones of grain size distrbution curves of liquefaction prone materials .

22

U>

South

C

old

wate

r C

ree

k

La

nd

slid

e-D

eb

ris F

low

S.F

. C

astle C

ree

k

Mt.

St. H

ele

ns

Fig

. 1

. S

ampl

e lo

cati

on

map

I

O10

0

GR

AV

EL

SA

ND

SIL

T

CD OC LU *-

at80

Q LU O

60

H-

CL

<

0. o z I K~ CC

LU

"Z.

40 20

n

cc

100

LU

Q.

10

1

PA

RT

ICLE

D

IAM

ET

ER

, IN

M

ILL

IME

TE

RS

0.1

0.01

Fig. 2.

Grai

n size distribution cu

rves

.

WATER CONTENT, IN PERCENT

09

OJ-

coC 03

CL

CL ft)

l-h rr fD

cc

O)

D 33-<

D mZ r* to -j

l-hO>-!

CO DH-<(D CL

rr»-!

T)m330 -C o>CD

0

Om

mII woo

TOO * no -i,

EFFECTIVE FRICTION ANGLE, IN DEGREES

H-00

-O

CO rr

rt H-O

rt:riaxic

Mrt n>COrtr-t

CO

rtCO

O i-j

COH**rtft

OI-1

ro co co 4* -p*. en o en o en

-vl

O

"^

OmCOH

boZ

O DD

CO-g

m

OC^ _,.0 b

omzH

mHmDO

rob

i i i i

O CO0 > * x o _,

q Q O. c^ ex ^ *"~*o"o"o"o"o IJ^ « » « £ 0

_ O O CD O O 1o o o o 3Dy- ^ ^ ^. ^ ^

"0 "D Q) "0 "D ,_,Q) 0) Q) 0) -^

o 5^^ O , x ° xZ 3 r~00 » __,

- Pi. mCO , .

c; __j0 ^ >. ^ X e *»

A g m x *

? r c - 1* . ' q f- ' £ wCO * *

3 3

_

o -no^D CII >

£3 S^ i

C/5

CT5 ^~

mF

en o

i

-g

m^TI

o-H0

>

CDr~m

LZ

EFFECTIVE FRICTION ANGLE, IN DEGREES

*3 H-

OQ

Ui

COrt03rtH*"o

rti-<LJ. "*

03XL^II "

03M

rt ft03rt

i-jfteocMrt03

i-h0 ^

03H-rt 0>

nnN5

r c

DDD _, < boDmz0>

H-<

Z

ODO>sO) r"

CO TJmDO

0cCD

0

omzH

^ ro^om3D

O CO CO 4^ 4^ O1 Ji O Ol O Ol O

1 1 1 1 1

0 » » X . g "

ro >>q Q Q c^ c^ -^

o o o o o o R « » » » S O

- -i. ro ^ co ^ ' o -J 01 o o ® Ho o ^ o o ^ 33?r ?r T3 ?r ^ °? >T3 T3 Q) T3 T3 ^ r.Q) Q) 0) Q) C" S**

> R ^ > ^ O ^ r-

± 3 '00 «s \O

G) ' m en ' ''

_ C/5o , 0

A Z ^^ co m . .s ? ^^ - O) r^ / 3 ; «,., , ^3 H

w ,CO o ~ CO

3 K t> _

»

«

t

X X

x x

TIO 13 ^D d m0 > >£4 C£ ^

o ' "n Z ^D 33m o -»^ /-^ * ;

CDr~ m

CDr- m

EFFECTIVE FRICTION ANGLE, IN DEGREES

nH-

OQ

<^

C/3 rt to rtP-nrri~1H-to XH-tot >

rrft)cnrr

i-lft)cnC MrrCD

HI O i-S

cnH-rr ft)

C/ir" j>>

ro co co 4*. en o en o

en '

O IDX

DmzCOH __,. -< .- 0

zo3J>^CO-D

m3J

OC ^ CD - lO

OmzH

m-Hm3J

OD

1 I 1

O O

«

X X

- x x

Ofl

-no -n ES S 0 ?^ >-H S2 ^o ' "n z ^ ^

m ^> CO I}

og o r ^ "7>

^ >m r~ > z.

0r~m

-f^ en en o

i i

ODO) H

o x r~ > * 3Q ci C^ ^_, Q

o" o " o ^8 » « '3D_L CO -^ CO 0 0 0 N) > 0 0 0 ^ ><

PT ?r x- ro >-rj -rj -D Cn r-03 Q) W ^j H

-^ m_____ OD

A A 335" P mO) CO OD33 c3 3 -

OD

800

TEST 12? TEST 12&-- -TEST 130 TEST

1 3

rd

Q_

300

200

100

0

SAMPLE CC1

( 3

- D

ry D

ensi

ty.

g/c

m3

C1.8

73

XC1.85)

C1.81)

0100

300

400

500

600

700

800

900

1000

aFi

g. 7.

Stress paths for

CC1

material (<3.3 mm) showing effect of

dry density on static triaxial test

behavior.

TEST 12? TEST 128---TEST 138--TEST 13

+--

U) o

C.

U k

D k

j

22

50

^2

00

0

CL _x:

1?50

1500

00 W

12

50

(D

L_

s 1

00

0i

>

*

^ f

X f V

«/

_j /

cn750

> OJ 500

Q

25

0

0e

__

__

__

£_

SA

MP

LE C

C1

t

C )

- D

ry D

ensi

ty,

g/c

m 3

_

I

__

^; E-

/-

-~

.-C

1.8

7)

|

/

^^___

I

/

- .(

1.8

5)

/

.. .--------- C

1.8

1)

- /

...-

----"""""

^ 1 ....

1 ....

1 __

__

__

__

_ I1

"'23

, ,

. ' ' ' I I I I I LI

I I

5 1

0

15

20

2

/o S

tra

inFi

g. 8.

Deviator stress versus strain fo

r CC

1 material (<3.3

mm)

showing

effect of

dr

y density on

static tr

iaxi

al te

st be

havi

or.

101

75

50

25

TE

ST

12Z

..T

ES

T

128-

.TE

ST

130 -

TE

ST

131--

.

rd

Q_ 0 50

-100

rd12

5

Q-1

75

-200

-22

5

-25

0I

i i

0

SA

MP

LE

CC

1C

) -

Dry

Den

sity

, g

/cm

3

(1.7

2)

(1.8

1)

1015

20

t r

a i n

25

Fig

. 9

.Change in

po

re water pressure versus strain fo

r CC1

material (<

3.3

mm)

showing effect of

dry

density on static triaxial test behavior.

u> N3

1.0

o o h- DC CO

CO

LJJ

DC

I

CO g

O

O

0.8

0.6

0.4

0.2

0.0

I.

87

1.8

4

01

.79

CY

CL

IC

TR

IAX

IAL

TE

ST

R

ES

ULT

S

CC

1 tf

'c

»100

kPa

<3.3

mm

o

<TC

«1

00

kP

a

<5.6

mm

Nu

mb

ers

re

pres

ent

dry

de

nsi

ty,

in g/c

m^

RA

NG

E

OF

T/0

'c

AT

10

C

YC

LE

S

0.7

6

- M

AX

IMU

M

0.5

0

- A

VE

RA

GE

0

.24

-

MIN

IMU

M

__

__

__

__

__

__

__

__

I__

__

__

__

__

I.89

These

re

sults

do

not

incl

ude

corr

ect

ions

for

me

mb

ran

e

com

plia

nce

or

iso

tro

pic

conso

lidatio

n.

0.1

1 10

CY

CL

ES

T

O

2 P

ER

CE

NT

S

TR

AIN

100

1000

Fig

.10.

Cycli

c

str

ess ra

tio,

T/a

'c>

vers

us

cycle

s to

2

perc

ent

single

-am

pli

tude str

ain

fo

rsit

e

CC

1

u>

u>

1.0

O0.

8

o i

0-6

CO

CO

UJ

CE

h-

CO g

0.4

O

o

0.2

0.0 0

.1

RA

NG

E

OF

T/<

J'c

AT

10

C

YC

LE

S

0.4

8

- M

AX

IMU

M

0.3

7

- A

VE

RA

GE

0

.26

-

MIN

IMU

M

1.86

,

1.82

*

CY

CLIC

T

RIA

XIA

L

TE

ST

R

ES

ULT

S

CC

2

0"c

»100

kPa

x of

'c «

300

kPa

o cT

c «

10

0

kPa

* O

'c »

300 k

Pa

<3.3

mm

<5.6

mm

Num

bers

re

pres

ent

dry

de

nsi

ty,

in

g/c

m^

97

1.

96

.2.0

2k

1.98

1.9

91.8

9

Th

ese

re

sults

do

no

t in

clu

de

corr

ections fo

r m

em

bra

ne

co

mp

lian

ce or

iso

tro

pic

co

nso

lidatio

n.

10

CY

CL

ES

T

O

2 P

ER

CE

NT

S

TR

AIN

100

1000

Fig.11.

Cyclic stress ra

tio,

T/a'

c, versus cycles to

2

perc

ent

single-amplitude strain fo

r si

te CC2

1.0

o0.8

0.6

o h- DC CO

CO

LJ

J DC

h-

CO g

0.4

_J o

o

0.2

0.0

1.4

2

1

.56

CY

CL

IC

TR

IAX

IAL

TE

ST

R

ES

ULT

S

SL1

(AS

H)

-

0"c

»100

kPa

Num

bers

re

pre

sent

dry

densi

ty,

in

g/c

m^

Th

ese

re

sults

do

no

t in

clu

de

co

rre

ctio

ns fo

r m

em

bra

ne

com

plia

nce

o

r is

otr

opic

co

nso

lida

tion

.

0.1

10

CY

CLE

S

TO

2

PE

RC

EN

T

ST

RA

IN

100

1000

Fig

.12

. C

ycli

c str

ess ra

tio

, T

/a'

vers

us

cy

cle

s to

2

perc

en

t si

ng

le-a

mp

litu

de str

ain

fo

r sit

e

SL

1.

1.0

0.8

0.6

o O h-

<

oc V) (f) LU

QC g

0.4

_j

O

>-

o

0.2 0.0

RA

NG

E

OF

r/C

f'c

AT

10

C

YC

LE

S

0.5

4

- M

AX

IMU

M

0.4

1

- A

VE

RA

GE

0

.28

-

MIN

IMU

M

l.6 l

CY

CL

IC

TR

IAX

IAL

T

ES

T

RE

SU

LT

S

SL

4 0"

c »100

kPa

<

3.3

mm

o

tf'r

»

10

0

kPa

r'c

«300 k

Pa

< 5

.6m

m

Num

bers

re

pre

sent

dry

de

nsi

ty,

in

g/c

m^

O 1

.68

1.6

6

1.5

9

Th

ese

re

sults

do n

ot

incl

ud

e

corr

ections fo

r m

em

bra

ne

com

plia

nce

or

iso

tro

pic

co

nso

lidatio

n.

0.1

10

CY

CLE

S

TO

2

PE

RC

EN

T

ST

RA

IN

100

1000

Fig

.13

. C

ycli

c str

ess ra

tio,

T/O

' ,

vers

us

cycle

s to

2

perc

en

t si

ng

le-a

mp

litu

de str

ain

fo

r sit

e

SL

4.

O O

1.0

-

0.8

0.6

DC CO

CO

LLJ

DC

h-

CO O

0.4

O

O

0.2 0.0

1.8

7

I.

75

RA

NG

E

OF

r/c

r'c

AT

10

C

YC

LE

S

0.8

2

- M

AX

IMU

M

0.5

5

- A

VE

RA

GE

0

.28

-

MIN

IMU

M

CY

CLIC

T

RIA

XIA

L

TE

ST

R

ES

ULT

S

CC

1 tf

'c

»1

00

kP

a

<3

.3m

m

o cT

c «100

kPa

<

5.6

mm

Numbers re

pres

ent dry

density,

in g/cm^ l.8

9

Th

ese

re

sults do

no

t in

clu

de

co

rre

ctio

ns fo

r m

em

bra

ne

com

plia

nce

or

isotr

opic

consolid

ation.

0.1

1 10

100

CY

CLE

S

TO

80

PE

RC

EN

T

PO

RE

P

RE

SS

UR

E

EQ

UA

LIZ

AT

ION

1000

Fig.14.

Cyclic stress ra

tio,

T/a

1 ,

versus cycles to 80 pe

rcen

t pore pressure equalization for

site

CC

1.

1.0

o o

0.8

0.6

DC 00 00 LLJ

DC I-

00 g

0.4

o

o

0.2

0.0

2.0

0

1.8

1.9

0 1.9

31.9

7.

1.9

6

01

.90 X2.0

3

1.92

A

.1-

92

|.98»x 2

.01

1.881.9

6

2.0

0 \

CY

CU

C

TR

IAX

IAL

TE

ST

R

ES

ULT

S

CC

2

tf'c

~

10

0

kPa

x

or'c

»300

kPa

o (T

c «100

kPa

* 0~

'c »

300

kPa

<3.3

mm

< 5.6

mm

Nu

mb

ers

re

pre

sent

dry

de

nsi

ty,

in

RA

NG

E

OF

r/C

f'c

AT

10

C

YC

LE

S

0.4

6

- M

AX

IMU

M

0.3

6

- A

VE

RA

GE

0.2

6

- M

INIM

UM

________________I

__

1.9

9

Th

ese

re

sults

d

o n

ot

incl

ude

corr

ections fo

r m

em

bra

ne

co

mp

lian

ce o

r is

otr

op

ic

conso

lidatio

n.

0.1

1 10

10

0 C

YC

LE

S

TO

80

PE

RC

EN

T

PO

RE

P

RE

SS

UR

E

EQ

UA

LIZ

AT

ION

1000

Fig.15.

Cyclic stress ra

tio,

T/a'

( CC

2.versus cycles to 80 percent po

re pressure equalization fo

r si

te

oo

1.0

o

So0.

8

0.6

QC LLJ

QC

I

CO g 0.4

O

O

0.2

0.0 0.

1

1

.42 1

.56

CY

CLIC

T

RIA

XIA

L

TE

ST

R

ES

ULT

S

SL1

C

AS

H)

rf

'c

»100

kPa

Nu

mb

ers

re

pre

sent

dry

densi

ty,

in

g/c

m3

Th

ese

re

sults

do

no

t in

clu

de

co

rre

ctio

ns fo

r m

em

bra

ne

co

mp

lian

ce

or

isotr

opic

co

nso

lidatio

n.

1 10

10

0

CY

CL

ES

T

O

80

PE

RC

EN

T

PO

RE

P

RE

SS

UR

E

EQ

UA

LIZ

AT

ION

1000

Fig.

16.

Cyclic stress ra

tio,

T/^

'c

, ve

rsus

cycles to

80

percent

pore pressure equalization for

site

SL

1.

1.0

o o H

<

DC (7)

CO

LLJ

DC I

C/D g

_i

o >

o

0.8

0.6

0.4 0.2 0.0

RA

NG

E

OF

r/a

'c

AT

10

C

YC

LE

S

0.4

8

- M

AX

IMU

M

0.3

8

- A

VE

RA

GE

0

.28

-

MIN

IMU

M

CY

CL

IC

TR

IAX

IAL

TE

ST

R

ES

UL

TS

S

L4

0"c

»100

kPa

<

3.3

mm

o

CT'C

«100

kPa

- A

cr'c

»300

kPa

< 5

.6m

m

Nu

mb

ers

re

pre

sent

dry

densi

ty,

in

g/c

m3

o i.6

8.6

6

1.

59

Th

ese

re

sults

do

no

t in

clude

corr

ections fo

r m

em

bra

ne

com

plia

nce

o

r is

otr

op

ic

conso

lidatio

n.

0.1

1 10

100

CY

CLE

S

TO

80

PE

RC

EN

T

PO

RE

P

RE

SS

UR

E

EQ

UA

LIZ

AT

ION

10

00

Fig

.17.

Cycli

c

str

ess

rati

o,

SL

4.vers

us

cy

cle

s to

80

perc

ent

po

re

pre

ssu

re

eq

uali

zati

on

fo

r sit

e

1.0

0.8

-

0.6

-

0.4

-

0.2

-

0.0

SL4 --------

c -

Cor

rect

ed f

or m

embr

ane

com

plia

nce

and

isot

ropi

cco

nsol

idat

ion.

10

100

CYCLES TO 2

PERCENT STR

AIN

1000

Fig.18.

T/TI versus cy

cles

to

2

perc

ent

single amplitude strain fo

r Mt.

St.

Helens cyclic tr

iaxi

al

test samples.

Wei

ghte

d av

erag

e of

C

C1,

CC

2, a

nd S

L4F

or s

and,

fro

m S

eed

and

othe

rs (

1983)

CYCLES TO

CAUSE

100

LIQ

UE

FA

CT

ION

1000

Fig.

19.

Weighted average

T/T-

, cu

rve

for

Mt.

St.

Helens sa

mple

s,

Seed

an

d others (1

983)

failure criterion of 10

0 percent

pore

pressure equalization an

d ±5

pe

rcen

t st

rain

.used a

PERCENT

WEIGHT

OQ i-S03

CXH-cn

cr c

OC1-1ft)cn

OIT,

O3

O i-S OD fD

rt fD

APPENDIX A

STATIC TRIAXIAL TEST RESULTS

43

0

M -

8

CC

-12

LJ

Q.-1

6 40

13

Z M

CL20 10

4

6C

YC

LE *

CRUISE ST HELENS

CORE NO.

SL4

200]

/ % 0 a. * w

13

0

LJ a u 0.

10

0

90

N) a. u1E

+01

IE-0

110 INCREMENT (cm)

TEST NO.

CYCLE #

REMOLDED SURF

D194

SIGlc'(kPa)

275.2

STRTIC qf (kPa)

280.0

SIG3c'CkPa)

275.2

RVG MflX q

(kPa

) 89.2 (31.9^)

INDUCED OCR

1.0

RVG MIN q

(kPa

) -78.1 <27.9*>

Q_

j*

w

20

0

150

100

50

100

20

0p'

(kP

a)

300

400

80

ST

RflIN

(3

O

CR

UIS

E

ST

H

ELE

NS

IN

CR

EM

EN

T

(cm

) C

OR

E

NO

. C

flST

LE

C

RT

ES

T

NO

.R

EM

OLD

ED

-SU

RF

T

E123

SIG

lc'(kP

a)

10

0.8

SIG

3c'(kP

a)

10

0.8

IND

UC

ED

O

CR

1.0

800

600

40

0

200 0

200

400

600

800

p'

(kP

a)

10

0

-200

CL

^-3

00

U

Q

-400

I I I I I I I I I I I k I I 4 I I I

ST

RR

IN

(5O

CRUISE ST HELENS

INCREMENT (c

m)

REMOLDED-SURF

CORE NO.

CflS

TLE CRTEST NO.

TE124

SIGlc'(kPa)

103.

1SIG3c'(kPa)

103.

1INDUCED OCR

1.0

Q.

60 40

50

100

(kP

a)

150

10

15

ST

Rfl

IN20

25

CR

UIS

E

ST

H

ELE

NS

IN

CR

EM

EN

T

(cm

) C

OR

E

NO

. C

flST

LE

C

RT

ES

T

NO

.R

EM

OLD

ED

-SU

RF

T

E127

SIG

lc'C

kP

a)

99

.9S

IG3c'(

kP

a)

99

.9IN

DU

CED

O

CR

1.0

00

400

a 30

0 Q.

200

100 0

100

200

300

400

40

p' (kPa)

20

0

-20

3 jE-«

U

0-60

-80

-

STR

flIN

(J

i

CRUISE ST HELENS

INCREMENT (c

m)

REMOLDED-SURF

CORE NO.

CflS

TLE CRTEST NO.

TE128

SIGlc'(kPa)

99.8

SIG3c'(kPa)

99.8

INDUCED OCR

1.0

800

600

400

200

200

400

p'

600

800

-50

3-1

00

(C gJ-

158

P

-200

10

15

20

ST

RflIN

CRUISE ST HELENS

CORE NO.

CC1

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

TE130

SIGlc'(kPa)

98.6

SIG3c'CkPa)

98.6

INDUCED OCR

1.0

cr

400

300

200

100

200

Ln o

400

600

p'

Ck

Pa)

800

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C1

SIGlc'(kPa)

98.9

SIG3c'(kPa)

98.9

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

TE131

800

800

400

200

500

1000

(k

Pa)

1500

3-2

00

<r

-40

0

ST

RflIN

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C1

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LD

ED

-SU

RF

T

E1

32

SIG

lc'(

kP

a)

98

.1S

IG3

c'C

kP

a)

98

.1IN

DU

CED

O

CR

1

.0

000

800

400

200

500

1000

(k

Pa)

1300

ST

RflIN

(%

CRUISE ST HELENS

CORE NO.

CC1

INCREMENT (cm)

REMOLDED-SURF

TEST NO.

TE133

SIGlc'CkPa)

98.2

SIG3c'(kPa)

98.2

INDUCED OCR

1.0

or

800

600

400

200

Ln

U>

300

10

00

p'

(kP

a)

1500

10

Q.

-20

0

J3-3

00

U a-4

00

ST

RflI

N

CRUISE ST HELENS

CORE NO.

CC1

INCREMENT (c

m)

TEST NO.

SIGlc'CkPa)

96.0

SIG3c'<kPa)

96.0

INDUCED OCR

1.0

REMOLDED-SURF

TE134

Q.

^

w

400

300

200

100

800

400

600

p'

(kP

a)

800

0

-100

[3-1

50

Id a-8

00

2!

ST

Rfl

IN

(JO

CRUISE ST

HELENS

CORE NO

. CC1

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

TE136

SIGlc'CkPa)

204.3

SIG3c'<kPa)

98.9

INDUCED OCR

1.0

40

0

a 3

00

0.

20

0

100

Ln

Ln

200

400

60

0

p'

(kP

a)

800

ST

Rfl

IN

(JO

CRUISE ST HELENS

INCREMENT <cm)

CORE NO.

CflS

TLE CRTEST NO.

REMOLDED-SURF

TE125

SIGlc'(kPa)

299.9

SIG3c

x(kPa)

299.9

INDUCED OCR

1.0

800

a 60

0 0.

40

0

20

0

Ln

50

010

00

p'

CkP

a)

1S00

3 0

£-50

_J U-J00

-150

-200

I I

I I

I I

I

I I

I I

\

10

1520

21

ST

RR

IN

CRUISE ST HELENS

INCREMENT (cm)

CORE NO.

CfiSTLE CRTEST NO.

SIGlc'(kPa)

300.0

SIG3c

x(kPa)

300.0

INDUCED OCR

1.0

REMOLDED-SURF

TE126

80

0

400

300

20

0

40

0

80

0

80

0

p'

(kP

a)

ST

Rfl

IN

CRUISE ST HELENS

CORE NO.

CC1

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

TE13

5

SIGlc'(kPa)

48.9

SIG3c'(kPa)

48.9

INDUCED OCR

6.0

39

0

23

8

200

a-

1913

90

oo

200

300

400

900

p'

Ck

Pa

)60

070

0 8

/ N 0.

0

W-4

3 or-e

ui P-1

2

-16

10

13

20

,___|

ST

RA

IN

C3O

ST HELENS

CORE NO.

CC1 87.0

SIG

3is

'(kP

a)

8?

.0

IND

UC

ED

O

CR

N

/fl

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

TE

17

&

1601

}

a 12

0i)

0. cr800

400

400

800

1200

1600

p'

(kP

a)

a) a.-1

00

-20

0

(L J

U

-400

CRUISE ST HELENS

CORE NO.

CC1

SIGlc'(kPa)

100.7

SIG3c'(kPa)

100.7

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO

.REMOLDED SURF

TE178

800

* 60

0 Q

.

400

200 0

200

400

600

60

0

px

(kP

a)

0

*

Q.

-20

03

(C U

Q

-40

0

ST

RR

IN

<*)

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C2

SIG

lc'(

kP

a)

98.9

SIG

3c'

Ck

Pa)

98.9

IND

UC

ED

OCR

1.0

INC

RE

ME

NT

(c

m)

RE

MO

LDE

D-S

UR

F

TE

ST

N

O.

TE

137

600

600

400

200

50

01

00

0

(kP

a)15

00

STR

flIN

(J

O

CR

UIS

E

ST

H

EL

EN

S

CO

RE

N

O.

CC

2

SIG

lc'(

kP

a)

99.6

SIG

3c'

CkP

a>

99.6

IND

UC

ED

O

CR

1.0

INC

RE

ME

NT

(c

m)

RE

MO

LD

ED

-SU

RF

T

ES

T

NO

. T

E1

38

800

800

40

0

200

300

1000

p

' (k

Pa)

1500

Al

Q_ o: ^-3

00

u

n-4

00

ST

RR

IN

(JO

CRUISE ST HELENS

CORE NO.

CC2

SIG

lc'(kP

a)

97

.8S

IG3c'(kP

a)

97.8

IND

UC

ED

O

CR

1

.0

INC

RE

ME

NT

(c

m)

RE

MO

LDE

D-S

UR

F

TE

ST

N

O.

TE

139

500

1000

15

00

2000

p

' (k

Pa)

^-1

00

«t tL

^ W-2

00

3 CC ^-3

00

U n-4

00

ST

RR

IN

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'(kPa)

98.5

SIG3c

x(kPa)

98.5

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

TE140

800

600

40

0

200

500

10

00

p'

(kP

a)19

00

id

Q.

-20

03 o: ui

p

-40

0

ST

RR

IN

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C2

SIG

lc'(

kP

a)

10

0.2

SIG

3c'(

kP

a)

10

0.2

IND

UC

ED

OC

R

1.0

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LD

ED

-SU

RF

T

E143

40

0

30

0

20

0

100

30

04

00

60

0 p

' (k

Pa)

80

0

CR

UIS

E

ST

H

ELE

NS

C

OR

E J

NO

L

_C

C2

SIG

lcx(k

Pa)

97.0

SIG

3c'(

kP

a)

97

.0IN

DU

CE

D

OC

R

1.0

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LD

ED

-SU

RF

T

E1

44

STRf

lIN

(SO

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

100.1

SIG3c'(kP<O

100.1

INDUCED OCR

1.0

INCREMENT (c

m)

TEST NO

.REMOLDED-SURF

TE155

400

a 30

0 a.

200

100

200

400

600

p'

CkP

a)80

0

3-1

00

<r J

Q

-20

0

ST

RR

IN

CRUISE ST HELENS

CORE NO.

CC2

INCREMENT (c

m)

TEST NO.

SIGlc'(kPa)

97.4

SIG3c'(kPa)

97.4

INDUCED OCR

1.0

REMOLDED-SURF

TE164

OO

2001

>

150

>

300 0

S00

1000

15

00

p'

CkP

a)20

00

ST

RflIN

CRUISE ST HELENS

CORE NO.

CC3

SIGlc'(kPa)

299.1

SIG3c

x(kPa)

299.1

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO.

RE

MO

LDE

D-S

UR

F

TE

H?

200i

>

150)

300

90

0

1000

13

00

30

00

2

00

p'

(kP

a)

100

-10

0

fE-2

00

U

0-3

00

-400

» <

-) -

t »

-«-»

-j-

t i

I <

|' »

i

^--

f-

ST

RR

IN

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

294.7

SIG3c'(kPa>

294.7

INDUCED OCR

1.0

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

TE148

200i >

150! >

100i

>

500-

CRUISE ST HELENS

CORE NO.

CCS

INCREMENT (c

m)

TEST NO.

SIGlc'(kPa)

299.3

SIG3c'(kPa)

299.3

INDUCED OCR

1.0

REMOLDED-SURF

TE149

10

19

20

ST

RR

IN

C5O

CRUISE ST HELENS

INCREMENT (c

m)

REMOLDED-SURF

CORE NO.

CC2

TEST NO.

TE150

SIGlc'(kPa)

SIG3c'<kPa>

INDUCED OCR

295.9

295.9

1.0

800

600

400

200

500

10

00

p'

(kP

a)

1500

-100

a Q.

-30

0

Ld

Q-4

00

ST

RR

IN

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C2

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LD

ED

-SU

RF

T

E151

SIG

lc'(

kP

a)

26

7.1

SIG

3c'(

kP

a)

106.8

IND

UC

ED

O

CR

1.0

000

40

0

800

1 ' '

d'I

I I

I I

I M

I

I I

I I

I I

I M

I

I I

I I

200

400

600

000

p' CkPa)

10

-10

0

tt (L-2

00

-300

-J

LJ Q-4

00

15

20

ST

RflI

N

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'(kPa)

44.8

SIG3c'(kPa>

44.8

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

TE15

2

I I

I j

I I

I I

| i

I I-H-

STRRIN <5O

CRUISE ST

HELENS

CORE NO

. CC

SINCREMENT (c

m)

TEST NO.

REMOLDED SURF

TE179

SIGlc'CkPa)

97.0

SIG3c

x(kP

a)

97.0

INDUCED OCR

1.0

CRUISE ST HELENS

CORE NO.

CC2 _

SIGlc'(kPa)

96.8

SIG3c'(kPa)

96.8

INDUCED OCR

1.0

INCREMENT (c

m)

TEST NO.

8 12

S

TR

flIN

RE

MO

LDE

D

SU

RF

T

E183

16

10

15

STRRIN

20

CRUISE ST

HELENS

CORE NO.

SL1

INCREMENT

TEST NO.

(cm)

flSH (TUBE)

TE129

SIGlc'(kPa)

100.8

SIG3c'(kPa)

100.8

INDUCED OCR

1.0

20

0

a 15

0 O. or

100

50

100

200

300

p'

(kP

a)

40

0

ST

RR

IN

(5i

CRUISE ST HELENS

CORE NO.

SL4

SIGlc'CkPa)

97.4

SIG3c'(kPa)

97.4

INDUCED OCR

1.0

INCREMENT (cm)

TEST NO

.REMOLDED-SURF

TE170

600

^

600

Q.

.* w

400

200

400

00

600

1200

p

' (k

Pa)

1600

ST

RflI

N

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. S

L4

SIG

lc'C

kP

a)

10

2.9

SIG

3c'(

kP

a)

10

2.9

IND

UC

ED

OC

R

1.0

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LDE

D

SU

RF

T

E1

73

400

300

200

100

20

04

00

(kP

a)

60

08

00

10

15

ST

RflIN

2025

CRUISE ST HELENS

CORE NO

. SL4

INCREMENT

TEST NO

.(cm)

REMOLDED SURF

TE175

SIGlc'(kPa)

298.3

SIG3c'(kPa)

298.3

INDUCED OCR

1.0

00 o

10

15

STRflIN

(JO

CRUISE ST HELENS

CORE NO.

SL4

INCREMENT (cm)

TEST NO.

REMOLDED SURF

TE177

SIGlc'(kPa)

296.0

SIG3c'(kPa)

296.0

INDUCED OCR

1.0

330;

3001

238

w

0. o- 1

30

30 0

tea

200

300

400

300

800

oo

700

ST

H

ELE

NS

C

OR

E

NO

. S

L4 9

6.2

96.2

IN

DU

CED

O

CR

N

/fl

INC

RE

HE

NT

(c

m)

TE

ST

N

O.

RB

IOLD

Er)

S

UR

F

TE

184

00 ro

800

* 600

0.

400

200 0

200

400

600

800

p' (kPa)

CRUISE ST HELENS

CORE NO.

SL4

SIGlc'CkPa)

98.6

SIG3c'(kPa)

98.6

INDUCED OCR

1.0

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

TE185

APPENDIX B

CYCLIC TRIAXIAL TEST RESULTS

83

S50-

I I I I I I I

100 150 200 2*

-50 -

-100

p' (kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) TEST NO.

REMOLDED-SURF D130

SIGlc'CkPa) 33.7SIGSc'CkPa) 33.7INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q CkPa) 36.3 (36.3*)RVG MIN q CkPa) -71.3 (71.3*)

84

oo Ln

0

S-5

w Z £-u

(0 (L

U

Q.-20

- r

a: a

4 e

CYCLE

#

CRUISE ST HELENS

CORE NO.

CC1

SIGic'CkPa)

99.7

SIG3c'(kPa)

99.7

INDUCED OCR

1.0

£

80 60 20

3 e

U

P-2

0

-80

U

1E-K

K I-

1C

-01

I I

I i

| I

I >

I |

i i

i I

| I

I i

I «

t

i i

104

6 C

YC

LE *

INCREMENT (c

m)

TEST NO.

RE

MO

LDE

D-S

UR

F

D130

ST

flT

IC

q-f

(k

Pa

) 1

00

.0R

VG

M

flX

q

CkP

a)

96.3

(9

6.3

^)

flVG

M

IN

q

(kP

a)

-71.3

(7

1.3

*)

10

-ese

£L

p' (kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) TEST NO.

REMOLDED-SURF D131

SIGlc'(kPa) 37.4SIG3c'(kPa) 37.4INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q (kPa) 46.4 (46.4*)RVG MIN q (kPa) -35.0 (35.0*)

86

oo

20 15 10

2

-20 80

w

60

r

«*cr Q

20

2 3

CY

CL

E

#

a (L

80 60

ID U

P

40

<E Q!

20

1E

-01

2 3

CY

CL

E

#

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C1

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LDE

D-S

UR

F

D13

1

SIG

lc'(kP

a)

97.4

SIG

3c'(kP

a)

97

.4IN

DU

CE

D

OC

R

1.0

ST

flT

IC qf

(kP

a)

100.0

RV

G

MflX

q

(kP

a)

46.4

(4

6.4

*)R

VG

M

IN

q (k

Pa

) -3

5.0

(3

5.0

*)

100 T

rd CL

-10 -

-20 -

x CkPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) TEST NO.

REMOLDED-SURF D132

SIGlc'CkPa) 98.2SIG3c'CkPa) 98.2INDUCED OCR 1.0

STRTIC q-f (kPa) 100.0RVG MflX q (kPa) 32.3 (32.3*)RVG MIN q (kPa) -21.1 (21. U)

00

w

2 *"2 o: u-e

Q.-8

20 13

a:

a

10

15

CY

CL

E

#2

0

80

60

U 0

40

20

!E+

03g

-

lE+02g-

1E+0

1

1E-0

125

10

13

CY

CL

E

#

CRUISE ST HELENS

CORE NO.

CC1

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D132

SIGlc'CkPa)

98.2

SIG3c'(kPa)

98.2

INDUCED OCR

1.0

STfl

TIC

q-f

(kPa)

100.0

flVG

Mf

lX q

(kPa)

32.3 (32.3?O

MIN q

(kPa)

-21.1 (21.U)

tee-

-20 -

(kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) TEST NO.

REMOLDED-SURF D133

SIGlc'CkPa) 39.5SIG3c'CkPa) 33.5INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 23.6 (23.65ORVG MIN q (kPa) -23.1 (23.

90

o: £ tn u 0.-8

iv* Z M r

a:

a

40

30 10

010

020

0 30

0 C

YC

LE

#

400

CRUISE ST

HELENS

CORE NO.

CC1

SIGlc'(kPa)

99.5

SIG3c'(kPa)

99.5

INDUCED OCR

1.0

200

r\ at

Q

.w

19

0

a

100

(E

U

Q-

90

1E

+0

!

1E

+0

1

1E

+00 y

-

1E

-01

»»! »*

90

01

00

200

300

CY

CLE

#

400

50

0

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D133

STRTIC qf (k

Pa)

100.0

RVG MRX q

(kPa

) 23.6 (2

3.6*

)RVG MIN q

(kPa

) -2

3.1

(23.U)

ida.

-20

-40 -

p' CkPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) TEST NO.

REMOLDED-SURF D134

SIGlc'(kPa) 97.5SIG3c'(kPa) 97.5INDUCED OCR 1.0

STRTIC qf CkPa) 100.0RVG MRX q (kPa) 48.8 (48.8^)RVG MIN q (kPa) -38.0 (38.0^)

92

z £-10

<n

-20

o:

n

40

30

20 10

20

40

80

CY

CL

E

#80

10

0IE

-01

20

40

60

CY

CL

E

#80

100

CRUISE ST HELENS

CORE NO.

CC1

SIGlc'(kPa)

97.5

SIG3c'(kPa)

97.5

INDUCED OCR

1.0

INCREMENT

TEST NO.

STfl

TIC

qffl

VG Mf

lX q

flVG

MIN q

(cm)

(kPa)

(kPa)

(kPa)

REMOLDED-SURF

D134

100.0

48.8 (48.85O

-38.0 (38.05O

-S58-

288 --

Q. 158 --

U)en u a:h- cn

u QH I I I | I I I I | »

188

-48 -

-28

STRRIN (JO

p' (kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) REMOLDED-SURF TEST NO. D135

SIGlc'CkPa) 99.5SIG3c'CkPa> 99.5INDUCED OCR 1.0

STflTIC qf CkPa) 100.0RVG MflX q (kPa) 47.4 (47.4*)RVG MIN q (kPa) -36.4 (36.455)

94

-5

M-1

0

-13

K-2

0 15 »g

10

19

CY

CL

E

#20

CRUISE ST

HELENS

CORE NO.

CC1

/-s (0

Q.

Ul o:

ui

80 60 40 28

Ul

1E+0

1

1C-0

129

10

19

CY

CL

E

#20

INCREMENT (cm)

TEST NO

.REMOLDED-SURF

D135

SIGlc'<kPa>

99.5

SIG3c'<kPa)

99.5

INDUCED OCR

1.0

STfl

TIC

q-f

<kPa>

100.0

RVG Mf

lX q

<kPa>

47.4

(4

7.45

Ofl

VG MIN q

(kPa)

-36.

4 (3

6.45

O

23

250-

rd Q_

-20 -

-40 -

x (kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) REMOLDED-SURF TEST NO. D136

SIGlc'(kPa) 97.8SIG3c'CkPa) 97.8INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q (kPa) 61.9RVG MIN q (kPa) -41.5 C41.5*)

96

-15

-20

80 60

- r a: a

20

2 3

CYCLE

#

CRUISE ST

HELENS

CORE NO.

CC1

SIGlc'CkPa)

97.8

SIG3c'(kPa>

97.8

INDUCED OC

R 1.0

* a.

80 60

D U

40

Q k!20

0

1E+03 |-

lE4-

02«-

1E+01

1E+00S-

IE-0

12

3 C

YC

LE

*

INCREMENT (c

m)

TEST NO

.REMOLDED-SURF

D136

STflTIC

qf (kPa)

100.0

RVG

MflX q

(kPa

) 61

.9 (61.95i)

RVG MI

N q

(kPa

) -4

1.5

(41.

55O

a a.

en u a:h- cn

u a

ieo -*-- STRRIN

p' (kPa)

CRUISE ST HELENS CORE NO. CC1

INCREMENT (cm) REMOLDED SURF TEST NO. D137

SIGic'(kFa) 35.3SISSc'CkPa) 3i5.3INDUCED OCR 1.0

STflTIC qf (kPa) 108.0BVG HRX q (kPa) 33.4 (33.fiVG HIN q (kPa) -32.8

98

CY

CLE

*

CY

CLE

#

CRUISE

1 CORE NO

SIGlc'(

ST HELENS

. kf»*>

SIG3o'CkP*>

INDUCED

OCR

CCl 93 95 i.

. . 0

3 3

INCREMENT

TEST MO

STHTIC

RVG MRX

RVG MIN

. q* q q

(cm)

CkP*)

(kP&)

CkPsi)

REMOLDED

D1S?

iae.

£33.4

-32.11 C3

8.) (32

SURF

45O

.8^)

tee-

p' (kPa)

CRUISE ST HELENS CORE NO. CCi

SIGlc'(kPa) 98.3SIG3c x (kPa) 96.3INDUCED OCR 1.0

INCREMENT (cm) REMOLDED SURF TEST NO. D138

STRTIC qf (kPa) 138.8RVG MflX q (kPa) 27.3 (27.3%)flVG MIN q (kPa) -2S.7 (26.7*)

100

0

o

M-8

a: (0 a:

u

a.-1

6

"Z.

M a:

o

30

20

10

is

CY

CLE

*

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C1

SIG

lc'(kP

a)

SIG

3c'(kP

a)

IND

UC

ED

O

CR

96.3

96

.31

.0

1E-0

110

13

C

YC

LE

#

20

INCREMENT (cm)

TEST NO.

REMOLDED SURF

D198

STfl

TIC

qf (kPa)

108.0

RVG MRX q

(kPa

) 27.3

RVG MIN q

(kPa

) -^6.7

100-

rtf Q_

p" (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D137

SIGlc'(kPa) 99.8SIG3c'(kPa) 99.8INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q (kPa) 33.2 (33.2*)RVG MIN q (kPa) -28.9 (28.9*)

102

O

LO

z £-10

h- tn ec

u

o.-2

0 20 15

C3 z M a. r

a:

a

10

is

CY

CLE

#

20

CRUISE ST

HELENS

CORE NO

. CC

2

25

a* (L

80 60

ID

_J

U 0

40

a:

u20

1E+0

4

1E+0

2

1E+0

1

1E

-01

10

15

CY

CL

E

#20

25

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D137

SIGlc'(kPa)

99.8

SIG3c'(kPa)

99.8

INDUCED OCR

1.0

STRTIC qf (kPa)

100.0

RVG MRX q

(kPa)

33.2 (33.25O

RVG MIN q

(kPa)

-28.9 (28.95i)

fdCL

en en LJCK1-en

LJ

H I I f- I I h H I I \

Id CL

-28 -15

STRRIN (50

p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D138

SIGlc'CkPa) 97.6SIG3c'(kPa) 97.6INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q CkPa) 39.0 (39.0%)RVG MIN q (kPa) -39.9 (39.9%)

104

O

Ln

or Of H- 0)

-15

or

LJ

Q.-2

0 40

30

o:

Q

10

102

0

30

C

YC

LE

#

40

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'(kPa)

SIG3c'CkPa)

INDUCED OCR

97.6

97.6

1.0

80

-

60

-

at (L ZD d U

20

Q. lE

+0

4a-

1E

+033-

1E

+023-

1E+

01

1E-0

150

1020

30

CY

CLE

#

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D138

ST

flT

IC

q-f

(k

Pa)

10

0.0

flVG

M

RX

q

(kP

a)

39

.0

C3

9.0

5O

MIN

q

(kP

a)

-39.9

(3

9.9

*)

tee-

rdQ_

p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D139

SIGlc'(kPa) 98.8 STRTIC qf CkPa) 100.0SIG3c'CkPa) 98.8 RVG MRX q (kPa) 30.9 (30.9*)INDUCED OCR 1.0 RVG MIN q (kPa) -30.6 (30.6.*)

106

(T -

1QL I- (T LJ

-3

0.

-4

20 15

(T n

108

0

30

C

YC

LE

#

CRUISE ST HELENS

CORE NO

. CC2

SIG

lc'(kP

a)

98.6

SIG

3c'(kP

a)

98.6

IND

UC

ED

O

CR

1

.0

LJ

IE-0

1

50 INCREMENT (cm)

TEST NO.

10

20

3

0

CY

CLE

#

RE

MO

LD

ED

-SU

RF

D

13

9

40

50

STRTIC qf

(kPa)

100.0

RVG MRX q

(kPa)

30.9 (30.9*)

RVG MIN q

(kPa)

-30.6 (30.6?O

a.

en en LJ

cn

LJa

100

80 -

60 -

40 -

20 -

0

-20 -

-40

p' CkPa)

CRUISE ST HELENS INCREMENT (cm) REMOLDED-SURF CORE NO. CC2______TEST NO.________D140________

SIGlc'(kPa) 97.7 STRTIC qf CkPa) 100.0SIG3c'(kPa) 97.7 RVG MRX q CkPa) 46.3 (46.3*)INDUCED OCR 1.0 RVG MIN q CkPa) -46.8 (46.855)

108

10 5 0

M-5

a: te Sn-1

0

a: ,s

u

15Q

-

-20

(J

Z (T

P

40

30

30 10

1020

30

CY

CL

E

#4

0

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

97.7

SIG3c'(kPa)

97.7

INDUCED OCR

1.0

a Q-

80 60

ID _J U

40

Q (T U

20

CL

1E+

04

1E+

03

1E

+02

1E+

01

IE+

00

IE-0

1S

010

20

30

CY

CL

E

ft40

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D140

ST

RT

IC

q-f

(kP

a)

10

0.0

RV

G

MflX

q

(kP

a)

46.3

(4

6.3

*)

RV

G

MIN

q

(kP

a)

-46

.8

(46

.8*)

tea-

to tu o> in O

p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D141

SIGlc'(kPa) 98.5SIG3c x (kPa) 98.5INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 28.3 C28.35OflVG MIN q (kPa) -28.9 (28.9*)

110

100

130

CY

CL

E

#3

00

CRUISE ST HELENS

CORE NO.

CC2

SIG

lc"(

kP

a)

98

.5S

IG3c'(kP

a)

98

.5IN

DU

CE

D

OC

R

1.0

At

Q.

=3 ui Q (L

111

Q.

80

60

u

1E+

01

1E

-01

230

50

100

130

CY

CL

E

#200

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D141

STRTIC qf (kPa)

100.0

RVG MRX q

(kPa

) 28.3 (28.3*)

RVG MIN q

(kPa)

-28.9 (28.95O

rtJ Q_

-20

-40 -

p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT Com) REMOLDED-SURF TEST NO. D142

SIGic'(kPa) 98.0 STRTIC qf (kPa) 100.0SIG3c'CkPa) 98.0 RVG MRX q (kPa) 46.6 (46.6^)INDUCED OCR 1.0 RVG MIN q (kPa) -44.5 (44.5*)

112

,\*-

5

DC -

a:

\- 0) a:

u

a.-2

0 40 30

Q. o:

a

10

10

15C

YC

LE

#

CRUISE ST HELENS

CORE NO.

CC8

SIGlc'CkPa)

98.0

SIG3c'CkPa)

98.0

INDUCED OCR

1.0

25

a 0. _

Id a a: Id a.

80

60

40 20

/A

Of a. Id

1E

+04

!E+

03

g-

lE+

02

sj~

1E+

01

IE-0

1

jf-

INCREMENT Co

m)

TEST NO.

10

15

CY

CL

E

#20

25

REMOLDED-SURF

D142

STfl

TIC

qf (k

Pa)

100.0

RVG MRX q

(kPa

) 46.6 (46.65O

RVG MIN q

(kPa

) -44.5 (44.55O

rd Q.

(kPa)

CRUISE ST HELENS CORE NO. CC2

SIGlc'CkPa) 99.0 SIG3c'(kPa) 99.0 INDUCED OCR 1.0

INCREMENT TEST NO.

STRTIC qf RVG MRX q RVG MIN q

(cm)

(kPa) (kPa) (kPa)

REMOLDED-SURF D143

100.0 22.8 (22.8*) -23.2 (23.255)

114

4 2

~ 0

Z M or-2

a: UJ-6

-8

40

30

Z 1-1

Q.

21 a:

a

10

100

(0 a.

200

150

u a

100

a:

u

a.

50

/->> Q. w

U

1E+0

4

lE+

03

g-

1E+0

2

1E+0

1

20

0

30

0

CY

CL

E

#400

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C2

500

INC

RE

ME

NT

T

ES

T

NO

.

100

20

0

30

0

CY

CL

E

#400

500

(cm

)REMOLDED-SURF

D143

SIGlc'CkPa)

99.0

SIG3c'CkPa)

99.0

INDUCED OCR

1.0

STRTIC qf (k

Pa)

100.0

RVG MRX q

(kPa

) 22.8 (22.8%)

RVG MIN q

(kPa)

-23.2 (23.2*)

-tee

p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D144

SIGlc'CkPa) 97.9SIGSc'CkPa) 97.9INDUCED OCR 1.8

STRTIC qf (kPa) 108.0RVG MRX q (kPa) 32.9 (32.9*)RVG MIN q (kPa) -34.5 (34.5*)

116

2 M o:

en <r

LJ0 -2 4

0

30

M

£ (E

O

10

20

40

6

0

CY

CL

E

#00

CRUISE ST HELENS

CORE NO.

CC2

SIG

lc'(kP

a)

SIG

3c'(kP

a)

IND

UC

ED

O

CR

00

a (L

60

LJ

O (E

LJ

40

20

0

-20

(0

lE+

03

g-

U

1E+

01

1E+C

IE-0

110

020

40

6

0

CY

CL

E

#

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D144

97.9

STfl

TIC

qf (kPa)

100.0

97

.9

RV

G

MflX

q

(kP

a)

32.9

(3

2.9

JO

1.0

R

VG

M

IN

q (k

Pa

) -3

4.5

(3

4.5

^)

100

-258-

-100p' CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D145

SIGlc'(kPa) 38.1SIG3c'(kPa> 98.1INDUCED OCR 1.0

STflTIC qf (kPa) 100.3RVG MflX q (kPa) 50.4 (50.45ORVG MIN q CkPa) -48.3 C48.35O

118

5

fc-1

0

H tn-

o:

u

Q.-2

0

I I

I I

f -4

I I

I <

I I

I I I »

o:

40

30

20 10

102

0

30

C

YC

LE

#

4050

at (L

60

60

_

U 0

40

o:

u20

lE+

04

g~

lE+

03s-

1E+

02

1E+0

1

1E-0

11

02

0

30

C

YC

LE

#

40

CRUISE ST HELENS

CORE NO.

CC2

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

D145

SIGlc'CkPa)

98.1

SIGSc'CkPa)

98.1

INDUCED OCR

1.0

STfl

TIC

qf (kPa)

100.0

flVG Mf

lX q

(kPa

) 50.4 (50.45i)

flVG

MIN q

(kPa

) -48.3

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) REMOLDED-SURF TEST NO. D161

SIGlc'CkPa) 94.3 STRTIC qf (kPa) 100.8SIGSc'CkPa) 94.3 RVG MRX q (kPa) 34.8 (34.8*)INDUCED OCR 1.0 RVG MIN q CkPa) -38.1 (30.

120

Cfl-1

5(E

LJ

Q

.-2

0

o:

Q

40

30 20 10

at

Q_

80 60

^

^«,

n

40

a:

a!

20

\ /

i I

| -i -ill

{ \-

\ i

< |

I-I

i \-

\-\-

-\

-\

1E+0

-4

1E

+033-

rt a. u1

E+

01

1E

-01

10

is

CY

CLE

#

2025

10

15

CY

CL

E

#

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

94.3

SIG3c'(kPa)

94.3

INDUCED OCR

1.0

INC

RE

ME

NT

(c

m)

TE

ST

^NO

^^

STRTIC qf (kPa)

RVG MRX q

(kPa)

RVG MIN q

(kPa

)

REMOLDED-SURF

D161____ __

100.0

34.8 (34.8*)

-30.1 (3

0. ISO

20

100

Q_

\-~i>

0)cn u

cn

uQ

STRRIN (SO

-50

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D162

SIGic'(kPa) 72.1SIG3c x (kPa) 72.1INDUCED OCR 1.0

STRTIC qf CkPa) 100.0RVG MflX q (kPa) 39.6 (39.6*)RVG MIN q (kPa) -27.4 (27.4*)

122

ho U)

-3

Si-

10

UJ

Q_-2

0 80

60

z M 0. a:

Q

20

23

CY

CL

E

#

CRUISE ST

HELENS

CORE NO.

CC2

SIG

lc'(

kP

a)

72

.1S

IG3c'(

kP

a)

72.

1IN

DU

CED

O

CR

1.0

80

a) tL

80

3

40

U

Q20

o: UJ

-20

lE+0

3=»-

lE+02=r~

0. v^ UJ

IE-0

1

INCREMENT (cm)

TEST NO.

23

CY

CL

E

#

REMOLDED-SURF

D162

STRTIC qf

(kPa)

100.0

RV

G

MR

X

q

(kP

a)

39

.6

(39.6

*)

RV

G

MIN

q

(k

Pa

) -2

7.4

(2

7.4

*)

p x CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D146

SIGlc'CkPa) 299.3 STRTIC qf CkPa) 300.0SIGSc'CkPa) 299.3 flVG MRX q (kPa) 98.1 (32.7%)INDUCED OCR 1.0 flVG MIN q (kPa) -90.5 (30.2*)

124

0

CC a

en-1

5

CC

LJ

Q.-2

0

(C

Q

40

30 20 10

0

r-r-

t-r-

T^

-v I

i

i i

10

13

CY

CL

E

#20

CRUISE ST HELENS

CORE NO.

CC2

tf Q.

400

300

ui Q

200

(E

UI10

0

0.

^ W

Ul

IE +

01

1E

-01

23 INC

RE

ME

NT

(c

m)

SIG

lc'(kP

a)

SIG

3c'(kP

a)

IND

UC

ED

O

CR

29

9.3

299.3

1.0

10

13

CY

CLE

#

RE

MO

LDE

D-S

UR

F

D146

ST

RT

IC q

f (k

Pa

) 3

00

.0R

VG

M

RX

q

(kP

a)

98

.1R

VG

M

IN

q (k

Pa

) -9

0.5

<

30

.2$

O

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDEB-SURF D147

SIGlc'(kPa) 297.0 STRTIC qf (kPa) 300.0SIG3c'(kPa) 297.0 RVG MRX q CkPa) 118.9 (39.65OINBUCEB OCR 1.0 RVG MIN q CkPa) -110.7 (36.3*)

126

x-s

v/ ft:

-15

u ft.-2

0 30

£ 20

o: a

10

10

13

CY

CL

E

#20

CRUISE ST HELENS

CORE NO.

CC2

_J

U

Q CC

U

Q.

40

0

300

200

100

1E+

0!

U1E

+02

g-

1E+

01

1E-0

123

10

13

CY

CL

E

#

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

D147

SIGlc'CkPa)

SIG3c'CkPa)

INDUCED OCR

297.0

STRTIC qf (kPa)

297.0

RVG MRX q

(kPa)

1.0

flVG

MIN q

(kPa)

300.0

118.9

(39.

65O

-110.7 (36.95i)

20

258-

Q_

Q- ;

cn en u

cn

u o

250

200-

-20 -15 -10

STRRIN C%esa-

x CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D148

SIGlc'CkPa) 297.4 STRTIC qf CkPa) 300.0SIG3c'(kPa) 297.4 RVG MRX q (kPa) 103.2 C34.45OINDUCED OCR 1.0 RVG MIN q CkPa) -104.9 (35.0*)

128

0

*\* w 5-i0

a: Of a:

w

a.-2

0

200

~ w

150

e> £

100

a: Q

30 0

U^1_JJJ^^I^

MI

| P"

1

-t

1 1

1

1 1

1 |

1 1

1 1

- ; -

10

20

30

40

9C

CY

CL

E

#

40

0

*

0.

w

30

0

P

200

CC

OL

100

0

1E

+03

lC-t

-04

^

1E

+03

0.

1E

+02

U

1E

+01

1E+0

C

IE-0

1

J

' ^^

: / ^

'- '

1/f

t i

> i

i i

i i

i i

i i i

i

i i

i i

i i

i i

i E ^^"~

^^---^_

^

r v

r r 5~ _ r

10

20

30

40

50

CY

CL

E

#

CR

UIS

E

ST

H

ELE

NS

IN

CR

EM

EN

T

(cm

) R

EM

OLD

ED

-SU

RF

CO

RE

N

O.

CC

2 T

ES

T

NO

. D

14

8

SIG

lc'(kP

a)

29

7.4

S

TflT

IC qf

(kP

a)

30

0.0

S

IG3

c'(kP

a)

29

7.4

R

VG

M

flX

q (k

Pa

) 103.2

(3

4.4

*O

IND

UC

ED

O

CR

1

.0

RV

G

MIN

q

(kP

a)

-104.9

(3

5.0

5O

rd CL

0)u Q:h- cn

LJ O

STRRIN (SOsee-

i i/ i i i i i i i i i i300 400 5t 0

x CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D149

SIGlc'(kPa) 297.3 STRTIC qf (kPa) 300.0SIG3c'(kPa) 297.3 RVG MRX q (kPa) 135.4 (45.1^)INDUCED OCR 1.0 RVG MIN q CkPa) -117.8 (39.3*)

130

a: 0) CC a -20 00 60

Si (E n

20

02

3 C

YC

LE

#

200

100

50

So

Q.

-50

1E

+04|-

lE+

02

ar

IE+

01

1E

-01

II

I |

< I II

| I

1 I

I j

I *

I «

{-

4;4

--f-

2 3

CY

CL

E

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

SIGSc'CkPa)

INDUCED

OCR

297.3

297.3

1.0

INCREMENT

TEST NO.

STfl

TIC

qffl

VGfl

VGMf

lXMIN

q q

(cm)

CkPa)

(kPa)

(kPa)

REMOLDED-SURF

D149

300.0

135.

4_

<17

.8(45. (39

15i)

.3*)

-20 -

-40 -

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

SIGlc'CkPa) 95.5SIG3c'(kPa) 95.5INDUCED OCR 1.0

INCREMENT (cm) TEST NO.

REMOLDED-SURF D 179

STRTIC qf (kPa) 180.0RVG MRX q (kPa) 37.7RVG MIN q (kPa) -31.8

132

20 15 10

U OL-10

-15 80

60

2 M a.

20

I t

«II

I I

«

0.4

,8

1.2

C

YC

LE

*

1.6

80

£

60

w 3

40

UJ a

0

1E

+04

1E

+0

3

0

i

1E

+02

W LJ

1E

+01

1E+

0B

ir~

cii

..,--

'

^-"

/

X

: /

,,,,,,.... M

y ..........

r

"^-^

^^

r

'^^^

v-

r r i~

.8

1.3

C

YC

LE

*

CRUISE ST HELENS

CORE NO.

CC2

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

D 179

SIGlc'CkPa)

95.5

SIG3c'CkPa>

95.5

INDUCED OCR

1.0

STRTIC qf Ck

Pa)

100.0

RVG MRX q

CkPa

) 37.7 (3

7.RVG MIN q

CkPa

) -31.8 (3

1.8*

)

1.6

-tea

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D180

SIGlc'CkPa) 100.7 STRTIC qf (kPa) 100.0SIGSc'CkPa) 100.7 RVG MflX q (kPa) 27.7 (27.755)INDUCED OCR 1.0 RVG MIN q (kPa) -27.3 (27.3%)

134

16

K

I*

5 cc P en £ u w

30

2 M * «

o:

p

10

010

20

30

CY

CLE

#

40

90

80 60

a (L w

n a:

a!

20 0

lE+

04

|j-

lE+

03g~

/-v «i u

lE+

01

1E+0

C 3

-

1E-0

1

K<

II

| I

I I

-I -{-I

I |

I {

»

>

« <

!<

«

CRUISE ST HELENS

CORE NO.

CC2

INCREMENT (c

m)

TEST NO.

10

20

30

CYCLE *

REMOLDEB-SURF

0180

SIGlc'CkPa)

SIG3c'CkPa)

INDUCED OCR

100.

7 ST

flTI

C qf

(kPa)

100.0

100.7

RVG MflX q

CkPa)

27.7 (2

7.75

i)1.0

RV

G

MIN

q

CkP

a)

-27

.3

(27

.35

i)

id Q.

or

32 - :

S3 -:* ,1

o_ 40 /^

STRESS

>LJa

50

40

30

20

10

0

-10

-20

-30

-40

j / it

i i . i i 1 i i fr-X^ i_/._£L' ^* 1^ / /i ±*

" " /^^ /^^A'

/ J/ f faV-.

L__x i / \ \ i '

- -~f ;

STRRIN (?i)

-

'-

-

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 i | 1 1 1 1

20 40 60 80 It

-

-

-

p' (kPa)

ft1/i !

!

' J ^ 1

1

i

sA ^^y

0

CRUISE ST HELENS INCREMENT (cm) REMOLBEB-SURFCORE NO. CC2 TEST NO. B181

SIGlc'CkPa) -108.6 STRTIC qf (kPa) 100.0 SIGSc'CkPa) -108.6 RVG MRX q (kPa) 33.3 (33.3*) INDUCES OCR 1.0 RVG MIN q (kPa) -37.0 (37.0*)

136

ft:

h-

cn

-8

16

a:

a

23

C

YC

LE

*

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. C

C2

-40

-

* a. a -IZ

8

-16

0

/-v a.

u

lE+

04

g-

lE+

03^

-

IE+

02

|~

1E+

01 j-

lE+

0e

g-

1E

-01

INCREMENT (cm)

TEST NO.

2 3

CYCL

E *

REMOLDED-SURF

D181

SIGlc'(kPa)

-108.6 STRTIC qf (k

Pa)

100.0

SIG3c'(kPa)

-108.6 RVG Mf

lX q

(kPa

) 39.3 (39.3*)

INDUCED OCR

1.0

flVG MIN q

(kPa

) -37.0 (37.0*)

en enLdai- cn

LJa

STRflIN (JO

p' CkPa)

CRUISE ST HELENS CORE NO. CCS

INCREMENT (cm) TEST NO.

REMOLBEB-SURF 0182

SIGic'CkPa) 93.9SIGSc'CkPa) 93.9INBUCEB OCR 1.8

STflTIC qf CkPa) 100.8RVG MRX q (kPa) 43.7 (43.752)RVG MIN q (kPa) -38.7 (38.7*)

138

« I -4

-t H-I -

4 «

> I

1 II

I I

« f*<

I I

< *

I 4

4

6CYCLE *

CRUISE ST HELENS

CORE NO.

CC2

SIGlc'CkPa)

93.9

SIG3c'(kPa)

93.9

INDUCED OCR

1.0

80

a 0. ID U P

40

o:

u2

0

1E

+0

3|-

UJlE

-t-0

1

1E+0

C g

-

1E-0

110 INCREMENT (c

m)

TEST NO.

CY

CLE

#

RE

MO

LD

ED

-SU

RF

D

182

ST

flT

IC qf

(kP

a)

10

0.0

RV

G

MflX

q

(kP

a)

43.7

(4

3.7

5O

RV

G

MIN

q

(kP

a)

-38.7

(3

8.7

^)

tee-

p' (kPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED-SURF D183

SIGlc'(kPa) 95.8 STRTIC qf (kPa) 100.0SIG3c'CkPa) 95.8 RVG MRX q (kPa) 41.4 (41.4*)INDUCED OCR 1.0 RVG MIN q (kPa) -36.1 C36.U)

140

0

S-4

w Z M en a:

LJ a.-i

s 40

30

z M Q. or

a

10

4 6

CYCLE *

CRUISE ST HELENS

CORE NO.

CC2 9

5.Q

9

5.8

IN

DU

CE

D

OC

R

1.0

_* XV Ul

Q Ld

0.

60 80

40

0. -* \v u

1E+

01

lE+

0fl

g-

1E-0

110

4 6

CY

CL

E *

INCREMENT (c

m)

TEST NO.

STRTIC qf (kPa)

flVG

Mf

lX q

(kPa)

RVG MIN q

(kPa

)

RE

MO

LDE

D-S

UR

F

JD

H53__ _

__

___

100.0

41

.4

(41.4

5O

-36.1

tf Q.

^

Q_

^x

cn muh-cn>Lda

Cv)

20

15

10

5

-10

-15

-20

C w

- - '" ' "" ' "" " " - " " - - ' '3U- -----

40 -5 7

30 -7( I !

20 -J:

10 - 1

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ~ t

-is -12 -8 -4 0;:

-20 -'-

-30 ::

STRRIN m

-

-

-

4 I 1 1 | i I 1 1 j I I h

20 40

-

-

-

p' CkPa)

ST HELENS INCREMENT (cm)CORE NO. CC2 TEST NO.

SIGlc'(kPa) 100.3 STRTIC q-f (kPa) SIG3c'(kPa) 100.3 RVG MRX q (kPa) INDUCED OCR N/fl RVG MIN q (kPa)

i | i j i i i i

4 8

]

i

{

60

!

i

REMOLDED-SURFD184

100.0 21.9 (21.9*) -21.7 (21.7*)

142

CC

-4

QL cc

-16 40

w

30

r <r

Q

10

11 *

! 1020

30

C

YC

LE

*

40

CRUISE ST

HELENS

CORE NO

. CC2

SIG

lc'(kP

a)

SIG

3c'(kP

a)

IND

UC

ED

O

CR

100.3

10

0.3

1.0

a O. Ul a %

« k!

1601

-

120

-

1E

+0

3|- ~~

at Ul

IE+

01

5-

1E-0

150 INCREMENT (cm)

TEST NO

.

10

20

30

CY

CL

E

#

RE

MO

LDE

D-S

UR

F

D184

ST

RT

IC q

f (k

Pa

) 100.0

RV

G

MR

X

q (k

Pa

) 2

1.9

(2

1.9

5i)

RV

G

MIN

q

(kP

a)

-21.7

(2

1

CkPa)

CRUISE SI HELENS CORE NO. CC2

SIGie'CkPa) 95.!3IG3c'(kPa5 95.SINDUCED OCR 1.8

INCREMENT TEST NO.

REMOLBEB SURF B13S

3TRTIC qf CkPa)RVG MRX q CkPa) 42.8RVG HIN q CkPa) -42.3 C4S.83O

144

a*a*

oacnousM*

31DA

O

8

b XHW SAW

£*» DI1H1S

'ON 1831

.IN3M3MDNIei

J

|, i i-ifc/V t i »-»».». >-» »-*-»- I-1-*»»

3!

411

e09

6'SB

R * C

R2DD

'O

N

38

00

S

N3

13

H IS

3S

in«0

#

310AD

9191

-

1-0

588-

CRUISE SR HELENS CORE NO. CC2

p' (kPa)

INCREMENT (cm) TEST NO.

REMOLDED SURF D185

SIGlc'(kPa) 284.3 STRTIC qf CkPa) 383.3SIG3c'CkPa) 234.3 RVG MRX q CkPa) 115.2 (38.4^)INDUCED OCR 1.3 RVG MIN q CkPa) -31.2 C30.43O

146

0

w

Z_

-1

2

Ul

Q.-1

6

13 2 n:

a

15 10

04

6 C

YC

LE

*

CR

UIS

E

SR

H

ELE

NS

C

OR

E

NO

. C

C2

u

IE-0

110

4 e

CY

CLE

*

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LDE

D

SU

RF

D

185

SIG

lc'C

kP

a)

SIG

3c'C

kP

a)

IND

UC

ED

O

CR

294.

9294.9

1.0

STRTIC qf CkPa)

300.0

RVG MRX q

(kPa)

115.2

(38.45O

RVG MIN q

CkPa)

-91.

2 (3

0.4^

)

£50-

-88 -

CRUISE ST HELENS CORE NO. CC2

(kPa)

INCREMENT (cm) REMOLDED SURF TEST NO. D186

SIGlc'(kPa) 237.3 STRTIC qf CkPa) 300.0SIG3c'(kPa> 297.3 RVG MRX q (kPa) 92.1 (30.75i)INDUCED OCR 1.0 RVG MIN q (kPa) -79.7 (26.6*)

148

o: tn a:

ui

a.-1

6 40

30

Q. r a: a

10

0C

YC

LE *

CRUISE ST HELENS

CORE NO.

CC2

U) a

40

0

30

0

20

0

100

1E+0

4 g

-

iE+

03

1E+0

2

Ul

1E+0

S j-

IE-0

110

4 6

CY

CL

E *

INCREMENT (c

m)

TEST NO.

REMOLDED SURF

D186

SIGlc'CkPa)

SIGSc'CkPa)

INDUCED OCR

297.3

297.3

1.0

STRTIC qf (k

Pa)

300.0

RVG MRX q

(kPa

) 92.1

(3

0.7*

>RVG MIN q

CkPa)

-79.7 (26.6^)

-88 -

CRUISE ST HELENS CORE NO. CC2

CkPa)

INCREMENT (cm) REMOLDED SURF TEST NO. D187

SIGlc'CkPa) 293.2 STRTIC qf CkPa) 380.8SIG3c'CkPa> 293.2 RVG MRX q CkPa) 138.7 (33.6?OINDUCED OCR 1.8 RVG MIN q CkPa) -84.9 (28.3*)

150

4 »

a: H

en-1

2a;

LJ

a.

-18 60

40

cr

a

( '4

-4 "

| -4

-1

»i

K I

It

I \

<

I

400

* a. ID

_J

U

P U a.

200

100

1C+0

3 g~

id O.

lE+Q

fi g-

1C-0

14

6 C

YC

LE

*

CRUISE ST

HELENS

CORE NO

. CC

2

10 INCREMENT (cm)

TEST NO.

4 3

CYCLE *

REMOLDED SURF

D187

SIG3c'(kPa)

INDUCED OCR

293.2

293.2

1.0

STRTIC qf (kPa)

300.0

RVG

MRX q

(kPa)

100.7

(33.6*)

RVG

MIN q

(kPa

) -8

4.9

(28.

35O

it* 0.

cn en LJ a:H- en

LJ P

STRRIN C5O

V) Al 0» tO rt (9

CkPa)

CRUISE ST HELENS CORE NO. CC2

INCREMENT (cm) TEST NO.

REMOLDED SURF D188

SIGlc'CkPa) 236.5 STRTIC qf CkPa) 300.0SIG3c'(kPa> 236.5 RVG MRX q (kPa) 68.0 (22.7^)INDUCED OCR 1.0 RVG MIN q (kPa) -80.4 (26.8^)

152

5-8

CC

Of

CC

Ld

(L-1

6

g« 20

020

40

6

0

CY

CL

E *

80

CRUISE ST

HELENS

CORE NO.

CC2

100

1E

-01

2040

6

0

CY

CL

E

#le

a

INCREMENT (cm)

TEST NO.

REMOLDED SURF

D188

SIGlc'(kPa)

296.S

STRTIC qf (kPa)

300.0

SIGSc'CkPa)

296.5

RVG Mf

lX q

(kPa)

68.0 (2

2.75

OINDUCED OCR

1.0

HVG MIN q

(kPa)

-80.4

(26.8?i)

CkPa)

CRUISE ST HELENS CORE NO. SL1

INCREMENT (cm) TEST NO.

RSH (TUBE) D155

SIGlc'(kPa) 38.7SIG3c'(kPa) 98.7INDUCED OCR 1.0

STRTIC qf (kPa) 36.4RVG MP.X q (kPa) 78.6 (81.5^)RVG MIN q (kPa) -63.2 (55.6*)

154

M o: en

-8 20 19 10o:

a

0

i i

i i

< i

>

.4

.6

CY

CL

E *

.8

CRUISE ST HELENS

CORE NO.

SL1

80

s* ft Q-

60

Ul a20 -20

tt Q. Ul

1E+02*-

1E-0

1

i i

i i

r >

» .4

.6

CYCLE *

INCREMENT (cm)

RSH (TUBE)

TEST NO.

D155

SIGlc'(kPa)

98.7

SIG3

c'(kP<*)

98.7

INDUCED OCR

1.0

STRTIC qf

(k

Pa)

96.4

RVG MRX q

(kPa

) 78

. G

(81.5*)

RVG MlN q

(kPa

) -63.2 (6

5.6*

)

.8

M I I 1 i I I I I I I j I I II

p' (kPa)

CRUISE ST HELENS CORE NO. SL1

INCREMENT (cm) TEST NO.

RSH (TUBE) D156

SIGlc'CkPa) 98.0SIGSc'CkPa) 98.0INDUCED OCR 1.0

STRTIC qf (kPa) 96.4RVG MRX q CkPa) 45.0 <46.7?ORVG MIN q (kPa) -46.3 <48.7*)

156

20

IS

5 »

£ a

h- 5 -2

0 40

w

30

Z M r 20

a:

10

020

40

8

0

CY

CL

E *

80

CRUISE ST HELENS

NO.

SL1

LJ

IE-01

100

20

INCREMENT (c

m)

TEST NO.

40

6

0

CY

CL

E

#

RS

H

(TU

BE

) D

156

80

SIGlc'CkPa)

98.0

SIGSc^kPa)

98.0

INDUCED OCR

1.0

ST

flT

IC

q-f

(kP

a)

96

.4R

VG

M

RX

q

(k

Pa

) 45.0

(4

6.7

?i)

RV

G

M1N

q

(kP

a)

-46.9

(4

8.7

JC)

CkPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT Com) TEST NO.

REMOLDED-SURF D163

SIGlc'CkPa) 93.3SIGSc'(kPa) 93.3INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 38.2 (38.25i)RVG MIN q (kPa) -30.5 (30.5*)

158

20 15

2

10

Z 5

£-10

" -I

S

-20

CP z o: a

30 20 10

4 6

CYCLE #

CRUISE ST

HELENS

CORE NO.

SL4

10

Ui

IE-0

14

6 C

YC

LE

#

10

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D163

SIGlc'CkPa)

93.3

SIG3c'(kPa)

93.3

INDUCED OCR

1.0

STRTIC qf (kPa)

100.0

RVG Mnx q

(kPa)

38.2 (3

8.2*

)MIN q

(kPa)

-30.5 (3

0.5*

)

p' CkPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED-SURF D164

SIGle'(kPa) 96.0SIG3e'CkPa) 96.0INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 21.1 C21.15C)RVG MIN q (kPa) -18.3 C18.3JO

160

cr>

5 0

~-3

Z cn u

a. w

13

Z o:

a

030

100

130

CY

CL

E

#20

0

CRUISE ST HELENS

CORE NO.

SL4

SIG

lc'(kP

a)

96.0

SIG

3c'(kP

a)

96.0

IND

UC

ED

O

CR

1

.0

230

ft

Q_

.* ID

U a a:

u

a. ^\ a a. .*

w

IE+

04

lE+

03r-

!E-i-0

2ff-

1E+0

1

lE+

0 g-

IE-0

130

100

130

CY

CL

E

#200

230

INC

RE

ME

NT

(c

m)

TE

ST

N

O.

RE

MO

LDE

D-S

UR

F

D164

ST

flT

IC qf

(kP

a)

100.0

RV

G

MflX

q

(kP

a)

21

.1

(21

.U)

RV

G

MIN

q

(kP

a)

-18.3

(1

8.3

*)

rOa.

en LJ a h-

LJ

50

40 -

30 -

20 -

10 -

U"

-10 -

-20 -

p' CkPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED-SURF D165

SIGlc'(kPa) 87.8SIG3c'(kPa) 87.8INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MRX q (kPa) 25.2 (25.2^)RVG MIN q (kPa) -20.9 (20.9*)

162

5:~i

0 o: <r

u

Q.-2

0

80

«\* w

60

CE

P

«e 20

10

15

CY

CLE

#

20

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. S

L4

SIG

lc'(kP

a)

87.8

SIG

3c'(kP

a)

87.8

IND

UC

ED

O

CR

1.0

id

Q.

80

-

60

-

ID _J U

40

Q CE U

20

Q.

y-s. id

Q.

w U

1E

+0

4

1E

+03

1E

+0

2

lE+

01

s-

1E

-01

2510

15

CY

CLE

#

20

25

INCREMENT (cm)

TEST NO.

REMOLDED-SURF

D165

STRTIC qf (kPa)

100.0

RV

G

MR

X

q (k

Pa)

25.2

(2

5.2

5O

RV

G

MIN

q

(kP

a)

-20.9

(2

0.9

*)

-tee

p' (kPa)

CRUISE ST HELENS CORE NO. SL4

SIGic'(kPa) 86.6SIG3c'(kPa) 86.6INDUCED OCR 1.0

INCREMENT (cm) TEST NO.

REMOLDED-SURF D166

STRTIC qf (kPa) 100.0RVG MRX q (kPa) 23.9 (23.9*)RVG MIN q (kPa) -21.9 C21.95O

164

Ln

(0 o:

u

a. r

or

Q

20 15 10 0 40

30 10

0

i i

i i

i >

40

60

12

0 C

YC

LE

#

160

CRUISE ST HELENS

CORE NO.

SL4

SIGlc'CkPa)

86.6

SIG3c

x(kPa)

86.6

INDUCED OCR

1.0

200

IE-0

14

060

120

CY

CL

E

#16

3200

INCREMENT (c

m)

TEST NO.

REMOLDED-SURF

D166

STfl

TIC

qf (k

Pa)

100.0

RVG Mf

lX q

(kPa)

23.9 (2

3.9%

)RVG MIN q

(kPa)

-21.9 (2

1.9%

)

139-

p' CkPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SURF D169

SIGlc'CkPa) 99.5SIGSc'CkPa) 99.5INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 37.9 (37.3*)RVG MIN q (kPa) -29.4 (29.4*)

166

£-2

I- ui ft

.-4

40

38

ft. o: Q

10

1020

30

CY

CLE

#

40

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. S

L4

SIG

lc'(

kP

a)

99

.5S

IG3c'(

kP

a)

99

.5IN

DU

CED

O

CR

1.0

50

80

/^ at

(L

-*

60

ID

J

U

40

£

20a. at (L U

lE+

02g-

1E+0

1

1E

-01

1020

30

CY

CL

E

#40

INCREMENT (c

m)

TEST NO.

REMOLDED SURF

D169

STRTIC qf (kPa)

100.0

RVG MRX q

(kPa)

37.9 (37.9SO

RVG MIN q

(kPa)

-29.4 (29.45O

I «r-H I I I I

48 -

28 -

8

-28 -

-48 -

p' CkPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) SURF TEST NO. D170

SIGic'CkPa) 97.4SIGSc'(kPa) 97.4INDUCED OCR 1.0

STRTIC qf CkPa) 100.0RVG MRX q (kPa) 48.3 (48.3*)RVG MIN q CkPa) -48.6 (48.6*)

168

Z M in LJ

Q.-4

M r 20

a: Q

e 12

C

YC

LE *

ie

CRUISE ST HELENS

CORE NO.

SL4

SIGlc'(kPa)

97.4

SIG3c'(kPa>

97.4

INDUCED OCR

1.0

20

80* Q. w 00

U P 40

(C U

0-20

0

1E+

04 |-

lE+

03s-

1E+0

1 3-

IE-0

1

L I

I.J

I <

* I

I I

» f

INCREMENT

TEST NO.

(cm)

ST

RT

IC qf

(kP

a)

RV

G

MflX

q

(kP

a)

RV

G

MIN

q

(kP

a)

8 12

C

YC

LE

#

SU

RF

D17

0 _____

100.0

48

.3

(48.3

*)-4

8.6

(4

8.6

SO

16

a) « Momsana)CO CO CO

p x (kPa)

CRUISE ST HELENS CORE NO. SL4

SIGlc'(kPa) 36.8SIG3c'(kPa) 36.8INDUCED OCR 1.8

INCREMENT (cm) TEST NO.

REMOLDED SURF D189

STRTIC qf (kPa) 180.8RVG MRX q (kPa) 27.3 (27.RVG MIN q (kPa) -26.8 (26.85O

170

fi-i

h-

W *-

u CL

20

w

j3C3

Z »H ft-

id

r

l0a:

» «

« t-

i

20

40

60

CY

CL

E

#80

100

IE-0

1

CRUISE ST HELENS

CORE NO.

SL4

INCREMENT (c

m)

TEST NO.

20

40

60

CYCLE *

REMOLDED SURF

D189

SIGlc'CkPa)

96.8

SIG3c'(kPa)

96.8

INDUCED OCR

1.0

STRTIC qf (kPa)

100.0

RV

G

MflX

q

(kP

a)

27

.9

(27

.95

i)R

VG

M

IN

q (k

Pa

) -2

6.8

wa­

(kPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SURF D130

SIGic'(kPa) 38.1SIG3c'CkPa) 38.1INDUCED OCR 1.0

STRTIC qf (kPa) 100.0RVG MflX q (kPa) 41.6 (41.RVG MIN q (kPa) -38.1 (38.

172

(0 (T

U

Q_-8

U)

w

15

2 M i.

80

o. w

60

W

n

40

x (T ol

20

1E+0

3 |-

10 0. Ul

1E+0

1

1E-0

110

15

CYCLE *

20

CRUISE ST

HELENS

CORE NO.

SL4

SIGlc'(kPa)

98.1

SIG3c'(kPa)

98.1

INDUCED OCR

1.0

25 INC

RE

ME

NT

(c

m)

JE

ST

JJ

O,,

STflTIC

qf (k

Pa)

MRX q

(kPa

)MIN q

(kPa

)

10

15

CY

CLE

*

REM

OLD

ED

SUR

F IH

9J3

10

0.0

41.6

(4

1.6

%)

-38.1

(3

8.

23

tea-

p' CkPa)

CRUISE SI HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SURF D131

SIGlc'CkPa) 36.6 STRTIC qf CkPa) 100.0SIG3c'CkPa) 96.6 RVG MRX q CkPa) 31.3 (31.3*)INDUCED OCR 1.0 RVG MIN q (kPa) -28.S (28.6*)

174

Z £ ft:

-12

o: UJ

Q.-1

0 20 13

a: n

00

12

CYCLE #

16

CRUISE ST

HELENS

CORE NO

. SL

4

UJ

IE-01

20 INCREMENT (cm)

TEST NO.

8 12

C

YC

LE

#

RE

MO

LDE

D

SU

RF

D

19

1

SIGlc'(kPa)

96.6

STflTIC

qf (kPa)

100.0

SIG3c'<kPa)

96.6

RVG MRX q

(kPa

) 31.3 (31.35C)

INDUCED OCR

1.0

RVG MIN q

(kPa)

-28.6

(kPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) REMOLDED SURF TEST NO. D192

SIGlc'CkPa) 98.5SIG3c'(kPa) 98.5INDUCED OCR 1.0

STRTIC qf (kPa) 108.0 |RVG MRX q (kPa) 39.6 (39.6%)RVG MIN q (kPa) -38.0 (38.0%)

176

0

M-8

CE

-12

o:

ui

a.-is 88

M r CE a

20

I.JJI

I |T

T~

i t

| ill

I (

tf a. a:

u

a.

80

60

40 20

vs LJ

IE-0

1i

12

CY

CL

E *

1620

i 12

C

YC

LE

*

CRUISE ST HELENS

CORE NO.

SL4

INCREMENT (cm)

TEST NO.

REMOLDED SURF

D192

SIGlc'(kPa)

98.5

SIG3c'CkPa>

98.5

INDUCED OCR

1.0

STRTIC qf (k

Pa)

100.0

RVG MRX q

(kP»)

39.6 (39.65O

RVG MIN q

(kPa)

-38.0 (38.05O

16

x (kPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SURF D196

SIGic'CkPa) 37.3SIG3c'CkPa) 97.3INDUCED OCR 1.8

STRTIC qf CkPa) 188.8RVG MRX q CkPa) 32.9 C32.9*)RVG MIN q CkPa) -31.8 C31.8SO

178

-4

5-8 I o:

u

a.-t

e 20

^

15

Z (T Q

LI a: u tL

80 60 40 20

CYCLE

iea

12

CY

CLE

*

16

CRUISE ST HELENS

CORE NO.

SL4

INCREMENT (c

m)

REMOLDED SURF

SIGlc'CkPa)

97.3

SIG3c'(kPa)

97.3

INDUCED OCR

1.0

STRTIC q-

f (kPa)

RVG MRX q

(kPa)

RVG MIN q

(kPa)

10

0.0

32

.9

(32.9

5O

-31

.8

(31

.8*/

O

see-

p' (kPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SIJRF D133

SIGlc'CkPa) 275.4 STRTIC qf (kPa) 288.0SIGSc'CkPa) 275.4 RVG MflX q CkPa) 132.S (47.4^)INDUCED OCR 1.0 RVG MIN q (kPa) -107.6 (38.45O

180

oo

0

ec

a 01-1

2a:

u a.

-16 16

0

/^ w

120

Z M r

a0oc a

40

I I

I I

I I

I I

I" I

I ->

»-4

l

l l

I |

I t

l

4 6

CY

CL

E *

CR

UIS

E

ST

H

ELE

NS

C

OR

E

NO

. S

L4

160

a. 12

0

u

a40 0 -40

1E+

04 g

-

IE-0

1

4-i

-l-f

-4-1

<

«

--I-

i

I I/

I I

I I

I I

10

4 6

CY

CL

E

#

INCREMENT (cm)

TEST NO.

REMOLDED SURF

D193

SIGic'(kPa)

275.4

SIG3c'(kPa>

275.4

INDUCED OCR

1.8

STfl

TIC

qf (kPa)

^80.0

jRVG MRX q

(kPa)

132.

6 (47.4%)

flVG

MIN q

(kPa

) -107.6 (38.45O

(kPa)

CRUISE ST HELENS CORE NO. SL4

INCREMENT (cm) TEST NO.

REMOLDED SURF D194

SIGlc'CkPa) 275.2 STRTIC qf (kPa) 280.0SIG3c x (kPa) 275.2 RVG MRX q (kPa) 89.2 (31.9JS)INDUCED OCR 1.0 RVG MIN q (kPa) -78.1 C27

182