universiti putra malaysia development of infrared spectroscopic

25
UNIVERSITI PUTRA MALAYSIA DEVELOPMENT OF INFRARED SPECTROSCOPIC TECHNIQUES FOR THE DETERMINATION OF SOME QUALITY PARAMETERS OF PALM OIL FELIX MOH MEE HO FSMB 1998 5

Upload: vanhanh

Post on 18-Jan-2017

216 views

Category:

Documents


0 download

TRANSCRIPT

  

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF INFRARED SPECTROSCOPIC TECHNIQUES FOR THE DETERMINATION OF SOME

QUALITY PARAMETERS OF PALM OIL

FELIX MOH MEE HO

FSMB 1998 5

DEVELOPMENT OF INFRARED SPECTROSCOPIC TECHNIQUES FOR THE DETERMINATION OF SOME

QUALITY PARAMETERS OF PALM OIL

BY

FELIX MOD MEE DO

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Science in

Faculty of Food Science and Biotechnology Universiti Putra Malaysia

March, 1998

Especially dedicated to my beloved fiancee .....

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Dr. Yaakob

Bin Che Man, the Chainnan of my Supervisor Committee, for his kind assistance

and guidance throughout the course of study till the preparation of this thesis. I

am also very grateful to the other members of the Supervisory Committee,

Associate Professor Dr. Jinap Selamat and Mr. Badlishah Sham Bin Baharin for

their support and. encouragements. I would like to acknowledge the Universiti

Putra Malaysia for providing IRP A and P ASCA siswazah funding for this

research.

Gratitude is also expressed to Prof. F.R. van de Voort of McGill

University, Quebec, Canada for his invaluable comments and advice, and Mr.

T.S. Tang of PORIM for this technical assistance as well as Chemophann Sdn.

Bhd. for the Bran+Luebbe NIR instrument. I would like to thank Dr. Mohd Said

Bin Saad of the Department of Agronomy and Horticulture for his NIRSystem

NIR spectroscopy and technical assistance.

My sincere appreciation is extended to the laboratory assistants of the

Faculty of Food Science and Biotechnology: Mr. Chan Tin Wan, Mr. Azman Abu

Yamin, Mr. Abd. Halim Rahman, and Mr. Rosli Aslim. To my colleagues and

friends namely Siah, Irwandi, Amin, Tri Haryati, Lai, Madihah and Rosfarizan

for their generous assistance. Also to my best friend, Mr. Lawrence Sii Tung Ung

11l

of Ministry of Science, Technology and Environment Malaysia for his moral

support and advice.

Not the least but the most important, I wish to express my deepest

appreciation to my parents, brothers and sisters for their moral support and

understanding throughout my studies. I shall forever recognize for their

encouragement, too. I would always remember their words, "we would be there

for you". Finally, but first in my thoughts, I also owe my special thanks to my

beloved fiancee, (Tina) Yang Yang, for her encouragement, understanding and

patient. Most of all, her care and love.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . .. . . . . . . . . . . 111

LIST OF TABLES. . . . . . . . . ..... ......... .... ........ ........ ....... ... ...... V1I1

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . x

LIST OF PLATES... . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . X1I1

ABSTRACT. . . . . . ....... . . . . . . ..... . . . .... . . . . ..... . . . . . .. . . .... .. . . .. . . . .... XIV

ABSTRAK . . . . . . . . . . .. . . . . . . . . . . . . . . .. .. . . . . . . .. . . . . . . . . . .. ... . . . .. . . . . . . . . . . XVII

CHAPTER

1

2

GENERAL INTRODUCTION ...................... . .

REVIEW O F LITERATURE . . . . . . ... . . . . . . . . . . . . . . . . . Production and Characteristics of Palm Oil. . . . . . . . . . . . .

1

4 4

Origin and Agronomy . . . . . . .. .. . . . . . . . . . . . . . . . '" 4 Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5 Physiochemical Characteristics. . . . . . . . . . . . . . . . . 5

Some Selected Quality Parameters of Palm Oil of Interest. . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Free fatty Acid. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. 9 Peroxide Value. . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Carotenoids. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Limitations of Wet Chemical Methods. .. . . . . . . . . . . . . . . 14 Infrared Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Principles of Infrared Spectroscopy. . .. . ... . . . . 1 5 Monochromator. . . . . . . . . . . . .. . . . . . . . . . . . . . . . ... . .. 17 Fourier Transform Interferometry. . . . . . . . . . . . . . 22

General Calibration Methods for Infrared Analysis. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 25

Multiple Linear Regression (MLR) Calibration . . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 25 Partial Least Squares (PLS) Calibration... . .... 26

Mid Infrared Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ... 27 Basic Description of Mid Infrared (MIR).. . . . . 27 Fourier Transform Infrared (FTIR) Techniques in Food and Oil Analysis. . . . . . . . . . 28

Near Infrared Analysis. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Basic Description of Near Infrared (NIR).. . . . . 32 Near Infrared (NIR) Techniques for Food Analysis.. . . . . . . . . ..... . . . . . . . . .. . . . . . . . . . . . . 32 Near Infrared (NIR) Techniques in Fats and Oils Analysis . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. 34 Suggested Near Infrared (NIR) Applications in Palm Oil Analysis.. . . . . . . . . . . . . . . . ... . .. . . . . . . . 35

V

3

4

5

DETERMINATION OF FREE FATTY ACIDS IN PALM OIL USING NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY ......... .

Introduction . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Materials and Methods . . . .. .. ... . . . .. . . . . . . . .. . . . . . . . .... ..

Reagents . . . . . . ' " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .

Sample Preparation . . . . .. .. . . . . . . . ...... . . . . . . . .. . .

Chemical Analysis . .. . . . . .. . . .. . . . ... .. . . ... . . . . . . Instrumentation ...... ......... . . . . .............. . .. Calibration and Validation Procedures . . . . . . . . .

Results and Discussion . . . . . . . . . . . ..... .. .. .. . . . . . . . . . . . . . .

General Concept. . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . .

Near Infrared (NIR) Spectroscopy . . . . . . . . . ... . .

Multiple Linear Regression (MLR) Calibration .. . . . . .. . . .. . . . . . . . . . . .. . . . . ... ......... . .

Validation of Calibration Equations . . . . . . .... . . Summary .. . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . .. .. . . . . . . . .

DETERMINATION OF FREE FATTY ACID IN CRUDE PALM OIL AND REFINED­BLEACHED-DEODORIZED PALM OLEIN USING FOURIER TRANSFORM INFRARED SPECTROSCOPy ..................................... .. Introduction . . . . .. . . . . . . . . . . .. .. . . . . . . . . .. . . . . .. . . . . .. . . . . . .

Materials and Methods . . . . . . . .. . .. . . . . . . . . . . . . .. . . . .. . . . . .

Reagents . .. ... . . . . . .... . . . . . . . . . . ..... . . . . . . . . . . .. .

Sample Preparation ... .. . . . . . . .. . . . . . . . . . . . . . . . . .

Chemical Analysis . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . .

Instrumental Analysis ..... . . . . ....... .. . . . .. . ... .

Calibration and Validation Procedures . .. . . . . . .

Results and Discussion . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. .

Preliminary Study ...... . . . ... . . . .... . . .. . .. ... . . .

General FTIR Statistical Spectroscopy . . . . . .. .

Partial Least Squares (PLS) Calibration ... . . . .

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DETERMINATION OF PEROXIDE VALUE IN THERMALLY OXIDIZED CRUDE PALM OIL BY NEAR INFRARED TRANS MITT ANCE SPECTROSCOPy ...................................... .

Introduction . . . . .. . . . . ... . . . . . . ... . . . .. .. . . ..... .. . . . . .. . . . .

Materials and Methods .. .. ..... ... . . . . . . .. . .. . . . .. . .... . .. Sample Preparation . .. . . . .. . . . . . .. . . . . .. . . . . .... . .

Instrumentation/Sample Handling . . . . . . .. . . . . . .

CalibrationIV ali dation Procedures .. .. . . . . . . .. .

Results and Discussion . . . . . . .. . . . .. . . . . . . . . . . . . .. . . . . . . . .

Calibration Matrix ............................... .

General NIR Statistical Spectra . . . . .. . . . . . . . . . .

Vi

37 37 38 38 38 3 9 3 9 40 40 40 43

47 54 5 9

60 60 62 62 62 62 62 63 64 64 68 73 81 86

87 87 89 89 90 9 1 92 92 93

6

7

Partial Least Squares (PLS) Calibration....... 100 Validation .... ... .. .... .... . . .... ... .. ... . ....... '" 10 2

S ummary .. . . . ... . .... ... .. '" ...... ..... ....... ..... ....... liD

QUANTITATIVE ANALYSIS OF PALM CAROTENE USING FTIR AND NIR SPECTROSCOPy ...................................... .

Introduction ............................................... . Materials and Methods .................................. .

Sample and Chemicals ........................ '"

Column Chromatographic Extraction ........ . UV -visible Spectrophotometry ................ .

Fourier Transform Infrared (FTIR) Instrument ......................................... .

Near Infrared (NIR) Instrument... ............. . Data Treatments ................................ .

Results and Discussion .................................. . Sample Characteristics .......................... .

UV -visible Spectrophotometer. ............... . FTIR Spectroscopy ............................. . NIR Spectroscopy .............................. "

Validation ........................................ "

Summary .................................................. .

SUMMARY, CONCLUSION AND RECOMMENDATION ................................ .

Summary .................................................. .

Conclusion and Recommendation ..................... .

1 1 1 1 1 1 1 13 1 13 113 114

114 1 14 1 1 5 1 16 1 1 6

1 18 118 1 2 1

1 27 135

136 136

138

BIBLIOGRAPHy......... . .. ....... ..... ..... ................ ....... ....... 139 APENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" 1 5 2 BIOGRAPHICAL SKETCH............................................... 1 63

vii

Table

I

2

3

4

5

6

7

8

9

1 0

1 1

1 2

13

14

15

LIST OF TABLES

Malaysia: Export of Palm Oil Products ('0 00 Tonnes) ..... " .

Malaysia: Planted Area Under Oil Palm (Hectares) ........... .

Physical and Chemical Properties of CPO ...................... .

Typical Fatty Acid Composition of Malaysia Palm Oil.. ",,"

Minor Components in Crude Palm Oil (ppm) ... " . . . . . . . . " . " .

PORAM Standard Specification for Refined Palm Oil and Fractions ....... "" . . . . . . . .. . .. . . . . . . . . .. . .. . . . .. . . . .

Infrared Spectral Regions ......................................... .

Characteristic Mid Infrared Absorption of Some Common Functional Groups ...................................... .

Basic Characterizing Wavelengths in Near Infrared Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Samples Used in Calibration and Validation Analyzed by Standard Chemical Method ................................... .

Basic Characteristic Wavelengths of C=O Functional Group and Their Relative Peak Positions of NIR Spectroscopy from 1 1 00 to 25 00 nm ............................ .

Effect of Different Wavelengths with 2040 nm as Measurement Wavelength in Constructing the Calibration in Palm Oil Samples ................................. .

Standard Deviation Values at Selected Wavelengths Obtained from Both Calibration and Validation Sets Using MLR Analysis .............................................. .

FF A (% as palmitic acid) of Additional Samples Determined by NIR Spectroscopy Calibration ................. .

Result of Mean Duplicate Analyses of CPO and RBD Palm Olein Obtained by AOCS (Reference) and the FTIR Method" ............................................. .

V111

Page

6

7

8

10

1 1

1 3

16

29

33

4 1

46

48

5 0

55

7 7

16

17

Statistical Comparison of FF A for CPO and RBD Palm Olein Obtained by AOCS (Reference) and FTIR Methods ....................................................... .

Some Common Band Characteristics of Crude Palm Oil in MIR Region .......................................... .

83

99

1 8 PLS Calibration Results Obtained from Different

1 9

20

2 1

22

Regions............................................. .. .. . . . .. . ... ... .. . 1 04

Mean PV of AOCS Chemical Method Against Near Infrared Spectroscopy (NIR) Method in Developing PLS Calibration Model.. ............................. .

Statistical Comparison of PV Obtained by AOCS Chemical Reference and NIR Methods .......................... .

Comparison of Mean Duplicate Sample" ....................... .

Statistical Comparison of Carotene Data Obtained by Spectrophotometry (UV -visible) with FTIR and NIR Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IX

1 06

10 9

125

134

LIST OF FIGURES

Figure Page

2

3

4

5

6

7

8

9

10

II

1 2

13

14

1 5

16

Stretching and Bending Vibrational Modes. ............ ...... ... 18

Specular and Diffuse Reflectance ................................ . 20

Optical Diagram of a Double -Beam Grating Monochromator ..................................................... . 21

Optical Diagram of a Michelson Interferometer .............. . . 24

Original NIR Transflectance Spectra of Palm Oil Samples ......................................................... . 44

First Derivative Spectra of Palm Oil. ....................... , . . . . . 4 5

Plot Showing Calibration Data of F F A Content for CPO Obtained by MLR Analysis ........................... . . 5 1

Plot Showing Calibration Data of F F A Content for RBD Palm Olein Using MLR Analysis ..................... .. 52

Plot Showing Calibration Data of FF A Content for RBD Palm Oil Using MLR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Plot Showing Validation Data of FF A Content for CPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Plot Showing Validation Data of FF A Content for RBD Palm Olein ............................................... . . 57

Plot Showing Validation Data of FF A Content for RBD Palm Oil. ................................................ . . 58

Overlaid ATR Spectra of CPO with Difference Concentration of FFA ........................................... . . 66

Plot of Percentage FFA vs. Absorbance @171 1 em'!

R2 = 0.986; SE = 0.06 ............................................ .. 67

Mean Spectrum Obtained from the CPO Calibration Standards ............................................................ . 69

Mean Spectrum Obtained from the RBD Palm Olein Calibration Standards ............................................. . . 70

x

17 Correlation Spectrum of CPO Calibration Standards Obtained Using FTIR Spectroscopy ...................... ' " . . . . . 7 1

18 Correlation Spectrum of RBD Palm Olein Calibration Set Using FTIR Spectroscopy ...................................... 7 2

1 9 Variance Spectrum Obtained from the CPO Calibration Standards ............................................... 74

20 Variance Spectrum Obtained from the RBD Palm Olein Calibration Standards Using F TIR Spectroscopy .............. 7 5

2 1 FF A Calibration Plot Constructed from CPO Calibration Standards ............................................... 7 8

22 FF A Calibration Plot Constructed from RBD Palm Olein Calibration Standards ........................................ 7 9

23 PRESS Plot from CPO Calibration Standards ................... 80

24 PRESS Plot from RBD Palm Olein Calibration Standards ......................................... ' " . . . . .. . . . . . . . .. . . 80

25 FF A Validation Plot for CPO Samples ........................... 82

26 FFA Validation Plot for RBD Palm Olein Samples ............ 85

27 Graph Showed the PV Generated in Oxidized CPO Through Time While Developing the Calibration Matrix ...... 94

28 Plot of First vs. Second PV Analyzed by Chemical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

29 Mean Spectrum of 26 Samples Obtained from PV Calibration Set Using NIR Spectroscopy ........................ 96

30 A Typical Spectrum of CPO Using FTIR Spectroscopy ....... 98

30 Correlation Spectrum Obtained from PV Calibration Standards Using NIR Spectroscopy ............................... 101

32 PRESS Plot from PV Calibration Standards ..................... 103

33 Correlation Plot from Calibration Data of PV (meg/kg) in CPO by NIRS and Chemical Analyses ........................ 105

34 Correlation Plot from Validation Data of PV (meg/kg) in CPO by NIRS and Chemical Analyses ........................ 107

XI

35 The Effect of Different Solvents and Flow Rate on Adsorbents During the Extraction of Palm Carotene for the Development of Calibration Matrix ...................... Il7

36 Plot of First vs. Second Carotene Value Analyzed by UV -visible Spectrophotometry .................................... 119

37 Pure �-Carotene Spectrum Obtained Using FTIR Spectroscopy ................................................. 120

38 Overlaid Spectra of CPO Showing Different Concentration of �-Carotene Using FTIR ....................... 122

39 PRESS Plot from Carotene Calibration Standards Using FTIR Spectroscopy .......................................... 123

40 Calibration Plot of FTIR Predicted vs. Actual Spectrophotometry Carotene ...................................... 124

41 Mean Spectrum of 30 Samples Obtained from �-Carotene Calibration Set Using NIR Spectroscopy .......... 126

42 Correlation Spectrum Obtained from�-Carotene Calibration Standards Using NIR Spectroscopy ................. 128

43 PRESS Plot from Carotene Calibration Standards Using NIR Spectroscopy ........................................... 129

44 Calibration Plot ofNIR Predicted vs. Actual Spectrophotometry Carotene ...................................... 130

45 Validation Plot of FTIR Predicted vs. Actual Spectrophotometry Carotene ...................................... 131

46 Validation Plot of NIR Predicted vs. Actual Spectrophotometry Carotene ....................................... 132

47 FTIR Spectrum of an Empty Background ........................ 154

48 Spectrum of an Empty BaF2 Flow Through Transmission Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

49 Spectrum of DL-a Tocopherol from Omnic Library Showing the Major Absorption Bands ............................ 156

50 Spectrum of Unknown Aromatic Compound from Omnic Library Showing the Major Aromatic Bands ........... 157

xii

LIST OF PLATES

Plate Page

1 Near Infrared Spectroscopy (Bran+Luebbe, InfraA1yser 5 00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 9

2 "Dutch cup" or Gold Cup ......................................... . 159

3 Fourier Transform Infrared Spectroscopy (Perkin Elmer 1725 X) ............................................ . 160

4 Attenuated Total Reflectance Accessory (ZnSe 45°) .......... . 160

5 Fourier Transform Infrared Spectroscopy (Perkin Elmer 1600) ............................................... . 161

6 Near Infrared Spectroscopy (NIRSystem 65 00) .............. . . 161

7 Water Jacketed Chromatographic Column ..................... . 162

8 Rotary Vacuum Evaporator ..................................... . . 162

xiii

Abstract of the Thesis Presented to the Senate of Universiti Putra Malaysia in Fulfillment of the Requirements for the Degree of Master of Science.

DEVELOPMENT OF INFRARED SPECTROSCOPIC TECHNIQUES FOR THE DETERMINATION OF SOME QUALITY PARAMETERS

OF PALM OIL

B Y

FELIX MOH MEE HO

March, 1998

Chairman: Professor Yaakob Bin Che Man, Ph. D.

Faculty : Food Science and Biotechnology

Several parameters for good quality crude palm oil (CPO) and its

fractions such as free fatty acid (FF A), oxidative value, moisture and impurities,

iodine value and antioxidant composition are very crucial in palm oil industry.

For trading purposes in Malaysia, the standard of these quality parameters h ave to

be accomplished by all the refiners in accordance to the Palm Oil Refiners

Association of Malaysia (PORAM) standard specifications.

Conventionally, the analytical techniques used to analyze the quality

parameters in palm oil are by wet chemical methods based on the American Oil

Chemists' Society (AOCS) procedures which involve titration. Normally this

chemical techniques require large amount of chemicals and reagents which may

xiv

be unfriendly to environment and hazardous to health. Moreover, most analyses

are time consuming and laborious especially for large number of samples. To

overcome the problem, numerous studies on instrumental techniques have been

carried out over the years. From this standpoint, near infrared (NIR) spectroscopy

and Fourier transform infrared (FTIR) spectroscopy are considered the

instrumental approaches of choice.

1bree parameters were selected in the study. For the determination of

FF A, NIR transflectance and FTIR transmittance techniques were investigated.

Range of FF A concentration were prepared by hydrolyzing oil with 0.15% (w/w)

lipase in an incubator at 60°C (200 rpm). In NIR approach, sample preparation

was performed in Dutch cup and optimized calibration models were constructed

with mUltiple linear regression (MLR) analysis based on C=O overtone regions.

The best wavelength combinations were found to be 1882,2010 and 2040 nm for

CPO and refined bleached deodorized (RBD) oils. For FTIR technique, partial

least squares (PLS) analysis was used to replace the previous simple linear

regression model developed for predicting FF A. Both IR techniques showed

excellent results in predicting the FF A values of the unknown samples.

The determination of peroxide value (PV) was based on NIR

transmittance spectroscopy. Calibration standards (2 to 11 PV) were prepared by

oxidized CPO at 90°C. The best NIR region for predicting unknown was from

1350 to 1480 nm with referenced to single-point baseline at 1514 nm. The

standard error of performance (SEP) was similar to the calibration to within 0. 1 %

PV.

xv

The final aspect studied was the determination of p-carotene in CPO

using different techniques. Both FTIR and NIR spectroscopy were compared with

the UV -visible spectrophotometric reference method. PLS calibration model for

predicting p-carotene was developed for the FTIR spectral region from 976 to

926 em'] due to trans -CH=CH- conjugated deformation modes. The study

showed that NIR spectra did not correlate well with the component of interest.

However, highest correlation was found in the visible spectral region from 546 to

8 19 nm. Statistical results showed that both FTIR and NIR spectroscopy can

accurately predict {3-carotene to 5% error; this value was 4% higher as compared

to the reference method.

Results from this study indicated that both NIR and FTIR spectroscopy

were useful techniques for measuring palm oil quality parameters. Compared to

the conventional wet chemical method, NIR and FTIR spectroscopy are capable

of measuring hundreds of samples in a day and yet meet the trading specification.

In addition, by applying these techniques, the amount of hazardous solvents can

be reduced dramatically as well as the cost of labor.

XVI

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sarjana Sains.

PENGEMBANGAN TEKNIK SPEKTROSKOPI INFRAMERAH UNTUK PENENTUAN BEBERAP A PARAMETER KUALITI BAGI

MINY AK SA WIT

OLEH

FELIX MOH MEE HO

Mac, 1998

Pengerusi : Profesor Yaakob Bin Che Man, Ph.D.

Fakulti : Sains Makanan dan Biotechnologi

Beberapa paraIlleter kualiti yang baik untuk minyak sawit mentah (CPO)

dan pecahan-pecaharmya seperti asid lemak bebas (FF A), nilai pengoksidaan,

lembapan dan bendasing, nilai iodin dan kandungan antioksida adalah penting

dalaIll industry minyak kelapa sawit. Bagi tujuan perdagangan di Malaysia,

piawaian untuk kualiti paraIlleter-paraIlleter tersebut mesti dicapai oleh semua

pengilang-pengilang sejajar dengan spesifikasi piawaian Persatuan Pengilang-

pengilang Kelapa Sawit Malaysia (PORAM).

Secara lazimnya, teknik-teknik analisis yang digunakan untuk

menganalisis paraIlleter-paraIlleter bagi sawit adalah secara kimia basah

berdasarkan prosedur AOCS yang melibatkan titrasi. Kebiasaarmya teknik kimia

XIV

tersebut memerlukan sejumlah besar bahan-bahan kimia yang diantaranya

mungkin tidak mesra dengan alam sekitar dan merbahaya kepada kesihatan.

Bahkan kebanyakan analisis kimia tersebut memeriukan masa yang lama serta

rumit terutamanya bagi jumlah sampel yang banyak. Untuk mengatasi masalah

ini, beberapa kajian teknik instrumentasi telah dijalankan sejak beberapa tahun

dahulu. Dari segi ini, spektroskopi inframerah dekat (NlR) dan transformasi

Fourier spektroskopi inframerah (FTIR) menjadi pilihan untuk pendekatan

instrumentasi.

Dalam kajian ini, tiga parameter telah dipilih. Bagi penentuan FF A, teknik

transflektan NIR dan FTIR telah dikaji. Julat kepekatan FF A disediakan dengan

menghidrolisis minyak dengan 0.15% (w/w) lipase di dalam inkubator pada suhu

60°C (200 rpm). Bagi pendekatan NIR, penyediaan sampel dilakukan di dalam

cawan Dutch dan model kalibrasi pengoptimuman dibentuk dengan analisis

multipel linear regresi (MLR) berdasarkan pada daerah overtone C=O.

Kombinasi panjang gelombang yang terbaik diperolehi pada 1882, 2010 dan

2040 nm untuk CPO dan minyak tulin, terluntur dan temyahbau (RBD). Untuk

teknik FTIR, analysis 'partial least squares' (PLS) telah digunakan untuk

menggantikan model regresi linear yang sebelum ini dibangunkan bagi

menganggar FF A. Kedua-dua teknik IR tersebut menunjukkan keputusan terbaik

dalam menganggar nilai FF A bagi sampel yang tidak diketahui.

Penentuan nilai peroksida (PV) adalah berdasarkan kepada spektroskopi

transflektan NIR. Piawaian kalibrasi (2 hingga I I PV) dibuatkan dengan

menyediakan CPO beroksida pada 90°C. Daerah NIR tebaik bagi menganggarkan

sampel yang belum diketahui adalah pada 1350 hingga 1480 nm dengan merujuk

xviii

kepada 'single-point baseline' pada 1514 run. 'Standard error of performance'

(SEP) yang diperolehi adalah bersamaan dengan kalibrasi dalam lingkungan

O.l%PV.

Aspek terakhir yang telah dikaji adalah penentuan j3-karotin sawit. Kedua­

dua spektroskopi FTIR dan NIR dibandingkan dengan kaedah 'UV-visible'

spektrophotometri dalam penentuan j3-karotin di dalam CPO menggunakan

model pendekatan transmisi. Model kalibrasi PLS untuk menganggar j3-karotin

telah dibangunkan pada daerah spektra FTIR pada 970-926 cm·1 yang disebabkan

oleh trans-CH=CH- mod konjugat pembentukan semula. Dalam kajian ini, ia

menunjukkan bahawa spektra N1R tidak berkorelasi dengan komponen­

komponen yang dikaji. Bagaimanapun, korelasi didapati paling tinggi pada

daerah spektral tampak dari 546-819 run. Keputusan analisis statistik

menunjukkan bahawa FTIR dan NIR telah dapat menganggar j3-karotin dengan

tepat ke tahap 5% kesilapan iaitu 4% lebih tinggi berbanding dengan kaedah

rujukan.

Keputusan daripada kajian ini menunjukkan bahawa kedua-dua cara

spektroskopi NIR dan FTIR merupakan teknik yang lebih berkesan digunakan

untuk mengukur parameter kualiti minyak kelapa sawit berbanding dengan

kaedah kimia basah yang lazim. Spektroskopi NIR dan FTIR berkeupayaan

mengukur beratus sampel sehari dan masih mampu memenuhi spesifikasi

perdagangan. Disamping itu, melalui pengunaan teknik ini jumlah penggunaan

pelarut yang merbahaya dapat dikurangkan secara dramatik dan juga kos tenaga

kerja.

XIX

CHAPTER 1

INTRODUCTION

The crude palm oil (CPO) is extracted from the fleshy portion

(mesocarp) of the fruits of the oil palm. In Malaysia, commercial oil palm

cultivated today, Elaeis guineensis Jacq., is the high yielding hybrid of Dura x

Pisifera known as Tenera (Pantzaris, 1987). Palm oil is a very versatile oil with a

range of distinct properties which enable it to meet most of the technological

requirements for formulation of fat based products. About 90% of the palm oil

currently goes into food application and the remaining 1 0% into non-food

products. Apart from its direct use in cooking and frying, palm oil is also used in

margarines, vanaspati, confectioneries, filled milk and many more products after

fractionation, hydrogenation or interesterification processes.

In order to produce quality finished products of palm oil, the control

of raw material, extraction processes and refining processes are essential. The

quality is indicated by means of several quality parameters namely iodine value

(IV), peroxide value (PV), free fatty acid (FF A) content, moisture, impurities and

etc. For trading purposes in Malaysia, the standard of these quality parameters

have to be accomplished by all the refiners in accordance to the Palm Oil Refiners

Association of Malaysia (PORAM) standard specifications.

1

2

Conventionally, the analytical techniques used to analyse the quality

parameters are by the wet chemical titration methods based on the American Oil

Chemists' Society (AOCS) procedures (AOCS, 1 989). The estimation of FFA,

for instance, is done by titration of the palm oil with an alcoholic solution of

potassium or sodium hydroxide. The end point is determined when permanent

pink colour is obtained using phenolphthalein as indicator. The determination of

IV in palm oil is time consuming which takes more than an hour per sample.

Other procedures use substantial amounts of chemicals and reagents during

analyses. Besides, solvents used in prediction of IV like carbon tetrachloride are

normally not environmental friendly as well as being a health hazard.

To overcome these problems, many laboratories are developing

modem instrumentation analytical procedures to replace the conventional

method, consequently, reduces the usage of hazardous chemicals and the labor

costs dramatically. The most common instrumental analyses in fats and oils

laboratories are high performance liquid chromatography (HPLC) and gas

chromatography (GC). They have been used in separating and quantifying

triglycerides (Plattner et aI., 1977), fatty acid methyl ester (Yoshida et aI., 1 992)

and also antioxidants such as tocols and carotenoids (Weber, 1 987).

In high-tech laboratories, sophisticated infrared (IR) spectroscopic

techniques have also been implemented in fats and oils analyses. Fourier

transform infrared (FTIR) spectroscopy operates in mid-IR region is an example.

It has been used extensively to determine the moisture content (Hartwig and

3

Hurburgh, 1 990) and to identify the trans fatty acid composition (Sleeter and

Matlock, 1 989). van de Voort and coworkers ( 1 993; 1 994a) developed several

calibration methods based on FTIR to measure some of the quality parameter in

edible oils such as IV, FFA and PV. Near infrared (NIR) on the other hand has

less been used. However, this technique also shows potential in fats and oils

analyses. Dong et al ( 1 997) has successfully measured the PV in variety of edible

oil using FT -NIR.

Based on a number of studies done on IR spectroscopy, it was

postulated that they can be ideal methods in palm oil analyses. The objectives of

this study were to develop IR spectroscopic methods to determine some of the

quality parameters in palm oil as follows:

1 . To determine the free fatty acid contents in palm oil using NIR and FTIR

spectroscopy

2. To measure peroxide value in thermally oxidized palm oil with NIR

spectroscopy

3. To compare NIR and FTIR spectroscopic methods with UV -visible

spectrophotometer in palm carotene analysis

CHAPTER 2

REVIEW OF LITERATURE

Production and Characteristics of Palm Oil

Origin and Agronomy

The commercial oil palm, Elaeis guineensis Jacq., cultivated in

Malaysia is known as tenera which is produced by crossing largely dura with

selected pisiferas varieties originated from Africa (Yap et al., 1991). It was first

introduced into Malaysia in 1870 as an ornamental plant. However, the first

commercial planting did not seriously take place until 19 17 (Pantzaris, 1987).

Oil palm grows well in tropical condition. It produces highest yield in

a climate with rainfall of 80 inches or more per year and with no marked dry and

wet seasons (PO RIM, 1985). The mean maximum temperature of about 29°C to

3 2°C and minimum temperature from 22°C to 24°C is suitable for the growth of

oil palm. Under the right plantation conditions, the rate of growth is about I to 2

feet per year and have a lifespan of more than 100 years. However, for

commercial palm, the palm is likely to be cut down and replanted after 25 years.

This is due to the decrease in yields and the increase of height which makes

harvesting difficult.

4

Production

Before 1 975, almost all of Malaysia's palm oil exports were in crude

form. After the introduction of physical refining plants, most of the attention has

shifted from plantations and mills to the refineries. In 1 993, export of processed

palm oil, amounted to 6.0 million tonnes (98%) compared to 1 02 tonnes for CPO.

The detail of the export of palm oil and its products is given in Table 1 .

Within a relatively short span of time, the planted areas under oil palm

increased tremendously (Table 2). In 1 960 the total planted area was 54,700

hectares but by 1 970 it had reached 290,000 hectares. In 1 993, a total of 2.3

million hectares had been planted. It is expected that in the year 2000 about 2.9

million hectares of land will be planted with oil palm (PORIM, 1 995a).

Physiochemical Characteristics

The physical and chemical properties of Malaysian CPO are given in

Table 3. Like all other vegetable oils and fats, palm oil composed predominantly

of triglycerides (or tri-ester) which are derived from one molecule of glycerol and

three molecules of fatty acids (Sonntag, 1 979). A mixed triglyceride is formed

when gylcerol reacts with different fatty acids. The profiles of triglyceride

molecular species are characteristic of the genetic background of the sources of

oils and fats (Litchfield, 1 972).

In contrast to other non-lauric oils, in commercial use, palm oil is