university%of%nevadalas%vegas%/%peking%u%% · 1018 1016 121014 10 1010 108 106 very limited length...

30
PhD, Peking University Hubble fellow, University of WisconsinMadison : Prof. Bing Zhang University of Nevada Las Vegas / Peking U

Upload: others

Post on 20-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

PhD,  Peking  University  

Hubble  fellow,  University  of  Wisconsin-­‐Madison

:    

Prof.  Bing  Zhang              University  of  Nevada  Las  Vegas  /  Peking  U        

Page 2: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Armstrong+ 95; Chepurnov & Lazarian 09

Nearby  pulsars

High-­‐la1tude  Hα  

Turbulence in the warm ionized medium

Andrey Kolmogorov (1903-1987)

Kolmogorov law of turbulence

Length range of interstellar turbulence spans over 10 orders of magnitude

Page 3: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

1018 1016 1014 1012 1010 108 106

Very limited length range of simulated turbulence

in high-resolution numerical simulations

102 1

pc AU 1000 km 100 pc

in the ISM [m] Turbulence  length  scales  

Page 4: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

dust HI  in  absorp1on

12CO  13CO

Hennebelle  &  Falgarone  2012  

Turbulence spectral index vs. length scale

Lazarian  2009;

Temperature

Turbulence has different properties in the multi-phase ISM

Density

Magnetization Ionization fraction

Page 5: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Simulations of turbulence in the partially ionized ISM are very expensive

WIM WNM CNM MC

1 0.1 10-­‐3 10-­‐4 10-­‐6

DC

two-fluid numerical simulations    *extremely  )me  consuming    

Ioniza3on  frac3on   in the ISM

Brute-­‐force  numerical  studies  of  interstellar  turbulence  is    beyond  current  computaUonal  resources.    

Page 6: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories of interstellar turbulence are advantageous

WIM WNM CNM MC DC

pc AU 1000 km 100 pc

Testable: numerical simulations

Applications and predictions: a wide range of astrophysical problems

Page 7: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories

Turbulent dynamo

Particle acceleration in turbulence

Magnetized turbulence in a partially ionized medium

Gamma-­‐ray  bursts   Pulsars

Supernova  remnants  

Cosmic  rays

Pulsar  wind  nebulae  

Molecular  clouds  

First  stars  and  galaxies  

Interstellar  magneUc  fields  

Fast  radio  bursts

My thesis work

Page 8: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories

Turbulent dynamo

Particle acceleration in turbulence

Magnetized turbulence in a partially ionized medium

Gamma-­‐ray  bursts   Pulsars

Supernova  remnants  

Cosmic  rays

Pulsar  wind  nebulae  

Molecular  clouds  

First  stars  and  galaxies  

Interstellar  magneUc  fields  

Fast  radio  bursts

My thesis work

Page 9: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Kierdorf  et  al.  2017 Fissel  et  al.  2016 Planck

Cosmic magnetic fields are generated by dynamo

Page 10: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Turbulent motion Magnetic field

Growth Dissipation

Turbulent dynamo amplifies magnetic fields

Dynamo efficiency

Page 11: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Understanding of both plasma and turbulence physics is required for studying turbulent dynamo

Ambipolar diffusion

Goldreich  &  Sridhar  1995;  Lazarian  &  Vishniac  99;  Xu+  2015;  2016  

Kazantsev  1968;

Resistive diffusion

Turbulent reconnection Turbulent diffusion

Page 12: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Goldreich  &  Sridhar  1995;      Lazarian  &  Vishniac  1999

e.g.,    Kulsrud  &  Anderson  1992;  

Numerical studies:    Inefficient dynamo    e.g.,    Cho  &  Vishniac  2000;    Cho  et  al.  2009;    Beresnyak  2012    

Analytical studies:  

Disagreement between numerical experiments & earlier theories

Efficient dynamo

Schekochihin  et  al.  2002;    

MHD  turbulence  theories:   numerically tested

Nonlinear turbulent dynamo

Page 13: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

New analytical theory of nonlinear turbulent dynamo

l  Magnetic energy:

l  Magnetic field length scale:

l  Dynamo timescale:

Xu  &  Lazarian  2016,  ApJ,  833,  215    

consistent  with numerical results and provides predictions

Page 14: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Xu  &  Lazarian  2016,  ApJ,  833,  215    

Numerical measurements:  e.g.,  Cho  &  Vishniac  00;  Cho+  09;  Beresnyak  12    

l  Magnetic energy:

Low efficiency:  a small factor of turbulent energy transfer rate

New analytical theory of nonlinear turbulent dynamo

consistent  with numerical results

Page 15: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Xu  &  Lazarian  2016,  ApJ,  833,  215    

Numerical measurements:    

 Brandenburg  &  Subramanian  05  

l  Magnetic field length scale:

New analytical theory of nonlinear turbulent dynamo

consistent  with numerical results

Page 16: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Xu  &  Lazarian  2016,  ApJ,  833,  215    

1018 1016 1014 1012 1010 108 106 pc AU 1000 km 100 pc

l  Dynamo timescale:

Length scales

New analytical theory of nonlinear turbulent dynamo

beyond numerical simulations

Page 17: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Interstellar magnetic fields generated by turbulent dynamo agree with observed field strengths

Turbulence driven by supernova explosions

Xu  &  Lazarian  2016    

Page 18: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Interstellar magnetic fields generated by turbulent dynamo explain observed field strengths

Turbulence driven by supernova explosions

High-redshift galaxies have interstellar field strengths comparable to local galaxies.

Xu  &  Lazarian  2016    

Page 19: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

New analytical theory of turbulent dynamo in partially ionized ISM

Xu  &  Lazarian  2016,  ApJ,  833,  215    

1 0.1 10-­‐3 10-­‐4 10-­‐6

WIM WNM CNM MC DC

Ionization fraction

Evolution law:

Page 20: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Numerical testing:    

                                                       Two-fluid dynamo simulations

                                                       RIEMANN code see  Balsara  2004  

   

 

 

Xu  &  Lazarian  2016,  ApJ,  833,  215    

New analytical theory of turbulent dynamo in partially ionized ISM

Evolution law:

Page 21: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

B ~ t

Ana      Num

Evolution law:

New analytical theory of turbulent dynamo in partially ionized ISM

confirmed by two-fluid numerical simulations

Page 22: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Supernova remnants (SNRs)

First stars and galaxies

ISM of our Galaxy

Clusters of galaxies

Analytical theories of turbulent dynamo WIM WNM CNM MC DC

pc AU 1000 km 100 pc

New turbulent dynamo theories have an extensive range of applications

Page 23: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Example I: magnetic field evolution during the first star formation

τff τff

•  Dynamo has multi-evolutionary stages •  Dynamo timescale is longer than the free-fall timescale

Field strength vs. time Filed length vs. time

Xu  &  Lazarian  2016 Our analytical prediction:

Our new findings:

Page 24: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Example II: magnetic field evolution in weakly magnetized molecular clouds

Xu  &  Lazarian  2017 Our analytical prediction:

Evolving magnetic spectrum

Characteristic field strength and length

Dissipation scale

Physical conditions

Timescales

Initial magnetic field

Page 25: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Example III: magnetic field evolution in SNRs

Numerical measurements:                            Inoue  et  al.  2009    

Our analytical prediction: Xu  &  Lazarian  2017

Field strength vs. time

AcceleraUon  of  GalacUc    cosmic  rays  up  to  the    knee  energy  ~  1015  eV

l  Dynamo generated magnetic field

Page 26: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Numerical measurements:                            Inoue  et  al.  2009    

Field strength vs. position

Our analytical prediction: Xu  &  Lazarian  2017

Shock  front

Uchiyama+  2007

X-­‐ray  hot  spots  are  located  at  more  than  0.1  pc  behind  the  shock  front.  

l  Low dynamo efficiency

Example III: magnetic field evolution in SNRs

Page 27: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories of turbulent dynamo

WIM WNM CNM MC DC

pc AU 1000 km 100 pc

New nonlinear turbulent dynamo theory

New turbulent dynamo theory in partially ionized ISM consistent with numerical simulations

Page 28: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories

Turbulent dynamo

Particle acceleration in turbulence

Magnetized turbulence in a partially ionized medium

Gamma-­‐ray  bursts   Pulsars

Supernova  remnants  

Cosmic  rays

Pulsar  wind  nebulae  

Molecular  clouds  

First  stars  and  galaxies  

Interstellar  magneUc  fields  

Fast  radio  bursts

My thesis work

Page 29: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

Analytical theories

Turbulent dynamo

Particle acceleration in turbulence

Magnetized turbulence in a partially ionized medium

Gamma-­‐ray  bursts   Pulsars

Supernova  remnants  

Cosmic  rays

Pulsar  wind  nebulae  

Molecular  clouds  

First  stars  and  galaxies  

Interstellar  magneUc  fields  

Fast  radio  bursts

My thesis work

Page 30: University%of%NevadaLas%Vegas%/%Peking%U%% · 1018 1016 121014 10 1010 108 106 Very limited length range of simulated turbulence in high-resolution numerical simulations 102 1 100

My thesis work

1.   Xu  S.,  Lazarian  A.,  2016,  ApJ,  833,  215    2.          Xu  S.  &  Lazarian  A.  2017,  ApJ,  850,  126  3.      Xu  S.  &  Lazarian  A.  2017,  New  Journal  of  Physics,  19,  5005      4.      Xu  S.  &  Zhang  B.  2016,  ApJ,  832,  199  5.      Xu  S.  &  Zhang  B.  2017,  ApJ,  835,  2    6.      Xu  S.  &  Zhang  B.  2016,  ApJ,  824,  113    7.      Xu  S.,  Lazarian  A.  &  Yan  H.  2015,  ApJ,  810,  44    8.      Xu  S.,  Yan  H.  &  Lazarian  A.  2016,  ApJ,  826,  166          

9.      Xu  S.  &  Yan  H.  2013,  ApJ,  779,  140  10.      Xu  S.  &  Zhang  B.  2017,  ApJL,  846,  28    11.      Xu  S.,  Zhang  H.  &  Liu  X.  2013,  Research  in  Astronomy  and  Astrophysics,  13,  313  12.      Xu  S.  &  Li  Z.  2014,  Research  in  Astronomy  and  Astrophysics,  14,  411    13.    López-­‐Barquero,  V.,  Xu,  S.,  DesiaU,  P.,  Lazarian,  A.,  Pogorelov,  N.V.  &  Yan,  H.                      2017,  ApJ,  842,  54    14.    López-­‐Barquero,  V.,  Farber,  R.,  Xu,  S.,  DesiaU,  P.  &  Lazarian,  A.  2016,  ApJ,  830,  19