universitat estiu2011 j_ferre

41
Numerical Modeling of Photonic Nanostructures (and Organic Solar Cells) Josep Ferré i Borrull, Mohammad Mahbubur Rahman, Pedro Granero, Josep Pallarès, Lluis F. Marsal [email protected] Universitat Rovira i Virgili N a n o e l e c t r o n I c and P h o t o n I c S y s t e m s Universitat d’Estiu URV. July 2011.

Upload: josep-ferre-borrull

Post on 24-May-2015

326 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: Universitat estiu2011 j_ferre

Numerical Modeling of Photonic Nanostructures (and Organic

Solar Cells)Josep Ferré i Borrull, Mohammad Mahbubur Rahman, Pedro

Granero, Josep Pallarès, Lluis F. Marsal

[email protected]

Universitat Rovira i Virgili

N a n o e l e c t r o n I c and P h o t o n I c S y s t e m s

Universitat d’Estiu URV. July 2011.

Page 2: Universitat estiu2011 j_ferre

Universitat d’Estiu URV. July 2011.

Numerical Modeling

Page 3: Universitat estiu2011 j_ferre

OUTLINE

• Introduction to Photonic Nanostructures

– Photonic Crystals/Photonic Quasicrystals/Random Nanostructures

• Photonic Properties of Quasi-random Nanostructures

– The Quasi-Random Structure

– Numerical Methods

– Results

• Light Trapping in Nanostructured Organic Solar Cells

– Scattering by subwavelength-sized nanostructuring

– Simulation of light absorption by finite-element

– Simulation of exciton diffusion

• Conclusion

3Universitat d’Estiu URV. July 2011.

Page 4: Universitat estiu2011 j_ferre

Introduction to Photonic Nanostructures

Photonic Crystals (More Properly: Photonic Band Gap Materials)

4Universitat d’Estiu URV. July 2011.

Page 5: Universitat estiu2011 j_ferre

5

Photonic Crystals

ε(r)

r

a

Band gap

Band gap

0 k2π/aπ/a-2π/a -π/a

ω

-G

G

allowed

allowed

ckk )(

Dispersion relation for 1D photonic crystal

h

5Universitat d’Estiu URV. July 2011.

Page 6: Universitat estiu2011 j_ferre

Photonic Crystals: The Band Structure

TMTM

TETE

E

H

E

H

NormalizedNormalizedFrequency!!!Frequency!!!ωωa/2πc=a/a/2πc=a/λλ

NormalizedNormalizedFrequency!!!Frequency!!!ωωa/2πc=a/a/2πc=a/λλ

6Universitat d’Estiu URV. July 2011.

Page 7: Universitat estiu2011 j_ferre

7

Introduction to Photonic Nanostructures

Photonic QuasicrystalsOrdered structures, but not periodic:

7Universitat d’Estiu URV. July 2011.

Page 8: Universitat estiu2011 j_ferre

8

Introduction to Photonic Nanostructures

Random Photonic NanostructuresRandom Lasers

8Universitat d’Estiu URV. July 2011.

Page 9: Universitat estiu2011 j_ferre

9

OUTLINE

9Universitat d’Estiu URV. July 2011.

• Introduction to Photonic Nanostructures

– Photonic Crystals/Photonic Quasicrystals/Random Nanostructures

• Photonic Properties of Quasi-random Nanostructures

– The Quasi-Random Structure

– Numerical Methods

– Results

• Light Trapping in Nanostructured Organic Solar Cells

– Scattering by subwavelength-sized nanostructuring

– Simulation of light absorption by finite-element

– Simulation of exciton diffusion

• Conclusion

Page 10: Universitat estiu2011 j_ferre

10

Photonic Properties of Quasi-random Nanostructures

Nanoporous Anodic Alumina: a quasi-random strucuture

Photonic Properties??? (e.g. photonic band gap)

10Universitat d’Estiu URV. July 2011.

Page 11: Universitat estiu2011 j_ferre

11

Photonic Properties of Quasi-random Nanostructures

Numerical Method

Source Detector

PML

Computational Domain

FDTD

L

Variables:Pore (scatterer radius): r Domain Length: L

11Universitat d’Estiu URV. July 2011.

Page 12: Universitat estiu2011 j_ferre

12

Photonic Properties of Quasi-random Nanostructures

12Universitat d’Estiu URV. July 2011.

Finite-Differnce Time-Domain Method (FDTD)Finite-Differnce Time-Domain Method (FDTD)

Discretization of Maxwell Equations in Space and TimeDiscretization of Maxwell Equations in Space and Time

z

E

t

H

z

H

t

E

xy

yx

1

1

Ex z, t Ex kz,nt Exn k H y z, t H y kz,nt H y

n k

t

kEkE

t

En

x

n

xx

2

1

2

1

1

Page 13: Universitat estiu2011 j_ferre

13

Photonic Properties of Quasi-random Nanostructures

13Universitat d’Estiu URV. July 2011.

Finite-Differnce Time-Domain Method (FDTD)Finite-Differnce Time-Domain Method (FDTD)

Discretization of Maxwell Equations in Space and TimeDiscretization of Maxwell Equations in Space and Time

Exn1/2 k Exn 1/2 k 1

tx

H yn k 1/2 H y

n k 1/2

H yn1 k 1/2 H y

n k 1/2 1

tx

Exn1/2 k 1 Exn1/2 k

HH

00

HH

11

HH

22

HH

33

HH

44

EE1/21/2 EE3/23/2 EE5/25/2 EE7/27/2 EE9/29/2

Important Aspect! Boundary Conditions at the Important Aspect! Boundary Conditions at the Limits of The Computational SpaceLimits of The Computational Space

Page 14: Universitat estiu2011 j_ferre

14

Photonic Properties of Quasi-random Nanostructures

14Universitat d’Estiu URV. July 2011.

a average interpore distance

Averaging over N randomly chosen domains

L = 12·a

L = 16·a

L = 20·a

Page 15: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Results: quasi-random structure on Si, r/a=0.35TE PolarizationDomain Length

M K M0.0

0.2

0.4

0.6

0.8

wavevector

Nor

m.

Fre

q.

a/2

c

TE Polarization

15Universitat d’Estiu URV. July 2011.

Page 16: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Results: quasi-random structure on Si, r/a=0.35TM PolarizationDomain Length

M K M0.0

0.2

0.4

0.6

0.8

wavevector

Nor

m.

Fre

q.

a/2

c

TM Polarization

16Universitat d’Estiu URV. July 2011.

Page 17: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Results: quasi-random structure on Si, L=19aScatterer radius

TE Polarization TM Polarization

17Universitat d’Estiu URV. July 2011.

Page 18: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Decreasing trend of the transmittance with :Simulation of a fully random structure

TE Polarization TM Polarization

18Universitat d’Estiu URV. July 2011.

Page 19: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Quasi-random crystals with metallic components.

Au – Drude-Lorentz Model

Good fit between λ=500nm-1000nm

Vial et al., PRB 71, 085416 (2005)

No scale invariance

19Universitat d’Estiu URV. July 2011.

500 600 700 800 900 1000Wavelength (nm)

-50

-40

-30

-20

-10

0

real

( )

1

2

3

4

5

imag

( )

Page 20: Universitat estiu2011 j_ferre

Photonic Properties of Quasi-random Nanostructures

Quasi-random crystals with metallic components.

Triangular Lattice.X Direction

Quasi-random.r/a=0.05

20Universitat d’Estiu URV. July 2011.

Page 21: Universitat estiu2011 j_ferre

21

OUTLINE

21Universitat d’Estiu URV. July 2011.

• Introduction to Photonic Nanostructures

– Photonic Crystals/Photonic Quasicrystals/Random Nanostructures

• Photonic Properties of Quasi-random Nanostructures

– The Quasi-Random Structure

– Numerical Methods

– Results

• Light Trapping in Nanostructured Organic Solar Cells

– Scattering by subwavelength-sized nanostructuring

– Simulation of light absorption by finite-element

– Simulation of exciton diffusion

• Conclusion

Page 22: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

Planar Heterojunction

22Universitat d’Estiu URV. July 2011.

Organic Solar Cells: Morphologies

Ex

h+

e-

h+

Ex

e-

h+e-

?

Ex

h+

e-

Bulk Heterojunction

Nanostructured Heterojunction

Donor Acceptor

Page 23: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

23Universitat d’Estiu URV. July 2011.

Diffraction: a possible way for light trapping

Incident Light Wavelength:

Diffracted Light

pn

sin

Period: p

p

Page 24: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

24Universitat d’Estiu URV. July 2011.

Diffraction: a possible way for light trapping

Incident Light Wavelength:

Trapped Light

Period: p

p < >90º

Page 25: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

25Universitat d’Estiu URV. July 2011.

Nanostructuring Organic Solar Cells with Templates: Nanoporous Anodic Alumina

500nm

2µm

Page 26: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

26Universitat d’Estiu URV. July 2011.

Nanostructuring Organic Solar Cells with Templates: Nanoporous Anodic Alumina

1 µm

Page 27: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

27Universitat d’Estiu URV. July 2011.

Numerical Modeling: COMSOL®

• RF Module: Maxwell Equations

• Time-dependent and stationary

• Possibility of evaluating absorption as a function of position

• Connection with drift-diffusion and Poisson equations

• 1-D Periodicity (period 2) • P3HT and PCBM optical constants n and k.• Width: 4m

Page 28: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

28Universitat d’Estiu URV. July 2011.

-Taking into account the exciton diffusion length (~10nm)

- Four different size ranges:i) 1.25nm 12.5 nm

ii) 20nm 100 nm

iii) 125nm 250 nm

iii) 400nm 2 m

Unit Cell

2a

10n

m2

0nm

10n

m

Page 29: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

29Universitat d’Estiu URV. July 2011.

3W/m;rQ Total Dissipated Power

W ;3HTP

dVrQQ

W i

iTotal QQ

Page 30: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

30Universitat d’Estiu URV. July 2011.

Reference Cells

Bilayer – Planar Heterojunction

PHTotal

PH QQ ,

Effective Medium:n, k: average of P3HT

and PCBM

20n

m2

0nm

10n

m2

0nm

10n

m

Page 31: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

31Universitat d’Estiu URV. July 2011.

Absorption Results. Features much smaller than wavelength.

PHQQ / nmrQ 450;

100nm

1m

Effective

Medium

a=1.25nm a=12.5nm

Page 32: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

32Universitat d’Estiu URV. July 2011.

Absorption Results. Features smaller than wavelength.

PHQQ /

Page 33: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

33Universitat d’Estiu URV. July 2011.

Absorption Results. Feature size the order of wavelength.

PHQQ / nmrQ 450;

100nm

1m

a=200nm a=250nma=125nm

Page 34: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

34Universitat d’Estiu URV. July 2011.

Absorption Results. Features bigger than wavelength.

PHQQ / nmrQ 450;

100nm

1m

a=400nm a=2mBilayer

Page 35: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

35Universitat d’Estiu URV. July 2011.

Absorption Results

QTotal /QTotalPH

Page 36: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

36Universitat d’Estiu URV. July 2011.

Exciton Diffusion.

Ex

ExEx

Ex

How much absorbed light contributes to current? IPCEExcitons reaching the D/A interface vs incident photons

hh

Page 37: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

37Universitat d’Estiu URV. July 2011.

Exciton Diffusion. Planar Heterojunction (Reference)

Exciton Concentration (inc=540nm)

40nm

100n

m

Page 38: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

38Universitat d’Estiu URV. July 2011.

Exciton Diffusion. Smallest features (a=12.5nm)

Exciton Concentration (inc=540nm)

40nm

100n

m

Page 39: Universitat estiu2011 j_ferre

Light Trapping in Nanostructured Organic Solar Cells

39Universitat d’Estiu URV. July 2011.

Exciton Diffusion. Wavelength-order features (a=250 nm)

Exciton Concentration (inc=540nm)

40nm

200n

m

Page 40: Universitat estiu2011 j_ferre

40

Conclusion

• Photonic Quasi-Random Nanostructures: photonic band

gap other possible photonic properties (resonant

cavities, 3D structures).

• Absorption in Nanostructured Organic Solar Cells: light

trapping for wavelength-order nanostructuring sizes.

• Exciton Diffusion in Organic Solar Cells: favored by the

smallest nanostructuring sizes.

40Universitat d’Estiu URV. July 2011.

Page 41: Universitat estiu2011 j_ferre

41

Acknowledgments

Seniors:

Pilar Formentín

Students:

Abel Santos

Collaboration with:

• Enric Garcia-Caurel

École Polytechnique Paris

• Sabine Portal

Universitat de Barcelona

• Mar Sánchez

• Ignacio Moreno

Universidad Miguel Hernández

41Universitat d’Estiu URV. July 2011.