aerosol.modelling.aspects:.update. … observations&at&background& airbase...

19
Atmosphere Monitoring Copernicus EU Copernicus EU www.copernicus.eu Copernicus EU Samuel Rémy 1 , Olivier Boucher 1 , Jeronimo Escribano 1 , Pierre Nabat 2 , Martine Michou 2 , Graham Mann 3 , Michael Schulz 4 , Zak Kipling 5 and Johannes Flemming 5 1 CNRSIPSL 2 MétéoFrance 3 University of Leeds 4 Met.Norway 5 ECMWF Aerosol modelling aspects: update and some results of the past year CAMS43 contributionto Copernicus

Upload: lynhu

Post on 15-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Chemistry–aerosol  coupling  challenges  in  the  CAMS  global  modelling  system

Atmosphere  Monitoring

Copernicus EU

Copernicus EU www.copernicus.eu

Copernicus EU

Samuel  Rémy1,  Olivier  Boucher1,  JeronimoEscribano1,  Pierre  Nabat2,  Martine  Michou2,  Graham  Mann3,  Michael  Schulz4,  Zak  Kipling5 and  Johannes  Flemming51 CNRS-­‐IPSL    2 Météo-­‐France    3 University  of  Leeds    4 Met.Norway 5 ECMWF

Aerosol  modelling  aspects:  update  and  some  results  of  the  past  yearCAMS43  contribution  to  Copernicus

AtmosphereMonitoring

Preamble

Xenophon,  Greek  general  and  writer,  5th century  BC:“Fast  is  fine,  but  accuracy  is  everything.”

AtmosphereMonitoring

Outline

Updates  of  C-­‐IFS  (global  atmospheric  composition  model  used  in  CAMS)  presented   in  this  talk  and  others:

• Primary  aerosols  (dust  and  sea-­‐salt)• Secondary  aerosols  :  nitrate  and  organics• Dry  deposition   (Johannes  Flemming’s talk  at  12:30)• A  word  on  emissions• C-­‐IFS  GLOMAP  updates

• Aerosol  alert  service  (talk  on  Thursday  09:15)

• Summary  -­‐ conclusions

AtmosphereMonitoring

A  new  sea-­‐salt  scheme

• The  current  sea-­‐salt  scheme  is  the  Monahan  et  al  (1986)  scheme:  sea-­‐salt  emissions  are  a  function  of  10m  wind  speed  power  3.41

• New  sea-­‐salt  scheme:  adapted  from  Grythe et  al.  (2014,  ACP)– Emissions   function  of  10m  wind  speed  power  3/3.5  depending   on  

particle  size– Dependency  of  sea-­‐salt  aerosol  emissions  on  SST:  relatively  more  

emissions  over  warm  oceans– Emissions  are  closer  to  latest  estimates  of  SSA  emissions   (for  

particles  with  a  diameter  <=  10  micron)   :  ~11Tg  per  year

C-­‐IFS  2014  emissions of  seasalt aerosol bin  1,  2,  3  with the  Monahan   (M86)  and  Grythe (G14)  schemes.

M86 G14Seasalt bin1 0.022 0.033Seasalt bin2 1.928 1.462Seasalt bin3 2.344 36.37Total emissions for Dp <= 10 micron 2.73 13.61

AtmosphereMonitoring

A  new  sea-­‐salt  scheme

• Sea-­‐salt  AOD  is  significantly  larger  with  G14  than  with  M86  over  most  oceans,  smaller  over  continents

• Yearly  total  AOD  is  closer  to  MODIS  observations

2014  total  AOD  simulated by  C-­‐IFS:  with M86  scheme (top  left),  G14  (top   right).  MODIS  AOD  (bottom).

AtmosphereMonitoring

A  new  sea-­‐salt  scheme

• Comparison  with  relevant  AERONET  stations  show  a  better  agreement  with  the  new  scheme

• The  impact  on  PM10  forecasts  over  Europe  is  also  positive

2014  total  AOD:  AERONET  observations   (blue dots);  C-­‐IFS  with M86   (green)  and  G14  (red).  AERONET  stations  at  the  Samoa  Islands (top)  and   in  the  Caribbean   Islands (bottom).  

Scores  of  PM10   (in  μg/m3)  simulated by  C-­‐IFS  with M86  and  G14  against observations  at  background   airbase stations  in  2014.

M86 G14Average 19.96 19.11bias -­‐0.32 -­‐1.17RMSE 7.27 7.06correlation 0.68 0.72

AtmosphereMonitoring

A  new  dust  scheme:  ongoing

• The  current  dust  scheme  is  the  Ginouxet  al  (2001)  scheme  using  prescribed  threshold  lifting  speed  and  bare  soil  fraction.

• New  dust  scheme  described  in  Nabat et  al  (2015,  ACP),  based  on  the  Marticorena and  Bergametti (1995)  saltation  scheme  and  the  Kok et  al  (2011)  size  distribution  at  emission.  Sand  and  Clay  fraction  from  SURFEX  (Météo-­‐France)  are  used.

Volume  size  distribution  of  emitted dust aerosols;  observations  and  provided by  Kok  et  al  brittle

fragmentation   theory (gray  line).  Plot   from Kok  et  al  (2011).

AtmosphereMonitoring

A  new  dust  scheme:  ongoing

• Emissions  of  super  coarse  particles  are  increased  by  a  factor  4  with  the  new  scheme

• Total  dust  emissions  increased  from  ~1300  Tg per  year  to  ~4000  Tg per  year

• Over  Sahara,  ~  2200  Tg per  year  against  ~870  Tg per  year,  closer  to  most  recent  estimate  (~2900  Tg per  year).

2014  dust AOD  with C-­‐IFS:  old scheme (top)  and  new  scheme (bottom)

AtmosphereMonitoring

A  new  dust  scheme:  ongoing

• Emissions  of  super  coarse  particles  are  increased  by  a  factor  4  with  the  new  scheme

• Total  dust  emissions  increased  from  ~1300  Tg per  year  to  ~4000  Tg per  year

• Positive  impact  on  scores  vs  AERONET

2014  dust AOD  with C-­‐IFS:  old scheme (top)  and  new  scheme (bottom)

2014:  Modified Normalized Mean Bias (MNMB)  and  Fractional Gross  Error (FGE)  of  C-­‐IFS  simulatedAOD,  reference (green),  and  new  dust scheme (red)  against global  AERONET  observations.

AtmosphereMonitoring

Introducing  nitrate  and  ammonium  aerosol

Implementation  into  C-­‐IFS  of  the  Hauglustaine et  al  (ACP,  2014)  nitrate/ammonium  scheme.  Nitrate  is  represented  by:

– Fine  mode  nitrate,  produced  by  gas  partitioning:– Coarse  mode  nitrate,  produced  by  heterogeneous   reactions  of  HNO3

over  calcite  (dust)  and  sea-­‐salt  particles:

Global  budgets  of  nitrate   for  C-­‐IFS  (2014),  INCA  (Hauglustaine et  al  original   scheme)  .

Process NO3 fine – ref(2000)

NO3 coarse –ref (2000)

NO3 fine C-­‐IFS

NO3 coarseC-­‐IFS

Chemicalproduction

0.27 0.93 0.18 1.03

Wet deposition 1.05 0.12 0.71Dry deposition 0.14 0.06 0.18Sedimentation 0 0 0.16Burden 0.05 0.13 0.018 0.108Lifetime 4.6  days 3 days 3.1 days

AtmosphereMonitoring

Introducing  nitrate  and  ammonium  aerosol

• Simulated  nitrate  surface  concentrations  are  between  2  and  7  μg/m3 over  heavily populatedareas.  

• Values  are  generally overestimatedas  compared to  EMEP  and  AIRBASE  observations.

C-­‐IFS,  2014:  Surface  concentration   of  fine  (top)  and  coarse (middle)  mode  nitrate.  Bottom:  

nitrate  AOD.

AtmosphereMonitoring

Introducing  nitrate  and  ammonium  aerosol

• Comparison  of  C-­‐IFS  AODs  with  AERONET  observations  over  Europe  show    better  agreement  with  the  nitrate  scheme

• The  impact  on  PM10  forecasts  over  Europe  is  positive  for  correlation

Modified Normalized Mean Bias (MNMB)  and  Fractional Gross  Error (FGE)  of  C-­‐IFS  simulated AOD  with (red)  and  without (green)  

nitrates   for  2014  against AERONET  european observations.

Scores  of  PM10   (in  μg/m3)  simulated by  C-­‐IFS  without nitrates  on,  with nitrates,  and  with nitrates  and  new  sea-­‐salt scheme.

Reference With nitrates Nitrates andnew sea-­‐saltscheme

Average 19.96 24.81 24.13Bias -­‐0.3 4.51 3.85RMS 7.25 9.07 8.55Correlation 0.68 0.72 0.75

AtmosphereMonitoring

Secondary  Organic  Aersosols (SOA)

• Part  of  the  OM  specie• Replaced  the  Dentener et  al  (2006)  dataset  

with  production  scaled  on  non-­‐biomass  burning  CO  emissions

• Better  representation  of  the  anthropogenic  impact  on  SOA  production

• Increases  SOA  production  from  ~20  Tg per  year  to  ~140  Tg per  year,  closer  to  most  recent  estimates  (Spracklen et  al.  2011;  Lin  et  al  .  2012).

July:  old (top)  and  new  (bottom)  SOA  production  flux  in  kg/(m².s)

AtmosphereMonitoring

Secondary  Organic  Aersosols (SOA)

• Part  of  the  OM  species• Replaced  the  Dentener et  al  (2006)  dataset  

with  production  scaled  on  non-­‐biomass  burning  CO  emissions

• Better  representation  of  the  anthropogenic  impact  on  SOA  production

• Increases  SOA  production  from  ~20  Tg per  year  to  ~140  Tg per  year,  closer  to  most  recent  estimates  (Spracklen et  al.  2011;  Lin  et  al  .  2012).

MNMB  of  C-­‐IFS  simulated AOD  for  2014  against AERONET  obser vations,  with older (red)  and  newer (green)  SOA  

production.

AtmosphereMonitoring

A  word  on  emissions

• Use  of  MACCity emissions  for– Non  biomass  burning   OM  and  BC– SO2

• Better  seasonality;  yearly  trend• Positive  impact  on  scores  vs  AERONET,  

except  in  July-­‐August

MNMB,  FGE  and  correlation of  C-­‐IFS  simulated AOD  for  2014  againstAERONET  obser vations,  with older (red)  and  newer (gray)  emissions.  

The  green   run is with newer emissions and  the  new  SOA  scheme

AtmosphereMonitoring

C-­‐IFS  GLOMAP:  towards  a  pre-­‐operational  version• Optimization  of  the  code:  runtime  divided  by  5• Development  of  new  components  from  CIFS-­‐AER:

– New  dust  emission  scheme,  – New  sea-­‐salt  emission  scheme,– Sedimentation,– Secondary  Organics  scaled  on  CO  emissions,– Use  of  MACCity emissions,– Nitrates  (not   finalized),– Integration  of  a  new  GLOMAP  codebase  that  includes  a  stratospheric  

aerosol  capacity.• Scores  of  CIFS-­‐GLOMAP  vs  AERONET  are  now  comparable  to  those  of  

cycle  40R2  of  CIFS-­‐AER  (2  years  ago).

AtmosphereMonitoring

Summary   -­‐ conclusions

• The  new  developments   presented  here  led  to  a  significant   improvement  of  the  model  skill  as  measured  against  AERONET  and  MODIS  AOD

• In  C-­‐IFS,  the  aerosol  and  chemical  components  were  developed  and  integrated  separately

• The  general  direction  of  developments   in  C-­‐IFS  is  towards  a  more  coupled  approach

• All  of  these  developments  have  been  made  available  or  will  shortly  be  made  available  in  the  version  of  C-­‐IFS  that  is  run  operationally   in  the  CAMS  project

• However,  what  is  switched  on  in  the  operational  CAMS  framework  is  not  yet  decided

19-­‐05-­‐17 17

2010:  MNMB,  FGE  and  temporal   correlation of  C-­‐IFS  simulatedAOD,  reference (green),  and  with new  developments except the  new  dust scheme (red)  against global  AERONET  observations.

AtmosphereMonitoring

Online  dry  deposition   velocities• Use  of  fixed  deposition  velocities   for  each  

specie  and  over  land/sea/ice

• Implementation  and  adaptation  of  a  scheme  (Zhang  et  al  2001)  that  computes  online  dry  deposition  velocities,   depending  on:– Particle  size– Friction  velocity– Roughness  length

• Important  diurnal  and  seasonal  cycle  of  dry  deposition  velocities

June 2014:  dry  deposition velocities for  sea-­‐saltbin  1  (top),  2  (middle)  and  3  (bottom),  in  m/s.

AtmosphereMonitoring

Online  dry  deposition   velocities

• Comparison  of  C-­‐IFS  AODs  with  AERONET  observations  show    better  agreement  with  the  new  scheme

• The  impact  on  PM10  forecasts  over  Europe  is  positive  for  most  stations

2014:  Modified Normalized Mean Bias (MNMB)  and  FractionalGross  Error (FGE)  of  C-­‐IFS  simulated AOD,  reference (green),  and  new  dry  dep scheme (red)  against global  AERONET  observations.

2014;  monthly PM10   (in  μg/m3)  simulated by  C-­‐IFS;  reference(red)  and  new  dry  deposition (blue)  at  the  Airbase Zwevegem  

station,  Belgium.  Observations  are   in  black.