unraveling the function of the two entner–doudoroff...

5
Unraveling the function of the two Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2 Theresa Kouril, Patricia Wieloch, Julia Reimann, Michaela Wagner, Melanie Zaparty, Sonja-Verena Albers, Dietmar Schomburg, Peter Ruoff and Bettina Siebers DOI: 10.1111/febs.12106

Upload: others

Post on 07-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unraveling the function of the two Entner–Doudoroff ...ruoff/febs12106-sup-0001-EquationsS1-S6_FigS1-S3… · Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus

Unraveling the function of the two Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2

Theresa Kouril, Patricia Wieloch, Julia Reimann, Michaela Wagner, Melanie Zaparty, Sonja-Verena Albers, Dietmar Schomburg, Peter Ruoff and Bettina Siebers

DOI: 10.1111/febs.12106

Page 2: Unraveling the function of the two Entner–Doudoroff ...ruoff/febs12106-sup-0001-EquationsS1-S6_FigS1-S3… · Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus

Supplementary Material

Derivation of GK activity at constant ATP concentration (Eqn.1)

From Fig. 6 the rate equation for forming product P is given as:

v = 2kcat[ES2 ]+3k2[ES3] (S1)

Affinity constant (KS) and inhibitor constant (Ki) are defined as (assuming rapid

equilibria):

][

]][[ ;

][

]][[

3

2

2

2

ES

SESK

ES

SEK IS (S2)

The total enzyme concentration [E]0 is given as:

[E]0 = [E]+[ES2 ]+[ES3] (S3)

Solving for [E] and [ES3] from the equations defining KS and Ki, and inserting these

expressions into Eq. S3, leads to:

i

S

i

S

K

S

S

KES

K

SESES

S

ESKE

][1

][][

]][[][

][

][][

222

22

20 (S4)

Solving for [ES2] and [ES3] from Eqs. S4 and S2, respectively, gives:

][][

][ ;][

1][

][][ 23

2

02 ES

K

SES

K

S

S

K

EES

i

i

S

(S5)

Inserting the expressions for [ES2] and [ES3] from Eq. S5 into Eq. S1 gives Eq. 1:

i

i

S

icat

i

S

cat

icat

cat

i

cat

K

S

K

SSK

SV

K

S

k

k

K

S

S

K

Ek

K

S

k

kESkES

K

SkESkv

][1

][][

][][

2

31

][1

][

][2=

][

2

31][2][

][3][2

32

2

max2

2

0

22222

(S6)

where Vmax = 2kcat[E]0, and α catkk 2/3 2

Page 3: Unraveling the function of the two Entner–Doudoroff ...ruoff/febs12106-sup-0001-EquationsS1-S6_FigS1-S3… · Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus

Figure S1. Possible catalytic mechanism at 80°C for GK (represented as E) at

constant glycerate concentration leading to the rate equation

i

ATP

SK

ATPATPK

ATPVv

2

max

][][

][

by binding a second ATP to the enzyme-substrate

complex E(ATP), and leading to an inactive (dead-end) complex E(ATP)2. The

following (rapid) equilibria are assumed with the constants

 

KM

ATP =[E][ATP]

[E× ATP]

(Michaelis constant) and ])([

])][([

2ATPE

ATPATPEKi

. The reaction rate is defined as

 

v = kcat[E× ATP].

E + ATP E(ATP)+

ATP

E +PKM

ATP

kcat

E(ATP)2

Ki

Page 4: Unraveling the function of the two Entner–Doudoroff ...ruoff/febs12106-sup-0001-EquationsS1-S6_FigS1-S3… · Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus

Figure S2. Construction of the PBL2025Δ3195 mutant. Exchange of the KDGK

encoding gene SSO3195 with the marker gene lacS was used for blue/white

screening with X-gal. The correct mutant was confirmed by PCR and sequencing with

the primers 1557 and 1558. The mutant product runs slower on agarose gel, since

the lacS gene is larger than SSO3195.

Page 5: Unraveling the function of the two Entner–Doudoroff ...ruoff/febs12106-sup-0001-EquationsS1-S6_FigS1-S3… · Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus

** highly significant p-value < 0.0005

Figure S3. qRT-PCR analysis of PBL2025∆3195. The Ct values of SSO3194 and

SSO3197 were standardized to the Ct values of SSO0685 (secY) for each biological

replica.