universiti putra malaysia comparative analysis of different grades of gaharu using nmr...

32
UNIVERSITI PUTRA MALAYSIA COMPARATIVE ANALYSIS OF DIFFERENT GRADES OF GAHARU USING NMR- AND GCMS- BASED METABOLOMICS APPROACH SITI NAZIRAH ISMAIL IB 2015 39

Upload: others

Post on 04-Dec-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • UNIVERSITI PUTRA MALAYSIA

    COMPARATIVE ANALYSIS OF DIFFERENT GRADES OF GAHARU USING NMR- AND GCMS- BASED METABOLOMICS APPROACH

    SITI NAZIRAH ISMAIL

    IB 2015 39

  • © CO

    PYRI

    GHT U

    PM

    COMPARATIVE ANALYSIS OF DIFFERENT GRADES OF GAHARU USING

    NMR- AND GCMS- BASED METABOLOMICS APPROACH

    By

    SITI NAZIRAH ISMAIL

    Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

    in Fulfilment of the Requirements for the

    Degree of Master of Science

    June, 2015

  • © CO

    PYRI

    GHT U

    PM

    All material contained within the thesis, including without limitation text, logos, icons,

    photographs and all other artwork, is copyright material of Universiti Putra Malaysia

    unless otherwise stated. Use may be made of any material contained within the thesis

    for non-commercial purposes from the copyright holder. Commercial use of material

    may only be made with the express, prior, written permission of Universiti Putra

    Malaysia.

    Copyright © Universiti Putra Malaysia

  • © CO

    PYRI

    GHT U

    PM

    i

    Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment

    of the requirement for the degree of Master of Science

    COMPARATIVE ANALYSIS OF DIFFERENT GRADES OF GAHARU USING

    NMR- AND GCMS- BASED METABOLOMICS APPROACH

    By

    SITI NAZIRAH ISMAIL

    June 2015

    Chairman: Professor Khozirah Shaari, PhD

    Faculty: Institute of Bioscience

    Gaharu, also referred to as agarwood, kalambak, aloeswood or eaglewood, is the

    resinous heartwood of infected Aquilaria sp. where infection may occur due to the

    attack by fungi, insects or other external injuries. In gaharu trade, gaharu wood is

    graded by experts using organoleptic methods because there is no other scientific

    method to determine the grades. Normally they are graded according to observable

    traits such as odor upon burning, color and wood density which reflects the resin

    content of the woods. Basically price of gaharu follow the grades with highest grade

    being the most expensive. The aim of this study was to carry out a comparative

    analysis of the different grades of gaharu by making use of their multicomponent

    metabolite profiles in order to ascertain whether they can be used to differentiate

    between one grade to another. To achieve this aim, 1H Nuclear Magnetic Resonance

    (1H NMR) and Gas Chromatography Mass Spectrometry Spectrometry (GCMS) combined with multivariate data analysis were used to analyze the variation between

    the metabolite profiles of the different grades of gaharu samples.

    Gaharu woods finely milled into fine powder, then extracted by using distilled

    methanol and dried using Genevac. The gaharu crudes were proceed for 1H NMR

    analysis, by dilution with deuterated methanol. Visual inspection on 1H-NMR gaharu

    spectra shows that the grades have similar profile but different concentration of various

    constituents. Major constituents identified are aromatics (δ6.0-7.5), sugar and

    glycosides (δ2.5-5.0), fatty acids/aliphatics (δ0.5-2.0) and aldehydic compound (δ9.32).

    However, since the difference among the grades is not clear from visual analysis, the analysis were carried out using multivariate analysis. Principal Component Analysis

    (PCA) model overview of 4 batches of all grades of gaharu does not provide useful

    information, thus further analysis was carried out on consistency of individual grade for

    each batch of gaharu to see which batch and grades are suitable as class model.

    According to their chemical constituents, the grades reclassified into 5 new groups (A,

    B, C, D and E). Group A more significant in sugar constituents (4.24-4.28 ppm) and

    possibly terpenoids (1.12, 1.16, 1.32, and 2.04 ppm), while group C and E are different

  • © CO

    PYRI

    GHT U

    PM

    ii

    from the rest due to higher aliphatics (3.0, 4.0, 4.52 and 7.2 ppm). On the other hand,

    group B and D different from other grades by possibly terpenoidal constituents as well

    (0.80, 0.84, 0.88, 1.24, and 1.28 ppm).

    In order to identify the chemical markers that contributed to the differentiation of the

    gaharu, NMR experiments, comprising 1D and 2D as well as J-resolve, were carried

    out on selected fractions of the gaharu extract. The highest grade gaharu was selected

    for the fractionation via solid phase extraction (SPE). An ethylphenylchromone type

    compound was identified as on of the major constituents in the 50% SPE fractions of gaharu grade 1. Further analysis by Liquid Chromatography-Mass Spectrometry

    (LCMS) resulted in the identification of 6-hydroxyethylphenylchromone and

    dihydroxy-2-[(2-phenyl)-ethyl]chromones, two fatty acids which were (9Z,12Z)-15,16-

    dihydroxyoctadeca-9,12-octadecadienoic acid and (11Z,14Z)-17,18-dihydroxyicosa-

    11,14-dienoic acid as well as sesquiterpenes which were aquilarone B, aquilarone D or

    E, and aquilarone F.

    Gaharu smoke was captured on the glass fiber filter using a simple lab setup

    comprising an incense burner, connected to a glass tube containing the glass fiber. To

    ensure absorption of smoke, the setup was linked to a vacuum line. The fiber filter containing smoke were directly analyzed by headspace GCMS analysis. Volatile

    constituents detected in the gaharu smoke included aldehydes (benzaldehyde and

    cuminaldehyde) and aromatics (toluene, 2-methylanisole, p-cresol, creosol, anisole, o-

    cresol and acetophenone). Other constituents detected were furfuryl alcohol and

    benzylideneacetone. Orthogonal Partial Least Square-Discriminant Analysis (OPLS-

    DA) of the gaharu smoke profiles can be differentiated into a terpene rich and a

    chromone rich groups. The terpene rich group consisted of the higher grades gaharu

    samples, while the chromone rich group consisted of the lower grade samples.

    Further treatment of the variables using Variable Importance in Projection (VIP) for

    independent variables resulted in the identification of p-cresol (m/z 107.05), 2-

    methylanisole (m/z 122.10), toluene (m/z 91.05) and p-anisaldehyde (m/z 135.10), as

    some of the discriminating chemical markers present in the high grade gaharu smoke. Meanwhile furfuryl alcohol (m/z 98.05) and 5-methylfurfural (m/z 110.05) were some

    of the markers present in lower grades. On the overall, this study has shown that

    spectrometry-based metabolomics could offer a better approach in grading of gaharu

    qualities.

  • © CO

    PYRI

    GHT U

    PM

    iii

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

    memenuhi keperluan untuk Ijazah Master Sains

    ANALISIS PERBEZAAN ANTARA GRED GAHARU MENGGUNAKAN

    PENDEKATAN METABOLOMIK BERASASKAN RESONAN MAGNETIK

    NUKLEUS DAN KROMATOGRAFI GAS-SPEKTROSKOPI JISIM

    Oleh

    SITI NAZIRAH ISMAIL

    Jun 2015

    Pengerusi: Profesor Khozirah Shaari, PhD

    Fakulti: Institut Biosains

    Gaharu,yang turut dikenali sebagai agarwood, kalambak, aloeswood atau eaglewood

    adalah bahagian berdamar pada kayu teras bagi kayu dari spesis Aquilaria yang

    dijangkiti oleh jangkitan yang mungkin berpunca oleh serangan fungus, serangga atau

    kecederaan luaran. Dalam perdagangan gaharu, kayu gaharu digredkan oleh pakar

    menggunakan cara organoleptik kerana tiada cara saintifik untuk menentukan gred

    gaharu. Kebiasaannya, gaharu digredkan berdasarkan ciri-ciri yang dapat dilihat seperti

    bau ketika pembakaran, warna dan densiti kayu yang memaparkan kandungan damar

    pada kayu. Pada asasnya, harga gaharu adalah mengikut gred dimana gred tertinggi

    adalah yang paling mahal. Matlamat penyelidikan ini adalah untuk menganalisis

    perbezaan antara gred gaharu dengan menggunapakai profil komponen pelbagai

    metabolit dalam memastikan samada ia boleh digunakan untuk memebezakan antara gred. Untuk mencapai objektif tersebut, 1H Nuclear Resonan Magnetik Nukleus Proton

    (1H NMR) dan Spektrometri Jisim Kromatografi Gas (GCMS) digabungkan dengan

    analisis data multivariat digunakan untuk menganalisis variasi antara profil metabolit

    bagi gred gaharu yang berbeza.

    Kayu gaharu dikisar menjadi serbuk halus, kemudian diekstrak menggunakan metanol

    dan dikeringkan menggunakan Genevac. Kemudian, pati gaharu digunakan untuk

    analisis 1H NMR dengan mencairkannya bersama metanol terdeuterad. Analisis secara

    visual menunjukkan bahawa kesemua gred mempunyai profil yang sama tetapi berbeza

    dari segi kepekatan pelbagai komponen. Komponen utama yang dikenalpasti adalah aromatik (δ6.0-7.5), gula dan glikosida (δ2.5-5.0), asid lemak/alifatik (δ0.5-2.0) dan

    sebatian aldehida (δ9.32). Walaubagaimanapun, memandangkan beza antara gred tidak

    jelas melalui analisis secara visual, analisis diteruskan menggunakan analisis data

    multivariat. Model gambaran keseluruhan bagi analisis komponen utama (PCA) untuk

    keempat-empat kumpulan bagi kesemua gred gaharu tidak memberikan maklumat

    penuh, jadi analisis multivariat dijalankan untuk melihat kekonsistenan bagi setiap gred

    bagi memilih gred yang sesuai digunakan sebagai model kelas. Berdasarkan komponen

  • © CO

    PYRI

    GHT U

    PM

    iv

    kimia, gred-gred tersebut diklasifikasi semula kepada 5 kumpulan (A, B, C, D and E).

    Kumpulan-kumpulan tersebut mempunyai metabolit berbeza dan taburan metabolit

    yang berbeza. Kumpulan A lebih signifikan dalam kandungan gula (4.24-4.28 ppm)

    dan mungkin terpenoid (1.12, 1.16, 1.32, and 2.04 ppm), manakala kumpulan C dan E

    berbeza dari kumpulan lain disebabkan oleh kandungan alifatik (3.0, 4.0, 4.52 and 7.2

    ppm). Sementara itu kumpulan B dan D berbeza dari kumpulan lain mungkin

    disebabkan oleh terpenoid juga (0.80, 0.84, 0.88, 1.24, and 1.28 ppm).

    Analisis fitokimia oleh 1D NMR, 2D NMR dan J-resolve membenarkan pengenalpastian sebatian jenis etilfenilkromon sebagai komponen utama dalam gaharu

    gred 1. Analisis selanjutnya oleh Spektrometri Jisim-Kromatografi Cecair (LCMS)

    menunjukkan pengesanan 6-hidroksietilfenilkromon dan dihidroksi-2-[(2-fenil)-

    etil]kromon, serta dua asid lemak iaitu asid (9Z,12Z)-15,16-dihidroksioktadeka-9,12-

    oktadekadienoik dan asid (11Z,14Z)-17,18-dihidroksiikosa-11,14-dienoik dan

    seskuiterpen iaitu akuilaron F, akuilaron D atau E, dan akuilaron B.

    Asap gaharu dikumpul dalam penapis fiber kaca menggunakan persediaan makmal

    secara ringkas, kemudian disambungkan ke tiub kaca. Untuk memastikan penyerapan

    asap, ia disambungkan ke vakum. Penapis fiber kaca dianalisis terus menggunakan analisis headspace GCMS. Komponen meruap yang dikesan dalam asap gaharu

    adalah aldehida, (benzaldehida dan kuminaldehida) dan aromatik (toluena, 2-

    metilylanisol, p-kresol, kreosol, anisol, o-kresol and asetofenon). Komponen lain yang

    dikesan dalam asap gaharu adalah alkohol furfuril dan benzilidinaaseton.

    Analisis Diskriminan-Ortogon Persegi Separa Kurangnya (OPLS-DA) pada profil asap

    boleh dibahagikan kepada sampel kaya terpen dan sampel kaya kromon. Kumpulan

    kaya terpen mempunyai gred gaharu yang tinggi, manakala kumpulan kaya kromon

    memiliki sampel gred rendah Seterusnya, analisis variabel diteruskan menggunakan

    Pembolehubah Penting dalam Unjuran (VIP) kepada p-kresol (m/z 107.05), 2-

    metilanisol (m/z 122.1), toluena (m/z 91.05)and p-anisaldehida (m/z 135.1) sebagai sebahagian daripada penanda pembezaan bahan kimia yang wujud dalam gaharu gred

    tinggi sementara itu alkohol furfuril (m/z 98.05) and 5-metilfurfural (m/z 110.05)

    adalah beberapa penanda yang wujud dalam gred rendah. Secara keseluruhannya,

    kajian ini menunjukkan bahawa metabolimik berdasarkan-spektrometri mampu

    menawarkan pendekatan yang lebih baik dalam penggredan kualiti gaharu.

  • © CO

    PYRI

    GHT U

    PM

    v

    ACKNOWLEDGEMENT

    "In the name of Allah S.W.T.,

    All gratification is referred to Allah S.W.T."

    Alhamdulillah, with His blessing, I have successfully completed this study. My deepest

    appreciation and thanks to everyone that helped me through this project. Without their

    support and help, this thesis would not have been completed.

    First of all, I want to express my deepest gratitude to my supervisor, Prof. Dr. Khozirah

    Shaari for her advice, guidance, concern, and support throughout completing this study.

    My appreciation is also extended to my lecturer, Dr. Alfi Khatib for his valuable guide

    on multivariate analysis, helpful advice and suggestions.

    My sincerest thanks are also extended to Dr. Faridah Abas, Dr. Maulidiani, Dr. Intan

    Safinar Ismail, all of my friends and staff of Laboratory of Natural Product, Institute

    Bioscience, for their camaraderie and kind help throughout our working together at the

    Laboratory of Natural Products.

    Last but not least, my sincerest thanks to my family for their support, patience, love

    and constant prayers. Thank you

  • © CO

    PYRI

    GHT U

    PM

    vi

    I certify that a Thesis Examination Committee has met on 25 June 2015 to conduct the

    final examination of Siti Nazirah binti Ismail on her thesis entitled "Comparative

    Analysis Of Different Grades Of Gaharu Using Nmr- And Gcms- Based Metabolomics

    Approach" in accordance with the Universities and University Colleges Act 1971 and

    the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The

    Committee recommends that the student be awarded the Master of Science.

    Members of the Thesis Examination Committee were as follows:

    Gwendoline Ee Cheng Lian, PhD Professor

    Faculty of Science

    Universiti Putra Malaysia

    (Chairman)

    Faridah Abas, PhD

    Associate Professor

    Faculty of Food Science Technology

    Universiti Putra Malaysia

    (Internal Examiner)

    Jalifah Latip , PhD

    Associate Professor.

    Faculty of Science and Technology

    Universiti Kebangsaan Malaysia

    (External Examiner)

    ZULKARNAIN ZAINAL, PhD Professor and Deputy Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date: 22 September 2015

  • © CO

    PYRI

    GHT U

    PM

    vii

    This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

    accepted as fulfilment of the requirement for the degree of Master of Science. The

    members of the Supervisory Committee were as follows:

    Khozirah Shaari, PhD

    Professor

    Faculty of Science

    University Putra Malaysia (Chairman)

    Intan Safinar Ismail, PhD

    Associate Professor

    Faculty of Science

    Universiti Putra Malaysia

    (Member)

    BUJANG KIM HUAT, PhD

    Professor and Dean

    School of Graduate Studies

    Universiti Putra Malaysia

    Date:

  • © CO

    PYRI

    GHT U

    PM

    viii

    Declaration by graduate student

    I hereby confirm that:

    this thesis is my original work; quotations, illustrations and citations have been duly referenced. this thesis has not been submitted previously or concurrently for any other degree at

    any other institutions.

    intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (research)

    rules 2012;

    written permission must be obtained from supervisor and the office of deputy vice-chancellor (research and innovation) before thesis is published (in the form of

    written, printed or in electronic form) including books, journals, modules,

    proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

    notes, learning modules or any other materials as stated in the Universiti Putra

    Malaysia (research) rules 2012;

    there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

    Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

    Rules 2012. The thesis has undergone plagiarism detection software.

    Signature: _______________________ Date: __________________

    Name and Matric No.: _____________________________________

  • © CO

    PYRI

    GHT U

    PM

    ix

    Declaration by Members of Supervisory Committee

    This is to confirm that:

    the research conducted and the writing of this thesis was under our supervision; supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

    Studies) Rules 2003 (Revision 2012-2013) are adhered to.

    Signature: Signature:

    Name of Chairman of Supervisory

    Name of Member of Supervisory

    Committee: Prof. Dr. Khozirah

    Shaari

    Committee: Prof. Madya Dr.

    Intan Safinar

    Ismail

  • © CO

    PYRI

    GHT U

    PM

    x

    TABLE OF CONTENTS

    Page

    ABSTRACT i

    ABSTRAK iii

    ACKNOWLEDGEMENTS v

    APPROVAL vi

    DECLARATION viii

    LIST OF TABLES xii

    LIST OF FIGURES xiii

    LIST OF ABBREVIATIONS xvii

    CHAPTER

    1 GENERAL INTRODUCTION 1.1 Background

    1.2 Problem Statement

    1

    1

    2

    2 LITERATURE REVIEW

    2.1 Gaharu and gaharu producing species 4

    2.1.1 Trade and uses of gaharu 5

    2.1.2 Gaharu formation 7

    2.1.3 Grading the quality of gaharu 10

    2.2 Chemical properties 13

    2.2.1 Sesquiterpenes and chromones in gaharu

    oil and extracts

    14

    2.2.2 Simple volatile aromatic compounds from

    gaharu smoke

    16

    2.3 Gas Chromatography Mass Spectrometry (GCMS) and

    analysis of plant volatiles

    21

    2.4 Metabolomics as a tool in research

    22

    3 MATERIALS AND METHOD

    3.1 Gaharu samples 25 3.2 Chemicals and reagents 28

    3.3 General instrumentation and equipments 28

    3.4 Methodology 28

    3.4.1 Preparation of gaharu extracts 28 3.5 NMR measurements 30

    3.5.1 NMR sample preparation 30

    3.5.2 Data acquisition 31

    3.5.3 Data preprocessing 31

    3.5.4 Multivariate data analysis 32

    3.6 Identification of differentiating chemical markers 32

    3.6.1 Solid phase extraction (SPE) 32

    3.6.2 2D NMR analysis 32

  • © CO

    PYRI

    GHT U

    PM

    xi

    3.6.3 LCMS/MS 32

    3.7 Analysis of gaharu smoke by GCMS 32

    3.7.1 Sample preparation 32

    3.7.2 Headspace GCMS analysis 34

    3.7.3 Data preprocessing 34

    3.7.4 Multivariate data analysis

    34

    4

    RESULTS AND DISCUSSION

    4.1 NMR-based discriminative analysis of different grades

    of gaharu

    35

    4.1.1 Visual analysis of 1H NMR spectra 35

    4.1.2 Multivariate data analysis of 1H NMR

    spectra of various grades of gaharu

    4.1.3 Reclassification of gaharu grades

    38

    44

    4.2 Identification of differentiating chemical markers 48

    4.2.1 Solid phase extraction (SPE) 48 4.2.2 Identification of ethylphenylchromone type

    of compound in gaharu grade 1 extract

    49

    4.2.3 Identification of chromones, fatty acids and

    sesquiterpenes in gaharu grade 1 extract by

    LCMS

    56

    4.3 GCMS-based discriminative analysis of smoke from

    different grades of gaharu

    62

    4.3.1 Visual analysis of headspace GCMS

    chromatogram

    62

    4.3.2 GCMS-based multivariate data analysis of

    gaharu smoke

    74

    5 CONCLUSION

    76

    REFERENCES 78

    APPENDICES 84

    BIODATA OF STUDENT 92

  • © CO

    PYRI

    GHT U

    PM

    xii

    LIST OF TABLES

    Table Page

    2.1 Grades and market prices for gaharu 5

    2.2 Simple volatile compounds found in gaharu 16

    2.3 Classification of metabolomic 22

    4.1 Reclassification of gaharu 44

    4.2 Tentative compounds 47

    4.3 Selected 1H and 13C assignments for the ethylphenylchromone

    in 50% SPE fraction of gaharu extract (grade 1)

    55

    4.4 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade1

    64

    4.5 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 2

    65

    4.6 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 3

    66

    4.7 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 4

    67

    4.8 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 5

    68

    4.9 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 6

    69

    4.10 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 7

    70

    4.11 Volatiles and simple aromatic compounds identified in gaharu

    smoke grade 8

    71

    4.12 Summary of compounds detected in smoke of gaharu grade 1-8

    73

    4.13 Major chemical compounds in higher grade of gaharu

    75

    4.14 Major chemical compounds in lower grade of gaharu 75

  • © CO

    PYRI

    GHT U

    PM

    xiii

    LIST OF FIGURES

    Figures Page

    2.1 A. malaccensis seed 4

    2.2 A. malaccensis flower 4

    2.3 Trees deliberately wounded 8

    2.4 Drilling and inoculation of fungal inoculum 8

    2.5 Resin of agarwood embedded in heartwood 9

    2.6 Gaharu formation in wood sample from wounded stem of

    Aquilaria malaccensis

    9

    2.7 Wood block containing gaharu 10

    2.8 (a) The most expensive grade of gaharu, Super King, (b)

    second most expensive grade, Super grade, (c)(d) the first

    two grades in the grade A1-A10 range, (e) grade B1 (f)

    grade C1

    12

    2.9 Chromones in gaharu extract 16

    2.10 Flowchart showing the analytical flow for a plant

    metabolomics study

    23

    3.1 Gaharu samples for batch 2 26

    3.2 Gaharu samples for batch 3 27

    3.3 Gaharu samples for batch 4

    28

    3.4 Preparation of gaharu extract

    29

    3.5 Left: mortar pestel, right; portable grinder

    30

    3.6 Left: Ultrasonic bath (LC 60H), right: MiVac (Genevac)

    30

    3.7 Sample preparation for NMR analysis 31

  • © CO

    PYRI

    GHT U

    PM

    xiv

    3.8 Gaharu smoke sample preparation scheme 33

    3.9 Setup for gaharu smoke sample preparation 33

    4.1 Figure 4.1. 1H NMR spectra of the gaharu extract of Aquilaria malaccensis from δ 0.5-10.00 ppm. (a) grade 1,

    (b) grade 2, (c) grade 3, (d) grade 4, (e) grade 5, (f) grade 6,

    (g) grade 7 and (h) grade 8

    36

    4.2 The expanded NMR spectra of the aldehydic region of the

    gaharu extract for each grade

    37

    4.3 The expanded NMR spectra of the sugar region of the

    gaharu extract for each grade

    37

    4.4 Figure 4.4. PCA-X score plot model build from the 1H NMR

    data sets of grade 1 to grade 8 for all 4 batches of gaharu samples. Color codes refer to each batch

    38

    4.5 PCA-X score plot by grade (a-h). Color code refer to each

    batch

    43

    4.6 Summary of fit for PLS-DA model for reclassified gaharu

    group A to E

    44

    4.7 Permutation test of PLS-DA class model for the reclassified

    gaharu group A to E

    45

    4.8 PLS-DA score plot of reclassified gaharu grades (Group A

    to E) for batch 3 and 4. Color codes refer to the reclassified

    grades

    46

    4.9 Loading plot for the PLS-DA score plot of reclassified

    gaharu group (A to E) in batch 3 and 4.

    47

    4.10 1H NMR profile of SPE fractions of gaharu grade 1 extract

    49

    4.11 Selected HMBC correlations for 6-

    hydroxyethylphenylchromone

    50

    4.12 1H NMR spectrum of gaharu grade 1 50% MeOH fraction

    50

    4.13 13C NMR spectrum of gaharu grade 1 50% MeOH fraction

    50

    4.14 Two-dimensional 1H-1H J-resolve of gaharu grade 1 50%

    MeOH

    51

  • © CO

    PYRI

    GHT U

    PM

    xv

    4.15 HSQC spectrum of gaharu grade 1 50% MeOH fraction

    (6.0-7.5 ppm)

    52

    4.16 HSQC spectrum of gaharu grade 1 50% MeOH fraction

    (2.5-4.9 ppm)

    53

    4.17 HMBC spectrum of gaharu grade 1 50% MeOH fraction

    (5.8-7.6 ppm)

    54

    4.18 HMBC spectrum of gaharu grade 1 50% MeOH fraction (2.5-5.0 ppm)

    55

    4.19 LCMS spectrum of gaharu grade 1 80% MeOH fraction (RT

    – 7.22 min)

    56

    4.20 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 5.90 min)

    57

    4.21 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 6.81 min)

    57

    4.22 LCMS spectrum of gaharu grade 1 80% MeOH fraction (RT

    – 8.55 min)

    58

    4.23 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 9.47 min)

    58

    4.24 Fatty acids in gaharu grade 1 extract. a) (9Z,12Z)-15,16-

    dihydroxyoctadeca-9,12-dienoic acid b) (11Z,14Z)-17,18-

    dihydroxyicosa-11,14-dienoic acid

    59

    4.25 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 6.90 min)

    59

    4.26 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 4.13a min)

    60

    4.27 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 4.13b min)

    60

    4.28 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 4.74 min)

    61

    4.29 Aquilarone F 61

    4.30 Aquilarone D 61

    4.31 Aquilarone E 61

  • © CO

    PYRI

    GHT U

    PM

    xvi

    4.32 Aquilarone B 61

    4.33 LCMS spectrum of gaharu grade 1 50% MeOH fraction (RT

    – 5.37 min)

    62

    4.34 TIC for grade 1 64

    4.35 TIC for grade 2 65

    4.36 TIC for grade 3 66

    4.37 TIC for grade 4 67

    4.38 TIC for grade 5 68

    4.39 TIC for grade 6 69

    4.40 TIC for grade 7 70

    4.41 TIC for grade 8 71

    4.42 OPLS-DA score scatter plot of the smoke of gaharu

    reclassified grades (group A to E) of batch 3 and 4.

    74

  • © CO

    PYRI

    GHT U

    PM

    xvii

    LIST OF ABBREVIATIONS

    δ - Chemical shift in ppm

    ppm - Parts per million

    °C - Degree in Celsius

    µg - Microgram

    µL - Microliter

    µm - Micrometer

    1H - Proton NMR

    HMBC - Heteronuclear multiple bond correlation

    HSQC - Heteronuclear single quantum coherence

    Hz - Hertz

    MHz - Megahertz

    Psi - Pounds per square inch

    J - Coupling constant in hertz

    m - Multiplet

    kg - Kilogram

    g - Gram

    mm - Milimiter

    m - Meter

    mL - Mililiter

  • © CO

    PYRI

    GHT U

    PM

    xviii

    mg - Miligram

    min - Minute

    MTIB - Malaysian Timber Industry Board

    NMR - Nuclear Magnetic Resonance

    PCA - Principal component analysis

    FID - Free induction decay

    PC - Principle component

    s - Singlet

    SIMCA-P - Soft Independent Modeling Class Analogy-P

    PLS-DA - Partial Least Square-Discriminant Analysis

    VIP - Variable Importance in Projection for Independent Variables

    RT - Retention time

    OPLS-DA - Orthogonal Partial Least Square-Discriminant Analysis

    CITES - Convention on International Trade in Endangered Species of

    Wild Fauna and Flora

    TRAFFIC - The Wildlife Trade Monitoring Network

    Eds - Editors

    IUCN - World Conservation Union

    SPE - Solid phase extraction

    UHPLC - Ultra High Performance Liquid Chromatography

    ANOVA - Analysis of Variance

  • © CO

    PYRI

    GHT U

    PM

    xix

    w/w - Weight over weight

    GCMS - Gas Chromatography Mass Spectrometry

    NIST - National Institute of Standards and Technology

    FFNSC - Flavour and Fragrance Natural and Synthetic Compounds

    kV - Kilovolt

    rpm - Revolutions per minute

    TMS - Tetramethylsilane

    FTIR - Fourier transform infrared spectrometer

  • © CO

    PYRI

    GHT U

    PM

    CHAPTER 1

    GENERAL INTRODUCTION

    1.1 Background

    Gaharu is the resinous heartwood of infected Aquilara species, traded for perfumery,

    aesthetic and religious purposes. Depending on the country that it is traded in, gaharu

    is also known as eaglewood, aloeswood, agarwood, kalamabak, jin-koh (Japanese),

    oudh (Arabic), tram huong (Vietnamese), chen xiang (Chinese) (Persoon, 2008). It is

    also well known as 'gold of the forest' due to its high price which varies

    indiscriminately, very much dependent on demand and availability. The supply of this

    valuable material is slowly, but certainly, depleting due to over collection from its

    natural stand (Persoon, 2008).

    Gaharu producing trees grow typically in a mixed forest habitat and usually grow up to

    30 m tall with 1 m maximum diameter at breast height (Persoon, 2008). Among the

    gaharu-producing species, Aquilaria malaccensis grows up to 75 m above sea level,

    thus it is easier to harvest the resinous wood in comparison to Aquilaria hirta.

    However, Aquilaria hirta which grows 300 - 600 meters above sea level, produces

    better grade of gaharu which are usually very hard in texture and dark in color

    indicating its high quality.

    Gaharu are usually obtained from Orang Asli communities, via middleman or traders

    and resold at higher price. Different countries import different types of gaharu

    depending on the final intended use or application (Persoon, 2007). For instance,

    Japan buys gaharu in the form of wood blocks to make religious sculptures and other

    items of worship and aesthetic purposes, while countries in the Middle East prefer

    wood chunks, for burning as incense in aromatherapy, and powdered agarwood, for

    hydrodistillation and perfumery (Chakrabarty et al., 1994).

    Recently, there has been an increase in products on the market which incorporate

    gaharu as one of their main active ingredients, for example gaharu tea, gaharu coffee,

    skincare and cosmeticeutical products. These development has more or less

    contributed significantly in the increase in demand for gaharu (Persoon, 2008). In order

    to address the supply and demand issue, plantations of A. malaccensis and several

    other gaharu producing species were established and artificially induced to produce

    gaharu (MTIB, 2010).

    Gaharu is largely believed to be the product of fungal infection of the producing tree,

    sustained through injury on trunks, branches and roots of the life tree. Artificial

    induction of gaharu has been the subject of research carried out in various countries

    including Thailand and Malaysia. Researchers and planters have tried wounding

  • © CO

    PYRI

    GHT U

    PM

    2

    plantation trees and mimicking fungal infection using fungal or chemical based

    inoculants (Persoon, 2008; MTIB, 2010). Although some gaharu was successfully

    induced in the planted trees, the amount of gaharu produced was low and of undefined

    quality in comparison to gaharu produced in natural stands. In some of the artificial

    induction trials, some trees even died during the wounding and inoculation processes if

    it is not done carefully (Turjaman, 2011). Theoretically, trees that grow in a natural

    forest environment are expected to be more profilic and efficient producer of gaharu

    since these species have to compete for nutrients and combat a whole range of external

    predators and diseases. It is still unclear how much more efficient the plantation

    species will be in comparison to the wild species. The whole process of gaharu

    formation is very slow and thus, the returns promised by artificial production of gaharu

    may take many years to realize.

    The main chemical components of gaharu such as phenolic compounds and

    sesquiterpenes viz. agarofuran, jinkohol, jinkoh-eremol and eudesmol, are believed to

    play a very important role in plant defense (disease resistance) (Marinova et al., 2005).

    The presence of these chemical components are therefore related to gaharu production

    since an attack by pathogens or in response to changes in environmental condition or

    external perturbation will affect their biosynthetic production. Usually, inoculated

    planted trees are expected to only produce better quality of gaharu after 5 years

    (Turjaman, 2011). As shown by the plantation and induction trials, often times the

    quality of gaharu produced is very low (commonly grade C) and only suitable for oil

    extraction. At most, the amount of gaharu that can be produced by a tree is

    approximately 2 kg per tree. Thus, in terms of monetary returns, the most that a planter

    can obtain is an estimated RM4000.00 per tree (MTIB, 2010).

    In trade, the quality of gaharu depends largely on the traders and buyers, who decide

    which grade is the best grade. The grader grades according to several criteria of the

    wood that he has collected at a time. For example, if the grader was given a kilogram of

    gaharu wood, he will classify all the wood pieces according to shape, color, density and

    odor (usually upon burning) (MTIB, 2010). It is easiest to determine the best grade but

    it is rather difficult to differentiate between the rest of the grades. The Malaysia Timber

    Industry Board (MTIB) grades gaharu as Super King, Double Super, Super grade A

    series (A1 to A10), Grade B series (B1 to B5), Grade C series (C1 to C10) and lastly,

    the oil grade gaharu.

    1.2 Problem statement

    The classification of gaharu grades differ according to the product in trade and in

    which country the trade is taking place. The type and number of gaharu grades may

    vary widely between the countries. Different species have been shown to contain

    different chemical components (Ishihara et al,. 1991 & 1993), but this may not

    necessarily be the criteria that is important to traders and consumers who largely selects

    the country of origin and wood quality as criteria for grading the gaharu products. The

    scenario as a whole paints a very confusing system of grading which seems to rely

    heavily on subjective preferences and thus making it very difficult to clearly delineate

    between the various grades. Currently, there is no proper scientific method of

    determining the grades of gaharu, and more research are needed in finding feasible

  • © CO

    PYRI

    GHT U

    PM

    3

    methods for grading gaharu. To date, some methods developed based on electronic

    measurements have met with some success, but more confirmatory data is needed to

    assess whether the classification or grading is accurate and reproducible. A rapid and

    practical method to differentiate between various grades of gaharu is needed. On this

    basis, the current study was undertaken to address the following objectives:

    1. To differentiate various grades of gaharu by applying 1H NMR-based

    metabolomics on gaharu extracts.

    2. To identify chemical markers responsible for the differentiation of gaharu

    grades.

    3. To differentiate various grades of gaharu by applying GCMS-based

    metabolomics on gaharu smoke.

  • © CO

    PYRI

    GHT U

    PM

    78

    REFERENCES

    Abdullah, A., Ismail, N. K. N., Kadir, T. A. A., Zain, J. M., Jusoh, N. A., & Ali, N. M.

    (Eds.). (2007). Agar wood grade determination system using image processing

    technique. Proceeding of the International Conference on Electrical Engineering

    and Informatics. Institut Teknologi Bandung Indonesia.

    Ahmed, M., Faridah, A., Alfi, K., Maulidiani, H., Khozirah, S., Young, H. C., & Lajis,

    N. H. (2012). 1H-NMR-based metabolomics approach to understanding the

    drying effects on the phytochemicals in cosmos caudatus. Food Research

    International, 49: 763-770.

    Bhuiyan, N. I., Begum, J., & Bhuiyan, N. H. (2009). Analysis of essential oil eaglewood

    tree (Aquilaria agallocha Roxb.) by gas chromatography mass spectrometry.

    Bangladesh Journal of Pharmacology, 4: 24–28.

    Burkill, I. H. (1966). A dictionary of the economic products of the malay peninsula.

    Kuala Lumpur, Malaysia: Ministry of Agriculture & Co-. operatives.

    Chakrabarty, K., Kumar, A., & Menon, V. (1994). Trade in agarwood. TRAFFIC India

    and WWF-India, New delhi, 17-19.

    Chang, Y. S., Nor Azah, M. A., Abu Said, A., Lok, E. H., Reader, S., & Spiers, A.

    (2002). Gaharu. FRIM technical information, FRIM Kepong, 69.

    Chang, Y. S.., Ng, L. T., & Kadir, A. A. (1997). A review on agar (gaharu) producing

    Aquilaria species. Journal of Tropical Forest Product, 2(2): 272-285.

    Chen, D., Xu, Z., Chai, X., Zeng, K., Jia, Y., Bo, D., Ma, Z., & Tu, P. (2012). Nine 2-

    (2-Phenylethyl)chromone Derivatives from the Resinous Wood of Aquilaria

    sinensis and Their Inhibition of LPS-Induced NO Production in RAW 264.7

    Cells. European Journal of Organic Chemistry, 5389-5397.

    Chen, H., Q., Wei, J., H., Yang, J., S., Zhang, Z., Yang, Y., Gao, Z., H., & Gong, B.

    (2012). Chemical constituents of agarwood originating from the endemic genus

    Aquilaria plants. Chemistry and Biodiversity, 9(2): 236-250.

    Chromlab (2009). Headspace injection technique. Retrieved December 2, 2014, from

    http://www.fastgcchromlab.com/cl/headspace-faqs.php

    Chua, L. S. L. (2008). Agarwood (Aquilaria Malaccensis) in Malaysia. A paper

    presented during NDF Workshop case studies, Mexico.

    CITES (1994). Text of the convention, resolution conference no 24 regarding the

    amendment of appendices and inclusion of species in appendix II. Convention

    on International Trade in Endangered Species of Wild Fauna and Flora. Fort

    Lauderdale, Florida.

    http://www.fastgcchromlab.com/cl/headspace-faqs.php

  • © CO

    PYRI

    GHT U

    PM

    79

    Dawend, J., Make, J., Philip, L., Tan, S., & Franklin, R. K. (2005). System approach for

    sustainable gaharu conservation in sarawak. Proceedings, International Forestry

    Seminar: Synergitic Approach to Appropriate Forestry Technology for

    Sustaining Rainforest Ecosystems. Sarawak Forestry Department, Bintulu,

    Sarawak, Malaysia.

    Dixon, R. A., Gang, D. R., Charlton, A. J., Fiehn, O., Kuiper, H. A., Reynolds, T. L.,

    Tjeerderma, R. S., Jeffery, E. H., German, J. B., Ridley, W. P., & Seiber, J. N.

    (2006). Applications of Metabolomics in Agriculture. Journal of Agricultural

    and Food Chemistry, 54: 8984-8994.

    Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C., & Wold, S.

    (2006). Multi-and megavariate data analysis, part 1, basic principles and

    applications (second revised and enlarged edition). Sweden: Umetrics AB.

    Fauziah, A., Sui, K. L., Salbiah, M., Ai, L. T., Hooi, P. T., & Zunoliza, A. (2012).

    Characterization and Identification of Labisia pumila by Multi-Steps Infrared

    Spectroscopy. Vibrational Spectroscopy, 62: 200-206.

    Fukusaki, E., & Kobayashi, A. (2005). Plant metabolomics: Potential for practical

    operation. Journal of Bioscience and Bioengineering, 100(4): 347-354.

    Gimlette, J. D., & Burkill, I. H. (1930). The medicinal book of Malayan medicine. The

    gardens’ bulletin, straits settlements, 6(3): 333-497.

    Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D.B. (2004).

    Metabolomics by Numbers: Acquiring and understanding global metabolite data.

    Trends in Biotechnology, 22(5): 245-252.

    Hashimoto, K., Nakahara, S., Inoue, T., Sumida, Y., Takahashi, M., & Masada, Y.

    (1985). A new chromone from agarwood and pyrolysis products of chromone

    derivatives. Chemical & pharmaceutical bulletin, 33(11): 5088.

    Heinrich, M. (2008). Ethnopharmacy and Natural Product Research – Multidisciplinary Opportunities for Research in The Metabolomics Age. Phytochemistry Letters,

    1(1): 1-5.

    Ishihara, M., Tsuneya, T., & Uneyama, K. (1993b). Components of the Volatile

    Concentrate of Agarwood. Journal of essential oil research, 5(3): 283.

    Ishihara, M., Tsuneya, T., Suga, M., & Uneyama, K. (1991). Three sesquiterpenes from

    agarwood. Phytochemistry, 30: 563-566.

    Ishihara,M., Tsuneya, T., & Uneyama, K. (1993a). Components of the Agarwood

    Smoke on Heating. Journal of essential oil research, 5(4): 419.

    Ismail, N., Rahiman, M. H. F., Rozita, J., Taib, M. N., Ali, N. A. M., & Tajuddin, S. N.

    (2012). Investigation of common compounds in high grade and low grade

    http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::inithttp://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init

  • © CO

    PYRI

    GHT U

    PM

    80

    Aquilaria malaccensis using correlation analysis. IEEE Control and System

    Graduate Reserach Colloquium (ICSGRC), 277-281.

    IUCN (2008). International union for the conservation of nature: Red list of threatened

    species. Retrieved January 5 2014, from www.iucnredlist.org

    Kim, H. K., & Verpoorte, R. (2009). Sample preparation for plant metabolomic.

    Phytochemical Analysis, 21(1): 4-13.

    Kim, Y. C., Lee, E. H., Lee, Y. M., Kim, H. K., Song, B. K., & Lee, E. J. (1997). Effect

    of aqueous extract of Aquilaria agallocha stems on the immediate

    hypersensitivity reactions. Journal of Ethnopharmacol, 58: 31–38.

    Konishi, T., Konoshima, T., Shimada, Y., & Kiyosawa, S. (2002). Six new 2-(2-

    Phenylethyl)chromones from agarwood. Chemical and Pharmaceutical bulletin,

    50(3): 419-422.

    Lim, T. W., & Noorainie, A. A. (2010). Wood for trees: A review of the agarwood

    (gaharu) trade in malaysia. Petaling Jaya, Selangor, Malaysia: Traffic Southeast

    Asia.

    Lilian, S., L., C. (2008). Agarwood (Aquilaria Malaccensis) in Malaysia. NDF

    workshop case studies. Case study 3: 1-17

    Lommen, A., Weseman, J. M., Smith, G. O., & Noteborn, H. P. J. M. (1998). On the

    detection of environmental effects on complex matrices combining off-line

    liquid chromatography and 1H-NMR. Biodegradation, 9: 513-525.

    Maheshwari, M. L., Jain, T. C., Bates, R. B., & Bhattacharyya, S. C. (1963).

    Terpenoids-xli: structure and absolute configuration of α-agarofuran, -agarofuran and dihydroagarofuran. Tetrahedron, 19(6):1079-1090.

    Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and total

    flavonoids in bulgarian fruits and vegetables. Journal of the University of

    Chemical Technology and Metallurgy, 40 (3): 255-260.

    Marquez, O. G. M., Velazquez, T. G., & Revilla, G. O. (2010). Application of mid-

    infrared spectroscopy with multivariate analysis and soft independent modelling

    of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat

    Science, 86(2): 511-519.

    Maulidiani, H., Alfi, K., Khozirah, S., Faridah, A., Mahendran, S., Ralf, K., & Nordin,

    H. L. (2012). Discrimination of three pegaga (centella) varieties and

    determination of growth-lighting effects on metabolites content based on the

    chemometry of 1H nuclear magnetic resonance spectroscopy. Journal of

    Agriculture and Food Chemistry, 60(1): 410-417.

    http://www.iucnredlist.org/http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init

  • © CO

    PYRI

    GHT U

    PM

    81

    Mohamed, R., Jong, P. L., & Zali, M. S. (2010). Fungal diversity in wounded stems of

    Aquilaria malaccensis. Fungal Diversity, 43(1): 67-74.

    MTIB (2010). Industri gaharu malaysia: Cabaran dan prospek. Kuala Lumpur:

    Lembaga Perindustrian Kayu Malaysia.

    Naef, R. (2011). The volatile and semi-volatile constituents of agarwood, the infected

    heartwood of aquilaria species: A review. Flavour and Fragrance Journal, 26:

    73-89.

    Nagashima, T. (1984). Agarwood and its components. The Takasago Times, 81: 25-29.

    Nagashima, T., Kawasaki, I., Yoshida, T., Nakanishi, T., & Yoneda, K. (1983). New

    sesquiterpenoids from agarwood. Paper 9th International Congress of Essential

    Oil, Singapore. March 1983.

    Najib, M. S., Taib, M. N., Ali, N. A. M., Arip, M. N., M., & Jalil, A. M. (2011).

    Classification of agarwood grades using ANN. International Conference on

    Electrical, Control and Computer Engineering, Pahang, Malaysia. June 2011.

    Nakanishi, T., Yamagata, E., Yoneda, K., & Muira, I. (1981). Jinkohol a prezizane

    sesquiterpene alcohol from Agarwood Aquilaria species. Phytochemistry, 20(7):

    1597-1600.

    Nakanishi, T., Yamagata, E., Yoneda, K., Miura, I., & Mori, H. (1983). Jinkoh-eremol

    and jinkohol II - 2 new sesquiterpene alcohols from Agarwood. . Journal of the

    Chemical Society, Perkin Transaction 1, 10(3): 601-604

    Nakanishi, T., Yamagata, E., Yoneda, K., Nagashima, T., Kawasaki, I., & Yoshida, T.,

    Miura, I. (1984). Three fragrant sesquiterpenes of agarwood. Phytochemistry,

    23(9): 2066-2067.

    Ng, L. T., Chang, Y. S., & Kadir, A. A. (1997). A review on agar (gaharu) producing

    Aquilaria species. Journal of Tropical Forest Products, 2: 272-285.

    Nor Azah, M. A., Saidatul Husni, S., Mailina, J., Abdul majid, J., & Mohd Faridz, Z.

    (2013). Classification of agarwood (gaharu) by resin content. Journal of Tropical

    Forest Science, 25(2): 213-219.

    Novriyanti, E., & Santosa, E. (2011). The role of phenolics in agarwood formation of

    Aquilaria crassna pierre ex lecomte and Aquilaria microcarpa baill trees.

    Journal of Forestry Research, 8(2): 101-113.

    Okugawa, H., Ueda, R., Matsumoto, K., Kawanishi, K., & Kato, A. (1996). effect of

    Jinkoh-eremol and agarospirol from agarwood on the central nervous system in

    mice. Planta Medica, 62(1): 2-6.

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • © CO

    PYRI

    GHT U

    PM

    82

    Persoon, G. A. (2007). Agarwood: The life of a wounded tree. International Institute for

    Asian Studies Newsletter, 45: 24-25.

    Persoon, G. A. (2008). Growing 'the wood of the gods': Agarwood production in

    southeast asia. Smallholder Tree Growing for Rural Development and

    Environmental Services Advances in Agroforestry (pp 245-260). Springer

    Netherlands.

    Pripdeevech, P., Khummueng. W., & Park, S. K (2011). Identification of odor-active

    components of agarwood essential oils from Thailand by solid phase

    microextraction-GC/MS and GC-O. Journal of Essential Oil Research, 23: 46-

    53.

    Sabah Forestry Department (2006). The Potential of Gaharu as a Plantation Species. In:

    Annual Report 2006. Retrieved August 6 2014 from

    http://www.forest.sabah.gov.my/download/2006/22i%20Gaharu.pdf.

    Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: Towards biological function

    and mechanism. Trends in Plant Science, 11: 508-516.

    Schripsema, J. (2010). Application of NMR in plant metabolomics: Techniques,

    problems and prospects. Phytochemical Analysis, 21: 4-13.

    Shuib, N. H., Shaari, K., Khatib, A., Maulidiani, H., Kneer, R., Zareen, S.,& Neto, V.

    (2011). Discrimination of young and mature leaves of melicope ptelefolia using

    1H NMR and multivariate data analysis. Food Chemistry, 126(2): 640-645.

    Tee, C. H. (2014). Artificial inoculation. Retrieved February 10, 2014 from

    http://gaharujinkou.wordpress.com/cultivated-agarwood/inoculation-method/

    TRAFFIC Southeast Asia (Eds.). (2006). Proceedings of the experts group meeting on

    agarwood: Capacity-building workshop for improving implementation and

    enforcement of the CITES listing of Aquilaria malaccensis and other agarwood-

    producing species. Kuala Lumpur, Malaysia: TRAFFIC Southeast Asia.

    Turjaman, M. (Eds.). (2011). Proceeding of Gaharu Workshop. Bioinduction technology

    for sustainable development and conservation of gaharu. Bogor, Indonesia:

    Forda.

    Velázquez, T. G., Revilla, G. O., Loa, M. Z., & Espinoza, Y. R. (2009). Application of

    FTIR-HATR spectroscopy and multivariate analysis to the quantification of

    adulterants in mexican honeys. Food research International, 42: 313-318.

    Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in

    phytochemistry. Phytochemistry Reviews, 6(1): 3-14.

    http://link.springer.com/book/10.1007/978-1-4020-8261-0http://link.springer.com/book/10.1007/978-1-4020-8261-0http://link.springer.com/bookseries/6904http://www.refworks.com/refworks/~0~http://gaharujinkou.wordpress.com/cultivated-agarwood/inoculation-method/

  • © CO

    PYRI

    GHT U

    PM

    83

    Xu, J. F., Zhu, L. F., Lu, B. Y., & Liu, C. T. (1988). Study on chemical constituents

    of Aquilaria sinensis (Lour) Gilg. Acta botanica Sinica, 30: 635-638.

    Yagura, T., Ito, M., Kiuchi, F., Honda, G., & Shimada, Y. (2003). Four new 2-(2-

    phenylethyl)chromones derivatives from withered wood of Aquiliaria sinensis.

    Chemical & Pharmaceutical Bulletin, 51: 560-564.

    Yamamoto, Y., Nakahara, S., Masada, Y., Hashimoto, K., & Takahashi., M. (1983).

    IXth International. Ess. Oil Congress, Singapore. 17.

    Yang, J. S. & Chen, Y. W. (1983). Studies on the constituents of Aquilaria

    sinensis (Lour.) Gilg. I. Isolation and structure elucidation of two new

    sesquiterpenes, baimuxinic acid and baimuxinal. Acta Pharmacologica Sinica,

    18 (3): 191–198.

    Yang, J. S. (1998). Review of the chemical constituents isolated from Chen-Xiang.

    Natural product Research and Development, 10(1): 99.

    Yang, N. Y., Li, K., Yang, Y. F., & Li, Y. H. (2009). Aromatase inhibitory fatty acid

    derivatives from the pollen of Brassica campestris L. var. oleifera DC. Journal of

    Asian Natural Product Research, 11(2): 132.

  • © CO

    PYRI

    GHT U

    PM

    UNIVERSITI PUTRA MALAYSIA

    PENGESAHAN STATUS UNTUK TESIS/LAPORAN PROJEK DAN HAKCIPTA

    SESI AKADEMIK : ________________

    TAJUK TESIS/LAPORAN PROJEK :

    ____________________________________________________________________________

    ____________________________________________________________________________

    ____________________________________________________________________________

    NAMA PELAJAR : ______________________________________________

    Saya mengaku bahawa hakcipta dan harta intelek tesis/laporan projek ini adalah milik Universiti Putra Malaysia dan bersetuju disimpan di Perpustakaan UPM dengan syarat-syarat berikut :

    1. Tesis/laporan projek adalah hak milik Universiti Putra Malaysia.

    2. Perpustakaan Universiti Putra Malaysia mempunyai hak untuk membuat salinan untuk tujuan akademik sahaja.

    3. Perpustakaan Universiti Putra Malaysia dibenarkan untuk membuat salinan tesis/laporan projek ini sebagai bahan pertukaran Institusi Pengajian Tinggi.

    Tesis/laporan projek ini diklasifikasi sebagai :

    *sila tandakan (√ )

    SULIT (mengandungi maklumat di bawah Akta Rahsia Rasmi 1972)

    TERHAD (mengandungi maklumat yang dihadkan edaran kepada umum oleh organisasi/institusi di mana penyelidikan telah dijalankan)

    AKSES TERBUKA Saya bersetuju tesis/laporan projek ini dibenarkan diakses oleh umum dalam bentuk bercetak atau atas talian.

    Tesis ini akan dibuat permohonan :

    PATEN Embargo ____________ hingga ___________ (tarikh) (tarikh)

    Pengesahan oleh: ____________________ ______________________ (Tandatangan Pelajar) (Tandatangan Pengerusi Jawatankuasa Penyeliaan) No Kad Pengenalan / No Pasport.: Nama: Tarikh : Tarikh : [Nota : Sekiranya tesis/laporan projek ini SULIT atau TERHAD, sila sertakan surat dari organisasi/institusi

    tersebut yang dinyatakan tempoh masa dan sebab bahan adalah sulit atau terhad.]

    CHAPTER 2LITERATURE REVIEW2.1 Gaharu and gaharu-producing species2.1.1 Trade and uses of gaharuFigure 2.9: Chromones in gaharu extract2.2.2 Simple volatile aromatic compounds from gaharu smokeBurning gaharu will produce smoke which consists of mostly volatile products of pyrolysis. The gaharu smoke has been reported to be impart energizing and spiritually calming effect, as well as a warm, long lasting perfume (Naef, 2011). A GCMS analys...Thirty seven simple volatile aromatic compounds have been detected in gaharu smoke as shown in Table 2.2. (Naef, 2011). Benzylacetone (23) is a common and major constituent associated with the resin (Qi et al., 1998). Benzylacetone and various chrom...2.4 Metabolomics as a tool in researchCHAPTER 2REFERENCES