university press scholarship online afmfmodes oxord...

34
AFM modes Page 1 of 34 PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy ). Subscriber: UC - Berkeley Library; date: 20 February 2015 University Press Scholarship Online Oxford Scholarship Online Atomic Force Microscopy Peter Eaton and Paul West Print publication date: 2010 Print ISBN-13: 9780199570454 Published to Oxford Scholarship Online: May 2010 DOI: 10.1093/acprof:oso/9780199570454.001.0001 AFM modes Peter Eaton Paul West DOI:10.1093/acprof:oso/9780199570454.003.0003 Abstract and Keywords The many different imaging modes and experiment types that modern AFMs can carry out explain its popularity. They transform a high‐resolution microscope into a versatile measurements tool that can determine a very wide range of sample properties with nanometre resolution. This chapter describes the differences between the various imaging modes available, such as contact, non‐contact, and intermittent‐contact modes. The theory and practices, as well as the strengths and weaknesses of each mode are highlighted. Furthermore, non‐topographical modes, which can measure mechanical, (bio)chemical, magnetic (MFM), electrical (EFM) and thermal properties, are discussed. Techniques such as force spectroscopy allow the AFM to directly measure the force of interaction between single molecules. Other AFM techniques can even be used to modify samples, and then image the results. Examples of the use of all modes are given, to help

Upload: others

Post on 09-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 1 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

UniversityPressScholarshipOnline

OxfordScholarshipOnline

AtomicForceMicroscopyPeterEatonandPaulWest

Printpublicationdate:2010PrintISBN-13:9780199570454PublishedtoOxfordScholarshipOnline:May2010DOI:10.1093/acprof:oso/9780199570454.001.0001

AFMmodes

PeterEatonPaulWest

DOI:10.1093/acprof:oso/9780199570454.003.0003

AbstractandKeywords

ThemanydifferentimagingmodesandexperimenttypesthatmodernAFMscancarryoutexplainitspopularity.Theytransformahigh‐resolutionmicroscopeintoaversatilemeasurementstoolthatcandetermineaverywiderangeofsamplepropertieswithnanometreresolution.Thischapterdescribesthedifferencesbetweenthevariousimagingmodesavailable,suchascontact,non‐contact,andintermittent‐contactmodes.Thetheoryandpractices,aswellasthestrengthsandweaknessesofeachmodearehighlighted.Furthermore,non‐topographicalmodes,whichcanmeasuremechanical,(bio)chemical,magnetic(MFM),electrical(EFM)andthermalproperties,arediscussed.TechniquessuchasforcespectroscopyallowtheAFMtodirectlymeasuretheforceofinteractionbetweensinglemolecules.OtherAFMtechniquescanevenbeusedtomodifysamples,andthenimagetheresults.Examplesoftheuseofallmodesaregiven,tohelp

Page 2: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 2 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

thereadertounderstandtheirpotential.

Keywords:AFMmodes,topographica,lnon‐topographical,forcespectroscopy,contact,non‐contact,intermittentcontact,MFM,EFM

TherangeofavailableAFMmodesandexperimentsareattheheartofmodernAFM.ThewidevarietyofexperimentsthatmaybeperformedwithanAFMmakeitaversatile,powerfultool.Initiallytheonlymodeavailableforimagingwascontactmode,andthislimitedthetypesofsamplesthatcouldbeexamined,thetypesofexperimentsthatcouldbeperformed,andthetypeofdatathatcouldbeproduced.NowthereareaverylargenumberofpossiblemodesofoperationofAFM.Forexample,in1999,Friedbacheretal.attemptedtolistthenamesofalltheSPMmodesdescribed,andarrivedatmorethan50terms[94].SomeoftheseSPMmodeswereSTMorSNOM(ScanningNearfieldOpticalMicroscopy),butthereareatleast20differentmodesofAFM.SNOMisanexampleofusingtheclosecontactandpositioncontroloftheAFMtomeasurepropertiesofthesurfaceotherthantopography(inthiscase,opticalproperties).Asshowninthischapter,manyofnewermodesinAFMarealongtheselines:techniquesthatusetheincredibleresolutionprovidedbyscanningaprobeclosetothesurfacewithanAFMtomeasuredifferentpropertiesofthesamplesurfaceonthenanoscale.SNOM(alsosometimescalledNSOM,near‐fieldscanningopticalmicroscopy),isaverypowerfultechniquecombiningnear‐AFMresolutionwiththespectroscopicinformationthatisavailablebyusinglight‐basedtechniques.However,SNOMisnotcoveredinthisbookbecausealthoughsomeearlySNOMsinstrumentsweredevelopedbymodificationofAFMs,experimentsarenowgenerallycarriedoutwithspecializedSNOMinstruments,whichareratherdifferentfromanormalAFM.ForreviewsofSNOM,see[95,96].AtablecategorizingmajortechniquesinScanningProbeMicroscopyisshowninFigure3.1.

ForthepurposesofmakingthisapracticalguidetoAFM,inthischapterweconcentrateontechniqueslikelytobeaccessibleandofinteresttothereader.ThismeansthatwewillnotdescribeindetailtechniqueswhicharenotattainablewithcommercialAFMswithoutsignificantmodification,norcovermodesthathavebeendescribedbutnotwidelyadopted.Somemoreadvancedtechniquesarecoveredintheapplicationssection,Chapter7.

3.1TopographicmodesThebasisofAFMasamicroscopictechniqueisthatitmeasuresthetopographyofthesample.AsdescribedinChapter1,thedatasetsgeneratedinthiswayarenotconventionalimages,asproducedbyopticalmicroscopy,butratheramapofheightmeasurements.Thesemaybelatertransformedintoamorenaturalisticimagewithlightshading,perspective,etc.tohelpuspicturetheshapeofthesample(thisprocessiscoveredinChapter5).Inordertomaketheseheightmeasurements,avarietyofmodeshavedeveloped,whichcanbedividedintothosemodeswhichmeasurethestaticdeflection(p.50)

Page 3: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 3 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.1. SummaryofthenamesofsomeSPM‐basedtechniques.

oftheAFMcantilever,andthosethatmeasurethedynamicoscillationofthecantilever.Thedifferencesbetweenthemodesleadnotonlytodifferentexperimentalprocedures,buttodifferencesintheinformationavailable,differingsuitabilitiesforparticularsamples,andeventodifferencesintheinterpretationofthedata.

3.1.1Contactmode

ContactmodeAFMwasthefirstmodedevelopedforAFM.Itisthesimplestmodeconceptually,andwasthebasisforthedevelopmentofthelatermodes.Thereforeunderstandingcontactmodehelpstounderstandhowtheothertechniqueswork.Althoughthelimitationsofcontactmodepromptedthedevelopmentofmodesthatcouldexaminedifferentsamplesindifferentenvironmentsandgivedifferentinformation,contactmodeisstillanextremelypowerfulandusefultechnique.Contactmodeiscapableofobtainingveryhigh‐resolutionimages.Itisalsothefastestofallthetopographicmodes,asthedeflectionofthecantileverleadsdirectlytothetopographyofthesample,sonosummingofoscillationmeasurementsisrequiredwhichcanslowimaging.

InordertounderstandthewayAFMmodeswork,itisnecessarytouseso‐calledforce–distancecurves.Acartoonofasimpleforce–distancecurveisshowninFigure3.2.Asthenameimplies,thesecurvesareaplotofforce(ontheyaxis)versusdistance(onthexaxis).SuchacurveissimpletoacquirewiththeAFM.Itiscalculatedfromadeflection–distancecurvewhichiseasilymeasuredbymonitoringthedeflectionofthecantileverasthepiezoisusedtomovethetiptowardsthesample.Typically,atasetdeflectionlevel,thedirectionisreversed,andthetipwithdrawsfromthesample.Thisresultsinadeflectionversusdistancecurve,whichmaybeconvertedtoaforce–distancecurve.Measurementofforce–distancecurvesisaverysensitiveandquantifiablewayto(p.51)

Page 4: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 4 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.2. Simplifiedforce–distancecurveshowingcontact(repulsiveregion)scanningregime.Adeflection–distancecurve,whichistherawdatafromwhichaforce–distancecurveismeasured,hasasimilarshape.Right:illustrationofprobebendingineachregime.

determinetip–sampleinteractions,andisthebasisforseveralnon‐topographicAFMmodes,suchasforcespectroscopyandnanoindentation.Moreinformationabouttheuseofsuchcapabilitiesofforce–distancecurves,andhowtheyareconvertedfromdeflectiontoforceisgiveninSection3.2.1,andSection4.5,respectively.

ConsideringtheapproachcurveshowninFigure3.2,whenthetipisfarfromthesamplesurface,thecantileverisconsideredtohavezerodeflection;asthetipapproachesthesurface,itnormallyfeelsfirstanattractiveforce,anda‘snap‐in’occurs,asthetipbecomesunstableandjumpsintocontactwiththesurface.Astheinstrumentcontinuestopushthecantilevertowardsthesurface,theinteractionmovesintothe‘repulsive’regime,i.e.thetipisnowapplyingaforcetothesample,andthesampleappliesanoppositeforcetotip.Inthisregime,acombinationofcantileverbendingandsamplecompressionwillbeoccurringaccordingtotherelativecompliancesofthesamplesurfaceandAFMprobe.Ifthedirectionofmovementisreversed,theinteractionpassesagainintotheattractiveregime,andthetipstaysonthesurfaceuntilinstabilityoccursoncemore,andthetipsnapsoffthesurface.Itiswithintherepulsiveregimethatcontact‐modeimagingusuallyoccurs(forexample,atthepointlabelled‘set‐point’inFigure3.2).Inotherwords,incontact‐modeAFM,thetipoftheprobeisalwaystouchingthesample.Thishasthefollowingimportantimplicationsforcontact‐modeAFM:

1.Asaresultoftherepulsiveforcebetweenthetipandthesample,thesamplemaybedamagedorotherwisechangedbythescanningprocess.2.Conversely,thetipcouldalsobedamagedorchangedbythescanningprocess.3.Asthetipandsampleareconstantlyincontactwitheachotherasthetipmovesalongthesample,inadditiontothenormalforcetheyapplytoeachother,lateralforcesareexperiencedbybothprobeandsample.4.Thecontactbetweenthetipandthesamplemeansthatthenatureofthesamplesurfacemayaffecttheresultsobtained.Thismeansthatthetechniquecanbesensitivetothenatureofthesample.

(p.52) TheforcesappliedtothesurfacebytheprobeincontactmodearegivenbyHooke'slaw:

F = −k × D

Page 5: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 5 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(3.1)whereF=force(N),k=probeforceconstant(N/m)andD=deflectiondistance(m).

Thebasisofcontact‐modeAFMisthatthemicroscopefeedbacksystemactstokeepthecantileverdeflectionatacertainvaluedeterminedbytheinstrumentoperator.Thispointisknownastheset‐point.Theset‐pointisoneoftheimportantcontrolparametersthattheoperatormustadjusttooptimizeimaging,andthereareequivalentparametersforallotherAFMimagingmodesaswell.Equation3.1showsthateitheraprobewithahighforceconstant(onewithastiffcantilever),oragreaterdeflection(i.e.ahigherset‐point),willleadtoahigherappliedforce.BecausethefeedbacksystemoftheAFMcannothaveinstantaneousresponse,theverticaldeflectionwillactuallyvarysomewhatduringimaging(indicatedbytheredregionofthecurveinFigure3.2).Theamountitvarieswilldependonthetopographyofthesample,flexibilityofthecantilever,scanningspeed,andhowwellthefeedbackcircuithasbeenoptimized.OptimizationoftheseparametersisdiscussedinSection4.2.TheAFMsoftwaremaydisplaythedeflectionsignalasalineplotasthetippassesoverthesample,orasanimage.Thedeflectionsignalincontact‐modeAFMistheerrorsignal,thatis,thesizeofthedeflectionisameasureofhowmuchthecantileverisdeflectingbeforethedeflectionis‘corrected’bythefeedbackcircuitviaheightadjustmentbythepiezo.Therefore,intheidealsituation,therewouldbenocontrastinthedeflectionimage.Themorecontrastexistsinthedeflectionsignal,themore‘errors’willbepresentintheheightimage,becauseregionsofhighcontrastinthedeflectionimagecorrespondtoregionsintheheightimage,wherethefeedbackhasnotyetcorrectedforcantileverdeflection.However,usuallyitisnotpossibletohavethefeedbacksignalrespondperfectly,andthedeflectionsignalwillshowtheslopeofthesample,becauseitisregionswherethereishighslope,ormoreprecisely,agreatrateofchangeofslopewithdistance,thatgiverisetolargecantileverdeflections.

Theimagingmodedescribedsofarisknownasconstant‐forcecontact‐modeAFM.Iftheuserturnsofffeedbackaltogetherwhileimaging,thentheyareeffectivelyusingconstant‐heightcontact‐modeAFMratherthanconstant‐forcecontact‐modeAFM.Becauseconstant‐forcemodeisbyfarthemostwidelyusedmode,ingeneralanyreferencetocontact‐modeAFMwillmeanconstant‐forcemodeunlessspecifiedotherwise,andthisistheconventionwefollowinthisbook.Inconstant‐heightmode,withnofeedbackactive,theimagesignalcomesentirelyfromcantileverdeflection,ratherthanfromthevoltageappliedtothezpiezo(whichwouldbetypicallysetataconstantvalue).Heightmeasurementswillthereforerequirespecificcalibrationofthecantileverdeflection,toextractrealsampletopography.Constant‐heightmodeAFMdoeshavesomespecificapplications:itcanbeusefulinconditionswherescanningiscarriedoutsofastthatthefeedbacksystemcannotcope[9,36].However,undertheseconditions,AFMisinfactactingratherlikeastylusprofilerasthetip–sampleforceisnotfullycontrolled.Typically,tocarryoutthesemeasurements,thefeedbacksystemisinitiallyusedtodeterminethelocationofthesamplesurface,andtheapproximatetopography,beforebeingturnedoff,orjustreducedtoaverylowlevel.

F = −k × D

Page 6: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 6 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

However,evenusingconstant‐forceAFM,thesoftwaretypicallywillallowtheusertosavethedeflectionimage,andsomeoperatorschoosetopublishthisimage,asitisoftena(p.53)

Fig.3.3. Illustrationoftherelationbetweenheightanddeflectionimages.Lefttoright:height,right‐shadedheightanddeflectionimagesofthesurfaceofamosquitoeye.Theheightimageshowshowmuchthezscannermovestomaintaintheset‐point.Thedeflectionimageshowshowthecantileverbendsasitpassesoverthesample,andisthesignalusedforfeedbackincontact‐modeAFM.Thisimageisverysimilartotheshadedheight.

simplewaytoshowtheshapeofthesample,andmayevenshowfeaturesnotvisibleintheheightimage(whichcouldbeanindicationthatfeedbackwasnotoptimized).However,itisworthrememberingthatwherefeedbackwascorrectlyoptimized,theAFMheightimagewillalsocontainallthefeaturespresentintheerrorsignal.Onewaytoshowthisistoapplyashadingalgorithmtotheheightimage–thiseffectivelygivesthederivativeoftheheightimage;theresultingimagewillbeverysimilartothedeflectionimage.AnexampleofthisisshowninFigure3.3.NotethatinthedeflectionimageshowninFigure3.3thez‐scaleisinvolts.Thez‐scalewasincludedhereforillustrativepurposes,insuchimagesthez‐scaleisalmostcompletelymeaninglessscientifically–evenifconvertedtonanometres,thesizeofthedeflectioncouldeasilybechangedbyadjustmentofthefeedbackparameters,andsoshouldalwaysberemovedfromtheimagebeforepresentation.

Thedeflectionsignalisused,asdescribedpreviously,withthefeedbackparameterstodeterminehowthezpiezoelectricmustmovetomaintainaconstantcantileverdeflection(andhenceconstanttip–sampleforce).Theamountthezpiezomovestomaintainthedeflectionset‐pointistakentobethesampletopography;thissignal,plottedversusdistance,formstheheightortopographyimageincontact‐modeAFM.Thereisathirdsignalwhichistypicallyavailableincontact‐modeAFM.Thisderivesfromthelateraltwistingofthecantilever,andisthereforeusuallycalledlateraldeflection.Thissignalistypicallyusedduetoitsmaterialsensitivity,ratherthanasameasureofsampletopography,anditisthereforecoveredinthenon‐topographicmodespartofthischapter(Section3.2.3.1).TheoriginoftheverticalandlateraldeflectionsignalsinatypicalopticalleverAFMset‐upisshowninFigure3.4.ThephotodetectorusedinopticalleverAFMsusuallycomprisesoffoursegments.Thedifferenceinsignalbetweenthetoptwoandbottomtwosegments,i.e.(A+B)–(C–D)givestheverticaldeflection(measuredinvolts,oramps),andthedifferencebetweentherightmosttwosegmentsandtheleftmosttwosegmentsgivesthelateraldeflection,i.e.(B+D)–(A+C).

Itisworthnotingherethatincontact‐modeAFM,likemostoftheothermodes,two

Page 7: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 7 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

versionsofeachdatatypecanbeavailable,thesebeingthedatacollectedintheleft‐to‐rightdirection,andthereverseset,collectedintheright‐to‐leftdatadirection.By(p.54)

Fig.3.4. Illustrationofhowthephotodetectordetectsverticalandhorizontalbendingofthecantilever.

conventionAFMimagesarepresentedwiththefastscanaxisdataappearinghorizontally,nomatterinwhichdirectiontheAFMtipwasscanned.Sotherewillbeforwardandbackwardheight,verticaldeflectionandlateraldeflectionimagesavailable,meaninguptosixdatachannelsmightberecorded.Iftheinstrumentisequippedwithazaxiscalibrationsensor,bothzvoltageandzsensorchannelsmightbeavailable,raisingthetotaltoeightchannels.Typically,whiletheprobescansovereachlineinbothdirections,onlyonedirectionwillbesaved.Thisisbecausetheheightdatainthetwodirectionsshouldbeidentical.Theverticaldeflectionimagesshouldbethesameonpartsofequalslope,andgiveoppositecontrastonregionsofchangingslope,buttheinformationavailablefromthedatacollectedinthetwodirectionsiseffectivelythesame.Soformostchannels,thereisrarelyanyneedtosavethedatacollectedinbothdirections,althoughitissometimesusefultoobservebothforwardandbackwardheightdatawhileoptimizingscanningconditions,asdiscussedinSection4.2.Lateraldeflectiondatafrombothdirectionsissometimessaved,tohelpunderstandfrictionalpropertiesofthesample,whichisdiscussedinSection3.2.3.1.

Applicability

Contact‐modeAFMhasareallywiderangeofpotentialapplicationsandsomeofthesearedescribedinChapter7.However,itispossibletosummarizesomegeneralcaseswherecontactmodeislikelytobechoseninpreferencetoothertechniques.Probablythebestreasontousecontactmodeisitshighresolution.Somedynamicmodescanalsoachieveextremelyhighresolution,butcomparedto,forexample,intermittent‐contactmode,theresolutionofcontactmodeispotentiallyextremelyhigh.Whatkeepsitfrombeingusedmorewidelyisthattheappliednormalforceleadstoahighlateralforceappliedtothesampleaswell.Inthecaseofweaklyadsorbedsamples,orsoft,easilydeformedsamples,thiscanleadtoproblemsofsampledistortion,damage,orevenremovalfromthesubstrate[97,98].Becauseofthis,ithasbeensuggestedthatcontact‐modeAFMisnogoodforsoftsamples.Thisisnotthecase,astherearemanyreportsofsoftbiologicalsamples,eveninahydratedstate,beingsuccessfullyimagedbycontact‐modeAFM(forexamples,see[99–103]).Often,contactmodeischosentoimagesuchdelicatestructureswhensub‐molecularresolutionisrequired[99,100,102,104].What(p.55) istrueisthatinambientconditions,acapillarylayerofwaterwillformbetweenthetipandthesurface.Oneeffectofthisisto‘pull’theAFMtipontothesurface,oftenapplyinganevenstrongerforcethantheforceapplied(viatheset‐point)bytheoperator.Thusitiseasyto

Page 8: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 8 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

unwittinglyapplyaverylargeforce(>nN)tothesampleincontact‐modeAFMinambientconditions.Inwater,theseforcesdonotexist,soitiseasiertoimagewithaverygentleforce.Forthisreason,andduetosomecomplicationsofimagingindynamicmodesinliquids(seethenextsection),imaginginliquidisastrongpointofcontactmode.Asmentionedpreviously,contactmodealsoworkswellinhigh‐speedAFM,andsomehigh‐speedAFMset‐upsusethismodeexclusively[36].

3.1.2Oscillatingmodes

InthefirstpaperonAFM,BinnigandQuateacknowledgedthepotentialbenefitsofoscillatingthecantileverinanAFM,andcomparedtheresultsofusinganoscillatingprobewiththosefromcontactmode.Atthetimecontactmodegavefarbetterresults,probablyduetothenatureoftheprobeused[19].Althoughtheuseofoscillatingmodeswererevisitedshortlyafterwards[105],itwasseveralyearsbeforeoscillatingprobemodesbecamepopular,andforquiteawhilenearlyallAFMwascarriedoutincontactmode.TheprimarymotivationforusingoscillatingmodeinanAFMistotakeadvantageofthesignal‐to‐noisebenefitsassociatedwithmodulatedsignals.Thus,anAFMthathasoscillatingmodescanmeasureimageswithasmallprobe–sampleforce.

Therearenowalargenumberofdynamicmodesofoperation,andevenmorenamesforthosemodes.However,allofthesemodesarevariationsonatheme.Thecantileverisoscillated,usuallywithanadditionalpiezoelectricelement,andtypicallyatitsresonantfrequency.Whentheoscillatingprobeapproachesthesamplesurface,theoscillationchangesduetotheinteractionbetweentheprobeandtheforcefieldfromthesample.Theeffectisadampingofthecantileveroscillation,whichleadstoareductioninthefrequencyandamplitudeoftheoscillation.Theoscillationismonitoredbytheforcetransducer(i.e.bytheopticalleverinmostAFMs),andthescanneradjuststhezheightviathefeedbacklooptomaintaintheprobeatafixeddistancefromthesample,justasincontact‐modeAFM.Theonlyrealdifferencesbetweenthevariousoscillatingmodesavailableareinthesize(amplitude)oftheoscillationappliedtotheprobe,andthemethodusedtodetectthechangeinoscillation.ThegeneralprincipleofoscillatingAFMmodesisshowninFigure3.5.

Irrespectiveofthemanydifferenttermsusedtodescribethetechniques,thereareactuallyonlyafewkindsofconditionsusedinoscillatingimagingmodes.Theusercandecidetoseteitherasmalloralargeappliedoscillationamplitude,andsometimescandecidehowtodetectthechangeinprobeoscillation.Someinstrumentsmayonlyhaveonedetectionschemeimplemented.Theinstrumentalset‐upschematicisshowninFigure3.5.Anoscillatingsignalisgenerated,andappliedtothecantilevermechanically,suchthattheprobeisoscillatedclosetoitsresonantfrequency.Theoscillationoftheprobeismonitoredasitisbroughtclosetothesamplesurface.Thedetectedchangeintheoscillation(whetherdetectedviaamplitude,phaseorfrequency),isusedinafeedbacklooptomaintaintheprobe–sampleinteractionconstant.Thechoiceofsmallorlargeamplitudehasaconsiderablepracticaleffect,asisillustratedinFigure3.6.Usingasmalloscillationamplitude(DenotedbythearrowA),itispossibletomaintain(p.56)

Page 9: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 9 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.5. SchematicofgeneralizedoperationofoscillatingAFMmodes,showinginstrumentalset‐up.Anoscillatinginputsignalisappliedtothecantilevertomaketheprobevibrateupanddown.Theactualmovementoftheprobewilldependonitsinteractionwiththesamplesurface.Theresultingoscillationinthecantileverdeflectionismeasuredandcomparedtotheinputoscillationtodeterminetheforcesactingontheprobe.

thecantileverintheattractiveregimeonly.Thistechniqueissometimesknownasnon‐contactAFM,oralternatively,andperhapsmoreaccurately,asclose‐contactAFM(seeTable3.1).Thistechniquehassomeadvantagesduetothelowprobetip–sampleforcesinvolved,andisdiscussedbelowinSection3.1.2.1.Ontheotherhand,itcanbeseenthatifalargeoscillationamplitudeisapplied,thentheprobewillmovefrombeingfarfromthesurfacewherethere'snotip–sampleinteraction,throughtheattractiveregime,intotherepulsiveregime,andback,ineachoscillationcycle(arrowB).Thistechniqueinvolveslargeprobetip–sampleforces,socanbemoredestructive,butiseasiertoimplement.Thistechniqueiswhatwecallintermittentcontact‐modeAFM(andisalsoknownbymanyothernames,someofwhicharegiveninTable3.1),andisdiscussedinSection3.1.2.2.

Fig.3.6. DifferentoperatingregimesforoscillatingAFMmodes.A:withasmallamplitudeofoscillation,theprobecanbekeptintheattractiveregime.B:withalargeroscillationtheprobemovesthroughnon‐interacting,attractiveandrepulsiveregimes,resultinginintermittentcontact.

(p.57)

Table3.1.NomenclatureofsomeoscillatingprobeAFMmodes.

Page 10: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 10 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Detection Amplitude

Low HighAmplitude Rarelyused IntermittentContactAFM(IC‐AFM),

alsoknownasAC‐AFMorTappingPhase Non‐contactAFM(NC‐AFM),

alsoknownasclose‐contactAFMRarelyused

TypicallyanAFMdesignedforuseinairorliquidhaselectronicsthatcanmeasurechangesinvibrationalamplitudeorphaseatapreselectedfrequency.Sotheinstrumentoperatorcanchoosetouseeitheroftheseforfeedback.Incombinationwithlargeorsmallamplitudes,therearefourtypesofoscillatingexperimentavailabletomostAFMusers,whichareshowninTable3.1.

Itshouldbestressedthatthetwopossibleconditionsdescribedas‘rarelyused’inTable3.1arenotunusable,justthattheyarenotcommonlyapplied.Phasedetectionisusuallyusedwithsmallamplitudes(close‐contactAFM),duetosomewhathighersensitivity,andamplitudedetectionisusuallyusedwithlargeamplitudes(intermittent‐contactAFM),butthesearenottheonlypossibleimagingmethods.Optimalimagingconditionsaresometimesdifficulttoestablish,anditmaybenecessarytotrydifferentamplitudesanddetectionschemestofindtheidealconditions.

Analternativetoamplitudeorphasedetectionisfrequency‐modulationdetection(FM‐AFM),typicallyusedinultra‐highvacuumconditions(UHV‐AFM).FM‐AFMistypicallyappliedwithsmalloscillationamplitudesinthenon‐contactregime.TypicallyFM‐AFMiscarriedoutwithaphase‐lockedloopdevice.ThistechniqueisunavailabletomostAFMusersduetotheneedforadditionalequipment,soitisnotcoveredindetailinthisbook.However,ithasbeendescribedindetail[106,107],andcomparedwiththeamplitudemodulation(AM‐AFM)techniqueswediscusshereelsewhere[108].

3.1.2.1Non‐contactmode/close‐contactmodeOneofthegreatadvantagesofoscillatingmodesinAFMisthattheycandecreasethesizeoftip–sampleforces,whilemaintaininghighsensitivitytothesampletopography.Toachievenon‐contactAFM,thetipmustbecloseenoughtothesamplesurfacetoachievethishighsensitivity,withoutpassingintotherepulsiveregimeusedforcontact‐modeAFM.Non‐contactAFMisthereforecarriedoutintheattractiveregime,asshowninFigure3.7.

Byusingahighlystiffcantileverandmonitoringthedynamiceffectsoftheattractiveforce(i.e.thechangeintheoscillation)inthisregime,itispossibletomaintainthecantileververyclosetothesurfacewithoutjumpingtotherepulsiveregime.Itispossibletoobservechangesintheoscillationamplitudeandphaseinthisregime.Theseeffectsarecausedbyachangeinthecantileverresonantfrequencywhichisinturncausedbyforcesfromthesurface(normallyattractivevanderWaalsforces)actingonthetip.The

Page 11: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 11 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

resonantfrequencyfarfromthesurface,ω0isgivenbyω0=c√kwherecisafunctionofthe(p.58)

Fig.3.7. Operatingregimefornon‐contactAFM.Withasmallamplitudeandstiffcantilever,theprobecanoscillatewithintheattractiveregimeonly.

cantilevermass,andkisthespringconstant.Butanadditionalforceffromthesurfacemeansthatthenewresonantfrequencyω′Oisgivenby:

(3.2)wheref′isthederivativeoftheforcenormaltothesurface[109].

Theimportantpointhereisthateitherthechangeinamplitudeorthechangeinphase(whichactuallyderivesfromthechangeinfrequency)maybeusedinthefeedbackcircuittomaintainthetipatafixeddistancefromthesamplesurface.Thenamenon‐contactAFMisactuallyquitemisleading.AllAFMmodesinvolvetheprobemovingintotheforcefieldofthesamplesurface,including‘non‐contact’AFM.Atthesortofdistancesinvolved,itisimpossibletosayatwhichpointcontactoccurs.FurthermisunderstandingiscausedbythefactthatanumberofothernameshavebeenusedfordynamicAFMmodes,andthereisnoclearconsensusonthecorrecttermstouse,sothereisgreatscopeforconfusion.Hereweusethetermnon‐contact‐modeAFMtomeanAFMcarriedoutintheattractiveregime,typicallyusingsmallamplitudesofoscillation.Section3.1.2.2dealswithdynamicmodesthatpassintotherepulsiveregime,whichwechoosetocallintermittent‐contactmode.

Non‐contact‐modeprinciplesofoperation

Typically,non‐contactmodeiscarriedoutinamplitudemodulationmode,andtheerrorsignalmaybeeithertheamplitudeorphaseofoscillationofthetip.Toavoidthepossibilityofslippingintotherepulsiveregimewhichislikelytodamageorcontaminatethetip[110],ahigh‐frequencycantileveristypicallyusedwithω0intherangeof300–400kHz.Inaddition,smalloscillationamplitudesareused,oftenoftheorderof10nm[111].Aswithalldynamicmodesofoperation,scanningspeedisusuallylowerthanincontactmode,althoughthehighfrequenciesandsmallamplitudesmeanscanningspeedcanoftenbegreaterthaninIC‐AFM.WhenusedinUHVconditions,frequencymodulationisusually

= cw′0 k − f ′

− −−−−√

Page 12: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 12 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

used[108].

Applicability

Non‐contact,orclose‐contactAFMisaverywidelyappliedtechnique,andcanbeusedforimagingofalmostanysampleinAFM.Itiscurrentlyusedlessoftenthanintermittent(p.59)

Fig.3.8. Possiblenon‐contactimagingconditionsunderambientconditions,withasamplecoveredinacontaminationlayer.Suchalayerexistsonmostsamplesinair.Inthefirstcaseontheleft,theprobeoscillatesabovethecontaminationlayer.Inthesecondcase;right,theprobeoscillateswithinthecontaminationlayer.

contactinambientconditions.However,withcare,itcanreplaceintermittentcontactinnearlyallapplications,andoftengivesbetter,andmoreconsistentresultsduetolowertipwear.Oneofthelimitingfactorsfornon‐contactmodeinairisthecontaminationlayerpresentonmostsurfacesunderambientconditions.Ingeneral,thepresenceofthislayermeansthattheprobe–surfaceinteractionforcesaregovernedbythecapillaryforcesbetweentheprobeandthecontaminationlayer.Fornon‐contactAFM,Theprobemaybevibratedintwodifferentdistinctregimesasitisscannedacrossthesurface,seeFigure3.8.Inthefirstregime,theprobeisoscillatedabovethesurfaceofthecontaminationlayer.Thevibrationamplitudemustbeverysmallandaverystiffprobemustbeused.Theimagesofthesurfacecontaminationlayeraretypicallyunrepresentativeofthesubstratetopographyandappeartohavelowresolution.Thisisbecausethecontaminationfillsinthenanostructuresatthesurface.However,insomecasesthistechniqueallowsthedeterminationofthelocationorshapeofliquiddropletsonthesamples'surface,whichmaybedesirable[112,113].Inthesecondregimetheprobeisscannedinsidethecontaminationlayer[110].Thistechnique,sometimescalled‘nearcontact’,requiresgreatcaretoachieve.Again,thecantilevermustbestiffsothatthetipdoesnotjumptothesurfacefromthecapillaryforcescausedbythecontaminationlayer,andverysmallvibrationamplitudesmustbeused.However,high‐resolutionimagesmaybemeasuredinthisregime.Non‐contactAFMfullyimmersedinliquidisalsopossible[114],anddelicatesamplessuchasDNAmoleculesorotherbiologicalsampleshavebeenimagedbyinthisway,andsuchmoleculesmaysufferlessdistortionwhenimagedlikethisthanwhenimagedbyintermittent‐contactmode[114–116].

Usingultra‐highvacuum(UHV)conditions,FMdetectionhasadvantagesoveramplitudeorphasedetection[117]andFMdetectioniswidelyusedforUHVnon‐contactAFM.Someamazingresultshavebeenshownforfrequency‐modulationbasednon‐contactAFMinultra‐highvacuum,includingtrueatomicresolution[118,119].Forinstance,theMoritagrouphaveshowntrueatomicresolutioninanumberofsystemswiththis

Page 13: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 13 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

technique[106,118,120–122].Thesystemmustbeverystableforoperationtobereliablewithouttheriskofjump‐to‐contact.AnexampleimageshowingtrueatomicresolutionbyNC‐AFMisshowninFigure3.9.Figure3.9alsoshowsarareexampleofusingNC‐AFMtoidentifyatomsonasurface.ForcespectroscopyisdescribedfurtherinSection3.2.1,withrespecttousingforcespectroscopyincontactmode.Butinthisexample,unusualduetothemeasurementofforcecurvesinFM‐AFMmode,forcespectroscopywasusedto(p.60)

Fig.3.9. Examplenon‐contactAFMimages.Top:examplesofnon‐contactAFMimagesinambientconditions(air)–individualDNAmolecules(left)and1nmnanoparticles(right)[123].Bottomimages:non‐contactAFMinUHVconditionsforindividualatomidentification.Left:atomicallyresolvedNC‐AFMimageofSi,SnandPbatomsonanSi(111)substrate–someatomsmaybedifferentiatedbasedonapparentsize,butidentificationisnotpossible.Middle:short‐rangechemicalforcemeasuredovereachatomisdependentonthechemicalnatureoftheatoms.Right:thesameimageasontheleft,withatomscolouredaccordingtothecolourschemeinthemiddle.Adaptedfrom[8],withpermission.(Acolourversionofthisillustrationcanbefoundintheplatesection.)

identifytheattractiveforceaboveindividualatomswhichcouldbecorrelatedtotheirchemicalidentity[8].Furtherexamplesoftheapplicationsofnon‐contact‐AFMtoobtainatomicallyresolvedinformationaregiveninSection7.1.5.

3.1.2.2Intermittent‐contactmodeAlthoughthefirstexperimentsindynamicAFMaimedtocarryoutnon‐contactAFM,itwasnotlongbeforetheadvantagesofusingadynamicmodethatallowstheprobetotouchthesample(thatis,passintotherepulsiveregime)werediscovered[97].Forintermittent‐contactAFM,feedbackisusuallybasedonamplitudemodulation[108]andthetip–sampleinteractionpassesfromthe‘zero‐force’regime,throughtheattractiveregime,andintotherepulsiveregime,asshowninFigure3.10.

Thefactthatthetip–sampleinteractionmovesthroughallthreeregimeshasseveralimportantimplications:

Page 14: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 14 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(i)Thereistip–samplerepulsiveinteraction,i.e.tipandsampletoucheachother,leadingtothepossibilityofsampleortipdamage,however:(p.61)

Fig.3.10. Intermittent‐contactoperatingregime.Inthismode,theAFMprobe'soscillationislargeenoughtomovefromtherepulsiveregime,throughtheattractiveregime,andcompletelyoutofcontactineachcycle.

(ii)Duetothemovementofthetipperpendiculartothesurfaceasitscans,lateralforcesare(almost)eliminated.(iii)Thetippassesthroughthecontaminationlayer(seeFigure3.11).(iv)Tip–samplecontactalsoallowssomesensingofsampleproperties.(v)Thefeedbacksystemrequiresthecollectionofadequatedatatocharacterizethecantileveroscillationintermsofitsamplitude.

Points(ii)and(iii)aboveexplainthepopularityofIC‐AFM.Thelateralforceswhichcancausegreatproblemsincontact‐modeAFMdonotaffectIC‐AFM.Ontheotherhand,thefundamentalinstabilityofnon‐contactAFMinair(duetooperationintheattractiveregime,andthepresenceofthecapillarylayer)isovercome,makingIC‐AFMsomewhatsimplertoachieve.InIC‐AFM,therestoringforceofthecantileverwithdrawsthetipfromthecontaminationlayerineachcycle,thusreducingtheeffectofcapillaryforcesontheimage.

Fig.3.11. Intermittent‐contact‐modeimagingconditionsinair.Theprobepassesthroughthecontaminationlayertotouchthesubstratesurface,andoutagain.

(p.62) Operatingprinciplesofintermittent‐contactAFM

InIC‐AFMtheprobeisoscillatedwithalargeamplitude,typicallyintherangeof1–100nm[108],andthefeedbackisusuallybasedontheamplitudesignal.Inmostcases,theprobeisoscillatedbyanadditionalpiezoelectricelementattachedtotheprobeholder(seeChapter2),althoughitisalsopossibletoexcitethecantilevervibrationbyothermethods,e.g.byanexternalmagnet,withamagneticallycoatedcantilever[124,125],

Page 15: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 15 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

whichmayreducefluidvibrationwhenimaginginliquid.Infact,ratherthandrivingtheprobedirectly,themostcommonexcitationmethodforfluidimagingistoexcitetheentirefluidcellholder,whichcausestheliquidtovibrate,acousticallydrivingthecantilever[126,127].Often,inadditiontotheamplitudesignal,thedelayinthephaseoftheprobeoscillationisrecorded.OscillationamplitudeandphaseareillustratedinFigure3.12.

Theamplitudeisreducedbythecontactwiththesamplesurface,andsoanamplitudeset‐pointissetbytheuser,andtheamplitudeistheerrorsignalinIC‐AFM.Inasimilarwaytodeflectionincontactmode,theamplitudesignalinintermittentcontactmaybeusedasanillustrationoftheshapeofthesample.Again,likethedeflectionsignal,theamplitudesignalshowswherethefeedbacksystemhasnotyetcompensatedforchangesinsampleheight,soforbestheightdata,theamplitudesignalshouldbeminimized.AnexampleimageshowingtherelationbetweenheightandamplitudedataisshowninFigure3.13.Notethatlikedeflectionimagesincontactmode,thezscaleofamplitudeimagesinIC‐AFMisusuallyinvolts,unlessspecificallycalibrated.It'scommonpracticetoremovethisscaleforpublicationasithasnopracticaluse.

Inadditiontoheightandamplitudedata,thephase‐shiftmayalsobesavedasanimage.Thereasonwhysavingthisdataisusefulisnotobvious,andthisinformationwaslargelyignoredinearlyintermittent‐contactAFM.Infact,thephaseoftheoscillatingcantileverisstronglyaffectedbytheprobetip–sampleinteractions,soitcanbeausefulwayofdistinguishingmaterials.AsaNon‐topographicmode,phaseimagingiscoveredinSection3.2.3.2.

Applicability

Intermittent‐contactmodeisaverywidelyappliedtechnique,andiscurrentlythemostcommonlyappliedtechniqueforimaginginair.Inliquid,IC‐AFMmodeisalsovery

Fig.3.12. Illustrationoftheeffectofintermittentcontactonthecantilevers'oscillation.Thefreeoscillation(solid)ismodifiedwhenincontactwithasurface(dashed)byareductioninamplitudeandaphaseshift.

(p.63)

Page 16: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 16 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.13. Intermittent‐contactAFMimagesofhumanredbloodcells.Height(left)andamplitude(right)imagesshown.

widelyapplied,althoughitissubjecttoanumberofdifficultiesspecifictooperationinliquid,namelythatmechanicalexcitationofthecantilevercanleadtoexcitationofthefluidandfluidcellaswell[128],andalackofclearunderstandingofthecontrastmechanisms[108,129,130].TheoperationofIC‐AFMmodeinliquid,aswellasinair,isdiscussedinSection4.3.Intermittent‐contactAFMisnotcommonlyappliedinvacuum,duetorestrictionsinbandwidthduetoincreaseofQinvacuum[117].Anextremelywiderangeofsampleshavebeenstudiedbyintermittentcontact‐modeAFM,someoftheseareillustratedinChapter7.

Higherharmonicsimaging

ArecentdevelopmentinIntermittent‐contactAFMistheuseofmodesofresonanceotherthanthefundamentalone.Thismayeitherbebyapassivetechnique,bymeasuringthevibrationatthesehighermodes,caninvolveexcitationatmultiplefrequencies.AdditionofsuchcapabilitiestoanAFMisrelativelysimple,themainrequirementbeingthatalock‐inamplifiercapableofmonitoringtheveryhighfrequencies.Figure3.14showsillustrationsofthefirstfourmodesofabeam‐shapedcantilever.Therequirementforahigh‐frequencyamplifierisbecausehighermodesofrealcantileversarelikelytohaveextremelyhighfrequencies.Becausethemodesareanharmonic,thesecondmodeisnotnecessarilyatdoublethefrequencyofthefundamental(i.e.f2≠2f1),butmaybeashighassixtimesthefundamentalfrequency[131].Inanycase,havingtwolock‐insisusefulbecauseitisadvantageoustobeabletomonitorbothf1andf2simultaneously.

Fig.3.14. Illustrationsofthefirstfournormalresonancemodesofabeam‐shapedcantilever.

(p.64) Thereasonforinterestinmonitoringthehighermodesofoscillationisthatithasbeenshownthathighermodescanbemoresensitivetomaterialdifferences,particularlyinthephasesignal[132].Garciaandco‐workershavestudiedthetheoryofthistypeofimaginginseveralworks[131,133,134]andexplainthatwhilethephaseshiftofthefirstfundamentalfrequencyissensitivetoenergyloss,thehigherharmonicscanbesensitivetotip–sampleinteractionsthatconserveenergyaswell,explainingthecontrastimprovementinhigherharmonicphaseimaging[134].Inrecentyears,morereports

Page 17: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 17 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

haveemergedalsogivingfurtherexperimentalevidenceforthehighmaterialsensitivityofthephaseshiftathighharmonics[135–137].Thishighsensitivityofthetechniquehasbeenusedtoobtainhigh‐resolutionimagesinIC‐AFMevenofverysoftsamples[138,139].ThesematerialsrequireverylowforceimaginginIC‐AFMmodetoavoiddamage,whichreducedthecontrastinthefundamentalmodetothepointwherenosub‐moleculardetailswerevisible,butincreaseddetailswereavailableinthehigheroscillationmodes.Inaddition,ithasbeenreportedthatusinghigherharmonicsforfeedbackcanimproveimagingduetohigherQofthehighermodes[135].

3.2Non‐topographicmodesEversincetheearlypapersonSTM,scanningprobemicroscopeshavebeenusedtoobtainmorethanjusttopographicinformation.Inthoseearlyexperiments,thefirstreportsofascanning‐tunnellingspectroscopy(STS)experimentsweremade[140,141],whichconsistsoframpingthetunnellingvoltageandmonitoringthetunnellingcurrentwiththetipheldfixedoveraparticularpartofthesamplesurface.Theuseoftheword‘spectroscopy’hascontinuedintothefieldofAFM,where‘spectroscopic’techniquesaredifferentfrom‘microscopy’techniquesinthattheyprobepropertiesofthesampleotherthantopography.Themostwell‐knownexampleisprobablyforcespectroscopy.

3.2.1Forcespectroscopy

Forcespectroscopyinvolvesmaintainingthex‐ypositionoftheAFMprobefixed,whilerampingitinthezaxis,tomeasurethedeflectionasthetipapproachesandretractsfromthesamplesurface.Assuch,forcespectroscopyconsistsofsimplymeasuringforce–distancecurves,asshowninFigure3.15.ThegreatutilityofthistechniqueisthattheAFMdirectlymeasurestheforcebetweenthecontactingatomsormoleculesontheendoftheprobeandsamplesurface,andasthecantilevermaybehighlyflexible,anddeflectionsensitivitywithopticallever‐basedinstrumentsisveryhigh,single‐moleculeinteractionstudiesarepossible.Often,anAFMtipwillbemodifiedwithgraftedmoleculesofinterest[142–145],althoughsuchexperimentshavealsobeenreportedwithbareAFMtips[146,147],colloidalprobes[148–150](e.g.silicaspheres,whichmaybethemselveschemicallymodified),andevenmicro‐organisms[151,152].Thesurfacesprobedhavebeenofevenwidervariety.Again,formolecule–moleculeinteractionsstudies,oftenaflatsubstratewillhavethemoleculesofinterestgraftedon[153],butalsocellmembranes[154],micro‐organisms[1155,156],wholelivingcells[157]andawidevarietyofsolidsurfacesincludingpolymers[158–160],metals[161],ceramics[162]andmorehavebeenprobed.

Thereareanumberofexperimentalissueswhichmustbetakenaccountofinordertoperformforcespectroscopy.Theseinclude:(p.65)

Page 18: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 18 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.15. Amodelforce–distancecurve.AtpointA,theprobeisfarfromthesurface,atB‘snap‐in’occursasattractiveforcespulltheprobeontothesurface.Theforcebecomesrepulsiveastheprobecontinuestobedriventowardsthesample.Atsomeuser‐definedpointC,thedirectionoftravelreverses.AtpointD‘pull‐off’occursastheforceappliedtothecantileverovercomestip–sampleadhesion.Adhesiondataisusedforforcespectroscopywhileslopedataisusedfornanoindentation(Section3.2.2).

(i)Thenumberofinteractingmolecules.Dependingonthetipradius,alargenumberofmoleculesarelikelytobeabletointeractwiththesurfaceatonetime.(ii)Orientationandaccessibilityofinteractingmolecules.Typically,theinvestigatorwouldliketomakecomparisonsbetweenthemolecularinteractionsmeasuredatthesurface,andresultsfromsolutionstudies,butthegraftingofmoleculestothetipmayaffecttheresults.(iii)Thespeedofapproachandwithdrawalofthetipforthesurfacewillaffecttheresults.(iv)Experimentalenvironment.OneadvantageofAFMisthatitmaybecarriedoutinalmostanyenvironment.Formostchemicalandbiologicalworkitisusefultocarryouttheexperimentsinliquid.Itissimplethentochangethecompositionoftheliquidtoseehowitaffectstheresults.Forexample,toproveantibody/antigeninteractions,commonlyblockingantibodiesareinjectedintosolution,afterwhichforcesmaydisappeartozero[163].(v)Statisticalvariationinresultsistypicallyverylarge.Thismeansincreasedexperimentaltime,whichisnotnormallyaproblem,aseachforcecurvetypicallytakeslessthan1secondtoacquire,butinadditionaverylargedatasetistypicallygenerated,andalotofdataanalysisislikelytoberequired.

Inreality,theresultsfromforcespectroscopybetweenmoleculesrarelylookmuchlikethecartooninFigure3.15.Usually,specificforcesbetweenmoleculesleadtomuchmorecomplicatedresults.AnexampleisshowninFigure3.16.Intheblue(retract)curve,severaltypicalfeaturescanbeseen.Oneisthealmost‐flatregionlabelleda.Inthisregion,polymerchainslinkingthemoleculestotheAFMtipwereunfolding.During(p.66)

Page 19: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 19 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.16. Anexampleofrealforcespectroscopydata:curvesmeasuredonM.xanthuscells.Theredtraceistheapproach,andtheblueistheretractcurve.Reproducedwithpermissionfrom[164].Copyright2005NationalAcademyofSciences,USA.

unfolding,onlyveryweakbondsarebroken,sothereareonlysmallverticaldeviationsinthetrace.Atb,theprobeappliedsufficientforcetobreakthebonds,asthemoleculebreaksawayfromthereceptor.Notethatatthispoint,asingleverticalmovementmaybeexpected,butthestepisstaggered,indicatingthatmultiplebondsarebroken,andonlyatpointcisthetipfinallyfreeofmoleculeslinkingittothecellsurface.Inacasesuchasthis,itisnecessarytodecideiftheverticaldistance(i.e.theforceofadhesion),seenatpointb,representstheadhesionofonemolecule,thatoftwomolecules,orofanunknownnumber.Thisiswhyitisdifficulttoautomatedataanalysisinforcespectroscopy,andthiscombinedwiththetypicalrequirementtocollecthundredsofdatapoints,meansdataprocessingforsuchexperimentscanbeverytime‐consuming.Somewaystoimprovethesituationincludereducingthechanceofmultipleinteractionsinthefirstplacebyforexamplespacingthegraftedmoleculesoutonthetip,orlookingformultiplesofsingleforcesinthe‘spectrum’offorcesmeasured[144].

Itcanbeusefultoperformforcespectroscopyinagrid‐likepatternoverthesample,leadingtothepossibilitytolocatespecificchemicalgroupsonasamplesurface[146,160,165].Itisimportant,however,torememberthatevenhighlyspecificmeasurementslikeadhesion–forceinteractions,maybeaffectedbysampletopography[159].Inthismode,forcespectroscopyissometimestermedchemicalforcemicroscopy[166].Amajorapplicationofforcespectroscopyisproteinunfolding,whichusestheAFMforcesensitivitytoprobemechanicalunfoldingoflargeproteinmolecules,abiologicallyimportantprocess,whichiscoveredinSection7.3.5.1.

3.2.2Nanoindentation

IfinsteadofmeasuringthedataastheAFMwithdrawsfromthesamplesurface,werecordthedatameasuredasthetipcontactswithandpressesontothesamplesurface,wearecarryingoutadifferentexperiment,callednanoindentation.Anothertechniqueknownasnanoindentationexists[167],whichusesadedicatedmachinetomeasureload–displacementcurvesasahardindenter(forexamplediamond)pressesintoasample.Typically,suchinstrumentsaredesignedtocreateaseriesofindents(holes)inasample,andallowthemeasurementofthesizesoftheindents(by,e.g.lightmicroscopy),andaresensitivetoforcesinthemicronewtonrange.Bycarryingoutan(p.67) analogous

Page 20: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 20 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

experimentusingAFMwehavesomeadvantagesandsomedisadvantages.Thesearesummarizedbelow.

AdvantagesofAFM‐basednanoindentation

•Highloadsensitivity–loadsensitivitymaybeaslowaspiconewton,althoughevenforsoftmaterialstherequiredsensitivityisnotlikelytobegreaterthanananonewton.•Inbuiltabilitytomeasuretheindentscreated,athighresolutioninx,yandz(seeFigure3.17).•Highpositioningresolution–i.e.wecanchoosesmallregionsofasample,orperformtheexperimentonverysmallsamples.

DisadvantagesofAFM‐basednanoindentation

•Non‐perpendicularprobeapproach–quantitativenanoindentationrequirestheindentertoapproachthesampleperpendicularly,whichisnotthecasenormallyforAFM.Thisproblemcanbeovercome,withcare.•Non‐linearzpositioning.Unlessthesystemisequippedwithlinearizationinthez‐axisthiscancausesomeseriousproblems.•Thesystemmustbecalibratedtoextractrealforces.

Fornanoindentationonhardmaterialsitisnecessarytouseaverystiffcantileverandahardprobe.Typically,onemightuseacantilevermachinedfromsteel,withadiamondtipgluedtotheend[168].Suchleversmaybeappropriatetoperformnanoindentationandcanbecapableofimagingthesample,buttypicallygiverelativelylow‐resolutionimages;ontheotherhand,theyareabsolutelynecessarytoindenthardmaterialsuchasmetals.ManyauthorshavealsocarriedoutnanoindentationwithnormalAFMprobes[168–172],butitisnecessarytocharacterizethetipradiusandcantilevercarefullyforquantitativeresults.Oneadvantageofsuchanapproachistheabilitytoselectfromawiderangeofspringconstants;thehighlystiffnanoindentationcantileverspreviouslyreferredtoareinappropriateforsoftsamples.Onecommonapproachtosimplifytheproblemoftipradiusdetermination(seeChapter2)fornanoindentationmeasurementsistouseacolloidalprobe,i.e.touseanormalAFMcantileverwithoutatip,butwithasmallsphericalparticleinitsplace[150,173].Ifnanoindentationexperimentsarecarriedoutinagridpatternoverthesamplesurface,thenit'spossibletodeterminethespatialvariationofhardnessandsoftness[158,174,175].DataanalysisfornanoindentationisoftenmadebymodellingtheindentationviatheHertzmodel,whichrequiresknowledgeoftheshapeofthetip,andassumesonlyelasticcompressionsofthesampletakeplace[162,176].Formorediscussionofdatatreatmentfornanoindentationseereferences[168,176,177].

Applicability

DespitethequantificationissuesassociatedwithcarryingoutnanoindentationusingAFM,ithasbeenwidelyapplied.Itisparticularlyusefultolookatrelativehardnessandsoftness.Forexample,itcangiveanideaaboutdifferencesinhardnessandsoftnessin

Page 21: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 21 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

differentpartsofasampleWithnanoindentationmapping,themeasurementscanbemadequantitative,whereasformanyothertechniquessuchasphaseimaging(seeSection3.2.3.2),itishardtoknowifdifferencesareduetomechanicaloradhesivepropertiesofthesample.Thereforenanoindentationhasbeencommonlyusedtostudyheterogeneousmaterialssuchaspolymercomposites[158,181,182].Furthermore,thehighpositioningaccuracymeansit'spossibletolookatsmallfeaturesnotpossiblebytraditionalnanoindentation,(p.68)

Fig.3.17. ExamplesofnanoindentationmeasurementswiththeAFM.Left:force–distancecurvesmeasuredwiththeAFMonindividualbacteria.Blackcurves:typicaldatameasuredonuntreatedandtreatedBacillusvegetativebacterialcells.Redcurves:datameasuredonBacillusspores.Thedatashowedthatthetreatmentmadethecellssofter,butthesporesweremuchharderthanthevegetativecells[178].Right:AFMimageofanindentationmadebyadedicatednanoindenter.Theindentationisinamagnesiumoxidecrystal,andtheimageshowstheindentation(blacktriangle)pile‐up–materialpushedoutofhole(whitefeaturesattrianglecorners),andalsoshowslong‐rangedislocationsinthecrystalstructure(diagonaldiscontinuities)[179].Reproducedwithpermissionfrom[180]andkindpermissionfromDrC.Tromas.

forexampleindividualmicro‐organisms[169,183](seeFigure3.17),livingcells[176,184]ormicro/nanoparticles[185–187].SomemoreexamplesofapplicationsofnanoindentationaregiveninChapter7.

3.2.3Mechanicalpropertyimaging

Nanoindentationisaveryusefultechniqueformechanicalcharacterizationbecauseofthepossibilitytocollecttrulyquantitativedataonthemechanicalresistanceofsamples.Howeverithasseveraldrawbacks,includingthecomplicateddataanalysis,anditsrelativelyslowdataacquisition.TheverylowrateofdataacquisitioncomparedtonormalimagingAFMmodesisamajordrawback.Foranimagewith512×512datapoints,afullsetofnanoindentationdatawouldrequiremanyhourstocollect,leadingtoproblemswiththermaldriftofthesample.Forthisreason‘imaging’typestudieswithnanoindentationtendtobeusedonlyatverylowresolutions(100×100datapointsorless).Onewaytoovercomethislimitationistomeasuretheinteractionoftheprobewiththesamplesurfacewhileitacquirestopographicaldata,andusethisinformationtoderivemechanicalinformationaboutthesamplesurface.Thishastwoadvantages,firstly,dataisacquiredatamuchfasterrate,andsecondly,themechanicalinformationcollectedmaybecorrelateddirectlywiththemeasuretopography.Thereareanumberofmodeswhichacquiremechanicalinformationaboutthesamplesurfaceinthisway,andtheyaredescribedinthefollowingsections.

Page 22: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 22 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

3.2.3.1LateralforcemicroscopyAsdescribedinSection3.1.1,incontactmode,theverticaldeflectionofthecantilever,measuredasthedifferenceinsignalbetweenthetopandthebottomofthesplitphotodiode,(p.69) isusedasthefeedbacksignal.However,ifwecomparetheleft‐andright‐handsidesofthesplitphotodetector,weobtainthelateraldeflectionsignal.Whenmeasuringthissignal,thetechniqueissometimescalledlateralforcemicroscopy,orLFM.Thereasonwhymeasuringthiscanbeusefulisthatthissignalcontainsinformationaboutthemechanicalinteractionoftheprobetipwiththesamplesurface.Thelateraltwistingofthecantileverisameasureofthefrictionencounteredbythetipasitscansoverthesample.Thus,thissignalissensitivetothenature(shapeandfrictionalproperties)ofthesurface.Forthisreason,LFMissometimesalsocalledfrictionforcemicroscopy(FFM),andthelateralsignalissometimesreferredtoasthefrictionsignal,althoughthesignalobtainedlaterallycontainsmoreinformationthanjustthefrictionfeltbythetip.Itisimportanttobearinmindthatthelateralbendingiscoupledwithverticalbendingofthetip,andcontainsinformationabouttheshapeofthesample,aswellasitsmaterial,becausefrictiondependsontheslopethetipistravellingalong[77,188].However,usingthistechniqueitispossibletogetquantitativeinformationaboutvariationinsampleproperties.SomeexamplesofthisareshowninSection7.1.4.AdiscussiononcalibrationoflateralsignalsisincludedinSection4.2.

Asmentionedpreviously,itisnotnormallynecessarytomeasureAFMheightsignalsinmorethanonefastscanningdirection.Thesituationinthecaseofthelateraldeflectiondataissomewhatdifferent.Thelateraldeflectionsignalwillnormallyalwaysbedifferentinthetwodirections,asthecantileverwilltwistbyacertainamountassumingthereissomemeasurablelateralcomponenttothetip–sampleforce(i.e.friction).Therefore,evenonperfectlyflat,homogeneoussamples,thetwoimageswillbedifferentfromeachotherinthemagnitudeandpossiblysignofthesignal.Ingeneral,changesofslopewillaffectforwardsandbackwardsscansoppositely,andchangesinfrictionduetomaterialcontrastwillgivegreaterorsmallerdifferencebetweentheforwardandreversescans.ThisisshownschematicallyinFigure3.18.

FromFigure3.18itispossibletoseethatchangesinslopeandchangesinmaterialcontrasthavedifferenteffectsuponthelateraldeflectionsignal.Iftheusersubtractstheleft‐to‐rightandright‐to‐leftsignalsfromeachother,inthecaseoftheslopechange,theresultwillbeasignalwithalmostnocontrast.However,inthecaseofthematerialfrictionchange,theresultingsignalwillbesensitivetothesamplefriction.Largerfrictionwillgiveagreaterdifferencebetweentheforwardandreversescans,whilelowerfrictionwillgiveasmallerdifference.Thus,collectingbothforwardandreversedirectionscansandsubtractingtheminLFMcangiveusefulinformation[160,189].

3.2.3.2Phaseimaging‘Phaseimaging’inAFMreferstorecordingthephaseshiftsignalinintermittent‐contactAFM.In1995forthefirsttime,thephasesignalwasdescribedasbeingsensitivetovariationsincomposition,adhesion,friction,viscoelasticityaswellasotherfactors[190].

Page 23: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 23 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Thenin1996GarciaandTamayosuggestedthatthephasesignalinsoftmaterialsissensitivetoviscoelasticpropertiesandadhesionforces,withlittleparticipationbyelasticproperties[191].Ithasbeenacommonassumptioneversincethatphasecontrastwillshowadhesionorviscoelasticproperties[192,193].Infact,asshownintheexamplesofphasecontrastinFigure3.19,phasecontrastfrommaterialpropertiesisseeninawidevarietyofsamples,butalsoreflectstopometricdifferences(differencesinslope).Thisisbecausethephaseisreallyameasureoftheenergydissipationinvolvedinthecontact(p.70)

Fig.3.18. Schematicoflateralforcesignalsrecordedonasamplewithvariationsintopographyonly(top)andinmaterialfrictiononly(bottom).Darkercoloursrepresentmaterialwithhigherfriction.Notethatinthecaseoftopographychanges(upper),thedifferencebetweentheforwardandbacklateraldeflectionsignalsisconstant;formaterialcontrast(lower),thedifferencechanges.

betweenthetipandthesample[194–196],whichdependsonanumberoffactors,includingsuchfeaturesasviscoelasticity,adhesionandalsocontactarea[197].Ascontactareaisdependentontheslopeofthesample,thephaseimagealsocontainstopographiccontributions,sounambiguousinterpretationofcontrastinphaseimagesisbestlefttoflatsamples.Eveninsuchcases,understandingofthecontributionoftheindividualfactorstothephaseshiftisnottrivial.Formoredetailsonthistopic,thereaderisrecommendedtoreadtheexcellentandcomprehensivereviewsbyGarcia[108,197].Despitethecomplicationsinvolvedininterpretation,phasecontrastisoneofthemostcommonlyusedtechniquesfor‘mechanical’characterizationofsamplesurfaces,probablyduetothe(p.71)

Page 24: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 24 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.19. ExamplesofphasecontrastinIC‐AFMondifferentsamples.Top:atriblockcopolymertopography(left)barelyshowsheightdifferencesforthedifferentphases.Thephaseimage(right)showsclearcontrast.Bottom:Langmuir–Blodgettfilmonmica,thehightopographyregion(themonolayer)hasahigherphasecontrastthanthemicainthephaseimage.Thisimageshowshowtheedgesofthesephasesalsoshowdifferentcontrastinthephaseimage,duetochangesintip–samplecontactarea.

popularityofIC‐AFM,andthefactthatobtainingthedataisverysimpleanddoesnotrequirepost‐processingofthedata.

3.2.3.3OtherdynamicmodesAnumberoflesscommonlyusedoscillatingmodeshavebeenreported[198,199],thesearetypicallyvariationsonIC‐AFM,designedtomakesimultaneousacquisitionofsamplepropertiesandtopographysimplerormorequantitative.AnexampleofthisisjumpingmodeAFM[198,200–204].ThisisavariantofIC‐AFM,thedifferencebeingthatinjumpingmode,themovementalongthefastscanaxisisdiscrete,ratherthancontinuous,andtheelectronicsaresetuptorecordthecantileverdeflectionatspecificpointsalongtheforce–distancecurveduringeachoscillation.Theadvantageofsuchatechniqueisthatif,forinstance,thepointsrecordedareequivalenttopointsaandbinFigure3.2,thetip–sampleadhesionmaybeobtained,orslopedata(seeFigure3.15)couldberecordedtoqualitativesamplestiffness.Theadvantageofthisparticularmodeisthattherelativelyhigh‐speedscanningofIC‐AFMcanbecombinedwiththeacquisitionofsuchdata.Thisisalsotheaimofpulsed‐forcemode[199,205–207],whichoperatesinaverysimilarwaytojumpingmode,althoughfastscanaxismovementiscontinuous,likenormalIC‐AFM.As(p.72)

Page 25: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 25 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.20. Exampleofpulsedforcemode.Thesampleisapolystyrene‐polymethylmethacrylateblend.A:topography,B:adhesion,bothmeasuredsimultaneously.Notethebrightbordersbetweenthephasesareduetoincreasedtip–samplecontactarea,andtheadhesionimageisinagreementwiththatmeasuredbyforcespectroscopy[159].Reproducedfrom[206]withpermission.

withjumpingmodeAFM,amajoraimofpulsed‐forceAFMistoobtainadhesiondata[208],butcollectionofotherdatapointscanagainleadtosamplestiffnessdata[199].AnexampleoftheresultsfrompulsedforcemodeisshowninFigure3.20.

3.2.4Magneticforcemicroscopy

ThepotentialofusingAFMtomeasuremagneticpropertieswasrealizedquiteearlyinthehistoryofAFM[105,209,210].Magneticfieldsdecayquicklywithdistance,soinordertomeasurelocalpropertiestheprobemustbeveryclosetothesurface,hencetheapplicabilityofAFM.Themosttypicalexperimentcarriedoutisknownasmagneticforcemicroscopy(MFM)[211].Inthismode,thepresenceanddistributionofmagneticfieldsismeasureddirectly,byusingamagneticprobe.Typically,theseconsistofstandardsiliconcantileverswithathinmagneticcoating.Typicalmaterialsusedforthecoatingincludecobalt,cobalt‐nickelandcobalt‐chromium[212].Theadditionofsuchcoatingscanhavetwodetrimentaleffectsonthecantilever:firstlythesematerialsaretypicallysofterthantheunderlyingsilicon,andthusmayincreasewearrate,andsecondly,anycoatingaddedtotheendofthetipwillincreasetheradius,andthusdecreasetheresolutionoftheexperiment.Typically,magneticforcesareordersofmagnitudelowerthanothertip–sampleforceswhenincontact,andthusitisusefultomeasurethemwiththetipatacertaindistance(oftheorderof5–50nm)fromthesurface,thusreducingtheinterferencefromshort‐rangeforces.Thiscanbecarriedoutinanumberofways[213],someofwhichareillustratedinFigure3.21.Thesetechniquesallhavesomepracticaladvantagesanddisadvantages,butarebasicallyvariationsonatheme.In‘lifting’‐typemodes,thetopographyofthesampleismeasuredfirst,followedbyraisingtheprobe,andscanningagaintocollectthemagneticdata.Onemethodistocollectanormaltopographyscan,andthenchangethezset‐pointtolifttheprobefromthesurfaceandcollecta‘magneticimage’(p.73)

Page 26: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 26 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.21. SchematicsofvariousimplementationsofMFM.A:liftingprobebetweentopographyandMFMimages.B:Bardmethodofliftingleverbetweenscanlines.C:zset‐pointoscillation.D:Hosakamethodofmovingprobeclosetosurface,andrecordingMFMsignalatvariouspointsforeachheight.

(Figure3.21A).Thisworkswellforflatsamples,butispronetoproblemsoffeaturesfromthesampletopographyappearingintheMFMimage,andalsotoproblemsfromthermaldrift.AsdescribedbyBard[214],animprovedmethodistorecordthesampletopographyfirst,thenlifttheprobe,andmeasurethelong‐rangeforceswhilefollowingtheshapeofthetopography,butatacertain‘liftheight’.ThisisapplicabletoSTM,EFM(seethefollowingsection),orMFM.Typically,thisiscarriedoutinalternatescanlines,allowingthetopographydatatobeincludedinthesecond,magneticscanline,meaningtheprobecanstayapproximatelythesamedistanceabovethesample,evenwithchangesintopography(Figure3.21B)[215].It'salsopossibletochangethezset‐pointwhilescanning,meaningtheprobewillbeconstantlymovingtowardsthesampletocheckthetopography,andthenawayagaintoregistermagneticfieldinformation(Figure3.21C).Finally,inthemethoddescribedbyHosaka[216],ateachpixeltheprobeisliftedabovethesurface,andthefieldismeasuredatseveralpointsastheprobeisloweredagain(Figure3.21D),toobtainamagneticfieldgradient.Theprobeisthenmovedtothenextlateralpoint,liftedagain,andsoon.Thismethodisprobablytheleastpronetothermaldrift,butisratherslowtoimplement.Whichevermethodisused,liftingthetipfromthesurfacereducesresolution,andresolutioninMFMistypicallynogreaterthan30nmlaterally[212].

Fortheseliftingmodestowork,ithelpsifthereislittlesampledrift,ortohavelinearizedscanners.Typically,MFMiscarriedoutinoneofthedynamicmodes,andthemagneticeffectsonthecantileveraredetectedviaphaseshift,buttheymayalsoaffecttheoscillationamplitude.Unfortunately,evenatliftheightsofseveraltensofnanometresfromthesamplesurface,shortrangeforcesotherthanmagneticinteractionmayaffectthecantileveroscillation,givingafalseindicationofmagneticcontrast[217],aneffectwhich(p.74) issometimesoverlooked.Onewaytoovercomethisproblemistocarryouttwoscanswiththecantilevermagnetizationorientationinoppositedirections,andsubtractthemfromeachother.Non‐magneticforcesshouldthencancelout,leavingtypicallyasigmoidally‐shapedcontrastinthelinesscanswheremagneticinteractiontookplace[218].AnexampleimageobtainedinMFMviatheBardmethodisshowninFigure3.22.

Page 27: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 27 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

AlthoughMFMisarelativelysimpletechniquetoobtainmagneticcontrastatahighresolution,quantificationofMFMsignalsiscomplicated,andwhentryingtomeasurethemagneticdomainsonasoftmagneticmaterial,thedomainsontheprobecancauseachangeinthedomainstructureonthesurface.ReadersinterestedinmoredetailontheissuesinquantificationofMFMsignalsaredirectedtotheworkofProkschetal.[218,219].ItisworthpointingoutherethatthereareavarietyofothermagneticcharacterizationtechniquesusingtheAFM,suchasMRFMthatinvolveconsiderablymoreequipmentthanacommercialAFM[220],soareoutsideofthescopeofthisbook.

Applicability

TheinitialinterestinthestandardMFMtechniquegrewlargelybecauseofthepotentialindustrialapplications.Thedatastorageindustryislargelybasedaroundcreationofmagneticnanodomainsofthesizerangeofafewhundredsofnanometres,andthereisnoothertechniquetoaccuratelymeasuresuchfeatures.ThereforeMFMhasseenmuchuseindustrially,particularlyindatastorageapplications[210,213].Morerecently,magneticnanoparticleshavebecomethefocusofintenseinterest,andtheseareanotherfieldwhereMFMcanbeofgreatuse[221].Theverysmallmagneticmomentofthesmallestparticlescanpresentachallenge,andmuchworkhasbeencarriedoutonparticlesofca.50–100nm[221]butitshouldalsobepossibletoexaminethemagneticfieldfromparticlesassmallas20nm.SomemoredetailsofindustrialapplicationsofMFMaredescribedinChapter7.

Fig.3.22. ExampleMFMimages.Left:topographyofmagnetictapesample.Right:MFMimageofthesameregion,showingmagneticfieldsaboverecordeddatabitsonthetape.Bothare10μm×10μmimages.

(p.75) 3.2.5ElectricforcemicroscopyandscanningKelvinprobemicroscopyElectricforcemicroscopy(EFM)referstoatechniqueanalogoustoMFMwhichenablesthemeasurementofelectricalfieldswiththeAFM,ratherthanmagneticfields.Essentially,thetechniquecanbeappliedbycarryingoutexperimentsinaliftingmodeasdescribedabove,butwithoutamagneticcoatingonthecantilever.AstandardsiliconorsiliconnitridecantilevermaybeusedforsimpleEFMimaging,althoughconductive(metal‐coated)tipsarerequiredforread/writeapplications,andmoresophisticatedelectricalmodes(seebelow).Theequationforelectrostaticforcesbetweenaprobeandasurfacehavingdifferentpotentialsisgivenby:

= −1/2(Velectrostatic

2

Page 28: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 28 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

(3.3)

ItcanbeseenthatfromEquation3.3andEquation3.2thatthechangeinresonantfrequencyisproportionaltothechangesincapacitanceasafunctionofthesecondderivativeofzspacing.Inotherwords,aslongasthereisanon‐zeropotentialbetweentheprobeandsurface,thefrequency,andthustheamplitudeandphaseofoscillationwillbesensitivetocapacityofthesurface.

EFMhasbeenshowntodetecttrappedchargeonsurfaces[222],andinsomecasesgivesclearcontrastwherenoneisvisibleinthetopographysignal.However,ithasbeenreportedthatEFMispronetotopographicartefacts[223].EFM,likeMFMhasthegreatadvantagethatitmaybecarriedoutwithastandardAFM.Asomewhatmoresophisticatedtechniquetomeasuretip–samplepotentialisscanningKelvinprobemicroscopy(SKPM)[224,225].Figure3.23illustratestheportionoftheSKPMinstrumentusedforequilibratingtheprobesurfacepotential.Theelectronicsusedformechanicallyvibratingthecantileverarenotshown.

TheprincipleofoperationofSKPMissimple,thatiswhentwosurfaceshavethesamepotentials,therewillbenoforcesbetweenthem,soinEquation3.3,ΔV=0.Toimplementthetechnique,aDCpotentialbias(VDC)isappliedtoaconductiveprobe,whichisfurthermodulatedbyanACsignal(VAC),sothat

Fig.3.23. Schematicillustrationofinstrumentalset‐upforscanningKelvinprobemicroscopy.

(p.76)

= −1/2(VFelectrostatic )2dC

dz

Page 29: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 29 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.24. ExampleofKelvinprobeandelectricforcemicroscopy.AFMheightimage(A,shadedimage),Kelvinprobe(B),andEFM(C)imagesofcarbonnanotubesonagoldsurface.Theimagesarenotallinexactlythesameplace;theredarrowhighlightsaconnectionbetweentwonanotubesineachimage.Reproducedfrom[227],withpermission.

(3.4)

Inotherwords,theACvoltageisoscillatingattheresonantfrequencyofthecantilever[224].Thus,theprobe'selectricpotentialisvaryingatfrequencyω.Ifthesample'spotentialisnotthesame,thedifferenceinelectricalpotentialwillcausethecantilevertomechanicallyvibrateatthefrequencyω,andwhichmeansthattheelectricalsignalfromthephotodetectorwillbemodulatedatω.Afeedbackcircuitthencomparesωwithωmod,andoutputsaDCvoltagetothesamplethatminimizestheoscillationatωmod.ThisoccurswhentheappliedpotentialVDCisequivalenttothesurfacepotentialVs.SothevoltageVDCthatisrequiretominimizeωmodisdigitizedwiththeA/DconverteranddisplayedonthePCasthepotentialimage[225,226].BySKPM,absolutevaluesofthesampleworkfunctioncanbeobtainedifthetipisfirstcalibratedagainstareferencesampleofknownworkfunction.

3.2.6ElectrochemicalAFM

Althoughnotreallyaseparatemode,itisworthmentioningthatitisrathersimpletostudyasurfaceasafunctionofappliedpotentialusingtheAFM[228].Changesinsampletopographywithappliedpotentialaretheresultsofelectrochemicalreactions,andsothistechniqueisknownaselectrochemicalforcemicroscopy.Insituimagingofsuchprocessesisachievedwithanelectrochemicalcellwhichisamodifiedliquidcellwiththeadditionofelectrodestobiasthesampleandapotentiostat.Byrampingtheappliedpotentialtotheoxidationorreductionpotentialofthesurfaceduringscanning,orbetweenscans,itispossibletodirectlyobserveoxidationorreductionprocessesonthesamplesurface.Suchprocessestendtogiverisetosmall(orslow)changesinsampletopography,hencetheusefulnessofelectrochemicalAFM.Furthermore,itispossible,usingmoremodificationsoftheinstrument,tocombineimagingwithelectrochemicalmeasurementsatthenanoscale,atechniquereferredtoasscanningelectrochemicalAFM[229].AnexampleimageshowingresultsfromelectrochemicalAFMisshowninFigure3.25.

(p.77)

= + sin tVbias VDC VAC

Page 30: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 30 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.25. ElectrochemicalAFMexample.ImagesshowingthemorphologyofaCdTefilmduringelectrochemicaldepositionofAu,atvarioustimes(asshowninfigure)atapotentialof−0.35V.Reproducedwithpermissionfrom[230].

3.2.7Thermalmodes

ItispossibletousederivativesofAFMtomeasurethermalpropertiesofthesample[231].Typically,thisisdonebyusingaresistiveprobe,whichcanlocallyheatthesampleormeasurethetemperaturelocally,i.e.actasathermometer.Thefirstsuchprobesweretheso‐calledWollastonwireprobes,whichconsistofaveryfineplatinumwirebentintoav‐shape.Theapexofthevformedthetipoftheprobe.Later,micromachinedprobes,developedfromsiliconnitridecantilevers,withapalladiumlayerwhichthinsgreatlyatthetipapex,toactastheresistor,weredeveloped.Onecommonexperimentinvolvesapplyingapotentialtotheprobe,whichheatstheresistance.Asthesampleisscanned(incontactmode),heatfromtheprobewillflowintothesample,theamountdependingonthethermalpropertiesofthesample,andafeedbackcircuitadjuststhecurrentflowingthroughtheresistor,tokeeptheresistance,andthusthetemperature,constant.Plottingthecurrentappliedtotheprobegivesthethermalimage,andatopographicalimageiscollectedsimultaneously.AnexampleofthesortofdatathatmaybecollectedwiththistechniqueisshowninFigure3.26.Thismethodiscommonlytermedscanningthermalmicroscopy(SThM).ThethermalimageinSThMisthereforeamapofthermalconductivity,althoughitmightbenecessarytodeconvolvetopographiccontributions[231].Byusingtemperaturemodulation(i.e.bysupplyinganACcurrenttotheresistorratherthanaDCcurrent),thedepthsensitivitymaybechanged,allowingfor(p.78)

Page 31: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 31 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.26. Exampleofscanningthermalmicroscopy.Thermalconductivityimageofasectionfromaglassfilament/cyanateresincomposite.Theglassfibresclearlyshowgreaterthermalconductivitythanthepolymermatrix.Reproducedfrom[238]withpermission.

discriminationofburiedfeatures[232].Thismodealsoallowsfortheimagingofheatcapacity[231].Inadditiontotheimaging‐typeexperiments,itispossibletoperformmanytypicalthermalanalysisexperimentsusingasimilarset‐upsuchaslocalizedcalorimetryorthermo‐mechanicalanalysis[233–236].Theaimofallthesetechniquesistocharacterizematerialsthermallyonthenanoscale.Assuchmostoftheseexperimentscouldbeperformedmacroscopicallyonwholesamplesmuchmoreeasily,sothemainapplicationisinheterogeneousmaterials.Aswellasspecializedprobes,SThMrequiressomesimpleexternalcircuitry,andsoitsadoptionasastandardAFMtechniquehasnotbeenwidespread.However,suchprobesarecommerciallyavailable,andthetechniquegivesinformationnotavailablebyothermeans,soalargenumberofstudieshavebeenappliedtopolymercomposites[237–239];inaddition,micro‐organisms[231],pharmaceuticals[232,236,240],automotivecoatings[241],metalalloys[242]andelectronicdevices[243]havebeenstudiedwithSThM.Theinterestedreaderisdirectedtoanexcellentreviewformoreinformationonthistechnique[231].

3.3SurfacemodificationAswellasmeasuringsamplesurfaces,anAFMmaybeusedtomanipulateortomodifythesurfaces.ThefinecontroloftheprobemotionoverthesurfacemakesevenastandardAFMaversatiletoolformanipulationsurfacesatthenanoscale.Therearearangeoftechniquesthathavebeenusedtomodifysurfaces,notablyincludinglocaloxidation[244],scratching[245]anddip‐pennanolithography[246].

(p.79) UncontrolledsurfacemodificationisusuallyanundesiredfeatureofAFM,butitwasrealizedearlyinthehistoryofSPMthatwithcarethistechniquehadthepotentialtofabricatenanoscaledevices[247].Oneoftheearliestofthenanolithographictechniquestobedemonstratedwaslocaloxidation[248].Inthistechnique,abiasisappliedtothetiptocausecontactpotentialdifferencewhilescanningthesurface,resultingtypicallyinanoxidationofthematerialatthesamplesurface.Theseexperimentsarecommonlycarried

Page 32: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 32 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

outonsiliconandresultinfeaturesofsiliconoxideatthesurface[244],althoughotheroxidation‐initiatedreactionsarepossible[249,250].Asnotedpreviously,whenscanningincontactmode,aliquidmeniscuswillbepresentbetweenthetipandsamplesurface.Innano‐oxidationthismeniscusisvitalbecauseitprovidestheelectrolyteforoxidation.Becauseoftheimportanceoftheliquidbridgeforthereaction,theprocessisverysensitivetohumidity,andthesizeofthemeniscushasbeenreportedasthefactorcontrollingthesmallestfeaturethatit'spossibletomanufacture[244].Localoxidationhasbeenperformedincontact[251–253],intermittent‐contact[253],andnon‐contactmode[254].Ifthetipisinthenon‐contactregimewhenthebiasisapplied,acapillarylayercanspontaneouslyform,andithasbeensuggestedthatthewaterbridgeunderthesecircumstancesissmallerthanincontactmode,leadingtosmallerwrittenfeatures[254].

Thistechniquehasalsobeenshowntobeapplicabletoparallelfabrication[255–257],whichisofgreatimportance,becausethemaindrawbackofAFM‐basednanolithographyforfabricationisitsslowspeed[252].Still,whilelocaloxidationhasbeenusedtocreatenanoscopicfunctioningelectronicdevices[258,259],fabricationofindustriallyusefulstructuresonalargescalebythistechniquehasyettobedemonstrated,evenusingparallelwritingtechniques.

Tocarryoutsurfacemodificationwithscratchingtechniquesisaverysimpletechnique,andisoftenusedasaproofofprincipleexperimentforlithographyapplications,becauseitissimpletoapplytoarangeofmaterials.Structureshavebeenbuiltinpolymers,silicon,metalsandmorebyscratching[245,249].Inprinciple,allthatisrequiredistoapplyahighnormalforcetothesample,andusethelithographiccontrolsintheAFMcontrolsoftwaretodirectthetipinthedesiredpattern.Inthisway,highlyintricatepatternscanbeformedwiththistechnique.Unfortunately,unlikeoxidationorDPN,itisrarelyappliedtobuildstructureswithchemicallydifferentfeatures,sothenumberofusefulapplicationsisrelativelylow.

Dip‐pennanolithographywasinventedin1999byMirkinandcoworkers[260],andhasbeenshowntobeahighlyversatiletechnique.Thegreatadvantageofthistechniqueisthatalmostanymaterialthatcanbedepositedonasurfacecanbeusedandformedintonanometre‐scalepatterns,althoughtypicallywater‐solublemoleculesorverysmallparticlesareapplied[246].Theideaisanalogoustothatofamacroscopicpen.TheAFMtipisimmersed,ordippedintoasolutionofthemoleculetobegrafted.Withahydrophilictip,andaqueoussolution,theAFMprobewillbecomecoatedinathinlayerofthewritingsolution.Then,whenthetipisincontactwiththesubstrate,thegraftingmoleculesareappliedtothesurfaceviathewatercapillarylayer[260].AschematicillustratingthisisshowninFigure3.27.

Likenano‐oxidation,thesizeofthewaterbridgeisacontrollingfactorinthedimensionofthewrittenfeatures,aswellassuchfactorsasset‐point,scanningspeed,diffusionofthemoleculesonthesurface,andtipradius[249,261].ExamplesofthesortoffeaturesthatmaybeproducedareshowninFigure3.28.Agreatvarietyof‘inks’havebeenused,and(p.80)

Page 33: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 33 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

Fig.3.27. Schematicofdip‐pennanolithography,showinghowthewatermeniscusisusedtotransportmoleculestothesurface.Adaptedfrom[260].

patternshavebeencreatedfromorganicmolecules[260],proteins[262,263],syntheticpeptides[264],DNA[246],polymers[263],inorganicnanoparticles[265]andmore[246,249].Amajorapplicationofthissortoftechnologyisincreationofarraysofreceptorsforparalleltesting,e.g.proteomics,genomics,etc.Forlargescaleparallelarraysofdifferingfeatures,specializedDPNinstruments,ratherthancommercialAFMSaretypicallyused.

Anumberofother,lesscommonlyusedmethodsexisttomodifysurfaceswithAFM[249,266].Theseincludethermomechanicalwriting,whichlikeSThMusesaresistanceintheprobetocontrolthetemperatureatthetip[267].However,thetemperatureisusedtomodifythesamplesurface,ratherthantoprobeit,andthehightemperatureistypicallyusedtomakeholesinpolymersurfaceswithoutriskofdamagingthetip.Thishasbeeninvestigatedasahigh‐densitydatastoragetechnique,andviatheuseofparallelprobes(theso‐called‘millipede’device[268]),hasbeenshowntobecapableofextremelyhighstoragedensity[269].SeveralauthorshavereportedtheuseoftheAFMtodirectlymanipulateindividualparticles[270],molecules[271]andevenatoms[272,273]onasurfacebyforexample,pushing,liftinganddroppingorcutting[249].Theseproceduresareinterestingforfundamentalstudiesbutaretooslowtobeofvalueasmanufacturingtechniques.SomeexamplesofassemblyusingAFMareshowninSection7.2.3.Finally,a

Fig.3.28. ExamplesofAFM‐basedlithography.Left:polymericpatternsonsiliconformedbyanodicoxidation,showinglinewidthsofapproximately2nm.Reproducedwithpermissionfrom[250].Centre:abit‐mapimageusedastheinputforadip‐pennanolithography(DPN)routine.Right:AFM(lateralforce)imageoftheresultingsurfacepatterns.

(p.81) techniquecallednanograftingisavariantofdip‐pennanolithography[274,275].Ithasthesameadvantageofflexibility–awidevarietyofmoleculesmaybeappliedtothe

Page 34: University Press Scholarship Online AFMfmodes Oxord ...experimentationlab.berkeley.edu/sites/default/...attempted to list the names of all the SPM modes described, and arrived at more

AFM modes

Page 34 of 34

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2014.All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of amonograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: UC -Berkeley Library; date: 20 February 2015

surface[274,276].ThedifferenceisthatitinvolvesusingtheAFMtiptoremovemoleculesfromapreviouslymodifiedsurface,sothatthemoleculesofinterest,whichareinsolution,canformpatcheswithinthepreviouslayer[277].Thishastheadvantageofleavingthemoleculesofinterestsurroundedwithapotentiallyinertpassivatinglayercoveringthe(typically)metallicsubstrate,makingitusefulforexamplefabricationofdevicesforbindingstudies[262].