use of audio motor learning for the rehabilitation of upper limb reaching in hemiparetic subjects

2
0,0 0,5 1,0 1,5 84 86 88 90 92 94 96 98    T   r   u   n    k    F    l   e   x    i   o   n    A   n   g    l   e    (    d   e   g    ) Time (sec) Roby-Brami, A., Feydy, A. et al. (2003). "Motor compensatio n and recovery for reaching in stroke patients." Acta Neurol Scand 107(5): 369-81. Cirstea, M. C., Mitnitski, A.B. et al. (2003). "Interjoi nt coordination dynamics durin g reaching in stroke." Exp Brain Res 151(3): 289-300. Schmidt, R., and Wrisberg, C. (2004) Motor learning and performance.Human Kinetics, Leeds, UK. Maulucci, R. A. and R. H. Eckhouse (2001). "Retraining reaching in chro nic stroke with real-time auditory feedback." NeuroRehabi litation 16(3): 171-82. METHODS METHODS Subjects Design Task OBJECTIVES OF PRELIMINARY STUDY OBJECTIVES OF PRELIMINARY STUDY To assess the effect of auditory feedback on kinematic movement parameters during reaching movements of the hemiparetic upper limb. To compare the effect of simple feedback with spatialised feedback. Use of audio motor learning for the rehabilitation of Use of audio motor learning for the rehabilitation of upper limb reaching in hemiparetic subjects. upper limb reaching in hemiparetic subjects. Robertson, J. Robertson, J. 1, 2 1, 2 , , Hoellinger Hoellinger, T. , T. 1 1 , , Hanneton Hanneton, S. , S. 1 1 and Roby and Roby- -Brami Brami, A. , A. 1, 2 1, 2 MATERIALS MATERIALS 3D ‘on line’ recording of movement with electromagnetic motion tracking system: POLHEMUS Sensors positioned on trunk, acromion, arm and hand record translation and orientation (Euler’s angles) at 30 Hz. < 50% of stroke patients recover functional ability in the upper limb. Recovery of reaching movem ents in the hemiparetic upper limb is a rehabilitation problem. Temperospatial parameters are frequently altered during reaching movements (Ro by-Brami, 2003, Cirs tea 2003). Studies show that feedback is an essential component of motor learning. (Schmidt, 2004). Auditory feedback on kinematic parameters of movement could enhance performance in the hemiparetic upper limb (Maulucci, 2001). 6 hemiparetic patients (1 left, 5 right) 1 female, 5 males Mean age = 46 years Dominant hand affected = 3 Barthe l = 70 –10 0 / 100 ARAT = 28-57 / 57 RESULTS RESULTS Significant improvements in spatial characteristics o f hand trajectory (length and curvature). DISCUSSION / CONCLUSION / PERSPECTIVES DISCUSSION / CONCLUSION / PERSPECTIVES Auditory feedback appears to improve spatial parameters of movement. Spatialised feedback appears to have a particular effect on parameters relating to smoothness. More subjects are required, however, in order to confirm these preli minary findings. We wish to explore the effects simple and spatiali sed auditory feedback on inter-joint coordination and trunk motion. Following this, we aim to develop different types of auditory feedback, using positive and negative reinforcement in order to i mprove inter-joint coordination and decrease use of trunk motion. Our long-term aim is to develop a ‘tool-box’ of sensory motor activities for reaching and grasping using auditory feedback. Each activity will be specific to a particular temperospatial deficit and will be adaptable for each patient. Our hypothesis is that improvements at the impairment level will positively affect function. REFERENCES REFERENCES 2 sessions (randomised) No feedback simple feedback  No feedback spatialised feedback FEEDBACK FEEDBACK 3D spatialised sound produced using Open Al. ‘Listener’ corresponds to the hand sensor allowing hand motion to influence perceived sound ( see Hoellinger et al. poster). Buzzing’ sound accompanie s movements volume inc re ases towa rds target. Simple feedback varies according to hand distance from target. Spatialised feedback also varies according to hand orientation relative to target. 3 consecutive reaching movements to 9 targets (random): 3 close (60% arm length) 3 far (90% arm length) 3 far + high (17cm) Non-linear relationship between elbow and shoulder velocity Typical kinematic deficits in hemiparetic pointing movements Typical kinematic deficits in hemiparetic pointing movements Segmented tangential velocity curves of hand trajectory s  e  g  m  e n  t  a t  i  o n  Excessive trunk motion Non-synchronous timing of elbow and shoulder angular velocity peaks 1 Laboratoire de Neuroph ysique et Physio logie, Uni versit é Paris Descartes , CNRS UMR 8119, 45 Rue des St Pères, Pari s 75006. 2 Servic e MPR, Labor atoire d’Anal yse du Mouve ment, Hôp ital Raymo nd Poinca ré, Garch es, 92380 .  [email protected] INTRODUCTION INTRODUCTION 90% arm length 30° Subject 20 cm 12 ° forward lean Increased smoothness with feedback (decreased number of velocity peaks and decreased jerk metric). Effects significantly greater with spatialised feedback t han simple feedback. 1,12 1,13 1,14 1,15    C   u   r   v   e    R   a    t    i   o Spatialised Simple None Feedback * * 1 2 3 4 5     J   e   r    k    M   e    t   r    i   c None Sim ple Spatialised Feedback * * * 3, 0 3, 5 4, 0    N   u   m    b   e   r   o    f    V   e    l    P   e   a    k   s N on e S im pl e Spatialised Feedback * * * 34 35 36 37    L   e   n   g    t    h   o    f    h   a   n    d   p   a    t    h    (   c   m    ) Spatialised Simple None Feedback * * * * Statistically significant difference (p<0.05). 0 10 20 30 40 50 60 70 0 10 20    S    h   o   u    l    d   e   r    A   n   g    V   e    l    (    d   e   g    /   s   e   c    ) Elbow Ang Vel (deg/sec) 0,0 0,2 0,4 0,6 0,8 1,0 1,2 0 20 40 60 80    A   n   g   u    l   a   r    V   e    l   o   c    i    t   y    (    d   e   g    /   s   e   c    ) Time (sec) Elbow Shoulder 0,0 0,4 0,8 1,2 0,0 0,1 0,2 0,3 0,4 0,5 0,6    H   a   n    d    V   e    l   o   c    i    t   y    (   m    /   s    ) Time (sec)

Upload: sylvain-hanneton

Post on 30-May-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

 

0,0 0,5 1,0 1,584

86

88

90

92

94

96

98

   T  r  u  n

   k   F   l  e  x

   i  o  n

   A  n  g

   l  e   (   d  e  g

   )

Time (sec)

Roby-Brami, A., Feydy, A. et al. (2003). "Motor compensation and recovery for reaching in stroke patients." Acta Neurol Scand 107(5): 369-81.

Cirstea, M. C., Mitnitski, A.B. et al. (2003). "Interjoint coordination dynamics during reaching in stroke." Exp Brain Res 151(3): 289-300.

Schmidt, R., and Wrisberg, C. (2004) Motor learning and performance.Human Kinetics, Leeds, UK.

Maulucci, R. A. and R. H. Eckhouse (2001). "Retraining reaching in chronic stroke with real-time auditory feedback." NeuroRehabilitation 16(3): 171-82.

METHODSMETHODS

Subjects

Design

Task

OBJECTIVES OF PRELIMINARY STUDYOBJECTIVES OF PRELIMINARY STUDY

To assess the effect of auditory feedback on kinematic movement

parameters during reaching movements of the hemiparetic upper limb.

To compare the effect of simple feedback with spatialised feedback.

Use of audio motor learning for the rehabilitation of Use of audio motor learning for the rehabilitation of 

upper limb reaching in hemiparetic subjects.upper limb reaching in hemiparetic subjects.

Robertson, J.Robertson, J. 1, 21, 2,, HoellingerHoellinger, T., T. 11,, HannetonHanneton, S., S. 11 and Robyand Roby--BramiBrami, A., A. 1, 21, 2

MATERIALSMATERIALS

3D ‘on line’ recording of movement with electromagnetic motion tracking

system: POLHEMUS

Sensors positioned on trunk, acromion, arm and hand record translation

and orientation (Euler’s angles) at 30 Hz.

< 50% of stroke patients recover functional ability in the

upper limb. Recovery of reaching movements in the hemiparetic

upper limb is a rehabilitation problem.

Temperospatial parameters are frequently altered during

reaching movements (Roby-Brami, 2003, Cirstea 2003).

Studies show that feedback is an essential component of 

motor learning. (Schmidt, 2004).

Auditory feedback on kinematic parameters of movement

could enhance performance in the hemiparetic upper limb

(Maulucci, 2001).

6 hemiparetic patients (1 left, 5 right)

1 female, 5 males

Mean age = 46 years

Dominant hand affected = 3

Barthel = 70 –100 / 100

ARAT = 28-57 / 57

RESULTSRESULTS

Significant improvements in spatial characteristics of hand trajectory

(length and curvature).

DISCUSSION / CONCLUSION / PERSPECTIVESDISCUSSION / CONCLUSION / PERSPECTIVES

Auditory feedback appears to improve spatial parameters of movement.

Spatialised feedback appears to have a particular effect on parameters

relating to smoothness.

More subjects are required, however, in order to confirm these preliminary

findings.

We wish to explore the effects simple and spatialised auditory feedback on

inter-joint coordination and trunk motion.

Following this, we aim to develop different types of auditory feedback,

using positive and negative reinforcement in order to improve inter-joint

coordination and decrease use of trunk motion.

Our long-term aim is to develop a ‘tool-box’ of sensory motor activities for

reaching and grasping using auditory feedback.

Each activity will be specific to a particular temperospatial deficit and will

be adaptable for each patient.

Our hypothesis is that improvements at the impairment level will positivelyaffect function.

REFERENCESREFERENCES

2 sessions (randomised)

No feedback simple feedback 

No feedback spatialised feedback 

FEEDBACKFEEDBACK

3D spatialised sound produced using Open Al.

‘Listener’ corresponds to the hand sensor allowing hand motion to influence

perceived sound (see Hoellinger et al. poster).

‘Buzzing’ sound accompanies movements volume increases towards

target.

Simple feedback varies according to hand distance from target.

Spatialised feedback also varies according to hand orientation

relative to target.

3 consecutive reaching movements to 9 targets (random):

3 close (60% arm length)

3 far (90% arm length)

3 far + high (17cm)

Non-linear relationship

between elbow and

shoulder velocity

Typical kinematic deficits in hemiparetic pointing movementsTypical kinematic deficits in hemiparetic pointing movements

Segmented

tangential velocity

curves of hand

trajectory

s  e 

 

 g  m  e n  t  a t  i  o n  

Excessive

trunk 

motion

Non-synchronous

timing of elbow and

shoulder angular

velocity peaks

1 Laboratoire de Neurophysique et Physiologie, Université Paris Descartes, CNRS UMR 8119, 45 Rue des St Pères, Paris 75006.

2 Service MPR, Laboratoire d’Analyse du Mouvement, Hôpital Raymond Poincaré, Garches, 92380. [email protected]

INTRODUCTIONINTRODUCTION

90% arm

length

 

30°

Subject

20 cm

12 ° forward lean

Increased smoothness with feedback (decreased number of velocity peaks

and decreased jerk metric).

Effects significantly greater with spatialised feedback than simple feedback.

1,12

1,13

1,14

1,15

   C  u  r  v  e

   R  a

   t   i  o

SpatialisedSimpleNone

Feedback

**

1

2

3

4

5

 

   J  e  r   k   M  e   t  r   i  c

None Simple Spatialised

Feedback

**

*

3,0

3,5

4,0

   N  u  m

   b  e  r  o

   f   V  e

   l   P  e  a

   k  s

None Simple Spatialised

Feedback

**

*

34

35

36

37

   L  e  n  g   t   h  o   f   h  a  n   d  p  a   t   h   (  c  m   )

SpatialisedSimpleNone

Feedback

*

*

*

* Statistically significant difference (p<0.05).

0 10 20 30 40 50 60 70

0

10

20

   S   h  o  u   l   d  e  r   A  n  g   V  e   l   (   d  e  g   /  s  e  c   )

Elbow Ang Vel (deg/sec)0,0 0,2 0,4 0,6 0,8 1,0 1,2

0

20

40

60

80

   A  n  g  u

   l  a  r

   V  e

   l  o  c

   i   t  y   (   d  e  g

   /  s  e  c

   )

Time (sec)

Elbow

Shoulder

0,0 0,4 0,8 1,20,0

0,1

0,2

0,3

0,4

0,5

0,6

   H  a  n   d   V  e   l  o  c   i   t  y   (  m   /  s   )

Time (sec)