us 3904656 patent

Upload: fajrikoskaser

Post on 13-Apr-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Us 3904656 patent

    1/6

    U n i t e d S t a t e s v

    P a t e n t 1 1 9 1

    [ 1 1 1

    3,904,656

    B r o z

    [ 4 5 ]

    S e p t . 9 , 1975

    [54]

    PROCESS

    FOR PREPARING 2 , 4 0 9 , 4 4 1 10/1946

    Metzger

    . . . . . . . . . . . . . . . . . . . . . . .

    . . 260/637

    R

    MONOETHYLENE

    GLYCOL

    AND 2 , 4 3 0 , 4 4 3

    1 1 / 1 9 4 7

    P e c k e r . . . .

    2 6 0 / 3 4 8 . 5 R

    2, 75 6 , 24 1

    7 / 1 9 5 6

    C0urter.., . . . . .

    . .

    2 6 0 / 6 3 5

    E

    ETHYLENE

    OXIDE 3,367,847

    2 1968

    Pierson . . . . . . . . . . . . . . . . 260 637R

    [ 7 5 ]

    I n v e n t o r ; S t e p h e n

    E .

    B r o z ,

    Beaumont,

    T e x , 3 , 4 1 8 , 3 3 8 1 2 / 1 9 6 8 G i l m a n e t

    a 1 .

    2 6 0 / 3 4 8 . 5

    R

    _ _ _ 3,597,452 8/1971 Laemmle

    et

    a1.

    . . . . . . . .

    260/348.5

    [ 7 3 ] A s s l g n e e l PPG n d u s t l l e s , Inc Pmsburgh, P a - 3 , 7 3 2 , 3 2 0

    5 / 1 9 7 3

    Ford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 0 / 6 3 7

    R

    [ 2 2 ]

    F i l e d :

    F e b .

    1 3 ,

    1973

    [ 2 1 ]

    A p p l _

    N o _ : 3 32 0 5 6

    P r i m a r y

    Examiner-Joseph

    E .

    E v a n s

    A t t o r n e y ,

    Agent, or

    F i r m - l rw i n M . S t e i n

    [ 5 2 ] US. C L . . .

    2 6 0 / 3 4 8 . 5 R ;

    2 6 0 / 6 3 5 E ; 2 6 0 / 6 3 7

    R

    [51]

    I n t .

    GL2

    . . . . . . . . . . . . . . .

    . .

    C07C 1/20; C 0 7D

    3 0 1 / 3 2 [57] ABSTRACT

    [ 5 8 ]

    F i e l d o f Search . . .

    . . 260/635 E , 3 4 8 . 5

    I R ,

    6 3 7

    R An

    mproved

    p r o c e s s

    f o r p r e p a r i n g ?ber

    g r a d e m o n o_

    [ 5 6 ]

    R e f e r e n c e s C i t e d e t h y l e n e

    g l y c o l i s

    p r o v i d e d

    w h i c h o b v i a t e s t h e need

    f o r

    s e w e r i n g

    l a r g e

    amounts

    o f

    w a t e r .

    UNITED STATES PATENTS

    2 , 1 2 5 , 3 3 3

    8/1938

    C a n e r

    . . . . . . . . . . . . . . . . . . . . . . . . . 260/348.5 R 3

    Claims,

    1

    Drawing Figure

    E.O.REACTOR

    ABSORBER

    STRIPPER

    REABSORBER

    E.O.REFINING

    E.O,PURIFY|NG OLUMNS

    s t e p

    a .

    s t e p b ) s r e p c )

    ( s t e p

    d ) s r e p

    h )

    Rec

    c l e E 1 h y | e n e

    5 . 0 . 1 5 . 0 . 5 . 0 . 0 0 2 5 . 0 .

    H 2 0

    H 2 0 r

    5 0 / 1 1 2 6

    A I R 1

    ETHYLENE

    E . O . / H 2 0 P 2 ) ? 5 . 0 .

    FURGE ( I N O R G A N I C S A L T S

    Am

    -V-ABSORBERS)E.G./Hg0

    STEAM

    (CONDENSED)

    G

    was

    H o

    MEG

    0 5

    a F [ - >

    E g g / { 3 2 5 R z x r l l ? E

    ( O P T I O N A L 5 0 / 1 4 2 0 H2OEGASSER ACTIVATED T EG

    CARBON

    H20

    MEG DEG TEG

    DEG TEG

    TEG

    ETHYLENE GLYCOL DRYING

    DISTILLATION

    TR A I N

    REACTOR

    EVAPORATION

    COLUMN

    1 1 4 5 s 05s TEG

    s r e p

    e ) ( s r e p f )

    @-srep g-__-

  • 7/24/2019 Us 3904656 patent

    2/6

  • 7/24/2019 Us 3904656 patent

    3/6

    3 , 9 0 4 , 6 5 6

    l

    PROCESS

    FOR'PREPARING

    M O N O E T H Y L E N E

    GLYCOL AND ETHYLENE

    OXIDE

    DESCRIPTION

    OF THE INVENTION

    E t h y l e n e g l y c o l s ( m o n o e t h y l e n e g l y c o l , d i e t h y l e n e

    g l y c o l and t r i e t h y l e n e g l y c o l )

    a r e

    p r e p a r e d

    c o m m e r

    c i a l l y

    b y s e v e r a l

    m e t h o d s . O ne o f t h e s e methods

    in

    v o l v e s a t w o- s t a g e r e a c t i o n

    s y s t e m ,

    t h e ? r s t s t a g e

    o f

    w h i c h r e q u i r e s

    t h e

    d i r e c t

    o x i d a t i o n o f e t h y l e n e

    w i t h

    a i r

    o r

    elemental oxygen

    over a

    s u i t a b l e c a t a l y s t , t y p i c a l l y

    a

    s i l v e r - c o n t a i n i n g c a t a l y s t ,

    a t e l e v a t e d

    t e m p e r a t u r e

    ( 1 0 0 C . t o 5 0 0 C . i s t y p i c a l ) and a t s u p e r a t m o s p h e r i c

    p r e s s u r e ( 2 t o 2 5

    a t m o s p h e r e s ) .

    E t h y l e n e

    o x i d e produced i n t h e s e r e a c t o r s , which

    m a y

    be

    ? x e d o r

    ?uid

    bed r e a c t o r s , a s

    t y p i ? e d

    by US.

    P a t . No. 2 , 1 2 5 , 3 3 3 and US.

    P a t .

    No. 2 , 4 3 0 , 4 4 3 , i s r e

    m o v e d

    from t h e r e a c t o r s i n

    a

    g a s

    stream

    a n d i s

    passed

    i n t o

    an

    e t h y l e n e

    o x i d e a b s o r b e r

    where

    t h e

    g a s stream

    i s contacted

    w i t h water

    t o

    absorb

    t h e e t h y l e n e oxide

    c o n t e n t

    t h e r e o f .

    The

    g a s e s (which

    s t i l l

    c o n t a i n

    appre

    c i a b l e q u a n t i t i e s o f

    e t h y l e n e )

    a r e t h e n

    r e c y c l e d

    t o t h e

    e t h y l e n e o x i d e r e a c t o r w h i l e t h e e t h y l e n e o x i d e con~

    t a i n i n g w a t e r i n

    t h e a b s o r b e r i s p a s s e d t o a s t r i p p e r ,

    e . g . , s t r i p p i n g column.

    I n t h e

    s t r i p p e r ,

    steam o r h o t

    water

    i s

    introduced

    a n d

    contacted

    u s u a l l y

    countercur~

    r e n t t o t h e e t h y l e n e oxide f e d t h e r e t o t o r e m o v e e t h y l

    ene o x i d e

    product

    o v e r h e a d . The water d i s c h a r g e d

    from t h e s t r i p p e r

    i s

    r e c i r c u l a t e d t o t h e absorber

    f o r

    use

    i n a b s o r b i n g

    e t h y l e n e

    o x i d e t h e r e i n .

    I n o t h e r s y s t e m s a steam heated

    r e b o i l e r

    i s employed

    t o h e a t water i n t h e bottom of t h e s t r i p p i n g c o lu m n a n d

    b o i l i t . T h i s g e n e r a t e s s t e a m i n t e r n a l l y

    i n

    t h e

    s t r i p p i n g

    column.

    While

    t h i s

    e l i m i n a t e s

    a water

    b u i l d - u p

    problem

    g l y c o l s s t i l l accumulate i n

    t h e column

    and must be

    p u r g e d t o t h e e v a p o r a t i o n a n d / o r r e c o v e r y s y s t e m s o f

    t h e

    g l y c o l

    p r o d u c i n g u n i t .

    Because water i s i n t r o d u c e d

    i n t o

    t h e

    s t r i p p e r

    and t h e

    aqueous

    s t r i p p e r

    bottoms

    a r e r e c y c l e d t o

    t h e a b s o r b e r

    t o

    provi de

    a closed system, a

    p ur g e

    o r

    bleed

    stream i s

    required

    to r e m o v e the

    excess water

    which

    accumu

    l a t e s .

    T h i s

    purge

    stream c o m m o nly

    c a l l e d

    t h e

    l e a n

    c y c l e

    w a t e r s t r e a m

    g e n e r a l l y

    c o n t a i n s a p p r e c i a b l e

    q u a n t i t i e s o f e t h y l e n e g l y c o l i n i t ,

    e . g . ,

    l

    t o 3 p e r c e n t

    b y volume and t h i s g l y c o l

    i s

    u s u a l l y o f s u c h v a l u e

    t h a t

    i t

    cannot

    be d i s c a r d e d .

    F u r t h e r , s i n c e t h e

    purge stream

    c o n t a i n s e t h y l e n e g l y c o l ,

    i t c a n n o t

    b e e a s i l y d i s p o s e d o f

    due t o t h e f a c t t h a t e t h y l e n e g l y c o l h a s a d e l e t e r i o u s e f

    f e c t o n t h e

    t o t a l

    oxygen demand

    f

    bodies

    of

    water i n

    w h i c h t h i s

    m a t e r i a l

    m i g h t b e

    d i s c h a r g e d .

    S i m i l a r l y ,

    where

    h e a t e d

    s t r i p p i n g v e s s e l s a r e u s e d , g l y c o l b u i l d u p

    in t h e v e s s e l s r e q u i r e a b l e e d

    o f

    w a t e r - g l y c o l from

    t h e

    s y s t e m .

    The o v e r h e a d

    f r o m

    t h e s t r i p p e r c o m p r i s i n g e t h y l e n e

    o x i d e i s p a s s e d

    t o

    an

    e t h y l e n e

    o x i d e reabsorber

    a n d

    t h e

    e t h y l e n e oxide absorbed

    i n

    w a t e r .

    F r o m

    t h e r e a b s o r b e r ,

    a p o r t i on of t h e aqueous e t h y l e n e oxide mixture i s

    p a s s e d t o a

    g l y c o l

    r e a c t o r t o

    m a ke

    e t h y l e n e

    g l y c o l s

    a n d

    a

    p o r t i o n i s p a s s e d t o a r e ? n i n g

    v e s s e l

    t o produce

    p u r i

    ? e d e t h y l e n e

    o x i d e .

    The e t h y l e n e

    g l y c o l s p r o d u c e d i n

    t h e g l y c o l

    r e a c t o r

    a r e ? r s t

    passed

    t o

    an

    e v a p o r a t o r

    wherein water vapo r

    i s

    r e m ov e d

    and t h e

    vapor

    i s

    then

    condensed and r e c y c l e d t o t h e r e a b s o r b e r .

    The

    g l y c o l s

    product

    i s

    taken

    from

    t h e evaporator

    a s

    bottoms,

    f u r

    t h e r d r i e d and p a s s e d

    t h r o u g h a

    d i s t i l l a t i o n

    t r a i n

    wherein monoethylene

    g l y c o l

    can

    be

    recovered

    i n

    a

    ? r s t d i s t i l l a t i o n v e s s e l

    a s

    overhead.

    T h e bottoms i s then

    5

    1 0

    20

    25

    3 0

    35

    4 0

    45

    55

    65

    2

    p a s s e d t o a second d i s t i l l a t i o n v e s s e l wherein d i e t h y l

    ene g l y c o l i s

    recovered

    a s

    overhead,

    a n d

    t h e bottoms

    p a s s e d t o a t h i r d d i s t i l l a t i o n v e s s e l wherein t r i e t h y l e n e

    g l y c o l

    i s r e c o v e r e d

    a s o v e r h e a d . A l t e r n a t i v e l y , t h e e t h

    y l e n e g l y c o l s

    can be

    s e p a r a t e d

    i n

    a

    f r a c t i o n a t i o n

    c o l

    umn.

    The

    p o r t i o n

    o f

    e t h y l e n e

    o x i d e

    w h i c h

    i s

    p a s s e d

    f r o m

    t h e

    r e a b s o r b e r

    t o p r o d u c e

    p u r i ? e d

    e t h y l e n e

    o x i d e i s

    ? r s t

    p a s s e d

    t o

    a r e ? n i n g column

    w h e r e i n

    t h e e t h y l e n e

    oxide i s recovered a s

    overhead

    a n d t h e aqueous

    bot

    t o m s

    c o n t a i n i n g u l t r a - v i o l e t

    l i g h t

    a b s o r b e r s i s r e c y c l e d

    t o t h e re a b s o r b e r . The e t h y l e n e o x i d e overhead from

    t h e

    re?ning

    column can t h e n be

    f u r t h e r

    puri?ed i n

    a

    subsequent

    v e s s e l t o remove carbon d i o x i d e overhead

    and t h e e t h y l e n e

    o x i d e

    bottoms p a s s e d t o a t h i r d

    d i s t i l

    l a t i o n v e s s e l w h e r e i n t h e p u r i ? e d e t h y l e n e o x i d e p r o d

    uct i s

    recovered a s overhead.

    I t would be

    d e s i r a b l e i f

    t h e aqueous

    bottoms

    could be

    r e c y c l e d

    from

    t h e e t h y l e n e o x i d e r e ? n i n g

    v e s s e l to

    t h e

    r e a b s o r b e r

    t o

    p r o v i d e

    m a ke u p

    w a t e r

    and

    o b v i a t e

    t h e

    need

    f o r sewering

    s a i d

    b o t t o m s . The u s e o f

    t h i s

    bottoms

    i n t h e p r e p a r a t i o n o f e t h y l e n e g l y c o l s , h o w e v e r , h a s

    c a u s e d t h e

    monoethylene

    g l y c o l p r o d u c t

    t o

    b e u n s u i t

    a b l e f o r u s e a s ?ber

    grade

    m a t e r i a l . M o r e

    p a r t i c u l a r l y ,

    i t

    h a s

    been found t h a t

    t h e

    aqueous

    bottoms

    i n

    t h e re?n

    i n g

    column

    c o n t a i n s u l t r a - v i o l e t l i g h t a b s o r b e r s which

    c o n t a m i n a t e m o n o e t h y l e n e g l y c o l p r o d u c e d

    t h e r e f r o m .

    I t would

    a l s o

    be

    d e s i r a b l e

    i f t h e purge stream could

    be r e c y c l e d t o

    t h e

    r e a b s o r b e r , b u t

    t h e

    purge stream

    c o n t a i n s

    u l t r a - v i o l e t

    a b s o r b e r s

    which

    contaminate

    m o n o e t h y l e n e g l y c o l p r o d u c e d

    f r o m s a i d

    e t h y l e n e

    o x

    i d e . I t would a l s o be d e s i r a b l e i f t h e purge stream could

    be

    r e c y c l e d t o

    an

    e t h y l e n e g l y c o l w a t e r e v a p o r a t o r t o

    b e u s e d

    a s r e f lu x t o

    produce

    p u r i ? e d

    e t h y l e n e

    g l y c o l ,

    but

    the

    purge stream

    contains

    both s a l t s which

    cause

    s c a l i n g

    i n t h e

    e v a p o r a t o r and u l t r a - v i o l e t a b s o r b e r s

    w h i c h

    c o n t a m i n a t e

    t h e m o n o e t h y l e n e g l y c o l p r o d u c t .

    I t has now

    been

    discovered t h a t the purge stream

    from

    t h e e t h y l e n e o x i d e s t r i p p e r

    can

    be

    upgraded

    t o

    r e n d e r i t

    s u i t a b l e

    f o r r e c y c l i n g

    t o

    t h e

    e t h y l e n e

    o x i d e

    r e a b s o r b e r

    and e t h y l e n e g l y c o l e v a p o r a t o r , when t h e

    purge stream i s

    deionized

    by treatment

    with i o n ex

    change m a t e r i a l s t o remove metal s a l t s , t h e

    purge

    stream

    passed

    t o

    a

    d e g a s s i f i e r

    t o

    r e m o v e

    c arbon

    d i o x

    i d e a n d

    other

    v o l a t i l e s a n d t h e

    purge stream t r e a t e d

    with

    a c t i v a t e d carbon

    t o

    remove u l t r a - v i o l e t l i g h t ab

    s o r b e r s .

    I t has

    f u r t h e r

    been d i s c o v e r e d t h a t t h e aqueous bot

    toms from t h e e t h y l e n e

    oxide

    re?ning v e s s e l can be

    r e

    c y c l e d t o t h e

    e t h y l e n e

    o x i d e r e a b s o r b e r ,

    and a

    ?ber

    g r a d e m o n o e t h y l e n e

    g l y c o l

    p r o d u c t r e c o v e r e d . I t i s

    o n l y r e q u i r e d

    t h a t

    t h e e t h y l e n e o x i de p a s s e d f r o m t h e

    r e a b s o r b e r

    t o

    t h e e t h y l e n e o x i d e r e ? n i n g

    v e s s e l

    b e con

    t r o l l e d

    t o provide

    a

    f e e d t o t h e g l y c o l r e a c t o r

    having an

    a m o u n t o f

    aqueous bottoms

    from t h e e t h y l e n e o x i d e

    re?ning

    v e s s e l i n s u f ? c i e n t t o c ontaminate the mono

    e t h y l e n e

    g l y c o l p r o d u c t and r e n d e r i t

    u n s u i t a b l e

    f o r

    u s e

    a s a

    ?ber

    grade

    p r o d u c t .

    DETAILED DESCRIPTION OFTHE INVENTION

    M o r e

    p a r t i c u l a r l y ,

    t h e i n v e n t i o n

    a s

    b r o a d l y

    de?ned

    c o m p r i s e s : I n t h e m a n u f a c t u r e o f

    e t h y l e n e

    g l y c o l s b y

    t h e

    s t e p s o f :

    a . reacting

    a i r

    or o x y g e n a n d

    ethylene

    i n the presenc e

    o f a c a t a l y s t

    a t

    e l e v a t e d t e m p e r a t u r e s t o produce

    e t h y l

    ene

    o x i d e ;

    b .

    a b s o r b i n g

    t h e

    e t h y l e n e o x i d e o f s t e p ( a ) i n

    w a t e r ;

  • 7/24/2019 Us 3904656 patent

    4/6

    3 , 9 0 4 , 6 5 6

    3

    c . s t r i p p i n g

    t h e

    e t h y l e n e

    o x i d e from t h e

    water o f s t e p

    ( b )

    by

    c o n t a c t w i t h s t e a m ,

    a n d

    r e c o v e r i n g

    and con

    densing steam

    t o

    water

    a n d r e c y c l i n g r e s u l t a n t

    water

    t o

    s t e p b ) ;

    d .

    r e a b s o r b i n g

    in w a t e r t h e

    e t h y l e n e o x i d e r e c o v e r e d

    f r o m s t e p

    c ) ;

    e . r e a c t i n g a p o r t i o n of

    t h e e t h y l e n e oxide

    a n d water

    o f s t e p ( d )

    t o p r o d u c e e t h y l e n e g l y c o l s ;

    f . e v a p o r a t i n g

    w a t e r o f s t e p ( e ) and

    c o n d e n s i n g

    and

    r e c y c l i n g

    w a t e r

    t o s t e p ( d ) ;

    g .

    d i s t i l l i n g e t h y l e n e

    g l y c o l s

    o f

    s t e p

    ( e )

    t o s e p a r a t e

    m o n o e t h y l e n e g l y c o l

    t h e r e f r o m ;

    a n d

    h . d i s t i l l i n g a p o r t i o n o f t h e

    e t h y l e n e

    o x i d e and water

    o f s t e p ( d ) t o s e p a r a t e t he

    e t h y l e n e

    o x i d e and r e c y c l i n g

    r e s u l t a n t

    water

    t o

    s t e p

    ( d ) ;

    t h e

    improvement which c o m p r i s e s

    removing

    a p o r

    t i o n of t h e water condensed i n

    s t e p

    ( c ) , i n a n a m o u n t

    s u f f i c i e n t

    t o

    maintain a water balance

    i n

    s a i d absorbing

    and s t r i p p i n g s t e p s ( b ) and ( c ) , t r e a t i n g

    removed

    w a t e r

    w i t h i o n exchange m a t e r i a l s t o

    r e m ov e s a l t s

    contained

    t h e r e i n , degassing r e m o v e d water t o r e m o v e

    carbon

    d i

    o x i d e and v o l a t i l e s t h e r e f r o m ,

    and t r e a t i n g

    removed

    water

    with

    activated

    c a r b o n t o r e m o v e u l t r a - v i o l e t a b

    s o r b e r s a n d r e c y c l i n g t h e r e s u l t a n t water t o s t e p s ( d ) o r

    ( f )

    or both a s

    required

    t o

    provide makeup

    water or r e

    ? u x me d i u m; and

    t h e f u r t h e r improvement

    which

    com

    p r i s e s r e g u l a t i n g t h e amount o f e t h y l e n e o x i d e

    and

    w a t e r p a s s e d from

    s t e p ( d ) t o s t e p ( h )

    s u c h

    t h a t t h e

    a m o u n t

    of water

    recycled

    t o

    s t e p ( d )

    i s not

    so g r e a t

    a s

    t o introduce an a m o u n t of u l t r a - v i o l e t l i g h t absorbers

    s u f f i c i e n t t o

    r e n d e r t h e monoethylene g l y c o l

    o f s t e p

    ( g )

    u n s u i t a b l e f o r use

    a s

    ?ber grade m a t e r i a l .

    I n

    order

    t o s e t f o r t h

    c l e a r l y

    t h e n a t u r e o f t h e i n v e n

    t i o n ,

    t h e

    e n t i r e

    e t h y l e n e o x i d e - g l y c o l p r o c e s s

    i s

    d e

    s c r i b e d i n r e l a t i o n t o t h e improved p r o c e s s o f t h e

    in

    v e n t i o n i n d e t a i l . T y p i c a l l y , i r o r oxygen and e t h y l e n e

    are fed to a

    reactor

    ?lled with a s i l v e r c a t a l y s t . The

    th

    y l e n e and oxygen r e a c t

    i n t h e p r e s e n c e o f

    t h e

    c a t a l y s t

    a t temperature t y p i c a l l y i n

    t h e r a n g e o f

    from 1 0 0 C . t o

    5 0 0 C . a n d

    p r e f e r a b l y

    i n

    t h e

    r a n g e o f 2 0 0 C . t o 3 6 0 C .

    The e t h y l e n e

    o x i d e

    vapor produced overhead

    i s

    t h e n

    passed t o

    an

    absorber

    where

    i t

    i s countercurrently con

    tacted with water a t a

    temperature of

    about 85F. A t

    a n

    absorber bottoms temperature o f about 1 1 8 F . and t h e

    t o p

    p r e s s u r e

    o f a b o o u t 270 p s i . a b s o l u t e ,

    e t h y l e n e i s

    recovered a s

    a

    g a s a n d

    recycled

    t o

    the ethylene oxide

    r e a c t o r .

    The

    a b s o r b e r

    b o t t o m s

    c o n t a i n i n g

    p r i n c i p a l l y

    e t h y l e n e o x i d e i s r a i s e d t o a temperature of about

    2 1 2 F . by

    a s e r i e s

    o f heat exchangers and passed

    t o a

    s t r i p p e r ,

    p r e f e r a b l y a t a p o i n t

    near

    the

    t o p .

    S team a t a

    t e m p e r a t u r e

    o f

    a b o u t

    5 0 0 F . i s

    p a s s e d i n t o t h e s t r i p p e r

    p r e f e r a b l y

    a t

    a p o i n t

    near t h e

    bottom

    and

    t h e s t r i p p e r

    i s

    operated a t

    a top p r e s s u r e and temperature of about

    20 psi.

    a b s o l u t e

    a n d

    2 0 9 F .

    t o

    r e c o v e r

    e t h y l e n e

    o x i d e

    o v e r h e a d . The

    e t h y l e n e

    o x i d e i s t h e n p a s s e d th r o u g h

    a

    s e r i e s of heat exchangers

    t o

    reduce t h e temperature t o

    about 9 6 F . where i t

    i s

    f e d

    i n t o

    a reabsorber p r e f e r a b l y

    a t a point near the

    bottom.

    The

    q u e o u s

    bottoms f r o m

    t h e s t r i p p e r i s

    p a s s e d

    t h r o u g h a s e r i e s o f

    h e a t

    exchang

    e r s t o

    reduce

    the

    temperature

    t o

    about

    8 5 F .

    a n d

    then

    r e c y c l e d t o t h e

    a b s o r b e r ,

    p r e f e r a b l y

    a t a

    p o i n t

    near t h e

    t o p .

    A

    o r t i o n o f t h e aqueo us bottoms from t h e

    s t r i p

    p e r , however, i s purged o r

    b l e d

    from t h e stream

    i n

    order

    t o r e m o v e i n o r g a n i c s a l t s

    a n d

    u l t r a - v i o l e t

    absorb

    e r s

    a n d maintain a water balance

    i n

    t h e absorber s t r i p

    per system. This purge

    stream i s

    passed

    t o a n

    ion ex

    1 0

    25

    35

    4 0

    45

    55

    65

    4

    change b e d , t o

    a

    degasser a n d t o a'bed of a c t i v a t e d c a r

    bon.

    The d e i o n i z a t i o n o c c u r r i n g i n t h e i o n exchange bed

    c a n

    be

    accomplished

    by the use of a n u m b e r of com

    monly employed o r g a n i c

    i o n

    e x c h a n g e

    r e s i n s

    s u c h a s

    t h e s u l f o n i c a c i d c a t i o n t y p e a n d t h e weak b a s e a n i o n

    t y p e .

    I n

    a d d i t i o n ,

    i n o r g a n i c

    e x c h a n g e r s

    such a s

    t h e n a t

    u r a l

    and

    s y n t h e t i c

    a l u m i n o

    s i l i c a t e

    c a t i o n

    e x c h a n g e r

    g e l s c a n

    be employed.

    P r e f e r r e d ,

    however, a r e t h e o r

    g a n i c h i g h t e m p e r a t u r e t y p e s , e . g . , e f f e c t i v e a t 8 5 F .

    such a s

    t h e

    s t y r e n e d i v i n y l

    benzene

    c a t i o n r e s i n s h a v i n g

    a s u l f o n i c a c i d f u n c t i o n a l i t y , and t h e weak b a s e a n i o n

    r e s i n s such

    a s

    s t y r e n e d i v i n y l benzene

    having a

    q u a r t e r

    nary ammonium

    u n c t i o n a l i t y .

    The

    most

    p r e f e r r e d

    r e s

    i n s of t h e

    a f o r e s a i d

    s t y r e n e

    d i v i n y l

    benzene t y p e s a r e a

    c a t i o n e x c h a n g e r e s i n d e s i g n a t e d A m b e r l y s t A 1 5

    a n d

    a n a n i o n e x c h a n g e r e s i n d e s i g n a t e d A m b e r l y s t A21,

    b o t h s o l d b y Rohm

    aas Company.

    The d e i o n i z a t i o n

    can

    be accomp lished by

    u s e

    of t h e

    conventional

    r e v e r s e

    a n d m i x e d

    m o n o - b e d

    methods.

    The

    c o n v e n t i o n a l

    method i s

    p r e f e r r e d ,

    h o w e v e r ,

    i n

    which t h e purge stream i s

    ? r s t

    passed through

    a

    c a t i

    onic

    exchanger

    i n t h e

    hydrogen form

    i n

    order t o r e

    m o v e t h e

    c a t i o n s

    and r e p l a c i n g

    them b y

    hydrogen

    i o n s .

    Then

    t h e

    p u r g e

    s t r e a m

    i s p r e f e r a b l y

    d e g a s s e d

    b y h e a t

    i n g under

    reduced p r e s s u r e

    t o remove

    carbon d i o x i d e

    a n d v o l a t i l e s . F r o m

    t h e

    d e g a s s e r ,

    t h e purge stream

    i s

    p r e f e r a b l y

    p a s s e d t h r o u g h a n a n i o n e x c h a n g e r e s i n i n

    t h e h y d r o x y l f o r m . The

    r e s u l t a n t

    d e g a s s e d and d e i o n

    i z e d aqueous purge stream i s t h e n p r e f e r a b l y f e d

    through a bed

    of a c t i v a t e d

    carbon

    t o r e m o v e the

    u l t r a

    v i o l e t

    a b s o r b e r s ,

    and t h e n

    r e c y c l e d e i t h e r

    t o

    t h e

    r e a b

    s o r b e r ,

    t o t h e e t h y l e n e g l y c o l e v a p o r a t o r , or

    b o t h .

    C o n t i n u i n g w i t h t h e

    p r o c e s s ,

    t h e e t h y l e n e o x i d e from

    t h e

    s t r i p p e r i s

    passed t o

    a reabsorber

    where

    water i s

    added, p r e f e r a b l y a t

    a

    p o i n t near

    t h e

    t o p , countercur

    rent t o

    the ethylene oxid e a d d e d ne ar the

    bottom,

    a t a

    t o p

    t e m p e r a t u r e

    and p r e s s u r e o f about 9 8 F . a n d 1 5

    p s i .

    a b s o l u t e .

    The r e a b s o r b e r b o t t o m s c o m p r i s i n g e t h

    y l e n e o x i d e and water i s

    then f e d

    i n

    p a r t t o an

    e t h y l e n e

    g l y c o l

    r e a c t o r

    and i n p a r t t o an e t h y l e n e

    o x i d e

    re?ning

    c o l u m n , t h e amounts d e p e n d i n g upon t h e p r o d u c t d i s

    t r i b u t i o n

    d e s i r e d . I n

    t h e g l y c o l

    r e a c t o r ,

    t h e

    e t h y l e n e

    oxide

    a n d water

    i s reacted a t a

    temperature between

    about 240 a n d

    310F. or a n

    average

    temperature of

    about 2 7 5 F . ,

    and

    p r e s s u r e o f about 1 3 5 p s i .

    a b s o l u t e .

    The

    r e s u l t a n t

    m i x t u r e v c o m p r i s i n g e t h y l e n e

    g l y c o l s

    i n

    water

    i s then passed

    t o

    a m u l t i ~ e f f e c t evaporator

    a n d

    the

    steam rec overed overhead t o

    be c o n d e n s ed a n d

    r e

    cycled t o t h e

    reabsorber p r e f e r a b l y

    a t a p o i n t

    near

    t h e

    t o p . The

    e t h y l e n e

    g l y c o l b o t t o m s

    from

    t h e m u l t i - e f f e c t

    e v a p o r a t o r

    i s t h e n

    p r e f e r a b l y

    p a s s e d

    t o a d r y i n g column

    wherein a t a temperature of about

    1 5 0 F .

    a n d

    p r e s s u r e

    of 20 0

    m i l l i m e t e r s o f mercury, t h e remaining water i s

    r e m o v e d .

    The

    e t h y l e n e

    g l y c o l s

    b o t t o m s f r o m

    t h e

    d r y i n g

    c o l u m n

    i s

    then

    fed

    i n t o a f r a c t i o n a t i o n c o l u m n

    or

    d i s t i l

    l a t i o n t r a i n i n which

    a t a

    temperature of about 1 9 6 F .

    a n d p r e s s u r e of 1 0

    m i l l i m e t e r s

    mercury a t

    t h e

    top of

    t h e

    c o l u m n , m o n o e t h y l e n e g l y c o l p r o d u c t

    i s r e c o v e r e d . I f

    a

    f r a c t i o n a t i o n c o l u m n

    i s not employed, t h e bottoms

    c o m p r i s i n g

    d i e t h y l e n e

    g l y c o l

    a n d

    t r i e t h y l e n e g l y c o l

    i s

    then f e d t o a second

    c olumn

    wherein t h e d i e t h y l e n e

    g l y c o l

    i s r e c o v e r e d

    a s o v e r h e a d , a n d t h e bottoms i s

    f e d

    t o

    a

    t h i r d c olumn

    wherein

    t r i e t h y l e n e g l y c o l i s

    recov

    e r e d as overhead.

    The

    p o r t i o n of e t h y l e n e g l y c o l

    i n water which was

    n o t

    p a s s e d

    from t h e r e a b s o r b e r

    t o

    t h e g l y c o l r e a c t o r , i s

  • 7/24/2019 Us 3904656 patent

    5/6

    3 , 9 0 4 , 6 5 6

    5

    p a s s e d t o

    an

    e t h y l e n e o x i d e r e ? n i n g column wherein

    a t

    a

    t o p p r e s s u r e o f about 4 4 6 . s . i . , a b s o l u t e and temper

    a t u r e

    o f about

    1

    1 0 F , t h e

    e t h y l e n e

    o x i d e

    i s

    recovered

    a s overhead.

    T h e ethylene oxi de

    i s then

    passed

    t o a s e

    r i e s o f h e a t e x c h a n g e r s t o condense t h e v a p o r s t o

    l i q u i d

    a n d

    s u b s e q u e n t l y

    p a s s e d t o

    a

    s e c o n d c o l u m n ,

    p r e f e r a

    b l y a t a p o i n t near t h e

    bottom,

    wherein carbon d i o x i d e

    i s recovered overhead a t

    a

    top temperature a n d

    p r e s

    s u r e o f about 1 2 2 F . and

    58

    p . s . i . a b s o l u t e . The b o t

    toms

    f r om

    t h e

    second

    c ol u m n i s

    then

    fed t o a t h i r d c o l

    u m n and t h e

    p u r i ? e d

    e t h y l e n e o x i d e p r o d u c t r e c o v e r e d

    overhead a t

    a top temperature a n d p r e s s u r e of

    about

    1 1 0 F .

    and 46

    p . s . i .

    a b s o l u t e .

    The

    bottoms from t h e

    e t h y l e n e o x i d e r e ? n i n g column c o m p r i s i n g w a t e r

    and

    u l t r a - v i o l e t

    a b s o r b e r s

    i s r e c y c l e d

    t o

    t h e r e a b s o r b e r

    p r e f e r a b l y a t a

    p o i n t

    near

    t h e

    t o p

    t o absorb

    e t h y l e n e

    o x i d e

    e n t e r i n g c o u n t e r c u r r e n t l y .

    I t h a s been found t h a t i n a d d i t i o n

    t o

    t h e d e i o n i z a t i o n ,

    d e g a s s i n g , a n d a c t i v a t e d c a r b o n

    t r e a t m e n t

    o f

    t h e

    e t h y l

    ene o x i d e

    s t r i p p e r

    purge

    s t r e a m , i t i s n e c e s s a r y t h a t t h e

    a m o u n t

    of

    e t h y l e n e oxide

    and

    water

    bottoms from

    t h e

    r e a b s o r b e r , which s

    p a s s e d

    t o t h e e t h y l e n e o x i d e re?n

    i n g column, be

    l i m i t e d

    t o an a m o u n t such

    t h a t

    the

    a q u e o u s

    b o t t o m s , r e c y c l e d

    from t h e r e ? n i n g

    column

    t o

    t h e reabsorber, i s not

    so great a s t o

    be

    carried

    over i n t o

    t h e

    g l y c o l r e a c t o r and s u b s e q u e n t l y i n t o t h e monoethy

    l e n e g l y c o l p r o d u c t .

    The amount o f e t h y l e n e o x i d e

    and

    w a t e r

    bottoms

    p a s s e d

    from

    t h e r e a b s o r b e r t o t h e e t h y l

    e n e o x i d e r e f i n i n g c o l u m n , w i t h o u t s a c r i ? c i n g th e q u a l

    i t y o f t h e m o n o e t h y l e n e g l y c o l p r o d u c t , w i l l

    d e p e n d

    i n

    p a r t upon t h e e f ? c i e n c y

    o f

    t h e s y s t e m , i n c l u d i n g th e

    i o n

    exchange s y s t e m and t h e a c t i v a t e d carbon b e d . I t h a s

    b e e n f o u n d , h o w e v e r , t h a t

    t h e

    p r e s e n t s t a n d a r d o f

    ?ber

    g r a d e

    monoethylene

    g l y c o l

    c a n b e

    p r o d u c e d ,

    when

    t h e

    a m o u nt o f e t h y l e n e o x i d e i n

    water

    p a s s e d from

    t h e

    r e a b s o r b e r t o

    t h e

    e t h y l e n e o x i d e

    r e ? n i n g

    column

    i s

    c o n t r o l l e d ,

    such

    t h a t t h e aqueous

    bottoms

    which a r e

    r e c y c l e d t o t h e

    r e a b s o r b e r

    a r e s u f ? c i e n t l y l o w ,

    such

    t h a t

    t h e v ol ume r a t i o of t h i s aqueous bottoms stream t o

    t h e e t h y l e n e o x i d e

    f e e d stream

    t o

    t h e g l y c o l r e a c t o r

    i s

    n o more than about 6 a n d

    preferably n o

    more than

    about

    5 . 3 .

    According

    t o

    t h e a f o r e d e s c r i b e d p r o c e s s , i t i s not

    n e c e s s a r y t o

    sewer

    l a r g e amounts

    of

    w a t e r c o n t a i n i n g

    p r o d u c t s a n d t h e monoethylene g l y c o l produced h a s

    a

    m i n i m u m

    t r a n s m i t t a n c e of 70 percent

    a t

    a

    wave-length

    of 2 2 0 nanometers, a minimum

    f

    88 percent transmit

    tance a t

    a

    wave-length of

    2 5 0

    nanome t e rs,

    a minimum

    of

    95

    percent t r a n s m i t t a n c e

    a t

    a

    wavelength of

    2 7 5

    nanometers,

    a n d

    1 00

    transmittance a t a wavelength of

    3 5 0 nanometers,

    u s i n g d i s t i l l e d

    water

    a s a r e f e r e n c e l i q

    u i d

    i n a B e c k m a n M o d el DU 4 0 0 Spectrophotometer.

    These p e r c e n t t r a n s m i t t a n c e a r e t h e p r e s e n t s p e c i ? c a

    t i o n s

    f o r ? b e r g r a d e monoethylene g l y c o l . The f o l l o w

    i n g example i l l u s t r a t e s a p r e f e r r e d embodiment o f t h e

    process of

    t h e i n v e n t i o n .

    EX MPLE

    A

    u r g e

    s t r e a m , from an

    e t h y l e n e

    o x i d e p l a n t

    s t r i p

    p e r ,

    c o n t a i n i n g e t h y l e n e

    o x i d e , w a t e r , i n o r g a n i c

    s a l t s

    a n d

    u l t r a - v i o l e t

    a b s o r b e r s ,

    w h i c h

    a v e r a g e d

    30-35

    g a l ~

    l o n s

    p e r

    minute i n volume f l o w , was p a s s e d i n t o t h e

    top

    of a c a t i o n i c exchange r e s i n bed having a volume of 6 5

    c u b i c

    f e e t and

    i n

    which t h e c a t i o n i c exchange r e s i n was 6

    a s t y r e n e d i v i n y l benzene r e s i n having a

    s u l f o n i c

    a c i d

    f u n c t i o n a l i t y .

    ( A m b e r l y s t

    A 1 5 ,

    Rohm a a s ) The

    purge stream was

    then

    withdrawn f r o m the cation

    ex

    1 5

    25

    35

    45

    55

    6 0

    6

    change

    r e s i n

    b e d . and p a s s e d t o

    a d e g a s s e r

    a p p r o x i

    m a t e l y

    2 0 f e e t

    t a l l h a v i n g

    adiameter

    o f 20-42 i n c h e s

    packed

    w i t h i n t e r l o c k i n g

    c e r a m i c .

    T h e d e g a s s e r

    w a s

    operated a t a

    temperature

    of about

    8 5 F .

    a t 2 0 0 mm

    H

    p r e s s u r e .

    When

    h e carbon d i o x i d e and

    o t h e r v o l a t i l e s

    w e r e r e m o v e d ,

    the

    bottoms

    were

    fed i n t o

    a n

    an i on ex

    change r e s i n bed h a v i n g

    a

    volume o f 29 c u b i c f e e 1

    wherein

    t h e

    anion

    exchange r e s i n

    was a s t y r e ne d i v i n y l

    benzene r e s i n

    h a v i n g a

    q u a r t e r n a r y a m m o n i u m f u n c

    t i o n a l i t y . ( A m b e r l y s t A 2 1 , Rohm a a s ) The r e s u l

    t a n t stream was then passed from

    t h e

    anion

    r e s i n

    bed

    i n t o t h e top of

    a

    carbon bed

    contained i n a 6

    f o o t

    d i a m

    e t e r pressure v e s s e l wherein the bed was packed t o

    a

    d e p t h o f 4

    f e e t

    w i t h a

    P i t t s b u r g h a c t i v a t e d

    c a r b o n ,

    t y p e

    C a l , 1 2 t o

    4 0

    m e s h ,

    m a n u f a c t u r e d

    b y

    C a l g o n C o r p o r a

    t i o n .

    The v e s s e l was 8 f e e t i n h e i g h t and t h e carbon bed

    was placed

    o n

    a screen

    about 1 foot f r o m the

    bot t o m

    of the

    v e s s e l .

    T h e

    v e s s e l was maintained

    a t a n

    i n t e r n a l

    p r e s s u r e

    o f 1 2 5

    p . s . i . g .

    The water recovered a f t e r p a s

    s a g e

    through t h e

    carbon

    bed

    was r e c y c l e d i n p a r t t o

    t h e

    ethylene oxide reabsorber

    a n d

    t o

    s e r v e a s

    re?ux

    i n

    t h e

    e t h y l e n e

    g l y c o l

    e v a p o r a t o r .

    E t h y l e n e o x i d e and w a t e r

    bottoms

    from a p l a n t e th y l

    e n e

    oxide

    reabsorber

    were

    passed i n

    part t o

    a g l y c o l

    r e

    a c t o r and i n p a r t t o an e t h y l e n e

    o x i d e

    r e ? n i n g

    column,

    under t h e c o n d i t i o n s p r e v i o u s l y d e s c r i b e d . The

    a m o u n t

    o f e t h y l e n e o x i d e

    a n d

    water bottoms charged

    t o t h e

    r e

    ?ning

    c olumn was c o n t r o l l e d

    such

    t h a t t h e volume

    r a t i o

    o f r e c y c l e d a q u e o u s b o t t o m s

    g o i n g t o

    t h e

    r e a b

    s o r b e r t o t h e e t h y l e n e

    o x i d e w a t e r m i x t u r e g o i n g i n t o

    t h e g l y c o l r e a c t o r ,

    was

    about 5 . 3 . A r i p l e e f f e c t evapo

    r a t o r was employed

    t o

    r e m o v e water f r om

    t h e

    g l y c o l s

    and

    d e i o n i z e d

    carbon t r e a t e d

    d e g a s s e d

    w a t e r from t h e

    e t h y l e n e o x i d e

    s t r i p p e r s

    was

    used

    a s r e f lu x

    m e d i u m .

    F r o m t h e e v a p o r a t o r , t h e e t h y l e n e g l y c o l s bottoms was

    p a s s e d

    t o

    a d r y i n g column operated

    a t 1 5 0 F . and 2 0 0

    m i l l i m e t e r s of

    mercury p r e s s u r e ,

    whereup on t h e r e

    maining

    water

    was removed o v e r h e a d .

    The e t h y l e n e

    g l y c o l s

    bottoms was t h e n p a s s e d

    t o

    t h e ? r s t column i n

    a

    d i s t i l l a t i o n

    t r a i n

    wherein t h e c ol u m n

    was

    operated a t

    a t o p temperature

    and

    p r e s s u r e of

    1 9 6 F . and 1 0

    m i l l i

    meters

    o f v

    mercury,

    and t h e overhead monoethylene

    g l y c o l p r o d u c t met

    ? b e r

    g r a d e

    s p e c i ? c a t i o n s

    h e r e i n b e

    f o r e

    de?ned.

    The

    a c t i v a t e d

    c a r b o n employed

    i s

    p r e f e r a b l y m a d e

    from bituminous c o a l b u t

    bone

    c h a r c o a l

    and w o o d

    c h a r c o a l

    t y p e s can be employed.

    The

    p r o c e s s equipment employed

    was

    c o m m e r c i a l l y

    a v a i l a b l e

    e q u i p m e n t a n d

    s u i t a b l e

    e q u i p m e n t i s r e a d i l y

    a v a i l a b l e ,

    p r e f e r a b l y

    h o w e v e r , n o n ~ c o r r o s i v e e q u i p

    m e n t i s employed

    such

    a s t h a t

    m a d e of

    s t a i n l e s s

    s t e e l .

    While

    t h e i n v e n t i o n

    h a s been d e s c r i b e d w i t h r e f e r

    ence

    t o c e r t a i n

    speci?c embodiments, i t

    i s

    not intended

    t o be l i m i t e d thereby except

    i n s o f a r a s

    appears i n t h e

    a c c o m p a n y i n g c l a i m s .

    I

    c l a i m :

    1 . I n

    t h e combined

    manufacture

    o f e t h y l e n e

    o x i d e

    and e t h y l e n e g l y c o l s which i n c l u d e s t h e s t e p s o f :

    a . r e a c t i n g oxygen and e t h y l e n e i n a r e a c t o r i n t h e

    presence of

    a

    c a t a l y s t a t elevated

    temperatures

    t o

    p r o d u c e

    e t h y l e n e

    o x i d e ;

    b . a b s o r b i n g e t h yl e n e o x i d e p r o d u c e d i n

    s t e p

    ( a ) i n

    water i n an absorber t o p r o d u c e a n ethylene

    oxide

    water stream;

    0 .

    stream

    s t r i p p i n g

    e t h y l e n e

    o x i d e

    from t h e e t h y l e n e

    o x i d e - w a t e r

    s t r e a m

    produced

    i n s t e p

    ( b )

    i n a

    s t r i p

    p i n g

    column

    t o

    produce

    an e t h y l e n e o x i d e over

  • 7/24/2019 Us 3904656 patent

    6/6

    3 , 9 0 4 , 6 5 6

    7

    h e a d stream a n d a n a q u e o us b o t t o ms

    stre am

    a n d

    r e c y c l i n g

    a q u e o u s b o t t o m s from t h e s t r i p p i n g c o l

    umn o t h e absorber o f

    s t e p ( b ) ;

    d .

    r e a b s o r b i n g

    s t r i p p e d

    e t h y l e n e

    o x i d e f r o m

    s t e p

    ( c )

    i n water i n

    a

    reabsorbing column

    t o

    provide

    an

    e t h

    y l e n e o x i d e - w a t e r s t r e a m ;

    e .

    forwarding

    t o

    a

    glycol reactor a portion

    of

    the eth

    y l e n e

    oxide-water

    stream p r o d u c e d i n

    s t e p

    ( d ) a n d

    r e a c t i n g e t h y l e n e

    o x i d e

    c o n t a i n e d t h e r e i n

    w i t h

    water

    t o

    produce

    a

    product stream comprising

    e t h

    y l e n e

    g l y c o l s

    i n w a t e r ;

    f .

    e v a p o r a t i n g

    water from t h e product stream pro

    d u ce d i n s t e p ( e )

    i n

    an e v a p o r a t o r t o produce a g l y

    c o l s

    p r o d u c t s t r e a m ,

    a n d r e c y c l i n g

    e v a p o r a t e d

    water t o

    t h e

    r e a b s o r b i n g c olumn o f

    s t e p

    ( d ) ;

    g . d i s t i l l i n g t h e g l y c o l s p r o d u c t s t r e a m p r o d u c e d

    i n

    s t e p f )

    t o

    p r o d u c e a m o n o e t h y l e n e

    g l y c o l

    p r o d u c t ;

    a n d

    h .

    d i s t i l l i n g a p o r t i o n o f t h e e t h y l e n e o x i d e - w a t e r

    s t r e a m produced i n

    s t e p

    ( d ) i n

    an

    e t h y l e n e o x i d e

    r e ? n i n g column t o

    p r o v i d e

    an overhead e t h y l e n e

    oxide produc t stream an an a q u e o u s

    bottoms

    s t r e a m ,

    and r e c y c l i n g aqueous bottoms from t h e

    r e f i n i n g

    column

    t o

    t h e r e a b s o r b i n g column o f

    s t e p

    d ) ;

    t h e i mprovement which

    comprises

    ( 1 )

    r e m ov ng a s

    a

    1 0

    8

    purge

    stream

    a p o r t i o n of

    t h e recycled aqueous

    bot

    toms

    from t h e s t r i p p i n g column o f s t e p

    ( c ) , s a i d

    p o r t i o n

    b e i n g s u f f i c i e n t t o m a i n t a i n

    t h e

    w a t e r b a l a n c e in

    t h e

    ab

    s o r b i n g c o l u m n - s t r i p p i n g

    c o l u m n

    s y s t e m of

    s t e p s ( b )

    a n d ( c ) , ( 2 ) t r e a t i n g purge stream water w i t h c a t i o n e x

    change m a t e r i a l s t o

    remove

    i n o r g a n i c s a l t s

    t h e r e f r o m ,

    degassing

    the

    p u r g e st r e a m

    water,

    and

    c ont ac t i ng i on

    exchange-treated purge stream

    water

    with

    a c t i v a t e d

    carbon

    t o

    remove u l t r a v i o l e t

    l i g h t

    a b s o r b e r s

    t h e r e f r o m ,

    ( 3 ) forwarding t h u s t r e a t e d

    purge

    stream water

    t o

    t h e

    reabsorber of s t e p ( d ) o r t h e

    evaporator

    of s t e p ( f ) o r

    b o t h ,

    and

    ( 4 ) m a i n t a i n i n g t h e

    v o l u m e t r i c

    r a t i o

    of i )

    20

    25

    35

    45

    55

    6 5

    aqueous b o t t o m s from t h e r e ? n i n g

    column

    o f s t e p ( h )

    r e c y c l e d

    t o

    t h e r e a b s o r b i n g column o f

    s t e p

    ( d )

    t o i i )

    t h e e t h y l e n e

    o x i d e - w a t e r s t r e a m forwarded

    t o t h e g l y

    c o l r e a c t o r a t

    a

    v a l u e n o t g r e a t e r t h a n 6 , thereby

    pro

    d u c i n g e t h y l e n e o x i d e a n d ? b e r g r a d e m o n o e t h y l e n e

    gl y c ol .

    2.

    The p r o c e s s

    o f c l a i m 1

    wherein t h e r a t i o

    of

    i ) / i i )

    i s

    n o t

    g r e a t e r

    t h a n

    5 . 3 .

    3 . The

    p r o c e s s

    o f c l a i m 1 w h e r e i n d e g a s s e d p u r g e

    stream water

    s t r e a t e d w i t h a n i o n exchange m a t e r i a l i n

    t h e hydroxyl form b e f o r e contact

    w i t h

    a c t i v a t e d

    c a r