user manual for teh pwr-plasim model

59
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Feb 06, 2022 User manual for teh PWR-PLASIM model Cour Christensen, P. la Publication date: 1975 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Cour Christensen, P. L. (1975). User manual for teh PWR-PLASIM model. Risø National Laboratory. Risø-M No. 1757

Upload: others

Post on 06-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: User manual for teh PWR-PLASIM model

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors andor other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

Users may download and print one copy of any publication from the public portal for the purpose of private study or research

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details and we will remove access to the work immediately and investigate your claim

Downloaded from orbitdtudk on Feb 06 2022

User manual for teh PWR-PLASIM model

Cour Christensen P la

Publication date1975

Document VersionPublishers PDF also known as Version of record

Link back to DTU Orbit

Citation (APA)Cour Christensen P L (1975) User manual for teh PWR-PLASIM model Risoslash National Laboratory Risoslash-M No1757

A E K Risoslash Risoslash-M-GHZ

rraquo

I

G to

Title and authors)

Users Manual for the PWR-PLASIM Model

by

P la Cour Christensen

pqn + tables + illustrations

Abstract

The report presents the implementation of the PWR power plant model PWR-PLASIM described in Risoslash Report No 318 I t should serve as a users guide for both the operator who runs the model and the experienced simulation enshyg ineer who modifies the input data or d e t a i l s in the model

laquo ArmiUbU om raajmlaquor trom ttt J Atonic BMrgy CnrnlMJmt raquo BlttioUk) Uraquo ftomttltflaquo ft f l fTalmdashamdashai fflll t l 11 01 mrt

o f laquo

Date March 1975

Department or group

Reactor Technology

Groups own registration numbers)

PWR-1-7 5

Copies to

Abstract to

ISBN 87 550 0302 8

List of contents

Page

1 General information 5

2 Neutron kinetics 9

3 The fuel model It

31 The ten-shell section fuel model IS

32 The two-point fuel model 16

t The primary circuit with heat transport and boron acid

concentration 17

bullraquo 1 Heat transfer in core 17

42 Heat transport in the priaary circuit 20

k3 Boron acid distribution 22

5 The pressuriser model 24

51 The two-point non-linear model 25

52 The simplifiec pressuriser model 28

6 The steam generator 31

61 The detailed one-dimensional model 32

82 The simplified steam generator model 35

7 The turbine-reheatcr model laquo0

8 The electrical power grid raquot

9 File input-output routines t

10 Reference bullraquogt

Appendices

A Digital prograa listings for the power slaquolaquoilaquo medal raquo7

B Sealed equations analog diagram ylaquomieacuteoslashfiii bull - ~fgt

and DW-taMa fo laquo laquobull Slaquo t m f t amp ^ ^ m ^

C Scalad aqvatwn analog dif~lt ^ S ^ | | | M M M | ^ ^ J M

_ u

Page

D Scaled equations analog diagram potentiometer list

and DFG-tables for the turbine-reheater model 9g

E Analog diagram and potentiometer list for the elecshy

trical power grid model 30

F List of interface connections error messages

limiter settings and MM pulse lengths g3

G Program listing and analog connections for the ten-

shell section fuel model gg

H Program listing and analog connections for the

detailed pressuriser model 100

I Program listing for the detailed steam generator

model with an input-output example 105

K List of files on DEC-tape PWR DEC 7H 112

L Example of logging of variables for the power

station model 113

1 GENERAL INFORMATION

This report presents the implementation of the PUR power

station model described in Ref 1 Numerical data for the Westing-

house Surry-1 power station have been used as a test example as

most of the data needed for the model could be found in the availshy

able information Refs 2 and 3 For the turbine-reheater however

some additional data had to be estimated from descriptions of the

Obrigheim and Oyster Creek turbines

The presentation follows the layout in Ref 1 The same divshy

ision in chapters and numbering of equations are used The intenshy

tion is that the report should serve as a handbook for the experishy

enced simulation engineer and facilitate the insertion of new

data sets or modifications for special investigations The present

chapter together with appendices A to F should be sufficient to

run the model when it is prepared for a given station Some inshy

formation fundamental both for operation and modification of the

model is given here while the appendices contain all program

listings analog diagrams potentiometer lists and other related

information

The analog part of the model is stored on a patchpanel accordshy

ing to the diagrams in the appendices Any modification introduced

later on must be thoroughly documented The programs in the vershy

sion given in the appendices are stored on the DEC-tape named

PWR DEC 70 together with the system liberies as used at the

time of storage No modifications whatsoever may be introduced

into this DEC-tape it shall at all times serve as a basic model

until and if a new fully documented version is available The

program system contains the following filelaquo for the tttttloft model

PWRSB The main PDPI code section - bdquo t

PWR18B Neutron kinetic calculation in tW-eodt r

PWR28B Calculation for the prjawe 9iruraquomaringmtMU^m^m generator thlaquo turbine and

PWR38B m-code lectionlaquo raquoe IC

input and logging ef-mavim

PWRIC A set of IC-datWi

Mrt ST a n d laquo

mmmmmmm

- 6 -

PWRSP Potentiometer data for the analog model

PNRST A set of static data for the reactor calculated by a

static program

PWRSV The binary version of PWR8B PWR18B PWR28B and PWR36B

The DEC-tape further contains the files for the independent

models of separate components

P18B The pressuriser simulation program

P2FT The ten-section fjel model

P3FT The steam generator model

P3100IC A set of IC values for the steam generator at full load

Appendix K gives a lisx of the contents of the DEC-tape

The programs with the file name extension FT are written in

Fortran IV while those with extension 6B are written in a macro

language called HYBAL with nacro instructions and subroutines

developed just for hybrid simulation on the EAI680-PDP8-FPP12

machine

The following section gves some basic operating instructions

and explains the computation sequence

After installing the patchpanel on the analog machine the

potentiometers must be adjusted by the Fortran program SETAN acshy

cording to the potentiometer list PWRSP The Q-potentiometers

must be adjusted manually

The simulation program PViRSV can then be started It prints

a message on the DEC-writer to remind the operator of the adjustshy

ments of limiters and pulse generators listed in appendix F and

of the switch 0 (see below)

The computation must be started on a set of either IC-data for

the whole station or static dcta for the reactor alone The IC-

data are inserted automatically from the disc file PWRIC during

the analog IC period when the logic connection to DI(ll) is in

function The insertion is announced by a message containing the

regulating rod position and the electrical load The two potenshy

tiometers Qlt and Q29 must be adjusted accordingly The compushy

tations start bumpless whmdash the analog computer is set at OPERATE

The PDP8 is synchronized via pulses over DKO) at a rate of 10

per sec Thu same pulses synchronize the display where one or

more variable along the reactor axis may be selected Th time

- 7 -

representing the length of the space axis may be adjusted in the

range 10-25 mS by MM 0

For a new set of reactor conditions without a full set of IC-

data a set of static data must be generated by the static program

described in Ref 1 The data must be stored in a disc file PWRST

before they can be used in PWRSV They are inserted into PWRSV

by printing the number 2 on the DEC-writer with the analog mashy

chine in PC mode The insertion is announced on the DEC-writer

by a message containing the regulating rod position and the approxishy

mate power level The two potentiometers Q11 and Q29 must be

adjusted accordingly When the computation are started via the

analog IC-mode the connection to DI(ll) must be withdrawn to avoid

insertion of IC-data from file PWRIC The computations do not

start bumpless as it is most likely that the IC-data in the poshy

tentiometer list do not fit the new reactor condition exactly but

within a few minutes a new stationary state with the required value

of reactor load and steam pressure may be found by adjustments of

the regulating rod the boron acid concentration and the electrical

power load Fast transients in the first few seconds will most

likely overload the output channels from the pressuriser model

This can be avoided and the transient time decreased by pressing

switch 0 before the start The switch is connected to DK2) which

controls the operation of the pressuriser taking it out of action

for switch 0 equal to 1 The pressuriser is reconnected when

the transients have died out The new state may be stored on a disc

file PWRIC by typing 1 on the DEC-writer with the analog comshy

puter in HOLD node For later use of the file the IC-data in the

potentiometer list must be corrected manually by reading the inteshy

grator outputs and both new files must be stored as a eet on

DEC-tape The main variables may be listed on the DEC-writer for

documentation by typing 3 on the DEC-writer with the analog mashy

chine in HOLD mode

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 2: User manual for teh PWR-PLASIM model

A E K Risoslash Risoslash-M-GHZ

rraquo

I

G to

Title and authors)

Users Manual for the PWR-PLASIM Model

by

P la Cour Christensen

pqn + tables + illustrations

Abstract

The report presents the implementation of the PWR power plant model PWR-PLASIM described in Risoslash Report No 318 I t should serve as a users guide for both the operator who runs the model and the experienced simulation enshyg ineer who modifies the input data or d e t a i l s in the model

laquo ArmiUbU om raajmlaquor trom ttt J Atonic BMrgy CnrnlMJmt raquo BlttioUk) Uraquo ftomttltflaquo ft f l fTalmdashamdashai fflll t l 11 01 mrt

o f laquo

Date March 1975

Department or group

Reactor Technology

Groups own registration numbers)

PWR-1-7 5

Copies to

Abstract to

ISBN 87 550 0302 8

List of contents

Page

1 General information 5

2 Neutron kinetics 9

3 The fuel model It

31 The ten-shell section fuel model IS

32 The two-point fuel model 16

t The primary circuit with heat transport and boron acid

concentration 17

bullraquo 1 Heat transfer in core 17

42 Heat transport in the priaary circuit 20

k3 Boron acid distribution 22

5 The pressuriser model 24

51 The two-point non-linear model 25

52 The simplifiec pressuriser model 28

6 The steam generator 31

61 The detailed one-dimensional model 32

82 The simplified steam generator model 35

7 The turbine-reheatcr model laquo0

8 The electrical power grid raquot

9 File input-output routines t

10 Reference bullraquogt

Appendices

A Digital prograa listings for the power slaquolaquoilaquo medal raquo7

B Sealed equations analog diagram ylaquomieacuteoslashfiii bull - ~fgt

and DW-taMa fo laquo laquobull Slaquo t m f t amp ^ ^ m ^

C Scalad aqvatwn analog dif~lt ^ S ^ | | | M M M | ^ ^ J M

_ u

Page

D Scaled equations analog diagram potentiometer list

and DFG-tables for the turbine-reheater model 9g

E Analog diagram and potentiometer list for the elecshy

trical power grid model 30

F List of interface connections error messages

limiter settings and MM pulse lengths g3

G Program listing and analog connections for the ten-

shell section fuel model gg

H Program listing and analog connections for the

detailed pressuriser model 100

I Program listing for the detailed steam generator

model with an input-output example 105

K List of files on DEC-tape PWR DEC 7H 112

L Example of logging of variables for the power

station model 113

1 GENERAL INFORMATION

This report presents the implementation of the PUR power

station model described in Ref 1 Numerical data for the Westing-

house Surry-1 power station have been used as a test example as

most of the data needed for the model could be found in the availshy

able information Refs 2 and 3 For the turbine-reheater however

some additional data had to be estimated from descriptions of the

Obrigheim and Oyster Creek turbines

The presentation follows the layout in Ref 1 The same divshy

ision in chapters and numbering of equations are used The intenshy

tion is that the report should serve as a handbook for the experishy

enced simulation engineer and facilitate the insertion of new

data sets or modifications for special investigations The present

chapter together with appendices A to F should be sufficient to

run the model when it is prepared for a given station Some inshy

formation fundamental both for operation and modification of the

model is given here while the appendices contain all program

listings analog diagrams potentiometer lists and other related

information

The analog part of the model is stored on a patchpanel accordshy

ing to the diagrams in the appendices Any modification introduced

later on must be thoroughly documented The programs in the vershy

sion given in the appendices are stored on the DEC-tape named

PWR DEC 70 together with the system liberies as used at the

time of storage No modifications whatsoever may be introduced

into this DEC-tape it shall at all times serve as a basic model

until and if a new fully documented version is available The

program system contains the following filelaquo for the tttttloft model

PWRSB The main PDPI code section - bdquo t

PWR18B Neutron kinetic calculation in tW-eodt r

PWR28B Calculation for the prjawe 9iruraquomaringmtMU^m^m generator thlaquo turbine and

PWR38B m-code lectionlaquo raquoe IC

input and logging ef-mavim

PWRIC A set of IC-datWi

Mrt ST a n d laquo

mmmmmmm

- 6 -

PWRSP Potentiometer data for the analog model

PNRST A set of static data for the reactor calculated by a

static program

PWRSV The binary version of PWR8B PWR18B PWR28B and PWR36B

The DEC-tape further contains the files for the independent

models of separate components

P18B The pressuriser simulation program

P2FT The ten-section fjel model

P3FT The steam generator model

P3100IC A set of IC values for the steam generator at full load

Appendix K gives a lisx of the contents of the DEC-tape

The programs with the file name extension FT are written in

Fortran IV while those with extension 6B are written in a macro

language called HYBAL with nacro instructions and subroutines

developed just for hybrid simulation on the EAI680-PDP8-FPP12

machine

The following section gves some basic operating instructions

and explains the computation sequence

After installing the patchpanel on the analog machine the

potentiometers must be adjusted by the Fortran program SETAN acshy

cording to the potentiometer list PWRSP The Q-potentiometers

must be adjusted manually

The simulation program PViRSV can then be started It prints

a message on the DEC-writer to remind the operator of the adjustshy

ments of limiters and pulse generators listed in appendix F and

of the switch 0 (see below)

The computation must be started on a set of either IC-data for

the whole station or static dcta for the reactor alone The IC-

data are inserted automatically from the disc file PWRIC during

the analog IC period when the logic connection to DI(ll) is in

function The insertion is announced by a message containing the

regulating rod position and the electrical load The two potenshy

tiometers Qlt and Q29 must be adjusted accordingly The compushy

tations start bumpless whmdash the analog computer is set at OPERATE

The PDP8 is synchronized via pulses over DKO) at a rate of 10

per sec Thu same pulses synchronize the display where one or

more variable along the reactor axis may be selected Th time

- 7 -

representing the length of the space axis may be adjusted in the

range 10-25 mS by MM 0

For a new set of reactor conditions without a full set of IC-

data a set of static data must be generated by the static program

described in Ref 1 The data must be stored in a disc file PWRST

before they can be used in PWRSV They are inserted into PWRSV

by printing the number 2 on the DEC-writer with the analog mashy

chine in PC mode The insertion is announced on the DEC-writer

by a message containing the regulating rod position and the approxishy

mate power level The two potentiometers Q11 and Q29 must be

adjusted accordingly When the computation are started via the

analog IC-mode the connection to DI(ll) must be withdrawn to avoid

insertion of IC-data from file PWRIC The computations do not

start bumpless as it is most likely that the IC-data in the poshy

tentiometer list do not fit the new reactor condition exactly but

within a few minutes a new stationary state with the required value

of reactor load and steam pressure may be found by adjustments of

the regulating rod the boron acid concentration and the electrical

power load Fast transients in the first few seconds will most

likely overload the output channels from the pressuriser model

This can be avoided and the transient time decreased by pressing

switch 0 before the start The switch is connected to DK2) which

controls the operation of the pressuriser taking it out of action

for switch 0 equal to 1 The pressuriser is reconnected when

the transients have died out The new state may be stored on a disc

file PWRIC by typing 1 on the DEC-writer with the analog comshy

puter in HOLD node For later use of the file the IC-data in the

potentiometer list must be corrected manually by reading the inteshy

grator outputs and both new files must be stored as a eet on

DEC-tape The main variables may be listed on the DEC-writer for

documentation by typing 3 on the DEC-writer with the analog mashy

chine in HOLD mode

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 3: User manual for teh PWR-PLASIM model

ISBN 87 550 0302 8

List of contents

Page

1 General information 5

2 Neutron kinetics 9

3 The fuel model It

31 The ten-shell section fuel model IS

32 The two-point fuel model 16

t The primary circuit with heat transport and boron acid

concentration 17

bullraquo 1 Heat transfer in core 17

42 Heat transport in the priaary circuit 20

k3 Boron acid distribution 22

5 The pressuriser model 24

51 The two-point non-linear model 25

52 The simplifiec pressuriser model 28

6 The steam generator 31

61 The detailed one-dimensional model 32

82 The simplified steam generator model 35

7 The turbine-reheatcr model laquo0

8 The electrical power grid raquot

9 File input-output routines t

10 Reference bullraquogt

Appendices

A Digital prograa listings for the power slaquolaquoilaquo medal raquo7

B Sealed equations analog diagram ylaquomieacuteoslashfiii bull - ~fgt

and DW-taMa fo laquo laquobull Slaquo t m f t amp ^ ^ m ^

C Scalad aqvatwn analog dif~lt ^ S ^ | | | M M M | ^ ^ J M

_ u

Page

D Scaled equations analog diagram potentiometer list

and DFG-tables for the turbine-reheater model 9g

E Analog diagram and potentiometer list for the elecshy

trical power grid model 30

F List of interface connections error messages

limiter settings and MM pulse lengths g3

G Program listing and analog connections for the ten-

shell section fuel model gg

H Program listing and analog connections for the

detailed pressuriser model 100

I Program listing for the detailed steam generator

model with an input-output example 105

K List of files on DEC-tape PWR DEC 7H 112

L Example of logging of variables for the power

station model 113

1 GENERAL INFORMATION

This report presents the implementation of the PUR power

station model described in Ref 1 Numerical data for the Westing-

house Surry-1 power station have been used as a test example as

most of the data needed for the model could be found in the availshy

able information Refs 2 and 3 For the turbine-reheater however

some additional data had to be estimated from descriptions of the

Obrigheim and Oyster Creek turbines

The presentation follows the layout in Ref 1 The same divshy

ision in chapters and numbering of equations are used The intenshy

tion is that the report should serve as a handbook for the experishy

enced simulation engineer and facilitate the insertion of new

data sets or modifications for special investigations The present

chapter together with appendices A to F should be sufficient to

run the model when it is prepared for a given station Some inshy

formation fundamental both for operation and modification of the

model is given here while the appendices contain all program

listings analog diagrams potentiometer lists and other related

information

The analog part of the model is stored on a patchpanel accordshy

ing to the diagrams in the appendices Any modification introduced

later on must be thoroughly documented The programs in the vershy

sion given in the appendices are stored on the DEC-tape named

PWR DEC 70 together with the system liberies as used at the

time of storage No modifications whatsoever may be introduced

into this DEC-tape it shall at all times serve as a basic model

until and if a new fully documented version is available The

program system contains the following filelaquo for the tttttloft model

PWRSB The main PDPI code section - bdquo t

PWR18B Neutron kinetic calculation in tW-eodt r

PWR28B Calculation for the prjawe 9iruraquomaringmtMU^m^m generator thlaquo turbine and

PWR38B m-code lectionlaquo raquoe IC

input and logging ef-mavim

PWRIC A set of IC-datWi

Mrt ST a n d laquo

mmmmmmm

- 6 -

PWRSP Potentiometer data for the analog model

PNRST A set of static data for the reactor calculated by a

static program

PWRSV The binary version of PWR8B PWR18B PWR28B and PWR36B

The DEC-tape further contains the files for the independent

models of separate components

P18B The pressuriser simulation program

P2FT The ten-section fjel model

P3FT The steam generator model

P3100IC A set of IC values for the steam generator at full load

Appendix K gives a lisx of the contents of the DEC-tape

The programs with the file name extension FT are written in

Fortran IV while those with extension 6B are written in a macro

language called HYBAL with nacro instructions and subroutines

developed just for hybrid simulation on the EAI680-PDP8-FPP12

machine

The following section gves some basic operating instructions

and explains the computation sequence

After installing the patchpanel on the analog machine the

potentiometers must be adjusted by the Fortran program SETAN acshy

cording to the potentiometer list PWRSP The Q-potentiometers

must be adjusted manually

The simulation program PViRSV can then be started It prints

a message on the DEC-writer to remind the operator of the adjustshy

ments of limiters and pulse generators listed in appendix F and

of the switch 0 (see below)

The computation must be started on a set of either IC-data for

the whole station or static dcta for the reactor alone The IC-

data are inserted automatically from the disc file PWRIC during

the analog IC period when the logic connection to DI(ll) is in

function The insertion is announced by a message containing the

regulating rod position and the electrical load The two potenshy

tiometers Qlt and Q29 must be adjusted accordingly The compushy

tations start bumpless whmdash the analog computer is set at OPERATE

The PDP8 is synchronized via pulses over DKO) at a rate of 10

per sec Thu same pulses synchronize the display where one or

more variable along the reactor axis may be selected Th time

- 7 -

representing the length of the space axis may be adjusted in the

range 10-25 mS by MM 0

For a new set of reactor conditions without a full set of IC-

data a set of static data must be generated by the static program

described in Ref 1 The data must be stored in a disc file PWRST

before they can be used in PWRSV They are inserted into PWRSV

by printing the number 2 on the DEC-writer with the analog mashy

chine in PC mode The insertion is announced on the DEC-writer

by a message containing the regulating rod position and the approxishy

mate power level The two potentiometers Q11 and Q29 must be

adjusted accordingly When the computation are started via the

analog IC-mode the connection to DI(ll) must be withdrawn to avoid

insertion of IC-data from file PWRIC The computations do not

start bumpless as it is most likely that the IC-data in the poshy

tentiometer list do not fit the new reactor condition exactly but

within a few minutes a new stationary state with the required value

of reactor load and steam pressure may be found by adjustments of

the regulating rod the boron acid concentration and the electrical

power load Fast transients in the first few seconds will most

likely overload the output channels from the pressuriser model

This can be avoided and the transient time decreased by pressing

switch 0 before the start The switch is connected to DK2) which

controls the operation of the pressuriser taking it out of action

for switch 0 equal to 1 The pressuriser is reconnected when

the transients have died out The new state may be stored on a disc

file PWRIC by typing 1 on the DEC-writer with the analog comshy

puter in HOLD node For later use of the file the IC-data in the

potentiometer list must be corrected manually by reading the inteshy

grator outputs and both new files must be stored as a eet on

DEC-tape The main variables may be listed on the DEC-writer for

documentation by typing 3 on the DEC-writer with the analog mashy

chine in HOLD mode

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 4: User manual for teh PWR-PLASIM model

_ u

Page

D Scaled equations analog diagram potentiometer list

and DFG-tables for the turbine-reheater model 9g

E Analog diagram and potentiometer list for the elecshy

trical power grid model 30

F List of interface connections error messages

limiter settings and MM pulse lengths g3

G Program listing and analog connections for the ten-

shell section fuel model gg

H Program listing and analog connections for the

detailed pressuriser model 100

I Program listing for the detailed steam generator

model with an input-output example 105

K List of files on DEC-tape PWR DEC 7H 112

L Example of logging of variables for the power

station model 113

1 GENERAL INFORMATION

This report presents the implementation of the PUR power

station model described in Ref 1 Numerical data for the Westing-

house Surry-1 power station have been used as a test example as

most of the data needed for the model could be found in the availshy

able information Refs 2 and 3 For the turbine-reheater however

some additional data had to be estimated from descriptions of the

Obrigheim and Oyster Creek turbines

The presentation follows the layout in Ref 1 The same divshy

ision in chapters and numbering of equations are used The intenshy

tion is that the report should serve as a handbook for the experishy

enced simulation engineer and facilitate the insertion of new

data sets or modifications for special investigations The present

chapter together with appendices A to F should be sufficient to

run the model when it is prepared for a given station Some inshy

formation fundamental both for operation and modification of the

model is given here while the appendices contain all program

listings analog diagrams potentiometer lists and other related

information

The analog part of the model is stored on a patchpanel accordshy

ing to the diagrams in the appendices Any modification introduced

later on must be thoroughly documented The programs in the vershy

sion given in the appendices are stored on the DEC-tape named

PWR DEC 70 together with the system liberies as used at the

time of storage No modifications whatsoever may be introduced

into this DEC-tape it shall at all times serve as a basic model

until and if a new fully documented version is available The

program system contains the following filelaquo for the tttttloft model

PWRSB The main PDPI code section - bdquo t

PWR18B Neutron kinetic calculation in tW-eodt r

PWR28B Calculation for the prjawe 9iruraquomaringmtMU^m^m generator thlaquo turbine and

PWR38B m-code lectionlaquo raquoe IC

input and logging ef-mavim

PWRIC A set of IC-datWi

Mrt ST a n d laquo

mmmmmmm

- 6 -

PWRSP Potentiometer data for the analog model

PNRST A set of static data for the reactor calculated by a

static program

PWRSV The binary version of PWR8B PWR18B PWR28B and PWR36B

The DEC-tape further contains the files for the independent

models of separate components

P18B The pressuriser simulation program

P2FT The ten-section fjel model

P3FT The steam generator model

P3100IC A set of IC values for the steam generator at full load

Appendix K gives a lisx of the contents of the DEC-tape

The programs with the file name extension FT are written in

Fortran IV while those with extension 6B are written in a macro

language called HYBAL with nacro instructions and subroutines

developed just for hybrid simulation on the EAI680-PDP8-FPP12

machine

The following section gves some basic operating instructions

and explains the computation sequence

After installing the patchpanel on the analog machine the

potentiometers must be adjusted by the Fortran program SETAN acshy

cording to the potentiometer list PWRSP The Q-potentiometers

must be adjusted manually

The simulation program PViRSV can then be started It prints

a message on the DEC-writer to remind the operator of the adjustshy

ments of limiters and pulse generators listed in appendix F and

of the switch 0 (see below)

The computation must be started on a set of either IC-data for

the whole station or static dcta for the reactor alone The IC-

data are inserted automatically from the disc file PWRIC during

the analog IC period when the logic connection to DI(ll) is in

function The insertion is announced by a message containing the

regulating rod position and the electrical load The two potenshy

tiometers Qlt and Q29 must be adjusted accordingly The compushy

tations start bumpless whmdash the analog computer is set at OPERATE

The PDP8 is synchronized via pulses over DKO) at a rate of 10

per sec Thu same pulses synchronize the display where one or

more variable along the reactor axis may be selected Th time

- 7 -

representing the length of the space axis may be adjusted in the

range 10-25 mS by MM 0

For a new set of reactor conditions without a full set of IC-

data a set of static data must be generated by the static program

described in Ref 1 The data must be stored in a disc file PWRST

before they can be used in PWRSV They are inserted into PWRSV

by printing the number 2 on the DEC-writer with the analog mashy

chine in PC mode The insertion is announced on the DEC-writer

by a message containing the regulating rod position and the approxishy

mate power level The two potentiometers Q11 and Q29 must be

adjusted accordingly When the computation are started via the

analog IC-mode the connection to DI(ll) must be withdrawn to avoid

insertion of IC-data from file PWRIC The computations do not

start bumpless as it is most likely that the IC-data in the poshy

tentiometer list do not fit the new reactor condition exactly but

within a few minutes a new stationary state with the required value

of reactor load and steam pressure may be found by adjustments of

the regulating rod the boron acid concentration and the electrical

power load Fast transients in the first few seconds will most

likely overload the output channels from the pressuriser model

This can be avoided and the transient time decreased by pressing

switch 0 before the start The switch is connected to DK2) which

controls the operation of the pressuriser taking it out of action

for switch 0 equal to 1 The pressuriser is reconnected when

the transients have died out The new state may be stored on a disc

file PWRIC by typing 1 on the DEC-writer with the analog comshy

puter in HOLD node For later use of the file the IC-data in the

potentiometer list must be corrected manually by reading the inteshy

grator outputs and both new files must be stored as a eet on

DEC-tape The main variables may be listed on the DEC-writer for

documentation by typing 3 on the DEC-writer with the analog mashy

chine in HOLD mode

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 5: User manual for teh PWR-PLASIM model

- 6 -

PWRSP Potentiometer data for the analog model

PNRST A set of static data for the reactor calculated by a

static program

PWRSV The binary version of PWR8B PWR18B PWR28B and PWR36B

The DEC-tape further contains the files for the independent

models of separate components

P18B The pressuriser simulation program

P2FT The ten-section fjel model

P3FT The steam generator model

P3100IC A set of IC values for the steam generator at full load

Appendix K gives a lisx of the contents of the DEC-tape

The programs with the file name extension FT are written in

Fortran IV while those with extension 6B are written in a macro

language called HYBAL with nacro instructions and subroutines

developed just for hybrid simulation on the EAI680-PDP8-FPP12

machine

The following section gves some basic operating instructions

and explains the computation sequence

After installing the patchpanel on the analog machine the

potentiometers must be adjusted by the Fortran program SETAN acshy

cording to the potentiometer list PWRSP The Q-potentiometers

must be adjusted manually

The simulation program PViRSV can then be started It prints

a message on the DEC-writer to remind the operator of the adjustshy

ments of limiters and pulse generators listed in appendix F and

of the switch 0 (see below)

The computation must be started on a set of either IC-data for

the whole station or static dcta for the reactor alone The IC-

data are inserted automatically from the disc file PWRIC during

the analog IC period when the logic connection to DI(ll) is in

function The insertion is announced by a message containing the

regulating rod position and the electrical load The two potenshy

tiometers Qlt and Q29 must be adjusted accordingly The compushy

tations start bumpless whmdash the analog computer is set at OPERATE

The PDP8 is synchronized via pulses over DKO) at a rate of 10

per sec Thu same pulses synchronize the display where one or

more variable along the reactor axis may be selected Th time

- 7 -

representing the length of the space axis may be adjusted in the

range 10-25 mS by MM 0

For a new set of reactor conditions without a full set of IC-

data a set of static data must be generated by the static program

described in Ref 1 The data must be stored in a disc file PWRST

before they can be used in PWRSV They are inserted into PWRSV

by printing the number 2 on the DEC-writer with the analog mashy

chine in PC mode The insertion is announced on the DEC-writer

by a message containing the regulating rod position and the approxishy

mate power level The two potentiometers Q11 and Q29 must be

adjusted accordingly When the computation are started via the

analog IC-mode the connection to DI(ll) must be withdrawn to avoid

insertion of IC-data from file PWRIC The computations do not

start bumpless as it is most likely that the IC-data in the poshy

tentiometer list do not fit the new reactor condition exactly but

within a few minutes a new stationary state with the required value

of reactor load and steam pressure may be found by adjustments of

the regulating rod the boron acid concentration and the electrical

power load Fast transients in the first few seconds will most

likely overload the output channels from the pressuriser model

This can be avoided and the transient time decreased by pressing

switch 0 before the start The switch is connected to DK2) which

controls the operation of the pressuriser taking it out of action

for switch 0 equal to 1 The pressuriser is reconnected when

the transients have died out The new state may be stored on a disc

file PWRIC by typing 1 on the DEC-writer with the analog comshy

puter in HOLD node For later use of the file the IC-data in the

potentiometer list must be corrected manually by reading the inteshy

grator outputs and both new files must be stored as a eet on

DEC-tape The main variables may be listed on the DEC-writer for

documentation by typing 3 on the DEC-writer with the analog mashy

chine in HOLD mode

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 6: User manual for teh PWR-PLASIM model

- 8 -

FPP2 and TURB and calculates the sua of the reactor thermal power

for later use Next follows in HYDRA3 the calculation of the

boron acid distribution in the primary loop in 12-bit integer

arithmetic HYDRA reads the regulating rod position ard calculates

the rod density in the core sections ready for use in the neutron

kinetics routine The final PDP8-routine is HYDRAS which is

started when the FPP unit finishes the calculations initiated in

HYDRA2 HYDRAS starts calculating the neutron flux distribution

in the FPP-routine FPP1 performs all the adjustments of analog

outputs and the HDACs and finally starts the FPP3 routine with

calculation of the delayed neutron concentrations when the neutron

kinetic routine is finished The FPP3 routine is followed by the

PROP routine with the calculations for the pressuriser From

HYDRA5 PDP8 goes back to the waiting loop while the FPP unit conshy

tinues the calculations just started which normally last some

few milliseconds into the next time interval

The calculations may run into error conditions which prevent

continuation Ir these cases a message is typed on the DEC-writer

and the program stopped with a jump to monitor A list of error

messages is given in Appendix F

The waiting loop in the PDP8 code contains a test of the

DEC-writer request If a request is detected the character will

be printed and action taken according to the following lis

Go to the FPP input-output test routine belonging to the KYBAL

language

1 Transfer a set of IC-data for the present steady state condition

to the disc file PWRIC

2 Transfer a set of reactor static data from disc file PWRST

to the data areas in the core for the active PWRSV program

3 Type a list with main variables and parameter on the DEC-

writer

Other characters no action

Analog simulation requires amplitude scaling The variable

range on the analog machina is defined as 1 corresponding to

slOV A variable X with the variation X must be used with a

scale factor SF x = 1 ^ A variable with a scale factor is

written in square brackets eg (002 T e ) The same convention ia

used for integer variables in the PDP8 where 1 corresponds to the

- S -

integer plusmn29M In a single case another type of scale factor is

needed for integer arithmetic thlaquo meaning is given by the equation

X in machine integer units = (SF X)raquoX)

The scale factor is chosen so the main a w value of X corresponds

to the integer raquoOSlaquo for positive variables and plusmn20raquoraquo for dual

signed variables The analog input and output units work with dual

signed integers while the MMCs only use positive integers

The interface units will often be referred to by abbreviations

as follows

analog input channels

analog output channels

digital input

digital output

AI

AO

DI

DO

HDAC multiplying digital to analog converters

Other abbreviations are

A analog amplifier

P and Q potentiometers

DF6 diode function generators

m Honostable timers given adjustable pulse length

2 HEUTim KINETICS

sectSSHSSipoundS3te

bullumber of core sections It

Length of cons M S ca

Ax bull 3651 laquo 2607 ea

w a n

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 7: User manual for teh PWR-PLASIM model

- 10 -

5yen5iS3l-3sectta

The kinetic parameters D Ea and vEf have been calculated by static programs as second degree polynomials in the S varishyables T T p C and CR The control rod density CR has

u c m b been normalized as a quantity betwaen 0 and 1 The other 1 varishyables are used with suppressed zero points The following values are usee

T 735 degc

p 07296 gcm3 m

Cb 1500 ppm

The general formulae are

laquolaquo + V V a34pm + V pm + V Cb + V Cb + a 7 C R + a84Tu

For the reflector sections alaquo and a- are omitted In the diffusion equation pound and vl- are always used together

in the common expression (l-8)vEf-ia BO it is an advantage to use a polynomial for (vl_-i ) completely eliminating the need for I alone vE alone is needed for calculation of the delayed neutrons and the thermal power but here a less accurate calculation is poss ible The variation of vJ- with Tbdquo and T_ is less than 1 in the x u c temperature range of interest so it is completely neglectad The variation with Cfc is nearly linear below 2000 ppm which is the upper limit so only a first order term for Cb is used The terns for pm and CR are used unchanged All the data for the kinetic polynomials are given in table 21

The delayed neutrons are represented by 3 groups with the following data

6 = 992E-6

0 gt 6DUBE-6

X1 bull 182

2 gt 02raquo9

Xj gt 00268

s 1

s 1

s 1

- 11 -

Data for conversion of neutron flux bull to thermal power N

A = 03E-10 Jfission

v laquo 213 neutronsfission

Insertion in eq (29) gives

N (218E-1DVIJ Wsection C29)

21 Digital routines

The kinetic equations are solved by the digital routines FPP1 and FPP3 in file PWR18B appendix A

The first file page contains all the numerical data and varishyables

The second file page contains the routine for calculation of the kinetic parameters and the coefficients in the matrix equation (28) The integer variables T u Te p m gt Cfc and CR are transferred from the arrays A0-A15 in the FDP8 code section in file PWR8B and converted to floating point form

The third file page contains the routine for solution of the equation (28) calculation of vl- for the next routine and of the thermal power N which is converted to integer form and stored in array H with a scale factor 1500 By the conversion oerflow is possible during power transients A teat for overflow it carshyried out for fuel sectionlaquo 3-10 and announced by a THAP6 message no 0-7

The fourth file page contains the routine FPF3 for calculation of the delayed neutron It is not coupled to the preceding routine FPP1 but ia activated independently -j-

The regulating rod position is an independent control variaJriUu which is inserted via AI7 through the POPS twrtampa MTObialit tiW PURtB The rod denaity in each section ir seacutefeacuteiaringhuii tfr a Wwtr between 0 and -2(Mraquoraquo inclusive) - - --u^traquo^ itejaeacute-a

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 8: User manual for teh PWR-PLASIM model

12 -

Array KD coefficients a^-a^Q for n

KSFA

KSF

KDOslash

KSAOslash

1 8

(vlf-pounda) in the core

vi

in the reflector

DX2 = Ax = 67965

F3DX raquo 3Ax = 7821

DXR = 1Ax = 0038358

BETA = B = 68E-3

NPTU = Analog zeropoint - Digital zeropoint for Tu

= 800 - 735 = 65

NPTC = do for T c

= 300 - 298 = 2

NPRO = do for p m

= 05 - 07296 = -02296

NPBO - do for Cb

= 0 - 1500 - -1500

SFTU = -1(SF T x 2018) = -500208 = -21E-1

SFTC = 1(SF Tbdquo x 208) = 50208 = 2lE-2

SRRO

SFBO

SFCR

SFN

LH1

LM2

= 1(SF p x 208) = 05208 s 21E- m

= 2000096 = 8B28E-1

= -(weighting factor for regulating rod208)

= eg -025208 = -12207E-

(updated by input of static data or IC data)

= 218E-11 x 096 x SF N s 218E-11 x U096500 bull 17859E-10

(equation (29)

= raquo 029

- 13

LM3

CN1X

CM1K1 = 2S14t(2-X1At) = 1091309E-

CN2K2 = (2-Xj4t)(2+A2flt) = 097506

388811E-

099712

1618330E-

ArEavS_pound2E_B5ES9S$5SS_52iLXSEia61SS

CCR Fixed control rod density

CJI Elements below the diagonal in C with first position empty

CJJ Elements in the diagonal in C

CJK Elements above the diagonal in (C) with last position empty

PHI t

FNP vEf

NYSF vlf

SAZE Fixed contribution to E a from xenon poisoning calculated in

and transferred from the static program

SLCM IXCn

CM1 Cx

CH2 C2

CN3 C

w bullpound bdquojl tffsi^ ^$^r ^g

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 9: User manual for teh PWR-PLASIM model

- It -

a l

a2

a3 a a5

a6

a7

a8

a9

a10

D

127SE-6

-U700E-5

61587

-17908E-1

ltOOE-9

1100E-5

66E-3

27665E-9

5499E-6

12033

a

692SE-8

-1U8SE-6

-1371W-1

12717E-2

7800E-11

3H02E-7

2E-

17956E-10

21279E-7

255E-2

-f 1077SE-7

-21S0E-6

-l59E-l

13522E-2

3016E-10

-172E-6

-6E-

8171E-10

-3907E-7

26391E-2

VIf-Za

3B5E-8

-665E-7

-876E-3

805E-U

2236E-10

-20642E-6

-88E-I)

30215E-10

-606B6E-7

891E-

vE simplified

-

--1K59E-1

13522E-2

--19E-6

-6E-

-

-26391E-2

Table 21

Coefficients for polynomial calculation of kinetic parameters

3 THE FUEL MODEL

sectpound25poundpoundEiS2i_pound9poundpound_^secttsect

2607 cm

201 157 = 32028

01655 cm

00080 cm

00620 cm

05355 cm 2

3170 cm cm 2

2809 m section

001U35 m

388 m2

1012 m section

Mu ru i r 4rca rca Hca

degca Dlaquoc

A= Vc

Physical_fuel_data

k = tO WcmdegC

z^gt s orCH X ) = 0130 cmdegCW ca ca ca ca z^ bull z bdquo bull 1k s 0360 gca ca g Z per section = 01556 degCMW

pca 6S gc3

c c a =031 Jgdegc

Pu laquo 100 gcm

o u s 032 Jgdegc C c

C u = 1819

= (788E-13)T3 + 3824(T + 129) WcndegC (T in degKgt

31 The ten-shell section fuel model

The nodel has been implemented in a Fortran program suitable for calculation of transients for variation in either the heat production N or the coolant temperature T The program works in real time synchronized from the analog computer It receives the input variables N and Tc from analog inputs and delivers the output via analog output channels and the DEC-writer The program and the analog diagram are given in appendix 6 with implementation for stops in N and Te

The program is divided into bullactions numbers 1 to raquo SadtioA 3 contains all the geometrical and physical data in DATA stateshyments Section 4 calculates some fixed parameters and resets digishytal inputs and outputs taction S contains a waiting M e m toslash^l timing impulse via M S y when the Impulslaquo atrtms ejfMaia|f starts by reading the input variables which arraquof - - lt bull

- gt bull laquo ( AIOs (laquoSO0)

A l i i ( ( T e l - M 0 ) raquo 0 ) - - bull -- J

The tiaa step imt i^m^ caloiaraquotimN l e tWlaquo laquoWCfl raquoatri m^t^j^

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 10: User manual for teh PWR-PLASIM model

some variables for analog outputs and performs the output function The output variables with scale factors and zeropoints are

AOO

A01

A02

A03

AOU

A05

((T(l) - 1500)1000)

fltT - looomoo) ^ mean ((T(10) - 500)2S0) f(T - 500)200) 1 ug f(T - 300)100) 1 ca ((Q - 250)250)

Output printout can also be obtained at the DEC-writer by a signal at DI7 For every sampling time the program asks if DI7 is set and gives a printout if it is true A periodic printout can be obtained with the counter circuit shown in the analog diagram the period can be selected by the preset time thumb wheels The variables in the printout are the ten Tu temperatures on the first line and the following variables on the second line

T (mean) T Tbdquobdquo and Qbdquo u ug ca ^c

32 The two-point fuel model

The equations (321) and (322) are given here with numerical values but all other details are given in the next chapter as all the core heat transfer equations are usd in one hybrid routine

Tbdquo = 05U98(N-k(T -T )) u i u ca T c a = 30239(kf(Tu-Tca)-Qc)

bullraquobull65E-6 + 04556

Tug Tca deg556 kf ( V T c a gt

raquou - riltiltVIugraquo

1(32 1)

Tu(bdquol) = Tu(n) bull 4tTu

AtTu = 005H98(N(n)-kf(Tu(nJ)-Tea(nraquo)gt)

(322)

AtTca = 03deg2()ltfltTuCnraquoraquogt-Tealtn+iraquo-qcltn)gt

Tca(n+1gt= Tca(ngt + V c a

- 17 -

The coefficient K = 46SE-6 is selected so T u obtains the same static values as the T mean value for the 10-shell section at a section load of 250 MW

1 THE PRIMARY CIRCUIT WITH HEAT TRANSPORT AND BORON ACID CONCENTRATION

11 Heat transfer in core

All geometrical data are included in the list in chapter 3 Only some few physical parameters which are nearly constant

over the working range or are of minor importance are taken as constants These are

HC(T) = 092 KJkgdegC (kgm s ) 0 2

h f gP g 8 =971 MJm3

p = 725 kgm3

Pf-Pgs =630 kgm 3

for eq H N

n w

n raquo

( 1 5 )

( 0 9 )

ltltt9)

( 1 1 0 )

Other parameters are taken as temperature-dependent functions The equations with numerical values are listed below Eq (t6)

is simplified by using exp(p iraquo3t) as a constant It is justified by small variations in the primary pressure p and by the quadshyratic term (Tca - T ) 2 which makes T c a insensitive to variations in the coefficient

Te(jn+1) = T c ( j - l n+l)4pilt- | 1012 fi^T^in)) o p

4 t t e ( J M l ) Te(jn+1) - t0ltJngt lt

cl

n laquo9SE-3 WdegltTC-TC)

raquo 17S7(T -T

laquo 0 - f (T -T )

Qt raquo V laquo laquo(jn+l) bull laquo(J-lnUgt bull j feltj |y a t(Jnl) gt raquo ( J n i n ^ ^ a ^ a l f t M

raquom raquo 9t - f i t

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 11: User manual for teh PWR-PLASIM model

18 -

These equations are solved together with the fuel equations

in one hybrid routine where the calculations are done by analog

components with the digital machine as coordinator and store

medium The same circuits are used for all the core sections on

a serial basis with parallel analog calculations This gives a

computing time of about 1 ms per section The input to the routine

is the thermal power N the coolant inlet temperature T with

the coolant flow rate as a variable input parameter The output

variables are temperature profiles for the fuel the canning and

the water together with void and water density profiles all

stored as 12-bit integers in the digital machine

The latest investigations of the void production carried out

by the static program show that the dynamic void calculations are

inadequate but also without importance in the working range for

the dynamic model The void mechanism should be further studied

and the model improved or the void representation should be comshy

pletely omitted The data for the function fv given in appendix B

are consequently arbitrary and not based on static calculations

The analog diagram is given in appendix B together with scaled

equations DFG tables and potentiometer lists Suppressed zero-

points are used in order to improve the signal resolution in the

ADDA conversion The zeropoints are

Tu Tca Tc

m

800 degC

300 degC

300 degC

500 kgm3

The scale factors and the corresponding working ranges are

SF N = 1500 Range 0-500 HWsection

SF Qu SF Qc = SF N

SF Tu = 1500 Range 800 plusmn 500 3C

SF Toa = 1100 Range 300 1 100 degC

SF Tc = 150 300 50 degC

SF o = 10 0^01

SF p = 1500 500 t SO0 kgm3

- 19 -

SF c =bull 100 Range B-0010 MJkgdegC

SFC1X gt2 E-6 for X C2-S)E-6 MWmdegC

SF W = 115O00 5000-15000 kgs c

Other scale factors for intermediate variables may be found in the l i s t of scaled equations

The d i g i t a l rout ine HYDRA1 that controls the calculations i s found in f i l e PWR8B appendix A The routine uses 3 internal subroutines HIC OPDA and TRVENT and one l ibrary subroutine DIVI HYDRA1 links direct ly to the next routine HYDRA2 which is discussed in section 42

The computing sequence for a core section consists of 3 steps F i r s t the old outlet values are set on analog output channels and HDACs while t rack-store amplifiers fetch the new inlet values to the section in question Second the computing c i r cu i t i s switched to the computing mode to find the new set of out le t values during the amplifier t ransients the d ig i t a l machine i s used t o update the stored values for the previous sect ion Third the changes for the new outlet values are read in to the d ig i ta l mashychine and the computing c i rcu i t s are switched to store and track mode The f i r s t core section requires a special subroutine HIC for i n i t i a l i z a t i o n At the end the hybrid routine is UBed one extra time to convert the heat stored in steam to an increased water temperature

The computation i s controlled via the d i g i t a l outputs DO(0gt

- D0(3) and the d ig i t a l input D i d ) as shown in the diagram for the logis uni t s The ic signal if used to insert the inlet varishyables T and a(o) raquo 0j co sets the track-store unitlaquo in compute modet the ho impulse shifts thlaquo section outlet value on one track-s tore amplifier to the inlet value on the otter trw-stcopyraquoraquo amplishyf ier The re signal i s used to shift between the analog signals laquo)C-Qb) and IQj sent out from PDM for thlaquo last section fftV two pulses t x and t 2 can be wad t o control Vmtvtotm sssfllftstw laquo sample and hold any signal for bull selected MWjm traquolaquo setoslashmtlnn is donlaquo with thlaquo preset knobs for thlaquo ewsMMk tOM Mm MM

t f iff laquoilbdquo 1 J iJelaVk e-upound bull Some seallaquo factor dlaquoplaquondlaquont nssiisrs laquoM ttsMKaWsv bull tHf-laquo-

routines Thlaquolaquolaquo r a l l feacutemmttM tv JW4WJE

iAi irf HJBl 4WltjtJMgtpound at

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 12: User manual for teh PWR-PLASIM model

HYDRA1

HL + 21 li-ies

+ 9

OPDA

(SF Qk)ltSF SQk) = 10 = 128

(SF AT )ltSF Tbdquo) = SO10 = t e c

8

+ 5 lines

+ 5 lines

+ 10 lines

+ 11 lines

(SF amptTc)(SF Tc) SO10 = 5

(SF Ao)(2 raquo SF o) = 10020 = 5

(SF Qk)(SF EQk) = 50050 = 10 = 12g

as the first 5 elements Element no 6 is used for boron acid

concentration no 7 for regulating rod density and no 8 contains

an index pointer with the array numbers from 0 to 15 The arrays

are found in the last file page in file PWR8B

The communication between the two machines goes through the

following units

AIO

All

AI2

AI3

Alt

AI5

A01

A02

AC 3

AC 5

MDAC0

MDAC1

(Qb50)

-UtTu25)

UtTca25)

UtTc10)

(lOO 4to)

-((Pm-5O0)5O0)

-UTu5O0)n

LTaioo)n

(AT50) c n

t 4 T e 5 deg ) l n l t o p t I V M I f MSOO) n

do)

12 Heat transport in the primary circuit

The primary loop is divided into the following coapartaanta

- 21 -

Reactor upper plenua raquo600 a

3 tube s e c t i o n s of 1177

SG i n l e t chamber 157

2 SG U-tube s e c t i o n s of 1015

SG o u t l e t chamber 157

2 tube s e c t i o n s of 1230

3 tube s e c t i o n s of 1173

2 reac tor downcoaer s e c t i o n s of 6625

reactor lower plenum 2375

Only two phys ica l q u a n t i t i e s are needed and they are both 3 d p f

used as constant va lues P f = 72S kg a and -gipraquo which i s e v a l u shyated at 3 temperature l e v e l s 285 300 and 318 degC g iv ing - 1 8 0 - 2 1 0 - 2 6 0 kgm3oC r e s p e c t i v e l y

The c a l c u l a t i o n s are carr ied out i n the d i g i t a l rout ine FPP2 which i s found i n f i l e PWR28B The rout ine c a l c u l a t e s i n addi t ion sone steam generator parameters and l i n k s t o the turbine power c a l c u l a t i o n I t i s ac t iva ted in the PDP8 rout ine HYDRA2 a f t e r i n s e r t i o n of input var iab le s which are

AI (Wc15000)

A l l f (W5000)

AI10 ((T -300150)

The temperature c a l c u l a t i o n are made s t r i c t l y according t o the formulae (1 11 ) - ( 1 1 3 ) The sua t e r n I4T_ in ( 1 1 3 ) l a

t c ca lcu la ted in the rout ine HYDRA1 and transferred t o FPP2

Convertion o f the r e a c t o r lower plenua teaperatar t o Timed fora may r e s u l t i n overflow announced by the message bullraquobulllaquobull The reactor upper plenua teaperature i s s ent out at NMC 1 alaquo (CT - 2 6 0 1 1 0 0

The f i r s t f i l e page in f i l e PHK20B conta iaa data which are

Array VPt The voluaaa aa l i e t a laquo laquo laquo

TC s 1 core ( a c t i o n volmaa a

S l a t 1 (700 raquo g f l r f l

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 13: User manual for teh PWR-PLASIM model

SFTIN

SFTUD

FDT

FRCK

DRODTM

DRODTH

DRODTL

-

1(2048 x SF T)

2048 x SF T

flt

pf

do g^- at 300 degC

318 degC

28S degC

22 -

= SO2048 = 002laquo

= 2048SO s 4096

01

= 725

= -210

= -260

- -180

The array TPL contains the teaperature belonging to the volu

VPL with an extra elenent

the steam generator U-tubes

in VPL with an extra elenent for the outlet teaperature T from

43 Boron acid distribution

2 tube sections of

(the first is the insertion

point for boron acid)

2 reactor downcomer sections

Reactor lower plenum

t reactor core sections of

Reactor upper plenum

3 tube sections of

SG inlet chamber

4 SG U-tube sections of

SG outlet chamber

2 tube sections of

1 tube section of

1173

6625

2375

354 -

4600

1177

457

5225

457 bull

1230

1173

The ca l cu la t ions are carr ied out in the rout ine HYDRA3 in f i l e PWF8B It fo l lows d i r e c t l y a f t e r HTORA2 mentioned in the previous s e c t i o n

Tn order to save time for the f l o a t i n g point processor f ixed point arithmetic i s used The bcron acid concentrat ion i s r e p shyresented by 12-bit p o s i t i v e in tegers for the range 0-0002

23

(0-2000 ppm) giving a scale factor ST C^ - 500 With SF Wfc = 1

eq (414) scaled in machine units becomes

(soocyon+n) =

((SOOC^on)) bull SLtlSOOC^inl)) bull 01 j N gt)bull

(tow

N x 1 + atW

Changing to the internal number representation and the unit

ppm for boron acid concentration with 2000 ppm equal to the integer

4096 gives

(2048 (^001)) (1024(2048 C^on) bull (1024^-) raquo

(J (2048 C^in+1)) bull 4096-yEL ) ) raquo

5006 II x 102laquo (1024ampS-)

V pf V

A M ) (2048 (mdashfer)) with (1024^) x 69 mf

for the primary circuit outside the reactor

w_ 4laquo ^(iSOTo-J

for the volumes inside the reactor The density Pf is taken as

the constant value 72S kga3 The aquation can be transfermdasha to

(2 048 ( ^ ( o n + l ) laquo ( 2 0 1 C ^ o n ) bull ( 1 0 I 4 ^ t t - I

( ( 2 0 raquo i ( ^ ( i n t l ) ) - ( 2 laquo raquo raquo C^Coa) 0 t raquo C raquo

bull -raquo-sVfs Tte 1 M t e r n with Wfc i s m9 $9fm

the bullfe

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 14: User manual for teh PWR-PLASIM model

- 24 -

equation i s val id for a power s t a t i o n with 3 primary loops with equal coolant flow and with boron ac id in ser t ion i n a l l l o o p s With only one insert-on point the constant 4096 i s reduced t o t 0 9 6 3 i f the maximum i n s e r t i o n ra te remains 1 k g s for t h a t point

The l a s t equation i s the f i n a l form for programming The ca lcu lat ion routine HYDRA3 contains an array VBO with

volume values equal t o (200 V outs ide the reactor and (6667 V i n s i d e bull

VBO 235 235 1583 236 236 236 236 3067 235 235 235

9 I t 1015 10t5 1045 1045 914 246 246 235

The array for the boron acid concentrat ion CBO i s found in the l a s t f i l e page together with the array CBREST used for ac shycumulated remainder s torage The concentrat ions are further i n shyserted in the 16 arrays A0-A15 using one compartment over 4 core s e c t i o n s

The i n l e t flow of boron acid Wfa goes through AI8 The concenshytration in the mixing compartment i s sent out on MDAC9 with sca l e factor SF Cb = 12000 with ppm as u n i t

5

Bas i c_da ta^

Height inner

Diameter inner

Volume

Normal water volume

Steam-tank surface

Surge tube

Length

Diameter inner

Volume

THE PRESSURISER MODEL

1127 m

2135 m

378 m 3

220 m 3

390 m 2

130 m

2842 mm

0825 m3

5 1 The two-point non- l inear model

Physical_Barameters

p f s = (-479928E-3 laquo p - 0426907) x p + 775435

p f s (5B3223E-3xp-o684103)xp+679603

3poundpound = (C-282339E-6xp+106286E-3)xp-0135616)bdquop+41627 s

dp bull^JS- = (C194994E-6p-723306E-U)xp+955994E-2)xp-363699

h f = 236941E-6laquop+334697E-3)xp+105577

h = (-155610E-5xp+172963E-3)xpt2705997

d h f s j ~ = (252025E-7xp-71493E-5)xp+90087E-3

d h jgKS = ((-376728E-9p+142818E-6)xp-0202486E-3gtxpt811U7E-3

3pf (nrJ

3 p

h

(-155056E3raquohlt +416325E3)xh-320438E3

ltTSTgt - raquo bull

3 p g ( Ui 061E3xh -17KE3

P 8

9 p -

P h laquo

c bdquo s 0010 MTkgdegC for raquotatm mmv bullaturation Pg

dT - - T~ bull 060 Cbar for taturatad ataaa L

for rtm-sm wU 4 bullbull imKlti kabdquo lt oz wdegc for ttM irfitampmtuM+eacuteft bdquo

I laquogt bull V M

^^MM mdash w r

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 15: User manual for teh PWR-PLASIM model

- 26

3p f

~- raquofs W ( h f h f sgt

g gs an g gs K - P _ ^ (h - h )

The units are p Xgm

Inp ut Daramete

= 123

= lM

h

P =

rs

MJkg

MJkg

bar

The program i s given i n appendix H I t i s wr i t t en in the macro language HYBAL for communication with the analog machine and conshyta ins t FPP-routines and 1 PDP8-code r o u t i n e

The PDP8-code routine controls the FPP-routines and takes care of the analog output s e t t i n g

FST i s a parameter input routine It may at any time be r e shyquested by typing 0 (zero) at the DEC-writer I t must be ca l l ed once when the program i s s t a r t e d It i s used t o define IC values for VF P and Q and further to i n s e r t contro l parameters for Q WK and WR as used in equations ( 5 1 8 ) - ( 5 1 1 0 )

INPUT i s an actuat ion s igna l input rout ine I t fo l lows autoshymatical ly a f ter FST and may bes ides at any time be c a l l e d from the DEC-writer by typing 1 It i s used to define the input v a r i shyable AW as e i t h e r a s t e p - or a ramp-pulse funct ion DELTA WI impulse he ight DELTA T = impulse width and STEPSWITCH = 1 g ives a s t e p while STEPSWITCH = 0 g ives a ramp-pulse

FIC i s an IC i n s e r t i o n r o u t i n e i t r e s e t s the var iab les t o thlaquo values s p e c i f i e d n FST and prepares for a t rans i en t c a l c u l a t i o n

FOP i s the main t rans ient c a l c u l a t i o n r o u t i n e The operation of the program i s contro l l ed v ia the d i g i t a l

inputs DI(O) D i d and DK2) For DI(O) = 1 thlaquo program goes t o the IC-mode for Di(0) = 0 and D i d ) = 1 i t goes t o the operate mode for which the c a l c u l a t i o n s are synchronized v i a pulses (100 i s e c ) on DI(2) As the in tegrat ion s tep i s 0 1 s e c 10 pu l ses sec give real time c a l c u l a t i o n A puislaquo ratlaquo of 100 per s e c

- 27

may be used to speed up the calculations for slow transients but

10 pulsessec is recommended for short fast transients due to an

iterations loop which is interrupted by the synchronization pulse

100 pulsessec give only time for 2 runs through the loop resulting

in damped oscillations in the time derivative p for step input

function

All output goes through analog channels according to the folshy

lowing list with variables scale factors zeropoints and TRAP6

numbers at overflow

AO0 (lp-po)20) TRAP6

A01 (CVf-Vfogt10)

A02 (We50)

A03 (We50)

A01 (Wk50)

AOS (Wr100)

A06 (Q2)

A07 (p2)

The condi t ions of the water and steam phases are shown

d i g i t a l ou tputs D0(0) = 1 i n d i c a t e s water s a t u r a t i o n and

i n d i c a t e s steam s a t u r a t i o n The program conta ins the fo l lowing cons tants

DT = at = 0 1

V = 3 7 8 Tank volume

HWK = hj = 123

HWI raquo = lHS

KRFS constants f o r p f g

KRSS Og

dp f KKFSP constantlaquo for 35=

dp KR6SP

KHFS

KHGSt

KHFSPs

by

DOU)

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 16: User manual for teh PWR-PLASIM model

28 -

dh KHGSP c o n s t a n t s for --raquo-

KRFH Crir-)

9 p e KRGH ltbull$)

STTp

P 3 gt gt

KRGP

3p

CPG = c = 0 0 1 Pg

d T s DTSP = -3-2 = 06 d Ps

CV = C = 10 v

KQGV = kqgv = C 2

SP = 2018 x SF p = 201820 = 1021 P

SVF = 2018 lt SF V = 201810 = 2018

SWE = 2018 laquo SF W = 201850 = 1096 e

SWC = 2018 x SF W = 201850 = 10 96 c SWK = 2018 laquo SF Wk = 201825 = 8192 SWR = bull018 laquo SF W = 2018100 = 2018 r SQ = 2018 x SF Q = 20182 = 1021

SPP = 2018 x SF p - 20182 = 1021

5 2 The s i m p l i f i e d p r e s s u r i s e r model

The p h y s i c a l parameters a re r e p r e s e n t e d by polynomials of

lower degree than used i n s e c t i o n 51 t o save computing t i m e

p f s = 602 - 1 82x(p- lS0) = 875 - 182p

a = 98 bull 101x(p-150) = -56 bull l O l x p 5 s

d o j r ^ s = - ( 1 8 2 bull 0 0092x(p- lS0) ) = - ( 0 1 1 bull O0092raquop)

T P T -= 101 bull 00112raquo(p-150) - 0 6 1 + 00112raquop

h = 1611 + 0 0010x(p- lS0) = 1011 + OOOIOxp i s

h = 2611 - 00029x(p-150) = 3019 - 00029xp

10 E-3

dh

a = - ( 2 9 0 + 0 030x(p-150)) E-3 = (1 6 - 0030xp) E-3

(bullsjp) = - (525 + 7 3 0 x ( h f - 1 6 ) ) = 613 - 730xh f

d p

h f ( W i ) = 1395 + 0693E-2x(T-310) = -0 1133 bull 0593E-2xT

hf(W ) = 1235 + 0501E-2x(T-280) = -0 1762 + 0501E-2XT

T = 0 51 x (p-150) + 3211 = 2611 + 0 51 p

The program i s g iven in appendix A f i l e PMK2SB f i l e pages

2 and 3 F i l e page 2 c o n t a i n s a l l the numerica l d a t a and v a r i a b l e s

and f i l e page 3 c o n t a i n s the c a l c u l a t i o n r o u t i n e c o n s i s t i n g of an

I C - r o u t i n e PRIC and an 0 P - r o u t i n e PROP

The IC v a l u e s and c o n t r o l pa ramete r s a r e i n s e r t e d a s f i xed

d a t a The input v a r i a b l e s AW T and Tk agte r e c e i v e d from the r o u t i n e FPP d i s c u s s e d in s e c t i o n 1 2 The surge flow 4W i s

added t o t h e s t eady s t a t e flow W(0) c a l c u l a t e d i n the IC r o u t i n e

For l ong - t e rm t r a n s i e n t s a c o n t r o l t e r n sWCo) i s necessary t o

keep t h e water l e v e l a t a f i x e d s t e a d y s t a t e v a l u e i t i s n o t

inc luded in t h e p r e s e n t v e r s i o n The temperatures T j and T o f

the surge flow and t h e c o o l i n g water are used t o c a l c u l a t e the c o r r e s p o n d i n g e n t h a l p y v a l u e s

The on ly ou tpu t v a l u e needed by other submodels i s the s a t u r shya t i o n temperature T c a l c u l a t e d frolaquo t h e p r e s raquo bull lt frtfte v a r i a b l e s are d i sp layed too (or operator aOSraquommraquoieetJlraquo f k - e t t t -pu t v a r i a b l e s w i t h s e a l s f a c t o r s t e r o p o i n t s and overflow T M M numbers are

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 17: User manual for teh PWR-PLASIM model

AOO

MDAC10

MDACll

MDAC12

MDAC7

(tp -15Q)20)

((Vf-12)20)

(We5Q)

(Wc5 0)

[(T -3O0gt10O)

TRAP6

raquo bulli

10

11

12

13

11

The i t e r a t i o n mentioned for the more d e t a i l e d model i s not necessary here as the driv ing function W- has no high frequency components and the computing time would be unacceptably long t o o But there s t i l l e x i s t s a tendency for o s c i l l a t i o n s t o s t a r t when the water condit ion s h i f t s between the two s t a t e s This s avoided using a d i g i t a l f i l t e r for W with a time lag of 02 s e c

The constants in the firfft f i l e page are

DT At s 0 1

VPR = 378 Tank volume

KPP coefficients for the polynomials

dPf3 p f s p g s T P T

d p g s dh dp f

-a i r - hfslaquo hgs aTT afi~Vhi

^ s

dh f

ar Sp

RFP = ( T

025

WIK0= At

f^surge tube 3 n 8iraquo - deg-502E-3

SP = 2018 laquo SF p = 201820 raquo 102 P

SVF 1096 raquo SF V( s 109620 2018

SWF = 1096 raquoSFN = 109650 = 8192

SWC = 1096 laquoSFW = 109650 bull 8192 c

STSA 1096 SF T raquo 1096100= ps 1096

- 31 -

NVF = Zeropoint for Vf = 12

VFOslash = IC value for Vf

P0 p

Q0 Control parameters for 0

ZC value - 0038 HW

Offset = 1 bar

Sain =016 HWbar

Hexvalue 13 MW

WKOslash Control parameters for W^

IC value calculated in the PRIC routine

Offset = 1 bar

Gain = 2 kgsbar

Maxvalue= 20 kgs

WRD Control parameters for Wr

Offset = 10 bar

Maxvalue= 100 kgs

6 THE STEAM GENERATOR

Basic data

P A

r

b Ad

gt

laquo 1035 si2

gt S160

gt H630

laquo 9770

0(87

bull 0017 bull

gt 60036

Bed gt 01M bull

i r

V p

V s

V e

V r

V b l

Vbh

Vd

V P i

L c

L r

Ax

0 P

0 s

degr X

r

C r

S

At

= = = = = = = = = = = = = = =

= = = =

0 0 0 1 2 7 m

2 0 3 m3

5 2 2

7 5 0

1 2 6

1 8 8

7 8

69H

V = 1 5 7 m3

p o

L d = 1 0 1 1 m

Ljj = 2 7 2 5

Az = 0 5 0 5 5 m

210 m2m

237

223

OOm KWmdegC

980 KJmdegC

1 5

O05 s

6 1 The d e t a i l e d one-dimensional model

T = 13788 bull 50121p - O79611E-lxp2 + 072H76E-3xp3

fs

dp

3P7 fs

- a25717E-Sp1

= 92202 t 05410raquoT - 0 tM01E-2T sa s

degraquo= s -10953 bull 153teixT - 0768233E-2xT 2 + 011H607E-HXT 3

= -33311 bull 02958txT - 09386SE-3xT 2 + 0 10129E-ST

dPbdquo L0923 - OS9817E-2laquoT + 014787E-txT 2

- 33 -

h = 19912 bull 32023E-3xT - 017199E-HXT 2

tg sa sa

3PT d h a s 1 2 bullrsM- - 00617111 - 063723E-3XT bull 02082raquoE-5xT J - 0231gtraquo2E-8xT op s s s a s A

c = -OOMOtt + 02O8E-3xT + 077H03E-6xT 2 - 028309E-8raquoT 3

PP P P P -087750E-11XT U + 026327E-13raquoT 5

c = 022556E-3 bull 061117E-UlaquoT - 0 3 1 5 3 1 E - 6 X T + OS7lraquo19E-9xT 3

p8 s a s a s a H s 182569 - 0772876E-2XT + 015582BE-tT 2

P P P H = 0875 + 00012 x (T - 250)

s s a p = 17M09 - 9H510 x T bull o036196 x T 2 - 054202E- x T 3

f p p p The u n i t s a r e m k g bar and MJ excep t f o r H_ and H where

KJ i s used i n s t e a d of (VI

The program which i s w r i t t e n i n F o r t r a n IV i s given i n

Appendix J I t uses 3 dev ice numbers which must be defined when i t i s s t a r t e d

Device no 7 i s the normal output device f o r the t r a n s i e n t s SEC-wr i t e r l i n e p r i n t e r DEC-tape or d i s c f i l e may be used

Device no 6 i s t h e output dev ice fo r a new s e t of IC-values c a l c u l a t e d by the program i t s e l f Paper tape DEC-tape or d i s c f i l e may be used

Device no 5 i s the input device fo r t h s IC-values needed at s t a r t Paper t a p e DEC-tape or d i sc f i l e may be used

Device n o s 7 and 5 must always be de f ined whi le bull d e f i n i t i o n fo r n o 6 i s only needed whan a new IC-value s e t i s produced Jfo 7 i s used with option C f o r a n o n - f i l e - s t r u c t u r e d d e v i c e such alaquo t h e DEC-writer and without option C f o r a f i l e - s t r u o t u r s d devleraquogt

At program s t a r t the operator Bust type some input variaM^ilaquo 3 and parameters on request these a r e

WP Wp primary flow

CL s C steam vallaquo constant

m s T p i primary i n t e t tsaftVetofrr

TFI T f l feedwater t t sy tMKwIi

- S U shy

NT Stepramp i n d i c a t o r NT = 0 g i v e s a s t e p i n p u t NT = n

g ives a ramp input of l e n g t h n -At The i n p u t s t e p o r

ramp may be in any of t h e 1 v a r i a b l e s mentioned above

M number of p r i n t o u t s in a t r a n s i e n t

N number of time i n t e r v a l s At between p r i n t o u t s

I t i s a good p r a c t i c e to use the same inpu t va lues as in t h e

IC values fo r 1 o r 2 p r i n t o u t s t o check t h a t t h e I C - c o n d i t i o n s

a r e r e a l l y in a s t a t i o n a r y s t a t e and t h e n r e t u r n t o t h e inpu t

s e c t i o n by the fo l lowing program c o n t r o l f a c i l i t y

Af te r the l a s t p r i n t o u t a f t e r (N x M x At) s e c problem t i m e

the program asks fo r a c o n t i n u a t i o n i n p u t s w i t c h

1 Stop the program

2 Start with new input variables

3 Continue the transient calculation with new values of M and N

4 Write a new set of IC values on the output file specified by

the start

5 Type a profile table on device no 7

An example of the output is given in appendix J It is shown

how the program is started and the different control switches are

used The profile printout contain 8 columns with a line for each

core section so 2 columns are used for T T and T The extra

lines for Ts and T give the inlet temperatures and the temperature

in the primary inlet and outlet chamber

The calculation time is about 15 sec for 1 sec problem time

The program contains a head with DATA specifications of main

parameters These are

AD = Abdquo AS = A s

L C L c

OS = 0 s

vr

VDO = Vd

DEP D_bdquo P

6H = glaquoAx

S s S

AP = Abdquo P

LR = L r

OP = 0 P

VE raquo Vg

VPI V PI

DES = Deg

CRH = Cr2

DT - At

AR = Ar

LF - L

OR = 0 r

VFL - Vbl

VP0 DED s Ded

LAR = Xr

AF = ^

DZ Az

VFH = Vbbdquo

DR = Ar

pn -laquoL Plaquo

- 35 -

6 2 The s i m p l i f i e d s team g e n e r a t o r model

The b a s i c d a t a a r e the same as f o r t h e d e t a i l e d model but

s e v e r a l p h y s i c a l d a t a a r e used as c o n s t a n t v a l u e s The s i m p l i f i shy

c a t i o n s and consequences a r e most c o n v e n i e n t l y d i s c u s s e d fo r each

equa t ion s e p a r a t e l y a s t h e same pa rame te r may have q u i t e d i f f e r e n t

i n f l u e n c e in two e q u a t i o n s A l l t h e e q u a t i o n s a r e given wi th

numer ica l v a l u e s t hose c o n t a i n i n g on ly b a s i c d a t a w i thou t comshy

ments

Eq ( 6 2 1 a ) p - 72S kgm V a r i a t i o n s on ly have i n f l u e n c e on

a t i m e l a g whi l e v a r i a t i o n s i n c have a s t r o n g i n f l u e n c e on t h e

hea t d e l i v e r y t o t h e secondary s i d e There fore a t empera tu re

dependent r e p r e s e n t a t i o n of c i s i m p o r t a n t

c laquo bull 0026285 - 016617E-3XT + 032291E-6xTbdquo2

PP P P

o T M = 0 6 6 0 E - x ( s E - - WbdquoaTbdquobdquo) ( 6 2 1 a ) Pdeg c p p P Pdeg

Ttrade = T - i bdquo w ( 6 2 1 ) po p l n po

Eqs ( 6 2 1 b ) and ( 6 2 1 c ) a r e i n c l u d e d i n t h e c a l c u l a t i o n s of t h e

pr imary loop t empera tu re as d e s c r i b e d i n s e c t i o n H2

Eq ( 6 2 2 ) laquop = 0 11

T 0K1T x 0S9T ( 6 2 2 )

T r l laquo 01009(Qp - Q p ) ( 6 2 3 )

T r 2 = 0 1009(Q r - Q g ) (6 2 )

EQ ( 6 2 5 ) The heat t r a n s f e r parameter H i s equal t o 0 92 t

003 i n the temperature rang 300 t 20 degC so i t i s used with the

constant value 092

Qp 0 1917W p deg ltT p - T p l ) laquo laquo )

Qp raquo raquo 9 7 1 ( T p l - T r t gt bull laquo bull )

Eq ( 6 2 7 ) The t a r a a x raquo C p laquo raquo gt n i l vary J laquo nm^Ut^ff | i t oslash raquo but a tha temperaturlaquo diffarmnea raquo bdquo - T mdash gt | pound amy laquo bull bull raquobull

small due t o tha quadrat ic tarraquo) Jjf J(jl j t o s e t ( raquo raquo raquo raquo ) equal t o raquo ^

- 36 -

for the greatest pressure deviation which i s regarded as ins ign i shyficant compared to the variation in saturation temperature over the range 260 - 290 degC

Q = 1253CT - T ) 2 (6 2 7) s rz ss

Eg (628) e = 00052 tiJkgdegC with an error less than 10

The influence on Q will Le much smaller as the second term is

only about 101 of Q

qk = Qs - 00052 Ws(Tss - Td) (628)

Eqs (629J The equation has 3 parameters dependent on tempershy

ature and load as the total coefficient to p is regarded as one

parameter pbdquoc varies in therange 25 - M0 kga - but is used as g 3

a constant equal to 33 kgm raquo because it only has influence on

the time constant for V which anyway is snail compared with

the dominating time constant for the total system h as coeffishy

cient for Q is rather important as it determines the steady-state

value of the steam production when Q is given so a second degree

polynomial is used h = 19912 + 032023E-2T - 017199E-6T ^ amp ss ss

The coefficient D for p

D = ^l C V apf bull hfg apf gt bull vf f s ^ - vs

has been calculated for several s teady-state load levels using resul ts obtained by the detailed program The coefficient i s included in table C2 in appendix C I t appears to be fa i r ly constant in the load range 25 - 1151 of ful l load For a t ransient state it may run oats ide the range 90 - 108 kgbar shown in the table but it is s t i l l used as a constant equal to 98 based on the jame argumentation as used above for p

laquo bull bull

A V = a - S t j p - 3Bp - W gt (62 9) 8 fg S g

or normalized with respect to V

- 37 -

- = U = 0580E-3T^_ - OOS70Plt - 0S8E-3-W (629) s fg S 8

Ea (6210) The coefficient (pfs - p ) varies in the range

690 - 760 kga3 so a constant value equal to 72S kgm is used

The coefficient E

d p gs bdquo d P f s f apT

E = yen- viP bull w

g dpg

i s shown in the table C2 The working range appears to be - ( t o -70) kgbar Even the variat ion is quite large the same argumenshytat ion as used above for p bdquo j u s t i f i e s the selection of a con-

g5

stant value of 52 kgbar

f s - 7 2 Sg P s (6210)

or normalized with respect to Vpound

wf = Ws - W + 37800U + 52ps (6210)

Eg (6 2 11) p g p f s i s important for the determination of the void fraction a so a second-degree polynomial i s used

10-SS = 011201E-2 bull 051861E-2raquop_ bull 026371E-Hplaquo-p fs

The s l ip r a t i o S i s used a a constant 15 as for the detailed model

P f I=o laquo bull 15 W Aring - = - (6211)

Ea (6 2 12) The function FBfraquo ) i s sham in the table C2 and plotted in Ref 1 f ig 12 A straight l ine givma a MMMMtRUf representation of the calculated values

a bull (233 - lV^yJL I ta fUtf t f ) - C t i ^

Eos (raquo213) - 6216)raquo The stem traquoUt-laquoir laquo raquo I j f P P ^ ^ g

0S and lS sec aceordiag to tjraquo TmM a C+ffH$tn ff

- 38 -

appears as a dynamic correction term for p and W a constant

value of 10 sec will be used From the table the working range

for CI is found to be 27 - 30 kgbar which justifies the selecshy

tion of a constant value of 28 kgbar The denominator in eq

(6215) is given as C2 in the table C2 It varies in the range

73 - 78 kgbar so a constant value equal to 75 is reasonable

Finally pfs and p in connection with Vr in eqs (6215) and

(6216) are taken as constants p- = 750 and p =33 kgs

ar = laquo r (621U)

Ps = (Wg Wl ^ ^ n s (6215)

Wb = Wf + 28pg + 94S0aringr (6216)

Eqs (6217) and (6218) p = 750 kgs and c c 09H ^ - mdash mdash mdash J g o p m pg

Tb = 0709E-iraquox(wbltTgs r Tbgt - 09t W^Tj - Tpound)) (6217)

Td = 1921E-UraquoWg(Tb - Td) (6218)

Eqs (6219) - (6221) Ff = 00H25 The function FR(V gt is

tabulated in table C2 and plotted in Ref 1 fig 12 In the

working range the straight line FR = 77 V V is a usable approxishy

mation even though the curve must end in JR4x = L = 1011 for

Vg = 0 poundLxAcAx = 121 and Vfi = VdAdAs

5^i= 0341 J raquo (6219)

0866viB (6220) d

V op ap vd = 00826(993H ^ - (_I bull mdash2)) (6221)

s fs Mfs

Eqs^6222) and (6223) pfg s 750 kgs and the coefficient

for p is taken as -75 kgbar as the variation of plusmn10 in the

working range is without any influence on the other equations

Us - 5 1 5 Vd (6222)

ib 0136E-3(Wb bull w - Wg - 7Spg) (6223)

The model is implemented as an analog model with the 3 eoeffi-

ciencs c h- and (10 PasPfsgt calculated in a digital routine

and inserted via MDACs The analog diagram is given in appendix

C together with the scaled equations potentiometer listing and

DFG tables Included are also 2 tables which have been used for

evaluation of the coefficients Table Cl gives some physical

parameters in the actual temperature range and table C2 gives

a set of variables calculated by the detailed model together with

some main parameters

The digital routine for parameter calculation is found in

FPP2 together with the primary temperature calculation The input

variables are inserted in the PDP8 routine HYDRA2 These are

AI12 ((ps - 60)25)

AI13 ((Tgg - 250)S0)

The analog model r e c e i v e s 2 t e m p e r a t u r e s from t h e pr imary tempershy

a t u r e r o u t i n e T the t e m p e r a t u r e i n t h e i n l e t chamber and

T - t he t e m p e r a t u r e i n t h e second of t h e U-tube compartments Praquo

These t e m p e r a t u r e s a r e Bet on ana log o u t p u t s i n t h e PDP8 r o u t i n e

HYDRAS t o g e t h e r w i t h t h e adjus tment of t h e MDACs The output v a r i shy

a b l e s wi th TRAP6 numbers a t over f low a r e

A06 ( lt T x - 300)50) TRAP6 21

A07 (ltT x 2 - 300)50) TRAP6 22

MDAC2 [057S92SO c 1 2

MDACS (0SSOh f ) 2S

HDACt (10 P g g P f s ) laquo

MDAC13((Tp2 - 2S0)100)

Thlaquo f i r s t f i l e page of PWR28B containlaquo coat constants kalanar

i n g t o the parameter c a l c u l a t i o n These a r a

CPPK coefficients for c bdquo v laquo- J i - ( ~

HFSK raquo h f - ~ bull- m

KT - - raquo faeJfcH - - NW- tm i i 1C20W laquo 8F p) bull raquo420U l laquo W gt_

SCTIBs 1U0M K 8f t) bull raquo laquo laquo bull laquo W g | _ t trade

SFDPt 409b SF (lt=bdquobdquogt = t deg 9 6 x 05759250 = 9435S

SFDP5 4096 x SF U h f g gt = 4096 x 0580 = 237568

SFDP6 4096 x SF (10 P bdquo P f s gt = O 9 6

SFTUD 2048 raquo SF I = 204850 = 1 0 9 6

7 THE TURBINE-REHEATER MODEL

Basic data

Turbine

v h

v i

k V

kh

kl

ah

Bh

61

Tl

Yg

=

=

=

= =

=

= =

=

= =

10 m3

50 m3

5130 kgs

2595 kgs

7350 kgs

0138

0935

U94B

oe

08

095

bar

bar

bar

d p e 3 -7- = 0 5 kgm bar dp

Rehedter

Tube dimensions 2218 nun

Heating su r face = 6000 m

Tube weight = SO t

Tube heat t r a n s f e r c o n s t a n t 45 MW C

Heat t r a n s f e r cons t an t ho t s i d e 45 MWdegC

Heat t r a n s f e r cons tan t co ld s i d e 114 MwdegC

k r = 114 MWC

h f = 1 5 7 MJkg

c f o r superhea ted steam = 00025 MJkgdegC

r E = 5 kgmdeg

Gv = 51 3 Ay p y X ( p n p v )

S bull laquo bull laquo Ph

The p r e s s u r e dynamics and t h e r e h e a t e r e q u a t i o n s a re implemented as an ana log model while t h e t u r b i n e power c a l c u l a t i o n i s made i n a d i g i t a l r o u t i n e The e q u a t i o n s fo r the ana log p a r t wi th numerica l va lues a r e

(7 1 )

(7 2 )

( 7 3 )

( 7 4 )

( 7 5 )

( 7 2 1 )

(7 22 )

(7 23 )

( 7 2 4 )

(7 25)

Gx = 6V bull 0637 Q r ( 7 2 6 )

The analog diagram s c a l e d equat ion potentiometer l i s t and DFG t a b l e are given i n Appendix D The communication with the d i g i shyt a l rout ine for power c a l c u l a t i o n i s descr ibed below

TSSampiaf-BSWE-MlSKlMiM s

The c a l c u l a t i o n s ara c a r r i e d out s t r i s t l y formulae ( 7 6 ) bull ( 7 2 0 ) in laquo d i g i t a l HMrtilaquo i n f i l e PWRM The phys i ca l um mraquo-raquoiffm

nomials a fo l l ows

Gj = 7350 p

Ttl Tps - 2

Qt = 225(Ttl - Tt2)

= U-(Tt2 ^ o

Tt2 = 00303(Qt - Qr)

Tro s 1-6((r laquo0025Gr(Tro bull bull T r i raquo

i

T = 871263 bull 198697xp s - 18237xp^ + O95SS88E-lxpg

- 019S821E-2p for 2 lt p lt 17 bar s s

T = 123752 + 711733laquop - 0182786raquop + 02701U5E-2xpg

- 0156422E-4xp for 75 lt p lt 60 bar s

h- = -837618 + 555901laquoT - 078S461E-2xT^ + 0173185E-4XT IS s s

h = 267252 - 08U116tlaquoTs + 0141137E-lxT s - 0347827E-1xTs

a f s -0236725E-1 + 015392SE-1laquoTS - 0215S31E-4xTg

+ 0322281E-7raquoTf

s = 8775114 - 0185358E-lxT bull 0460689E-4T - 0614785E-7xT gs s s raquo

The energy unit i s here kJ a l l the constants and the internal ca l cu la t ions in TURB are in kJ but the input-output variables are in HW

The FPP routine TURB r e c e i v e s 3 variables from the analog turbine model via the PDP8 rout ine HYDRAS These are

AI16

AI17

AI18

(Ph 100)

(P i 20 )

(Q250)

The output variables with overflow TRAP6 numbers are

TSAP6 32

(E 1000) 31

AOt (CTri - 175)SO)

1I0AC6

MDAC5 dPraquo

(Cl-ah)(l-at)khV1 3Jamp)

= (08948 (l-at)) TRAP6 33

Tpi and HDACS are used in the turbine analog model while E

on MDAC6 is used in the power grid analog model

The TURB routine has a head with the following constants

43

GMH

GML

GKG

KHX

SFSC

SFGSC

HFSC

HFGSC

KHBH

KLBL

SPH

SPL

SQR

SKV

SEG

STRI

NTRI

KHFS

KKGS

KSFS

KSGS

KTH

KTL

gth = 08

= 08

T = 095

k^l-a^) = 22369

sfs for condenser = 04763

(sbdquo - s) for condenser = 79197 gs fs

hfs for condenser = 13777

(h - hfs) for condenser = 24238

24263

kx t1 = 69678

1(2048 x SF ph) = 1002048 = 0048828

1(2048 x SF px) = 202048 = 00097656

1000(2048 x SF Qr) = 1000 lt 2502048 = 12207

iraquo096 x SF Cl-a) = 1096 x 08948 = 366492

4096 x SF E lOOn = 4096(1000 x 1000) = 0001096

2018 x SF Tri laquo 201850 raquo 4096

zeropoint for T = 175

coefficients for h

coefficients for h

coefficients for a

coefficients for sfg

coefficients for T high pressure

coefficients for Tg low pressure

THE ELECTRICAL POWER GRID

Sbdquo raquo 2

bull2v

laquo 76 bull

raquo 026 S

= 5000 MW

f u l l load = 870

noraa i

k = 0001 MW

1 1 o G Hto

bull1 e l

Max valve speeds

PWK p lan t t u r b i n e Ful l s t r o k e i n 25 s

Base p lant t u r b i n e Full s t r oke in 10 s

The equa t ions with numerical va lues a r e

M - 05 AE fbdquo 1 bull 75 s ET ( 8 5 )

^ = M ( 1 0 1 L fn s U+025 s ) U + 0 s s ) lt86)

^ - C SS2 A E1 A E 1 L

n t-2 5000 T000 lt87)

Av = 0 0 0 ( E l - E l r ( 8 8 )

fre analog diagram and po t en t i ome te r l i s t a r e given in appendix

3 FILE INPUT-OUTPUT ROUTINES

The r o u t i n e s t h a t perform the i npu t -ou tpu t f u n c t i o n s mentioned in cnapier 1 a re descr ibed here in some d e t a i l

e tt-u rou t i ne t h a t i s i n i t i a t e d by t y p i n g raquo0laquo on the DEC-w r u e r is a s tandard r o u t i n e fron the HYBAL sub rou t ine l i b r a r y SLFP =o i t i s not con ta ined in the program l i s t i n g I t may be used to type and change any f l o a t i n g poin t number addressed by U s o t a i add re s s I t i s not d i scussed h e r e a s i t b e l o n g t o the HYSnL l i b r a r y system

- IS -

The IC-da ta output and input r o u t i n e s a r e b u i l t up around t h e

same s k e l e t o n There a r e two da t a l i s t s one for f l o a t i n g p o i n t

d a t a ICLIF and one for 12-b i t i n t e g e r s ICLIH Both r o u t i n e s

have a PDP8-code and a FPP-code s e c t i o n which t r a n s f e r da t a b e shy

tween the c o r e r e s i d e n t program and t h e d i s c f i l e PWRIC accord ing

t o the trfo l i s t s Each l i s t c o n t a i n s a s e t of s p e c i f i c a t i o n s conshy

s i s t i n g of a number followed by an a d d r e s s The number g i v e s t h e

number of s u c c e s s i v e d a t a t o t r a n s f e r wi th the fo l lowing addres s

as the addres s of the f i r s t d a t a

The IC ou tpu t r o u t i n e has a PDP8-sect ion ICUD in f i l e

PWR8B and a FPP-sec t ion ICOUT i n f i l e PWR3BB The ICUD r o u t i n e

r eads t h e r e g u l a t i n g rod p o s i t i o n v ia AI7 so t h e r e f e r e n c e v o l t a g e

on t h e ana log machine must be o n when t h e IC output r o u t i n e i s

r e q u e s t e d When f i n i s h e d t h e r o u t i n e g ives a message ICDATA TIL

FILE PWRIC on t h e DEC-writer

The IC inpu t r o u t i n e which i s i n i t i a t e d when D I ( l l ) i s s e t

has a P 0 P 8 - s e c t i o n ICIND i n f i l e PWR8B and a FPP- sec t i on

ICIN i n f i l e PWR38B The r o u t i n e informs t h e o p e r a t o r of t h e

r e g u l a t i n g rod p o s i t i o n and the power r e f e r e n c e v a l u e a s s t o r e d

i n the I C - d a t a The ICIND r o u t i n e a d j u s t s some ana log o u t p u t s

and MDACs a c c o r d i n g t o t h e I C - d a t a j u s t i n s e r t e d and ends w i t h

the message ICDATA IND FRA FILE PWRIC

Reac tor s t a t i c da t a fo r new working c o n d i t i o n s a r e i n s e r t e d

from a d i s c f i l e PWRST by t h e PDPS-routine STAT and t h e FPP-

r o u t i n e STATF i n f i l e s PWR8B and PWR38B r e s p e c t i v e l y F i l e

PWRST i s g e n e r a t e d by a For t r an IV progra1 and c o n t a i n s 11 r e c o r d s

the f i r s t 13 r e c o r d s wi th one a r r a y e a c h t h e l a s t one wi th 3

numbers The a r r a y s a r e 0 N T u T c a T c o p C l t C J t C 3

l C CCS ( c o a r s e c o n t r o l rod d e n s i t i e s ) and I - x e n o n The num-n n a

be r s i n t h e l a s t r eco rd a re r e g u l a t i n g rod p o s i t i o n and weighting f a c t o r and boron a c i d c o n c e n t r a t i o n The data i a s tored in i n t e r n a l code in PWRST The d i s t r i b u t i o n w i th in the c o r laquo r e s ident program PWRSV i s mainly c a r r i e d out i n the STATT r o u t i n e but the f i n a l p o s i t i o n i n g of t h e r e g u l a t i n g rod d e n s i t i e s and t h e boron ac id c o n c e n t r a t i o n i s dona in the STAT r o u t i n e which a l s o laquo4utS some ana log outputs and MDACs t o standard values In ardor t oslash bull raquo raquo t a i n reasonable s t a r t c o n d i t i o n s further the noXoSifP f W feMK i s c a l c u l a t e d and typed out on tho IEC w r i t s regu la t ing rod p o s i t i o n (The f u l l alaquo) l a I M t 2600 MW) The rout ine ends with t k s bullraquolaquolaquosectraquoraquo ampM

ltJ~J

- 1+6 -

FILE PWRST

The logging of v a r i a b l e s i n i t i a t e d by t y p i n g 3 on t h e DEC-

w r i t e r i s accomplished by t h e FPP-rout ine FLOG in f i l e PWR38B

The programming i s a s t r a i g h t - f o r w a r d p r o c e s s as t h e d a t a must be

handled i n d i v i d u a l l y An output example i s given i n Appendix L

The i n p u t - o u t p u t r o u t i n e s c o n t a i n s only few c o n s t a n t s t h a t

may be changed

FULL in STAFF Ful l r e a c t o r power100

NUF in FLOG V-Agt = 218E-11 for convers ion of f i s s i o n

r a t e t o thermal power

KH i n FLOG kh fo r t h e t u r b i n e

HFGQF in FLOG h f s f o r t h e t u r b i n e r e h e a t e r

REFERENCES

1 P l a Cour C h r i s t e n s e n Desc r ip t ion of t h e Real Time Power

P lan t Model PWR-PLASIH Risoslash Report No 318 ( 1 3 7 5 )

2 DOCKET 50-2 80 SURRY-1 F i n a l Safe ty Repor t

3 DOCKET RESARA V o l 3 raquo t

n P Skjerk Christensen A Static One Dimensional Reactor Model

- 17 -

APPENDIX A

Digital program listing for the power station model

Mi

REGNETIC- FOR LANG

FILE PUR 8B PlaquoR AQOEL NOV 4 POPlaquo KODE

DIGITAL INPUTS BITt-1 KUN BIT1M TRACK pound ON B1T2raquo1 PRESSURISElaquo ON

bullF1NOUT raquoCLEAR OCA FPPSI C HA PClaquo IClNtgtJ JMS 0IT2 bullPRINTlaquo OPA JAP HI DJfl-C SPA CLA JAP FEJL7 JNS iIT2

bull TTVC CTTV1 ICWe STAT LOGgt CLR DIBC SUA JNP +3 DIC JAP HVORA1 CLL RAft S2L JAP KIND JAP HI

FPKT RAft M L CLA JAP -3 raquoCM FPPSI FPICL bullFPPST flNOUf 22 bullFPPM H I

raquoCUTINE T I L PWR HYDRAULIK

-VENT PAR l laquo e AS SIGNAL

IKS imtt INSTP

CDF 1ft

DJR AN (INI SNA CLA JAP 5 TAO INS DCA I IHSTP CDF bull -IMP 1 raquoIT2 Traquo IW2

KLARCW FrDR CELLER L CLA

TAD ltN [gtCA 10 TAD e f l e i e - i j D C A 11 TAD (Af l+ ie iCCA 29 DC A OK DCfl MIC TAD SEKTAiCIfl iDCA ST CNADCft I C I 1 - S T I L K INDIKATOR UDLAES GL PROFILERNTUTCf l TC ALFA CLAiDPLAiTAD I 10DPLX bull A N O U T K I H gt bullAN0UT 2C I l l gt bullAM0UT3lt1 l l gt CLADPIf i TAD | H J D P L X 1SZ I C I JAP +3 JUS HIC It INDSTILLING JAP +2 JAS TRVENT OOC START COMPUTE PERIODE JAS OPDA OPDATER OL VARIABLE INDLAES ANALOG VARIABLETU- TCH TC ALFA CO QV tflNINSEB 6 HJoslash COHPUTE STOP bullDO2000 START TJtflCK 2 bull 0 0 3 0 0 0 I S Z ST JAP HL TAD HJOslash JAS D I V U 1 2 TAD OK TAD lt40l bull A N 0 U T 3 A13raquo2 C L A J D P D A J D P L X DPIA JAS TRVENT 0 0 0 4 0 0 JNS OPDA bull A H ] A 3 JNS D I V I J S TAD A152DCA A15+2 M N I N 5 CIADCA A13+4 bull 0 0 2 laquo 0 oslash OslashDO3000 JAP HVDRA2

NAESTE SEKTION FAERD1 G BEREGN TWtrtFLtKTOt TEHP

UHOSH OslashK UD PAA AOS

SEKTA 1laquo SEKTIONSANTAL

bull T I X T ltRfHCHOslashER LIRlTEftSgtHH-S M raquo SWITCH 9gt

OEMQNIMO AF PRIHACRKREDS OG DAAPGEHEP-ATOR PARAMETRE MILTflLSOslashIOslashEOHlMGKOHTROLSTANGSTAKTHED OG tOPKONCENTRHTICN FPP Oslashff f t fMl lNhTCHP I PRINAER KREDS 08 M M P N M H T O I P M M K T K SAMT TUM1NEEFFEKT laquoTraquo T I L FPP V I A AARAV A P Oslash H C J raquo TCU TPO TSA-P- W C M T T i FPP V I laquo AARAV T B copy P - M i e H P - L 0 M 6 - laquo H E A T E R

T I L FPP raquoTHPT tMDLK$MCUPTPOTSAP

I M K M T TCU

TPOP OR TSA FOR SOslash

I H oslash m PPPH HVIS F P P S I - bull

mmmwtui ur PRIMlaquo KREDS

TIL nMivjuooslashraitiHti

DAHP6CH PARAMETRE

BEREGNINO AF DORKONCENTRRTION

CLA CLL CAA DCA FTG TAO HP DCA HV31 TAD C0O CIA DCA HVJ2 IHDLAIS raquoOD I bullAHINI

INDSFR KAMMER

in FTOslash CIA AQL HUV M D U DVI

CLA MA SPA SZL JAP FEJLS ISZ FTO SMP CAL CIA TAP CB029 CAL TAD HV32 SZL CIA DCA HV33 SM CAA DCA FTO TAD VBO DCA raquo9 TAD HP NOslashL HtIV bullraquolaquobull DVI 0 CLA MOA TAD H1024 DCA HY33

DVI oslash SZL JAP FEJLS TAD raquoRIST DCA CBRIST IAD MV1X CLL KAR CIA TAO CBRIST STL SPA JAP T CLA TAD HVJJ CIA TAD COslashtlST DCA CBRIST CLL CLA AOA

bullFT00 FOR POS ROR FLOM

bull-COslashOR OUTLET bullL-OslashPOS L-1NE0

bull F T Oslash - 1 FOR POS ACHDRINO

VOLUHfN i Oslash 4 p T l laquo V f V R 0 gt

bullCB INLCT-CB 0UrLCTlaquo-41oslashgtH00RUP

1 0 2 4 laquo ( 1 raquo T H P V ( V v f t O igt

MfOSAET RtSTSUA AED DIVISOR

4VIH 4T I 0 H I 9 I WJ4MW3

I I N U V V44AH 40J 4 Q 1 V X I 4 N I 1444 laquo 4 W W bull M C 4 4 J 1S444laquo

N O t J M N i M l f l l N 4 1 A 4 l raquo 4 41M 444 1 1 V H H44J4

44J raquo34^444 OWlVtO 131 AH 1IVS4NI

XM bull inowo 4l4l4mS144 OOV W4 laquoraquoMI44 4 11114 JMIOft

claquoi inoMv iNtowti raquoolaquo lt4 mi sivion

traquo44VmoslashNM Traquo44Nf inONM

1raquo44V W34OI3rT44V 0V1 4Q1W4M104UW4 i laquo4 OH W4 T4i 00 T41 J 114(1

444laquo T 444 f laquo lt raquo (laquoXNI rraquoxNi t X N I

H U I U I I D I U I bull bullvltMlaquo-laquoigt-ma Ofts3f lgttt44

bull t m- i tM ifilaquonlaquofiM WKT-iA^auo i

0 raquo bull M t W f x laquo n

bullI Mt i m r laquo bull t 4laquo to bull0 go eo U O K I

bull1 J4laquo 114a t

bullMfiH VHHnS444 1I1S4NI frXNll444

4 raquo U n S H 4 lt44Vltlaquot-f41gt--444 I l i M N t T4I1 I444

4 1 1 1 444 444t01laquoraquo44 00

INloam 4raquo4 igtltlW-t)gtfl44 ItlSONt 4444444 laquolaquo44Ul 444 444l 444

s j o a s o o v 4 T gt raquo laquo 4 oo 0JHlaquo0f i raquo144 00

laquoUltJ11NW4UW4 lt 4 4 ) 4 lt Z gt 4 0 2 laquo laquoJ44 1 1 1 f 4 H I bull t i 144 i iS44iraquo

O H l N f i H M H U l M I K 4H j ^ J L4V1S

4 1 H 1 W 1 1 3 I t l t t N V

MIS

41H1K1 XW I t l aiWAf Bt-d W O U l l S T ) a i41MlraquoWiSWt HS10laquo lN01 M OM I H - mdash

mdashfig

l iWlAI-rHTrj iJ SlJ SJAH l J 0 H ) J

IO-IA|J iu nm nu IIVSOJN--

( O - t M i n t M t i i ^ - r o T

9NI4-JN1V -SUJ raquooslashj l - raquo T A l

4laquoo 0

bull 4

bull sotgt i 4wr bullbullgtbullbullgt 4 3 4Ht

t 251 Zt I t l

42 1 V34 laquo 1 lt3W1

MI3 TAA pound11

gtMI 1HS

VOM 413 113

t yen50 bull t 4W1

VI 3 -JSoslashl gt 4M1

M13 i 4Hf

V4S 11S

1 ltJWl V I

QiOfi 4V1 T7 I yen30 bullT 1 OVi

f r t t g tAA

JM SM bull laquo

STW-4M I NJI1MJ1NJJN0TI laquo04 1 W S 4 N I

l gt 4raquo t I N g l l W l l N D N O H

- U M 0 l i raquo l j 3n 3 t N O l H j a i N D N O

N O I I 1 1 5 tn T I NOrmjl lNJ5NOK

14 i 30 it J t raquobull raquo t f S M T S l 6 t laquo t t M T gt raquo

TWI31laquo 0 4 ) 1 0 i laquoSNi) 113S t 4 7 M ] u n i 0 A 04A AW44V

ti nt M ni

raquo- 4MT

te ni i i 411

41 2 1 bullC 1

te -)

Braquo4 Ml laquo 1 laquoM 4H1 HM 41

l VM - l i l

tmmgt bulllt O043)

S043 4H

laquo raquo-gt

laquo f l VM 401 W34 4M1 sur 4WL H34 491

SOlaquo3 SUT M Z

4t-gt S043

4fl Xt

IX 04 A )

^ ISlaquolaquo)

bulle 043gt

4WL HM ltMl tut 4W1 W34 laquoH3 H34 91 V34 4V1 H34 441

er vn

4-r i laquo 0 4 J bullruto

MI3 t i s 0M1 -si 1H1 4WI WJJ 0W1

JINJM 0J I bullIll S N310 t^MiMC | S 3 4 N l i 043 11 0 gtelaquol1gtraquo -1N7 bull]- bull bull bull [ bull bull 1J U H 0 1 - -PtMOOlaquo S4laquogtC i n o r i laquo j j N 3 N 0 x aofl o laquo A W laquo laquo laquo

NQlf|s]-fN4l 1M11NJ5MIM 111 IN I m O M P

r -lou I Otfl

Olaquo i

i-jimiisia s u

bullJ3N laquo 0 4 ) -

rjOHJJOi^

1043 4ur 043 W30

raquo ltr eacutet 1ZS

043 M l V I 3 IMS O i i til

113 3Wt

OAAOtlT 3 ftB+2 CLB ooc IC SIGNAL bull D Oslash eoslashe JMS TRVEMT TS FORST 1 | STORE bullDO 2999 INDLAE5 raquo0 INDLOslashB bullAN IN 5 CIA DCS AA4 bullRNOUT 5 laquo e JIIP i H I C

SUBROUTINES

IC 1NDET1LLI

CLA TAO raquo i TAD lt4 OCA 1 1 TAD SEKTA TAD ST SNA CLA JAP I OPDA TAO HJO l JHS 0 1 V I 2 4 TRO I raquo DCA I 20 1SZ 2 TAO HJO+2 bullIAS 01V I ^4 TAD 1 20 DCA I raquo 152 raquo bull TAO HJO+3 JUS D I V I S OCA 0PDA1 TAO 0PDA1 TAD MIC K A HIC TAO 0PDA1 TAD 1 20 DClaquo I 3 laquo ISZ raquo TAO MJ04 JHS raquo I V I J S TAD I 2 0 OCA I raquo I S Z raquo TAO HJO+3 CIA raquoCM I raquo

m a TAD lt4 bullCM 2 0 TAraquo H I laquo JHS 0 1 V I j 12 TAO OK bullCM laquoK

FEJLOslash

FEJLS FEJLeacute FEJLT

DIC CLft CLL 03RC fiND (2909 SZFgt CLfi JMF -2 JMF- 1 TRVENT

BTVPEfi ltHEb M O raquoTVPE6 ltNEd WPgt raquoTVPE CSTflNGPOS NEG gt 9TVPE6 ltDIV OVERFL EiOPgt bull TVPEpoundCC-eOft NEQ gt laquoTVPE6ltF0R LfiNG ftEiiNETi

bullbullVENT Pftft TRACK i SIGNHL SLUT

OPDATER GL VARIABLE OG INKREMENTER HC-R

I GANG INGEN NVE VARIABLE

SUMMA 0 K 9 M

Jft t t bull

bull I C M T f t UOLAESNING PRA F ILE PUR IC

1CUD FPtfST

SZU CLA MP - - J OCA laquo S I POICL aMMlHniNOfKS jlaquoS n r m tur FILE or

S W t T 1MDFMHUH Mf fPF-TML laquo n raquo E yen i c a u T a M

SUMACS SIDSTE FPP BLOK

laquo pound ltKMlaquo-t FLVT NSLTML

bull raquo i f

LISTE NED ICDATA 00 INPUT DfiTfi Pftfl 12 PIT FORM It SUAN 2raquoi N 26CBO 2laquoCBREST IBiAPD 10 TBD 14INX 28laquoiAO

1C1NDLAESNING FRA FILE PUR IC

1amp

bullMSTI utrt m i laquo laquo

S M B T f M t M V CUOKITT

CLH TAD ICINOI SNA CLA JAP HI FPRST RAR 5ZL CLB JHP -3 DCA FPPSI FPICL TAD (FNPO JHS LOOKUP CLA TAD (BUFFER JHS READ START UDPAKNING 0FPFSTIC1N2BB bullFPPU TAD ltBUFFER JKS READ CLA TAO ltIftLH-l DCA 10 TAD CBUFFER-1 DCA It TAD (-bull DCA 20 TAD I 10 SAM JHP ICINOZ CIA DCA 21 TAD 1 10 TAD t-i DCA 12 ISZ 20 JHP +1B TAD (BUFFER JHS READ CLA TAD (BUFFER-1 DCA 11 TAD lt-401 OCA 20 CDF 10 TAD 1 11 CDF 0 DCA I 12 ISZ 21 JHP IC1N02

FIND FILE

AF FPP-TAL

NAESTE i-I

JHP 1CIMD1

PAGE

bullANOUT I NX bullANQUT 4 T0D2 MNOUT laquo AFD1 bullANOUT 7APO+2 CLlaquo bullDP 7APD4 raquo P IAPD+3 bullDP IAPDeuro bullOP I TBD bullOP 1TBP1 bullDP 1 INX4 bullDP I-SUMN raquo p iceo bullOP I1NX+1 bullOP 1lNX+2 bullOP 1lNX+3 CIA OCA ICINDI bullPRINTC ICINDT DK JHP Ml

bullTEXTlaquo ltICDATA IND FRA FILE PUR I O

S U M O U T I N E FOR ICtM rit INDLAEligSNING FRA DISK

TM (BUFFER JHS K W bullFPP5T bulllaquolaquo JHP | PUFIND

rmc

STATISKE DATA IND FRA FILE PUR ST

S2L CIA JHP -3 FP1C T M ltPHPOS JMS LOOKUP CLA TRraquo (BUFFER JHS MAD laquorPSr5THTFM bullTPPH JUS CAPOS FCR POSITION T M ltAraquo13 BOR KONCENTRATION OCA laquo TAD lt-t DCA raquo7 TAV M3 OCA 1 2 TUD UB TM raquo oca n 1SZ 17

TflD

TAD

DC A i TAO A9+3 DC-A I 19 ISZ 27 JpiP - 3 DCfl N i TFD fii3poundiClfijDCfl flFDlaquo TflD A132DCft laquo[gt+bull TAD lt35ieiC-Cfi ftPt4 TflD (27(10 CCfl ftPO+5

1^734- DC Ft ftPft tcaeeDCR TEP iseoetes TEPpound

9AN0UT4 TBD+2 UHNClUT euro HPD1 raquoFINOUT7FtPDJ CLA bullDP 2APD4 bullDP I-APD+3 raquoDP]APD+6 raquoDP ireo raquoDP7INX+4 raquoPOINTSSTATU JAP Hl

PUGE

TEXT -ST

FPRST RAK SZL CLA JHP -2 DCH FPPSI FPICL bull FPPST FLOG^ae bullFFPU DK JHP Hl

PACE

2KDCX 2 NUCLEAR POMER14 SEKTIONER

MHHtV CBO 06 C M E S T FOR B O R K O N C C N T A A T I O N raquoKOCK laquo

f laquolaquo

FILE PURi BB ROUTINE TIL KINETIK BEREGNING

M M M laquo t MTLEKTa --M raquo n U T C I raquo T C A L F A A O C raquo 0 raquo A E S T A M I N W X

8ASEB BUFFER KDJ

KSFA

KSF-

Kttlaquo

KSAO-

0X2 f3DX DXR WTB n fi f raquo -M f i f2oslashB0 HFTU-W T C NPRO NPBO

ORO 1 0 0 t e COHHON BASE PAOE ZILOCK 3 5 ZBLOCK 4 M

DATA T I L BEREGNING AF DKYSIGnA F-SIGMfi ANV F 1 3 7 3 laquo - laquo F - 4 7 M I C - 5 F t 4907 F - 4 7 M K - 1 F 1 48BBE-9 F 1 1 0 0 I E - S F S laquo - 3 F 2 7 M 5 C - 9 F 4 94S9E-E F 1 2033 F i esc-e F - laquo laquo I - 7 F - 1 7 E E - 3 F BB9E-4 F 2 2 3 laquo - 1 0 F - 2 M 4 2 E - C F -B BE-4 F 3 B21SE-1B F -C O C K E - 7 F 8 9 1 E - 4 AB2 55E-3 1 SI Grifl A F - 1 4 S M C - 1 F 1 39S2E-2 F - i laquo - F - lt bull 4E -4 F 2 laquo 3 M E - 2 F 1 2 7 3 laquo - laquo F - 4 7E-S F laquo 4387 F - 4 75-tOE-l F 1 4E-S F 1 1 E - 3 F CCE-3 F S 2033 F C raquo2SE-0 F - 1 4 0 9 E - C F - i - 3 7 1 4 E - I f i 2 7 J 7 E - 2 r 7 t E - i i F 3 4 M E - 7 F 2 4E -4 F 2 4 2 3 2 E - 2

raquoREALlt0SANSFFTOFTC-FRO FSlaquo FCRgt

F laquo7raquo ( 4 9 DELTAX2 F 70 2 1 3DELTAX F raquo3R39laquo lDELTfly F laquo 4 4 0 E - 3 F i F 2 F 9 F I S F 2AO0-F laquo9 NULPUNKTFORSK TU TVAERSNIT r 2 t o TC DO

F - 2296 CO KO DO F - 1 9 M ^ Egt0 Ei^F CCi

SFTU SFTC SFRO-fFSO-SFCB

F - J4414 F raquo24414 F 24414E-3 f 48826 F - 122B7E-3

F-Minm F i i t e X X I XXJ

CCR

C J I

CJJ

CJK

PH1

I H P

NVSF

S U E

5LCH

C M

C laquo

C M

S F FBMO P 4 laquo M

I I U LH2 I I U C A M 2 C N i raquo cnnta C M M l

acuta o o n t m

F bull F raquo

F e REPEAT i r 375 F B raquoErgt[RT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 1 F bull F bull REPEAT 17 F laquo F bull REPCAT 17 F t F bull REPEAT 17 F laquo F bull REPEAT 17 F bull r bull W K I T 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull F bull REPEAT 17 F bull

F X 7 B S M - 1 B F 2 4 laquo F 4 9 laquo

KONSTANTER FM F - laquo F 2 4 9 F C O M F B331B1 P raquo t M l H f - 4 F B7S44K F J O K 4 1 1 E - 4 F raquo 7 1 4 F i laquo M raquo gt 4

r laquo

3048 2BlaquoB4elaquo

- 252948

SEKTION IS

2 1laquoC-114BraquoC5M SKALAFBKTOR I

(2-lIW40T gt ( 2+LHlDT gt lt2KTA1DT)Slt2-LH1DTgt

BEREGN KOEFFICIENTER TIL UFFUSIONSL ISNING

FPP1 STRRTF INDEX 0

SETB KD SEKTION 1 mdash 14 SETX HB+ieJSR KOEF SET AB+2BJSfl KOEF SETX AB3BJJSft KOEF S E T X n e 4 0 gt J S A K O E F SETX AB5BJSf l KOEF SETX floslash+pound0JSfl KOEF SETX fla7BiJSfl KOEF SETX RB+IBOslash JSA KOEF SETX A B + H B JSfl KOEF SETX Ae+iaejsn KOEF SETX Aa13BJ5A KOEF SETX RB14BJpoundA KOEF S E T X R B + I S B J j s f l KOEF SETX AOslash+lCBiJSR KOEF BASE KDB SETB KDB

SETX AB SEKTION B JSfl KOEFB FLDA XXI FSTA CJK SETX fll3 JSA KOEFB FLDR XXI FSTA CJI+33 JA LOES

DEFINITION AF HRKRO TIL POL0N0HIEBEREGNING bullDEF B P A R A H X J K X N bullSET BA-N FLDA KX FHUL FTC FADD KX+3 FHUL FTC FSTA X FLDA KX+laquo FHUL FRO FADD KXii FHUL FRO FADDH X FLDA KX+14 FHUL FBO FADD KX+17 FHUL FBO FflDDH X FLDA KX+22 FHUL FCR bullIFNElaquoA1-FflDD KX25 FADDH X bull IFE0BA C~ FLDA KX42S FHUL FTU FADD KX+30 FHUL FTU FADD KX+33 FADDH X

PARAHO SUBROUTINE TIL KOEFFICIENT BEREGNING

BASE KD

JA B OHSMT TUTCROBOR-CRPQS T I L FLOATING FORK bullFLOATraquo SFTUNPTU FTU bullFLOUT2 SFTCMFTC FTC bullFLOAT 4 SFRO WPRO FRO bullFLOATSSFOO JBE bull J j F A t - F 2 laquo M FAS HPWbFSTA FBO bullFLOATlaquo S F C t O C R 7gtFC1

bullMNMraquoraquoKBlaquo1 Wmm i r M I B A A F - S i e A A A laquo bull bull S KSFA1

bull C laquo L laquo F laquo F i n 4 lt l t S r 3 gt F K 0 H $ F bull C A L lt lt K F euro gt raquo F raquo 0 4 B F ( l ( $ F raquo i l gt raquo F C R ( K S F 1 4 ) N S F N V S F - 7 gt bullCAL laquo4TA+SA2S 7-BSA5 bull tat tM Clt i l -1gtCltI JgtC(JgtMgt bullCmltraquoVraquoM2CI7CJIUTF2-SACJJ 7gt

I T 1 M T I L KOEF t C t C A K I I H I SEKTION bull 00 I S

raquo I f laquo JA bull OASAKT FRA HELTAL bull n j A T i 2 W T C M F T C F T C bull f U A T 4 S F t t N F FRO bull T V A A T ^ S F M

J H raquour

w

L4SNING AF DIFFUSIONSLIGNING

BASE DX2 SETS DX2 SETX INDEKS LDX 97 LDX -176 FLDA CJ1+37 FDIV CJJ7 FNEB FSTA XXI FHUL CJK 7 FADDH CJJ+3 7 FLDA XXI FHUL SLCN 7 FADDH SLCH 7 JXN LOLi-laquo+ LDX 177 LDX -17lt FLDA SLCH7 FDIV CJJ7 FSTA PMI7 FHUL CJK-37 FNEO

FADOH SLCH-37 FLDA PHI7 FSUS PHIHIN JOE +3JFCLA FHDD PHIHIH FHUL HVSF7 FSTA FNP 7 HDDM -17 JXN L0L2C+ FLDA SLCN FDIV CJJ FSTA PHI

UDREGN PHI ltti)

UDREGN FNP

RETUR HVIS FLERE SEKTIONER UDREGN PHI(N) FOR FOslashRSTE SEKTION

OHSAET 00 FLVT FNP SOM HELTAL

SETB FNP SETX Nplusmn LDX 07 laquoDPF1XAltFNP7gt tDFFlXlltFMP7+gt bull0PFIX2ltFNP 7 0 B0PFIX3ltrNP 7+gt bullDPFIX4ltFNP 7gt bullDFFIXSltFNP 7+gt-bullDPFtXlaquoltFNP 7gt SETX Nlraquo LDX 77 raquoDPF1XraquoltFNP7gt bullDPFIX1ltFNPgt BDPFIX2ltFNP 7gt bullDPFIX3ltFMP 7gt bullDPFIX4ltFNP 7gt laquoFF1X5ltFNP7gt bullBFF1XlaquoFHP 7gt FEXIT

TRAPlaquo bull TRAP6 1 TRAP 2 TRAPlaquo 3 TRAPlaquo 4 TRAPlaquo 5

SFN SFN SFN0Vraquo SFNOVB+2 SFNOVB+4 SFNOVB+laquo SFN0VB+1B

SFNOVB+12 SFNOVB+i SFNOVOslash+1laquo SFN SFN SFN SFN

OVERFLOW AF N5B6

BEREGNING AF KONCENTRATION AF FORSINKEDE NEUTRONER

BASE LH1 STBRTF 5ETR LM1 SETX INDEKS LDX - 1 6 6 LDX 6 FLDA F N F 7 FNW CN1K1 FADO CN17 FNUL CNJK2 FSTfl C N I 7 FHUL LUI FSTfl CNXi FLDA FNP7 FHUL CN2K1 FADD CN27 FHUL CH2K2 FSTfl CN27 FJ1UL LN2 FADCN CNX1 FLDfl FNP7 FMUL CN3KJ FADD CN37 FHUL CN3K2 FSTA CN37 FHUL LA3 FflampD CNX1 FNEG FSTfl SLRN-7 JXN FPP3R6+ FCLA FSTfl SLCN FSTfl SLCN55 JA PROP

GRUPPE 3

R i c c PuRa bull bull M R E Q M I M I R FOR PRIMCR KREDS 0 0 DANPOEMERATOK RMMIV TPL T t U TUP 3 T - R M T P i 2T-URlaquoR TPO TP2

K T I W J laquo T - | laquo 2raquoT0 TLP MHMV V M S M TPL D M U K N FNISTE CLCAENT M raquo PK1 I ST IOtT r O TPO POSITION I H raquo M T C H H M V MHgtUCMPTCUTP0 T M P M I C Wgt M T A A M V A P D T LOWER PL T P I TP12 TP2PP4DPS DPlaquo TUP

DRODTL F - 1 raquo4 DH0DT F O

PUNK ra TRO

vtunnt ur i COM KRTION

ymWBTMITR Til 10laquo0laquotOFS

gt SltALAFAKTOR NT

bullREALltFUC FNP FTPFTSflFPRHINXX5 XXXX7XXlaquogt

STARTF bull M C TPL SITlaquo TPL SITX APD bullFLOATlaquo SFNCFlaquo bullFLOAT SFUP FUP bullFLOAT2 SFTIN F3M TPL bullFLOAT 3 SFT1N F3M TPL O d raquoFLOAT4SFTIH F2S FTSA bullFLOATSSFFR FM FPR bullFLOATlaquoSFTIH bullCALDRODTHFDTVC-HIN

TENP KAI6NING TEMP I UPPER PLENUM bullCALFHCFROkXX7FDTVPLFK1XX8 bullCPL-FKiTPLltTPL3gtXX6(TPL+Jgt bullGAL-TPLXX7laquoDR0DTHiWlM SETX INDEKS bullCAL FHPFROK XXBFDT XXlaquo FLDA DROOTHtFSTA DRODT LDX -laquobull LDX 17 JSA FPP2S TCAP TIL UDGANG AF U-ROR FLDA ORODTL FSTA DRODT LDX -laquobull LDX 1laquo7 JSA FPP2S TEHP TIL REAKTOR tN0LraquoR bullCALXX7XX8FDTXXlaquo LDX -30 LDX K 7 JSA FPP2S TEHP 1 REAKTOR FOslashR CORE TPK1D0EL TEHP I U-RlaquoR bullCAL(TPL+17)raquoFlaquo4FTPltTPLtraquogtFlaquoraquoFTP

UD M O N AFD4- 575raquolt25raquoraquoCPPgt SETX RPD bullP0LXXSCPPK2FTP FLDA SFDPlaquo FDIV XXS bullDPF1X40V2raquo+1raquo UDREQH APD5- 5 WHF G bullPOLXX9HFUK 2 FTSA FLDA SFDP5 FDIV XX5 bullDPF1X90V2raquo+1 UDRE6N APDlaquoraquollaquoltR06SROFSgt bullPOL ROlaquo 2 FPR bullDPF IXCgtSFDPlaquo 0V2S+14 ONSAET T LOWER PLENUM TIL INC-EX O bullFIXTPLraquoS3F308SFTUD0V2e ONSAET TF1 TIL INDEX 1 bullFIX1TPL+17 FJOCSFTUD0V20+2 ONSAET TP12 TIL INDEX 2 bullFIX 2 TPL2S F10raquo SFTUC- 0V2B laquo ONSAET TP2 Til INDEX J bullFIX2TPL+3X F25raquo SFTUD ONSAET T UPPER PLENUM TIL INDEX 7 bullF1K7 TPL3 F2M SFTUD JA TURR

SUBROUTINE JA oslash bullCAL ltXX6 VPL-TFI bullCAL lt-ltTPL-3- ) JXN FPP2S+2 8 JA FPP2S

TRAPlaquo 20 TRAPlaquo 21 TRARC 22 TRAPlaquo 23 TRAPC 24 TRRP6 25 TRAP6 26

TERP BEREGNING

OVERFLOW T LOWER PLENUM en TPi i [i

- C TFI i c-e LEC-IG

tO 55gt25laquoCPP PC 5S9MFamp C-O tOslashttGGSRQFS-

OMH GUL GIIO KHX srsc SFGSC HFSC HFQSC KHBH KLBL SPH SFL ampQR SKV SEG STR] NTR1

TUROslashINEBEREGNINGER INIgt DATA F-HIGHP-LOMamp-REMEHTER UD DATA HP-TURBINE OUTLET XE-6EN T-IN REHEATER HELTALSDATA IND-UD OVER INDEKSREG TfcD

I PL TH TL OR TMGSP THUS THFI SFS EGS EGENi ITH ENTR EG KVA DHR DHH TUU

VIRKNINGSGRAD FOR HPT

F 3gtS F pound2 369 F 4763 F 7 9197 F 137 77 F 2423 B F 24 263 F 69 676 f 048020 F raquo09765 F 122 07 F 3664 9J F 4 096E-3 F 40 96 F 173

DO t-0

LPT GEN

KH(l-AMJ SFS FOR KONDENSATOR (SGS-SFSJ CgtCi HFS CO lHGS-HFSgt amp0 KH+BETA FOR HPT KLraquoBETA FOR LPT ioslashoslash2046 SKALAFAKTOR FOR PH 20284laquo PC PL 2301000204 DO R 1 038 8624896 PO U-ATgt 4096ieoslasheieeoslash D O EG 2B4B50 DO TR[ NULPUNKT FOR TRI

KONSTANTER TIL POLVNONIER F 173185E-4 F - 7B3461E-2 F 5 3991 F -037laquoioslash F -347027E-4 F 141137E-1 F -841164 F 2672 32 F 3222B4E-7 F -2455Z1E-4 F 1S3926E-1 F -2J6723E-1 F -61478SE-7 F 4606B9E-4 F - 1S3338E-1 F 878314 F -196422E-4 F 270143E-2 F -182786 F 7 14733 F 123 732 F - 199821E-2 F 93SSOslashOslashE-1 F -162370 F 190607 F 87 42C3

HFSHGS-SFS SGS TS LOH-HIGH

INDEX oslash BASE PH H T X TBD SETB PH bullFLOAToslashSPH-PH BFLOATlSPLgtPL OslashFL0AT2SQR OR bullPOLTHKTH 4PH oslashP0LTLKTL4PL bullPOL THGSP tCHOS 3 FTSA OslashPOUTHFSKHFSS TH

BPOLTHOSKHQ5gt 3 TM bull P 0 4 S r S K S F S 3 TH oslash R M S U K raquo raquo 3 TH KVM-X F t HPT bullCML TMO-TMFS bull T W THBSP-THf S T U 1 KVA imgts r t t MPT

T W S I M F S 3 T L raquo l mdash | i n laquo T 3 T I S r S K S F S 3 T L

bull M L raquo t K S laquo S 3 T i KMMI t n n NTT ISINTMPISK bull M L i S M f - S r S TUL I M T R - S P S T U l K W I w T i f l W H FWt MPT HED T M

T t raquo HPT M A TMM TraquoOslashT-TlllaquoraquoHCraquoW-TMr^THBarOWHDHH-TKQSPENTH 41 iOslashTTtt laquoVT M n TMB

~ 1S-THPS T t t t ( t tTH-THFSTU l If Vlaquo ftit3KVWn 1 T R M F laquo H tUCMWntH iDCf t

lgtB4laquoTMlaquoSENTH LPT iscoslashmorisx -mraquoolaquo i SBS-STSCSFOslashJC bull KVM

ILlaquo tLBLPLTUl I P BFnKTgtlaquo4CH VHRHIHMS4BMamp

tlaquo raquo M M - m i olaquof4

laquo0t tt-HTgtTAKTlaquo bullO tJOslashL bullrPCKT Blaquo THI 1 HCUEHOVEItHtfrCR

PRESSURISER SlHULFlTCR INPUT Ul FRA AFSNIT FPF2 OUTPUT VIR INXP VFHEPHCTSA

KFSP RFP H1K0lt

SMC STSA NVF VFOslash

F -1 82 F 879 F 104 r -38 F - 92E-3 F -44 F 0112 F -64 F 48Eacute-2 F i- 811 F - 29E-2 F 3 049 F - B30C-3 F 1 laquolaquo- F -730 F 643 F 393E-2 F - 4433 F 304E-2 F - 1762 F 340 F -38 gt F 4 E-3 F 0 23 F 302E-3 F 102 4 f M4 8 F Bl raquo2 F Bl 92 F 4laquo 94 F 12 F 22 F 150 REGULER1NGSKOHST

NBFAST RAEKKEFoslashLGE INDTIL HFSP

ROS +61

DRFSDP 62

DRGSDP +62

DHGSOP +66

DRFDH +67

HUI ltS1

HHK +611

TSR +64-12

DT(R0FVOL SURGE TUBEJ) 204020 SKALAFAKTOR P UD 409620 bO VF 409630 50 Ul 409630 DO MC 4096100 DO TSA

0)38 NBFAST RAEKKEF0L6E

O NULVRERDI Q DOslashOBABND B BAIN O HAX MK NULVAERDI UK DOslashOBAAHD HK SHIN UK HAX Hft DoslashDBfiAND UR HHX

C UDREGNING

F 1 F 16 P 1 3 F bull F 1 F 2 F 20 F IB F 100 F bull F 1 F 4 F 9 F 3000 OslashREALltHMKHMIHSU--gt bdquo m

OslashBEIW-ltPPPVFVFPVOslashPICMEHKN[NloslashHlPgtUR0RTSAgt OslashREALltROFSROOS RFSPBGSP HFS H65 HFG HGSPgt OslashREALltHFHFPRFHRF5 bullREALCXIXZ FHIgt FSHIgt

Ufcamp aamp^i

BASE DT JA bull STMTF SETB DT bullClaquo 9gt0 PraquoP VFfVF bullCM-VPR-VFVG bullPOL HFS 6raquo4 PF lF-FSTft HF bullPOL GSEacuteraquo3l tPF 1 P F5Uraquo MFSFSTH HFG bullPOL H t laquo Eacute H laquo P P 1-15laquo3TFL bullPOL H H 1 - laquo bull bull l22 + TPL bullCAL HSU lHSU+3gt IH$Upoundgt bullCAL HGS-HUK-HFGXt Q8 -X1bullUraquoampUK- H[BUI bullCRL OMFQ-ME bullCAL HE+HKPMC bullCAL Fe FPYFPMFP-Vfr FSHI bullCAL F B i F H I JA PPIC

STHPTF SETX 1NX BASE DT SET DT PMHHW TE raquoBE PEON ING bullFOLROFS-KPP1P bullPOL raquo O S ltKPP 1 P bullPOLRFSPlaquo2KPP1 -P bullPOL M S P - C3+KPF 1 P bull P O L H F S laquo 4 K P P 1 P bullPOLMBSC3KPP1 P bullPOL Hlaquo5P- S6+KPP1-P bullPOLRFHClaquo7KPP1 HF bullPOL MMI- laquo 1 raquo + K P P 1 33+TPL bullPOLHUK laquo 11+KPP1 133raquoTPL bull C M MF-HFSRFHlaquoOFS RF bullCM tWS-HFSHF6

bull E M 0 M N 6 AF ENTALPI I 3 SURGE TUBE KAMRE FLD U I J J L T TUIBgtJEB FN1 KMMIkOlXlFlX2 bullCAL HWIlaquoX1+HSUX2 i HSU bull C A L bull X l ( H S U + 3 gt X 2 bull ( H S U + 3 ) bullCMX1+ltMSUlaquogtX2 (HSW+laquogt JA PHI bull C M - laquo H 1 K 0 X 1 F 1 X 2 bullCALHFraquoXi+ltMSU+gtXJltHSU+egt bullCALXlltHSU+3kX2ltHSU+3gt bullCM laquoXtlaquoHSUX2HSU

MftCt t t lHO AP HV TILST AMD PLO FMI iJCC FUN1 VWBgt H M t T T t l bullCMPPRPSPVF-+raquoIraquoPUC-UE ROFS VFP 4 aa V M raquo UHMTTET KM MFPFHltX1PPRFP+X1VT-U1+PUCRFyenFP

bullCML |HMSVFPUEIIK-PUC-URVOyraquoe5P PP bullKPHCMF MREBNIMQ PLDM N i l J I T 3 J F C L A F S T A H I P P L M PHI tJEO F U t t

bullCAL R0FSraquoHFpoundP-FB1PFVF bull X I 8CALltHSU6gt-HFSMIF-+Cl-XiHFGHFFi JGE +3FCLflFSTH HE FSTft FPU Jfl G2 VHNP JHlaquoETTET 9Cf iLHF-ltHSUpound)HlPXl HFS-HFPHC-gt i gt i raquoCAL P V F F e i + Q X l V F P F H F F DflHP HAETTET GCALR0GSHGSP-FB1PFVGXI raquoCAL KGS-HHKWKXiHFG JGE +3 FCLhFpoundTfl FWL FLDA FSMIJEO i FCLAFSTA- FSHI-JA FM1 FLDA FKIiJNE FH3 9CALHFPDTHFHF FSUB HFSiJLT CPDV FLDA F8JFETFI FSHI BCALHF5HFFHI UDREGN DELTA f OG VF BCALPPDrtP 9CALVFPDTraquoVF bullCALVFft-VFbullVG BEREGN REGULERINGS INPUT VARIABLE bullCALP0-P-(O8+3gt JGT +1FCLA bullCflLltampe+O08a FSU6 OB+l iJJLE 4 iFLDf i C e + i t - F S T f i O bullCALP-Pe-CHKfl+3gt JGT + 3 J F C L A bullCALltMK8+eurogtMK8WK FSUB MKB + i i j J L E M i F L D f l MKB+l i FSTA Wk bullCALP-P8-WRtgt JGE 5 i F C L A J A bull 3 F L t A UPD3 FSTA UR UOLAES VARIABLE bull FJXraquoPPraquo SP0VA4B bull D P F I X i V F NVFSVF-0VA4oslash2 bull 0 P F 1 X 2 H E - SHE0VA4B+4 bullDPFIX3 PHC-SUC-0VA4B+e bull P O L P T 5 A 6 i 2 k P P J 1 p bullDPFIX4 -STSRGVH48+1B FEXIT

TRAPS 4B TRAPlaquo 41 TRAPlaquo 42 TRAPlaquo 43 TRAPlaquo 44

bullPLWT sraip retp U K -raquobull

OCT MtTAL SON frOBKLT 12 BIT

FPP ICDATA JNDLAESN1NG FRA FILE PUR IC

S1ARTF SETB bull bull SETX INDEKS LDK -12laquobull LDX -11 FLDA ICAP FSTA bullbull+ FLDA ICLP FSTA Blaquo LDX -UT FLDAX BB7+ JEO 1CIH3 FSTA Braquo+3 LDX 146 STARTD FLDA B raquo laquo ALN C FSTAt BB+laquo LDX -19 STARTF JSA QETICF FSTAX Braquot3-3 STARTD FLDA1 BBC FSUBI DPI FSTAt Braquo+laquo JOT IC1H2 S TARTF JA ICIN1 JSA PRIC SETB Blaquo raquoCRLEaENYFllaquo80TUl bullFORnFF8F4 bullTVPEBltREG STANG POSITION-gt bullWRITE FltFCRPgt bullF0RNFF6FPPONE bullTVPE8ltGENERAT0R MH-gt BHRlTEFltTUlgt FEXIT

SUBROUTINE TIL UDPAKNING FRA poundUfFpoundP

JA bull

JXN bull +ie-bullbull TRAPS BUFIND LDX -12laquobull LDX -11 FLDAX BB+111+ JA GET1CF

IC FOR PRESSUR1SER

fc^-^te

bull S i gt _ f t yen _ bdquo laquo laquo laquo i laquo I J gt

c i

=5raquo-sectlaquoSEraquo5=s Ilaquoraquolaquosi2laquolaquoElaquoe Ilaquoraquo5IIlaquolaquoElaquos Iraquo S ^ x S laquo S i Z ^ f g

laquo 3 ^ s ltbullbullraquobull Jiii j Lji lp L U bullbull^m^umnmbii- uraquomniiuu m

i i I i i

5 J - pound bull i- B MB ylaquo ylaquo baring J [bulllaquolaquo litfli sectSt

i aring~

LOGNING AF STA1OWAEacuteRE WAERDIER

F14

n F laquo NUF

F 14 F 1 f 3 F 3 1BE-11 F 23 raquo3

0lpound FRlaquo FNP TIL HH -HH FOR TURCINE HFamp I ru FOC KrEHETEP

5 raquo P h I i 2 4 F H I 1

BASE BOslash STHRTF SETB BB SETX 1NDEMS FLUX bullTVPEB C V F L U X l B F 0 R H P F 1 4 F 3 bullWRITE PltPMI -5raquoPH NUKLEAR EFFEKT LampX - 1 6 B L D X - 1 7 FLO FNPJ 7 r1ULft HUF FSTlaquo BUFFER 7 JXN - 6 bull + BTVPElaquoltNUKLEftR EFFEKT I HM O IFOIMFFBFI JSA auFouT URAN TE HP LOX - 1 laquo BiLPX B L L D X - 1 2 STAftTD FLOA H raquo 1 8 l F S T A laquo |NPEK^+4 STfWTF XTA 4 FHUL SFTUiFRPP FBOslashoslash FsTA BUFFER2+ ROslashB 41 JX URAN tTVPCB C V R M TEHF gt JSH BUFOUT KAPSEL TCHP LOX - I C f e L D X t l i L D X - 1 2

STARTamp F L M M + U 1F5TA8 IMDEKS+4 5 T M T F XTA 4 FMUL F lBOtFDIV F2oslashHoslashraquoADD F 3 oslash FSTA BUFFER 2 RODX 4 1 JXM KAPSCLlaquo tTVPCltKAPSEL TEMP V gt JSA BUFOUT vlaquoraquo TCHP LOX -2tfeLampX B 1 L D X -12 STARTD F I M M 2 1 i F S T A t I H raquo K S 4 STfWTF XTA 4 FHUL S F T C J F R O O F 3 M r $ 1 laquo raquoUFFE 2laquo MMX 4 1 JXM VAKOB T V M raquo lt V A N D TCHP gt MITCFltBUFFER 7BUFFER+3 f 7eUFFERM BUFFER53gt gt

Lt -laquobull LOslashN Bgt1LraquoX -12 STMTD FLBlaquo M4Y1FSTM IMPEKSM

STHRTF XTA 4 MUL SFROiFRDt F05 FSTA KUFFER 2 ADDX 41 JXN TAETHraquobull 9TVPE6 ltVftND TfiETHED gt 9F0RHFF8F4 raquoUR I TEFltBUFFEF 7BUFFER+ ALFA LDX -1CBLDX 8 i LDX -12 STARTD FLOfl ftoslash13lFSTfl INOEKS+4 STARTF XTA 4 FNUL F5FD[V F284S FSTA BUFFER 2- ADDX 41 JXN ALFAOslash 8TVPE8 ltVVOIO I gt OslashF0RNFFSF2 JSA BUFOUT KONTROLSTftENGEF OslashFGRMiF F8F3 OslashTVFES ltFASTE KONTROLSTfHE NGEK bull bullWRITEFltCCK7raquoCCR3-^7CCftfl REAKTOR EFFEKT SETX SUWK XTA B FMUL F3oslashBoslashFDIV F4036 JOE +4-FADDi F5oslashoslashFSTA BUFFER SETX INDEKS OslashTYPC$ltREAKTOR EFFEKT gt raquoF0RI1FF8 Fl BURITE FiBUFFERJ REGSTANG SETX HC3 XTfl e FD1V F2848 FSTA BUFFER SETX INDEKS bullTVPEeltREQ STANG POS gt bullF0RNFF8F4 bullWRITEFltBUFFEft bullCALSFCRraquoF284S-BUFFER bullTYPESltREG STANG VREGTgt laquoURITEFltBUFFERgt BOR KONCENTRATION SETX AB XTA 5 FHUL SFOslashCs JGE +4 FADf F2608 FSTA BUFFER SETX INDEKS raquoTYPES ltBOF KONCENTRATION I PFT1 gt bullF0RHFFOslashF1 bullWRITEFltBUFFERgt PRIHAER TRVK bullTVPE8ltPRINAER TRVK gt bullFORHF FS F2 raquoHRITEFltPgt PRIHAER HAETHINGSTEHP raquoCALFTSA+F3BOslashbullBUFFER bullTVPpound8ltPRIMflpoundR HAETNINGSIEMP bullgt bullWRITEFltBUFFERgt ampAAPTRYK raquoTYPES ^DAIIPTRVK gt

rEfLlf FEFie

C C R + 5 5

bullHRJTE FltFPR OAMPTENP bullTVrClaquolt^MHIPTEnP gt bull W U T I FltFTSAgt S T I M llaquofRgt bull M L PMMCH BUFFEIt at MFSStMUFFESt innltsmraquo bullCLKTHIlaquo I n Kt SCK bull M R l r c r lt w r F i i r gt m T V W I H E TlaquoVK laquo n M i lt ^ raquo t i m i H K T IVKgt bull W l T l F c n o i vmim Ttw bull T W raquo lt 1 P T U M t M laquo V l t gt ~ U 1 laquo r laquo L gt bullJmeacutekt tTWtlaquoltlaquoL EFFEKT I mgt

mmtn bull rcturviit gt

laquomvT M bull M M T f r lt T 4 raquo M F F W J A 7 - gt raquo 0 F F C t + 2 5 gt

n MTOUT

Sraquo ^- v laquoAEligraquo 5^ laquoltlt

P- A-E bullbull bull

B L bullraquobullbull

bull K ^ S B S ^

B ^

lt

raquoamp laquoR Isl y

-gt

ltraquo JK

RDCC ADSC ANINSE A03N R07N ASR BETA BUFOUT CBO CBREST CJK CM1K1 CN2K2 CPPIC DHH OIRC DOC DP1A DRODT DT 01024 ENTH FBO FOT FEJLS FIO FM FNPO FPPOLD FPPSI FPP1 FPP3 FPTRftP Fraquo4 FTlfi FTVPE FHC FMB FBI Fl F14 T2948 F3Bt F98 FB GETC BETTTV

86341 BCS42 84734 oslashlt332 96372 07415 11024 233laquo 03C2B 03C4C 11332 12217 12242 13414 14221 OslashC3Blaquo 86111 86146 13562 14743 01335 14202 11005 13543 02240 oslashoslashoslashei 1517 02472 24061 00677 12261 13133 B46BOslash 23533 31260 24372 13365 23423 13157 11027 21266 12215 13313 13332 13340 23732 B4336

AOCV ADSF AOOslashN A04W BPD hamp BIT2 BUFUD CBOS CCR CLOSE CN1K2 CN3 CftLF DHR DISF DOW OPLB OROampTH DVI EG ENTR FCON FEJLOslash FEJL6 FK1 FM2 FHPQ^ FPPONE FPPST FPP2 FPP3EX FRO F5HI FTP FULL FUP FU1 FB4 Fie F16 Fise F4 F5BB FOslashSOslash QETICF GLK

06532

oslashraquo3i 06302 06342 83674 03724 00310 02312 0125 11112 04233 12234 12132 24100 14216 06381 06112 06141 13554 07407 14210 14203 24464 02210 02253 13353 15662 03417 24061 04400 13623 13236 11082 15541 12373 21263 13370 23462 13477 13333 11040 15510 15162 13316 13521 26414 B7204

flampIC ALFA A01K AOSK APT A15 BUFFER

Boslash CBOSD CJI CNX1 CN2 CN3K1 CRPOS DIC DIVI DPDH DFLX DRODTL PgtR EGEN EXE1 FCR FEJL1 FEJL7 FLOG FM3 FPEHt FPPPI FPPTWO FPP2PI FPP3R FROK FTC FT5A FUH1 FWRITE FW3 FB3 FloslashOslash F2 F3 F4B96 F5000 F9 GETNUH 6L0RG

06544 22127 06312 06352 B4437 04114 10170 10000 01276 11172 12256 12032 12233 01407 06304 BSoslashOslashOslash 06144 06142 13537 11021 14177 64302 11010 02217 Q2264 21310 16803 pound4oslashpoundl 24072 24 864 24B75 13166 L3 54C 18777 13376 15633 23743 23313 21274 13327 11032 21271 12220 1517laquo 11033 411pound 22411

ADRB AMIN A02W A06W APTB OslashRSEOslash BUFIND CftH ceoi CJJ CNl CM2K1 CN3K2 D DIR PIVITG DPDV ampP1 DRODTH DX2 ENTER EKE4 1-tsr FEJL4 FINOUT FMI FNP FPLEND FPPPI2 FPPW FPP2S FPR FRI FTG FTU FUD2 FUST FOslash Foslasheacute FloslashOslashO F2800 F30X FS F60 GETADP GETSP Glaquoi

06534 04744 06322 06362 04623 10000 03120 07621 01200 11232 11772 12245 12250 10763 06302 05032 16006 20amp73 13331 11013 64200 04632 10100 82226 23411 13S36 11472 2t-S27 24867 84447 14oslash7 13601 23515 01111 10774 15728 23567 15154 1S582 13524 11043 11016 15165 13305 23647 T371B 14235

Ilglllllllllilllllllllllllillllllllllllli Z Z X X b U t gt 0 0 raquoifiiihJIitSSisSSihiiS^^-^M JiiiiiSiH 3

9 laquo s AElig ^ c laquo pound ^

E555wS5KiS i r tSwi r tSPPt i -P5gtgtgta

i N r i ^ eacute r i

$ gt 3gtsssampifigi=iiiaiissectSd3iiiiiiiigiElsiiiHBHBelSEiftftKiiiilhiraquoiiS^

Hil ltssampiJIiiiiiiisflSBBEs3iiffiltflillaquogIBBaliiEeElaquo3ifsiifeIlraquo-w

iiliilililiiiiliiliiiiiiliiliiilliilllillliillillililli^^^^ J i t l H i r i

CAT = Tbdquo - 1000)

ltA Tca bull- T c a 3 O 0 )

- 69 -

APPENDIX B

Scaled equat ions analog diagram potentiameter l i s t and

DFG-tables for the core heat t rans fer model

Scaled equat ions

I3H-mdashbull (W-iif]) [^bullbullbullbullbull([Aj-ti])

laquo L s-deg-sLgtsSindeg-l-h

HJ

^ ] = 0 6 6 6 7 ^ ^ - 006667 [^sect |J

[KgcJ bull deg-775deg p 3 + deg i 5 1 9

nul i rw~ I j o o j FIT i L iSoo J

[Iugcaj

PB-]-[L-ISI-laquo

Gm bullgtbullbulllaquo k W [pound]

+ 01667 ^ bull 0 5

nl L T S O B B J

Qc-li

bullbullbullK8WL) (Mwafoivts oW

roslashL-CSE-laquo) nl

(zeropoint 250degC)

i lbl -Qci r rTpS-Vh UOJ LiOoJ V SO-bull)

UdegdegJ j = [ lQaP 1 bull 0289 H h l r bull N

Ll500oJ

[ l 0 0 V C i raquo (Uo-JiU - l i o j i )

Pm 5 0 0 fP^-5 00-J Lsoo J = L 500 J deg-126 tioltJ^+ 1

rftJQf eacuteoslashoslashtjoslashunj 4fltfr6tf tf eacuteAe ltre lt6f pound eacute4irjw

bullampraquo X bull Cl laaifaringy tiampm

Hflaquo

-ttfiL

- 72 -

A7laquo raquoJ ofc (narmdash

Jplusmn sr

4 it-

iVt s EZHH^AElig

S3

lmdashi sp I i _ n gt LJrV

jeat bullmdashzPlmdash^~

pound3

e Jlt7- pgt |vraquo

EacutefEHH^AElig 4 A

lraquo1 4 lt y 5 raquo y |

Eacute ^ l mdash I Elmdash0

Potent ioneter l i s t

bdquo bdquo u SF N 1819 bull 25 - bdquo bdquo P 3 0 At SF A tTu

= 0 1 bull 500 = deg - 9 0 9 5

SF AT P32 8TTT- bull 10 = J

25 1000 10 = 012S

P6 8 = 05

P36 -C SF 0

c a H_ - 0-3307 bull 25 _ 0 1 bull 500 O- 1 6 5

At ST~A~T~ t ca SF 4 T bdquo bdquo

P3B = sr-d 25

t ca

P33 = J ltT + T ) (SF T ) = bull J-000 3 0 deg 1000 065

SF T P37 = i s y - ^ 05

SF T P35 = J g p T 10 05

ca S F T l (

P 3 = J zgca tnr 5 = i bull 6 T = deg - 5 6 9 5

P61 S 2

P31 = K

gca SF Zbdquo

( S F Zugcagt s 5 deg - 5 S 6

ca t 65E-6

= 07SS3

u ST 1T = 3 bull 2g-6 077S

PW s

Pt3 s

uo cao

SF ltTbdquo - ^ ) 1 0 0 0 s m m = 06667

TFoT

SF ATU SF bdquo - T c a ) mdash s r A T mdash

pitl J (T

ISTSo

T5sectsect deg 0 8 6 7

300 - 250 5 3 mdash s08

cao Tcogt S F c - l i a deg - s

P69 raquo 0 8

P73

P7i

Peo

P76

p s o

SF Ai

100

) x SFCT

SF (T - T ) ps i n =

T ) bull P73 s

= 1 J7 3E-3 bull 0 c

SF bull bull SF C

gtQ$ 500 0B782

pound = SF q

V bull SF laquo bdquo

t t bull SF p

U bull SF AT c

S F AT pound_ - i l -- G2

SF AT 60

1 0 1 2 - 1 0 0 0 1 0 0 1 - 1 5 0 0 0

067147

- raquo

t c SF ATC

2 SF T c

S r T c

(AT_ - T

_ 1 10 02 ^sectf = 3-1

co CO

SF W

1 0 - P 1 7 i bull ^ bull U = 0 2

) bull S F T bull P17 = ( 3 0 0 - 2 5 0 ) 0 4 100 02

P o t

Pti j

P7-4

^ V

Al

P K

fe

SF

Pgs

3

SF

SF

F p

111 =

^k

V r

725 5 0 - 1 0 9 7 1 15000

= 0 2 1 8 9

w - i UFTbTT deg - 9 8 2 7

5 0 0 - 1 0 0 6 3

= TsT-oa =

ltJr-pojit Lon

) iK-poG L t i o n

D F G - t a b l e s

F 3 2 jj00 C j MJkg degC a t 150 b a r

T degC

250

270

290

300

310

320

330

335

310

315

305

ATC

X T7JO

000

020

010

050

060

070

080

085

0 90

095

100

CP

000173

000195

000526

0 00518

000579

0 00621

0 00687

0 00737

000809

000905

0 01000

y=[ioocl

0173

0195

0526

0 518

0579

0 6 2 1

0687

0737

0809

0 9 0 5

1 000) E x t e n s i o n f o r 1 5 0 b a r

F12 k p f - 5 0 0 ) 5 0 0 j kgm a t 150 b a r

T degC

250

260

270

280

290

300

310

320

330

310

350

100

000

010

020

030

oo 050

060

070

080

090

100

3 P f kgm

8111

7966

7808

7639

71S7

7257

7036

6786

6193

6182

S786

p f-500 -

- 5 7 J 3 - k e m

0623

0S93

0562

0528

0491

0151

0407

0357

0299

0236

017

- 76 -

F37 - 2 E - 6 x l m degCI-H

T deg C

0

100

200

300

400

500

600

700

800

900

1000

T A 1 0 0 0

0 0 0

0 1 0

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 7 0

0 8 0

0 9 0

1 00

Xu Wm degC

bull 8 4 0

7 0 0

5 9 5

5 1 7

4 6 0

4 1 3

3 7 7

3 4 6

3 2 1

2 9 8

2 7 8

2E-6

u

0 2 3 8

0 2 8 6

0 3 3 6

0 3 8 7

0 4 3 5

0 4 8 4

0 5 3 1

0 5 7 8

0 6 2 3

0 6 7 1

0 7 1 9

T -T s a c 50

0 0 0

0 0 8

0 1 2

0 1 6

0 2 0

0 3 0

0 4 0

0 5 0

0 6 0

0 8 0

1 00

i 1 000

0 8 7 0

0 7 7 0

0 6 3 0

0 5 0 0

0 3 0 0

0 1 8 0

0 1 0 0

0 0 5 0

0 0 1 0

0 0 0 0

- 77 -

APPENDIX C

Scaled equat ions analog diagram potentiometer l i s t DFG-tables and parameter tab les for the steam generator model

Scaled equat ions

M bull ampri - m

amp]bullbullbulllaquo[bull bullbullraquoFRI

M-lt-degKfJ-gt-(fttj-ftj) [J - -raquo(Feu - Paj) - gtbullbullraquo BbJ [amp]=bullbull-[ir K] F 1 rTr2-T

5s i2

LlOOOJ L 4849 J

[Agt[ij---[il[^Si

[ i ] bull fe] - deg-j Mbull deg-756 [xiJ deg-0208 fifl

[o] [U](233 - 17H toslash)

l i r ] [raquo] - [ laquo P ]

1 A gt -AEligeacutet- bull r i

p l Lrmj = u5^cj deg-deg^L-fj bull 139 ro [ deg r ]

w -| r r -7 i r a i nv-T-i I L i J deg - 1 3 3 j L T o o o J r T o n

1 L i i _l

L - f t s J

L i i = bullbullbull

Lsooai -

- bull L S O J J J L i s j

v bull

UJuToJ

vdTis o j

[-] = bull^ c (Lr^ J -LOT) deg-136LT55O]- bullraquo[JTJ

_ ^ _

j ^ J -^mPmdash4Tx-^

IHM

P o t e n t i o m e t e r l i s t

sr T P i =

P2 =

r ] 10 SF (Tp-Tr li so

Tmdash bullamp 2L O = 0 1 bull 010C9 bull 1 9 7 1 = 0 5017 L Ar e r

P3 = SF T r l bull ( z e r o p T p - z e r o p T r l ) = 3 deg ^ 2 7 5

Praquo = P2 = OS017

SF T bdquo

P7 = SF T r 2 bull ( z e r o p T r 2 - z e r o p T) = | 2 5 0

PB 1 SF T r i

- 0 1 0 1 0 0 9 2000 T b - bull

C 1036 T5 cr Lc sTTJp-

p = lo r V STTT1 - - 1 deg-1009 ^r- - deg-2018

r e s

SF i T - f ) = TO deg - 2

ss U

-ps s r WB bull s n T ^ - T ^ i - deg - 0 0 5 2 - T 5 T O mdash deg - 2 6

SF U SF Q

0660E-laquo SQOO s 0330

4 7~deg^~ ^ laquop

= 01917 bull 5000

en bull- obBOE- TTT raquoe-a bull 10 bull 1000 = o58

P53 = 00570 mdash-mdash = 00570 bull 2 lt 011laquo SF p8

sr w PH - 37300 bull 0 56

s r gtgt

SF Wf 52 bull = 00208

S F p =

F58 S F Wf 1000 bdquo SF Wbdquo bull 5000

P17 =

P l l l

P15 =

P2 7 =

P28 =

P29 =

P59 =

P86 =

ffpbdquobdquop _ 15 bull 5000 _

SF Wf bull sfp p f sgt looo bull 10

3 F p 3 25

i_ J l i aring S f l E l l 0 - 1 i l | bull 05 = 02773 SF T

0 2S

10

raquo 25 SF 4ps ITO

SF pa bull zerop pfl = 001 bull 60 = 06

15 7JSTTT 7TO mdash mdash - 0 - 6 6 6 7

S F p s 2000 I I 75 STTJ^ 7T5 J T

SF W C l mdash ^ bull 2Bro4ff - 00112

SF p8

^ - ft 016 250 T s

STT7 SF T

raquo 0 2

SF T

gtampbdquobullgtgt bull bull bull bull - bull W - laquo

-nr - bull raquoraquo bull bdquo f a bull owraquo

1M1B-laquo laquo | f i raquo 01WV --Si

b 10 SF(T - T ) 50

b a

F i j i = u b

^ V A SF v _ _ pound I d = 0 0826 9934 bull 0 1 = 08206

02152 bull 0826 = 0 1778

UbtSjt bull u 626 = 0 4 5 1 3

SF Wbdquo bdquo

7T V f SF l i

K Pf S T T

i A L p

i

r

s

SF

ST

SF

SF

ap

pound bull 4-f 0 r

0

0

amp L b

= 0 136E-3 bull 5000 - 0 68

0 136E-3 bull 5000 = 0 68

i 3 6 E - 3 bull 2000 bdquo bdquo g o

P 0 136E-3 bull 75 bull 2 = 0 0204

SF

put ent i orne t e r s

p o i n t 275 degC

27b degC

bullbullP

eri

2 o 0 C

2 5 0 deg C

- S3 -

DFG t a b l e

F 5 2 5 7 ( T s s 5 0 ) degC

p b a r

350

3 7 5

10 0

12 5

45 0

47 5

50 0

52 5

5 5 0

57 5

60 0

6 2 5

65 0

6 7 5

70 0

725

75 0

77 5

80 0

82 5

85 0

T degC

242 5

246 5

250 3

2540

257 4

260 7

263 9

2670

269 9

272 8

2756

2782

280 8

283 3

285 8

2882

2905

292 8

2950

297 2

299 2

Ap b a r

- 2 5 0

- 2 2 5

- 2 0 0

- 1 7 5

- 1 5 0

- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0 0

2 5

5 0

7 5

10 0

1 2 5

15 0

1 7 5

20 0

22 5

25 0

X

- 1 0 0 0

- 0 9 0 0

- 0 8 0 0

- 0 7 0 0

- 0 6 0 0

- 0 5 0 0

- 0 4 0 0

- 0 3 0 0

- 0 2 0 0

- 0 1 0 0

0 000

0 100

0 200

0 300

0 400

0 500

0 600

0 700

C 800

0 930

1000

ar c

- 7 5

- 3 5

0 3

4 0

74

10 7

13 9

17 0

19 9

2 2 8

25 6

282

3 0 8

33 3

3 5 8

38 2

40 5

4 3 8

4S0

47 2

49 2

y

- 0 1 5 0

- 0 0 7 0

0 006

0080

014 8

0214

0 278

0340

0 398

0456

0512

0 564

0 616

0666

0 716

J764

0810

0656

0 900

0944

0984

4

J pound

rn - j e t

- O ltU -3l -O Ml

CQ e 1 ^ ^ TJ -3 Q lt 1

m

e u lt ^ 1 TJ

-a l -a J

inl cn

od lt-bull o 1 Q

o - H

t r t l 1

wl in e 1 ^ a l a ^ m bulla h i DO XJ

l

f n

U| pound bull (A -raquo

a a cl r (x) V

tnj WJ

- l a ^ T) fa - J

M

w tgt0 bull w J

C I f i -^ r i ( c l - j

pound

t

A

U ril n

TI

01 1 oO H

130

- m

tfl G

a no

10 Til

M ^

u

u D O

O

CM 1

i pound gt

O l

o S)

bullpoundgt

f )

O CO

O

J L 1

o

L-1 c

r - j

i

raquo o

i

r-

ro N j

r bullJ3

-O

mdash

f

o r

en

o

i

r H

rry

J

-H i r t

co

i c

m

o

J I n

o

m Tgt

1

O

bull - i

Tgt

H

bull J

bullJi

bdquo ~3 O

laquogt I

^

CN

f

U l

l l

O

bull O

ao

bull N

-r

o

r-i gt

O

co

1

r-

i

j

~ i

-H L 1

Q

t

n bull A

t

t o

o ltD

f raquo l

l l

l l

o

AElig ro

CD

ltn co

L T gt

ltn gtn

o

o 0 3

O

J 1

mdasht t

T

lt gt

r-

T gt

I T )

t gt -

r--r

-r i mdash

o Tgt

rx

i - H

C mdash

1

L O

m

r - (

r - t

C O

T i

J U J

O

P I

o

o

1

O

- f

I M

o 3

i

- i

f i

co

bull D

O f gt

trtj Ol g) I DO 10 l u l 10 ( d (D c l a pound lo r l a

1

Table C2 u u

laquo to

to MJ raquo

3 W X

CM i j O ^

M X

U ti

a U t3(

u a M

laquo o a

u X

o

3

S

Him gt bull

I-

C M O i oslash c o c oslash c o i oslash m

O O O O C 3 0 r H ) - t

j - r - C N I gt O lt I C O H

39

1

31

amp

27

5

25

0

21

7

19

5

16

5

i-i co H co eo crgt j -

rtPOjrtltraquoij-^ co

i n lt r j i O J ~ o i pound L O i i

-39

9

-13

3

-46

6

-51

2

-53

7

-58

2

-6 2

5

-68

8

0 gt t r M gt - I O C M C 0 ( 0

^ r - c o a gt o f gt r -c r i a i c n c n e n o o o

H rH r-

gt A l Oslash r lt I O ( l H O gt j i f t t o r - p - o o c n o

r H lt H i - l lt - l gt - t H f H ( s i

O O O t o r ^ i i u i H O

O O O O O O O O

c n oslash i m m o d r - i a lt i 9 i r raquo r 4 c e H t oslash i o

o o O o o o o o

uraquo ugt O ^) ( O J P H laquo P J

yft n H ogt rgt laquo N laquo CM CM N r4 ltH bull- lt-f

0 gt P raquo i A O gt laquo Oslash r - laquo t raquo ^ l A i A t A t O l D ^ r

l A O O l A i A O O l A

i-t r

(0 gt O O H

1

4-1

gt BD

bull

gt lt

bullir laquo i

a o

r-t

1

bil (0

w bO

a

u

gt +

gt

+

0

1 f

gt + c

bullMlO gt

a r e ^

ft A

bull

bull

bull gt

laquo s

i

si

4 inUB

APPEHDIX D

Scaled oquiions analog d iagram po ten t iomete r l i s t and DFG-ta i e for the t u r b i n e - r e h e a t e r model

J L J 1 - U yr ^ a t i o n s

j -raquoi ramp 2QU0J 00 J

mdash = gt73a t l - a ) 4 r i - 29 mdash L -_l - L iO^J L20 J

mdash KJ ^ tv]

rpt 1

L200J

bull 1 n i J L bull - J L I J J

1 r^r-ro-i

--LAJ [ T ]

J bull deg i_ 2 00J

AnnUj ctmputaf Slaquofraquot bull ampc tartgt -reAelaquoer

Potentiometer list

rii7 = 05

P85 1 S F pv 2000 bdquo

iT STir = slMflo = deg - 3 a

X 1 U U U _

lo-fl5 TOT - deg u

1 k^ bull -1- T TS ltK h bull 2 5 9 5 = 0 5 1 9

TIT

h dp

1 HF-k i = -1- nmrrr -73-5 = o-29

pus = TG

1 dp

1 S r P l _ _ - n l 1 2500 bdquo

v i a s r

k r S F Tt 2 22 lt

7 SFTtX-Tt = TT = deg-6818

3F(T - T m ) 12 r o

^ bull i sect deg = 0386

laquo 0 J - eacute 7 ^ - b - ^ - raquo raquo raquo

PI 12 1 1 r u

T7 bull v i P cp 3 ^ 7 bull TV deg-8

P 1 6 - 0 V r 8

sr s -SKT -T ) STT fsftfllOfl

^ bull ^ L - ^ bull bull1- Tb deg-2

PbQ - j-j -Czerap Tro-zerop Tri)-SF Tro 01 bull (250-175) J- 015

P119 FT-BnJT = T75T 250 07962

IC-value potentiometers

rlt3

P70

P100

P110

yh

Pi

T

T

zeropoint

_ If _

250 degC

250 degC

DFG table

X = PhPv

0000

0575

0625

0675

0725

0775

0825

08S

0925

0950

1000

Y

10000

10000

09943

09752

03Uit

08906

08191

07200

05787

01(809

00000

- 90

APPENDIX E

Analog diagram and potentiometer list for the electrical power

grid model

Potentiometer l i s t

rF 4ffn l 5 0

bull = r V t kriT 75 r = 06667

- 1 S F A V E 2 10G - 0 1 - 5 n u

J ^ T - sf Aff 10 bull 625 bull 50 - deg ^

nV Aff = i - si

T T ^ O T = deg-4

l o - t = - ST

TOTS

r - bullbullbull tf = Tnw11

bullgt g

l V - v i je t o r A II

Q29 E 1000

Q2 7 AE 1000

Aring

4gttf ltogtrpt trif ^O 4r- TV Me flaw- ft^i

Interface

MDAC

-bullbullbull

-_

- - -

_ l t _

--

0

1

2

3

4

5

connections

N 5150

lt10 a ) j j

05759

PP

0580

10 ffii p f s

0 8 9 t 8 ( l - a t )

APPENDIX F

6 lBampF ATbdquoc

Z N

- B -

raquo-

_bull_

bull raquo bull -

lt-

AO

bullbull

-

8

9

10

11

12

13

0

1

2

T5TO c bor ToTJff V f-12 - 2 T T w

e 5T w

e VS

bull

-ltpoundK laquo gt

Reactor

Steam generator

Pressurizer

Reactor

Pressurizer

i T(0 Reactor TTn T -ri

- 5 C ^ ) o^ TB

- - 6

- - 7

AI 0

- - 1

- - 2

- - 3

- - I

- - 5

- - 6

- - 7

- - 8

- - 9

- - 10

-yen T p l 2

50

9k i ( Sl n

(fe)j ( ^ 5 ^ V l

(fe-)1 n+1

1 0 n+1

(100 i t raquo ) n + 1

p - 5 0 0 m 5T5T3

W i 15645

CR-position

Wb

Hot u s e d

T

50

Turbine

1 ^k3 bdquo_ A a Reactor

Steam generator

Primary loop

Steam generator

-- il Not used

PG Steam generator

AI 1 3

- - 1 1

- raquo - 1 5

- - 1 6

- - 1 7

- - 1 8

T SS

ur w

SflOT

Not used

Ph

Pi 7U

250

Steam generator

Turbine

laquogl^ygK

- 96 -

Error messages

FPP EXP OVERFLOW

Both messages are self-explanatory No exit address is given

but it may be found by ODT in APTC9-11) plus(APT+l) The octal

address for APT is given in the address list in appendix A

FILE ERR

FILE END

occurs only in connection with reading from disk files an IC

file or a static data fileThe first means that the file is

not present on the disc the other means that the file is too

short

Program_errorspound

NEGWC

NEGWP

STANG POS NEG

DIVOVERFLBOR

C-BOR NEG

FOR LANG REGNETID

W goes negative

W goes negative

Regulating rod position goes negative

Overflow by division during calculation

of boron acid concentration

Boron acid concentration goes negative

The calculation for one time step takes

more than 01 sec possibly due to a long

track time ir the core hybrid compushy

tations ltMK 0)

- 97 -

TRAPS messages

07 Overflow by conversion of nuclear power to integers for

core sections 3-10

Section power gt 500 MW

LIM 31 = plusmn1

51 = il

71 = 0 +1 exact 0 lt_ (T

91 = plusmn05

101 = plusmn02

saturation limiter for AT t ca mdash n mdash

PS -T )50 lt 1

(SF AEJEJ)TV2 = 510

(SF Av2)Tyl = 0525

MM pulse length

MM 00 = 100 lis

MM 01 = 100

MM 02 = 100

MM raquo0 = 100

MDAC 20

21

22

21

25

26

30

31

32

10

11

12

13

11

Over f low _ it

_ raquo - - - w

mdash laquo - -

_ it

_ it

_ laquo

--------

_ ---

T - l o w e r plenum

T P1 T p l 2 0 5 7 5 9 ( 2 5 0

0 5 8 0 h f

1 0 g s O f s 0 8 9 1 8 ( l - a t

E 1 0 0 0

T r i

P P V f w so

e w so c T p s

L i m i t e r s e t t i n g s

V

)

| T - 3 0 0 |

--

| T - 1 7 S |

| p - 1 5 0 |

| V f - 2 2 |

| T - 3 5 0 |

gt 50

-M _

gt 50

gt 20

gt 10

gt 50

degC

degC bar

3 m

degC

A0 6

AO 7

MDAC 2

MDAC 3

MDAC 1

MDAC 5

MDAC 6

A0 1

A0 0

MDAC 10

MDAC 11

MDAC 12

MDAC 7

1sgt4samp33

s amp lt 3 oslash i ^

SI H

F I I E n r i MMENOSCLSHODEL MARTS 7 1 S SCKUOWR OC-HOOCL K raquo RADIUS DCLIUG H INraquo VIlaquo bull ltbullgt NULP laquoaftlN5M IC 1MB VIA MK1) HULr SMaAIN9 m gt T lt n i w c L gt m raquo T u a T c f t f r c uo rm MltgtltMltlgtMlt2gtAO(3gtMlt4AO(9gt bullULF t M t raquo M S M M 3 M laquo 9 laquo MIN IMfeMft 29laquo 2 M i M raquo a M TMMMIMM M ( laquo MMPRVMKMPT SIlaquoML DIlt7)

MUL 1KUgtKltllgtCUlgtDlttlgtTltUgt0ltltgt bullML K U raquo M M LLCKA-N

M m KU M MC KV 4C99 M t M 2 M K laquo MT M C ftVK Mgt 014 IS J M MTM LCftKtftOUCUrtOCACCAS IS 4 laquo bull MUH flVS 1419 M M MVt-IVtMM 1 M M 1 T M l t O M

gtMCK(tPllaquolaquoCnKKLCAgtgtl CC

gtIlaquoMVVMUZ41 gt (2laquoJ- l raquo M L gt bull-laquo

MKHO ttMX- raquo

LOES LIONIttQSSVSTEHET DO 45 J-1 10 FmdashAltJ+11gtA(J2gt fl(J+llt2gtgtAltJl2gtFACJj3gt 0ltJraquo1gtraquoDltJ1gtFDltJgt TltllgtgtbltllgtRlt112gt OD 90 bull10 Fa-Altll-J3gtAltL2-J 2gt 6lt11-Jgt-Dltli-J)+FDC12-J) Tltll-Jgt-oslashltli-JgtAltll-J2gt TUQgtltTlt10)-TltllgtgtZ0CAKC10gt+TCilgt

UDREON OUTPUT VARIAOLE 00 UPI At S TH-Tlt0gt 42raquoltTlt7)-Tlt0gtgt 0CraquoKUl)laquoCTltUgt-TCgt 0lt1)-CTlt1)-1S00gt1laquo00 OC2gtOH-1Mlaquogt9M 0lt3gtgtltTlt10gt-900gt25laquo 0lt4raquoltTUQ-999)29t 0lt9gtgtltTltUgt-raquo0gt100 0laquogtgtltOC-2SOgt25 DO 95 Jl-laquo CALL ANM2 J - l 0lt Jgt laquo 0)

M0P1L0UTPUT CALL AIltt0lt17tgt IF ltLgt 20 20 CALL RNI(9I0110gt UR1TK4 100) ltTlt Jgt UX 10) TR TUG TltUgt OC CALL A N I O i i l l laquo ) 00 TO 30 F0ftHATltlH91tF7 1gt IH - 2JF7 1 3JCF7 U

k-9MMMraquoltT^M0gtgt

H M f i ^ t w i m E-

100

APPENDIX H

Program listing and analog connections for the detailed pres-

suriser model

It MO

Egt-A raquo

DIZ

ampbull AO__

amp-i

reg- SO

if

so o

- IT Jj

wool f ISafer stu-ati 01

Uoslashf t bull Steam mtu-ati

uM m

1NMKS M M

DT-V HUK h u l HMM M M -n n

M S -

KRFSP

KMSP

KHFS

KHM

KMF1P

gtHlaquoW

K W H

I M M

a v M P C M bull I V K M V

ZMQCK 1 raquoLOCK 3 M MTftCCLLKt F 1 F 37 bull F V 2 3 F 1 4 9 F 1laquo r 4 F - 4 7 raquo raquo M - 3 F - 4 2 C M 7 F r s 433 F 9 B3223K-3 F - bull - C 4 l 3 F laquo7 M raquo F - 2 I 2 3 3 M - laquo F 1 M 2 M C - 3 F - laquo 1391C F 4 1C27 F 1 raquo 4 M 4 C - laquo F - 7 2 3 3 4 1 - 4 F f raquo 9 9 4 C - 2 F - 3 laquo M raquo raquo F 2 3 C 9 4 U - C F J 3 4 W 7 C - 3 P i raquo99977 F - 1 3 M 1 M - S F 1 739C3C-3 t 2 7 M M 7 F 2 5 2 M M - 7 bull - 7 1 4 3 1 - 3

F r m n - i 9 - 3 7C720C- F i 4 2 U K - F - bull - 2 U 4 M C - 3 F bull l t U T C - 3 F - 1 S M S laquo F 4 1 M 2 9 I 3 p bull j a M M f ] V 0 C 1 I 3 r - 1 74C3 F - t 7

r l u r bull raquos F U V F laquo

r a F SM 4

Cf F M M H P NWR HACTN1H6

raquoTM m KcrrcT M W V M M O V f M f H M S T A L WWf-VACO V M M K W M I U T VftfG 2 laquo 4 M 1KMAFMCTM P UO M 4 0 M raquo0 VF M 4 laquo raquo M l HK F 4 M

r raquo M429 raquoo UK r U M M 4 4 V 1 M 00 Mt F raquo M 4 t 4 laquo V 2 raquoO Q r U K laquo M 2 laquoo M M C M lt r a - l F 2 - gt F 4 t F - F 4 M - 4 laquo M gt M U L lt W J laquo raquo bull 0 raquo OK OM HKO HKK HKH H t raquo UfcH UKlaquo H l bull gt M U L ltP f VT W r W HC Ht UK H l U l f U R laquo I M M lt bull I W bull $ ROJP HTS HOS HFlaquo M W HQ$Fgt

L lt W H H r F M M | H m H M M H I t F R a gt ltlaquoampbull HM laquoMIUgt bull lt M K laquo f laquo I T TT HIST UIMgt O M I I gt

FH2

r i t t n

M I I OT

stio oT M M M T I R K K Q M I M MOL HOF M F 2 P MOL ROOS KROS J p MQLRFMKRFMltJP bull P 0 L W K R 0 I P 3 P M D L H F I K H F S 2 P bull fOL HOSKMS3 rgt bullPOLHFP KMFSP 2 P MOL KOIF KHCST 3- P bullP0LRFHXRFH2 Hr bullFOL H H KftQH 1 HO bullPMRraquoKRraquo1H0 bullCML HF-HFtRPH+ROPS bull KF bullCML H0-H0SR0HR00Si fcO KLM0I-M7raquolaquoHF0 bullCM HO-HOSCPQ XI F-PtDT$P-pTVXiOTOV bullCM KMV OOVCV t TVP bull I R I O N I H Q MF HV TUJTRHO STMTF F L M M l j J t t FUlti bullVRHD H M T U T bullCMF-PlaquoRFSrlaquoVF-HSUC-HfROFSVFP JB 01 V M O UHRKTTIT bullCMHFF-raquoRFHX1RPraquoRFRX1VF-WIraquoMCRF VFP F L M M I J J I R OUHt OslashRHP M I T T I T bull C M R0MraquoVFPHI+HK-HC-JRVGROSPPP JR FH2 DMP umirrrr bull O L V0N0P0H X I bull C M ROlaquoVFPHt+MK-MR-XWQRM F MueHftU OfftlONINlaquo F L M Mi l JOT O J F C L A J F S T A HIP FLM FMlaquo rmt VWtP M f TTf T bull C M R0FSHFP-F01PPraquoVF bull XI bull C M HHl -HFJlaquoJMI^+0-XJ^raMt F2 JOI 3iFCLfl jFSTK UCiFSTA fM Jlaquo 02 V M W UHAKTTKT bull C R L H F - H H 1 H I P X I H F - H F H t - X t X I bullCML PPVF4FM0Xt VF raquoF HFP FLOA 0HIgtJ IQ OUH2 0RHP M I TTfT bullCM raquo00|PMflSP-FlaquoiPPlaquoVOgtXl bullCMH0l -HUKHK+Xlgt6SVHFa JQI 3 iFCLRgtFITf l HCJF9TR CHI tf 33 P M P UMETTtT bullCML H0-HWOHK X I H 0 S - H G U I 1 X I bullCML PFV0kF l X l -Q0VV0 f t0lt H6P STMTP FLDH I H X 1 2 -KO rnx sinmr FLOR FRlJJMI N I D I bullCMLHFPlaquo0T HF gt HF FSUO HFSJLT PHO bull C M H F f H r gt F H I FLOR OH I JMI N l raquo

bull C M HOFlaquoOTHGHG SUraquo HOS-JOT DPPV bull C M HOS-HGGHI SUMraquoC6N OClTft F- OS VF bullCM- PPraquoDTlaquoP bull C M V F P laquo M I V F bull C M V-VF WO

bull C M TVPDTOTV bullEREON RESULERINGS INPUT VfiBlf^LE bull C M - bull - - bull raquo JOT +3FCLM bull C M bullWE0raquoO FSUP OHJLC 4 F I D OB FSTR 0 bull C M P-Praquo-klaquoD bullIOT 3 i FCLR KM IKKWClaquo-HK FSIM) WCHiJLE bull4iFLDPI- MKH FSTR UK bullCMP- -M8Cgt J U laquo 3 i F C U k J R +3FLWt URHiFSTA UK F L M H I S T J J C laquo yiRR F L M TTtJLE F4UD F S l raquo copyT FST TT JQT FLUD F L M MMiFSTA H I F L M TT laquo T H1RM F L M H I R P i n C F L raquo F L M M U I F N E amp F S T f l M U 1 F L M WtlTiFSTft TT V L M F l i F S T laquo UIRP F L M TT F S W M i FSTlaquo TT F L M M M I J F M O M HI J M UM STMtTV FLMt raquo1 ran PMMMW IHM1laquo2 JA POP UBLMS VMIMME raquo bull bull F I X laquo P P laquo S P O V f t bullFIX t VF VFfc SVF OVM bull f X 2 M I raquo S U t 0 V 2 bull F I X HC M b WHO bull F I X 4 HR MK^ laquo V M laquoF I K S m fttft OVHS bull F I X laquo bull S t Q V M bull F 1 X r F F S P F O V H r

OVrtj 0VA3 0VA4

ovns ovne OVA7

TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAPlaquo TRAP

2 1 4 5 7

lMXraquoraquogtraquoi FOK VMraquo MKTKIMlaquo

I M X M l k - 1 PMt M K P NUtTHIMlaquo

lt sect

I A O r t

c a bulla i -

c raquo r+ Q

TR2lt4raquogt TS(2Bgt ALF12raquogtT[X21gt

I l t 119 12

raquoIMENS1OM T P lt 4 ) r R l lt 4 laquo gt DIMENSION DTR1(4laquogt R I M I C L I LFLRR

DATA AS AP AR AF AD3 16 t 8 3 5 4 6 2 9 6 8 7 DATA L C L R L F D Z 1 1 1 - 2 7 2 5 2 725 5 8 5 5 DATA OSOPOR237 2 1 laquo 2 2 3 DATA VR-VEVFLVFMVDO V P I 1 2 6 7 5 1 8 8 - 7 8 S 4 4 3 7 RATA M P DESDEDOR 0197 raquo 4 3 laquo 13laquo raquo 9 1 2 7 DRTR 8HCRHLRR CPR4 raquo t 49 814E-3 9 4 DR1R S P C D T 1 S bull raquo 3 DRTR H P - C L T P I T F I laquo 8 t J MERN VRLUE OF ALFA IH RISERUSED FOR HINOR IHPORTANT TERMS DRTR RLFtf l 3

C8RraquoLRROR9R COP- laquo 3 E - J 0 P C D E P + 2 - A P 8gt C 0 S 1 - K E - 3 0 S ( D E S + 2laquoS+ 8gt CQS2-1 raquo2euro-3OS O S A A A Oslash A S LCD-LC-MlaquoA$ LPO-lPRDVRF LRD-LRADAR VIR-ALFRHVR+VE 3VP-VFL+VFH+VDOltl-ALFRngtVR VROAS-VRAS F M - M 2 0 Z laquo 4 2 5 lt D C S raquo L 2gt FK2- bull 9 2 2 L C laquo 4 2 3 lt D E D l 2gt

K M IC VALUES M A D ( 9 1 laquo 1 gt T P T R i T t 2 T$ TO ALF P PP US Xfi RL FR VD T P l TPU UPCLgtTPI TF1 FORMAT ltK13- O

M A D M I N INPUT VRfi lMELS HRITf lt 4 H S gt Plaquo4HfA1 ( t M - U P C L T P I T F I ) MHO (laquo 12$gtMPMCLNTPtMTF]N M M S T f R I N P l M T O ltbullgt OR RANPINTERVAL (HUHOER OF DTgt NR1TI ( laquo 1 2 lt gt M M laquo - 9 gt N T N i i n i

raquoCL-ltCLH-CLgtNT raquoTPIltTP1M~TPIgtNT raquo T F I - lt T F | l t ~ T F I gt N T

M M COHPUTIMt MRgt OUTPUT INTERVALS (NUURER OF OUTPUTS AM ST DT PER OUTPUTgt H A I T I ( 4 1 1 3 ) PMHtftT C M a F L N lt X X X gt - gt

gt lt 4 4 3 gt N mdash C IJgt

M S M K1 H M r n L - i R |F ltbullgtbull M t 2 laquo

TP1-TPIDTPI TFJ-TF I DTF I NT-MT-1

CRLCULRTE MATER-STEfifl PARAMETERS TSH-ltClt- 2 3 I 7 E - S P 247CE-J) P- 079614 gtbull imigtFl37 S IF ltltP-PC)raquo(P-PCgt- laquo 1 gt 2 2 ( I PClaquoP HFG-lt- R17199TpoundFn-3 2823gtTSflt-199l 2 R F 5 - raquo - 41384E-2TSA+ 54184gtT18922 02 RBS-(lt 141tB7E-4TSR- 7SS23E-2gt tTSHH i 4 8 l gt I S A - l 4 93 DRFSltlt i e i 2 9 E - S T S f l - M S t S E - S x T f f t 29584S + 1 Sf i - j l 114 DRGS-lt 14787E-4raquoTSfl - 59817E-2gtraquoTSft i 892 D H F 5 - lt ( - laquo4t76E-5TSR+ 3 e 7 6 7 E - 2 ) T S R - t 712 lgtTSH l t e 65 D H G S - U - 23i42E-STSFl+ 2ee24E-2gtTSA- 63723gtTpoundfi64 714 CP-Clt 57419E-raquoraquoTSfi - J1931E-egtTpoundf i Eacutei417E-4)-TSfl- 2 pound 5 5 pound E - CiASraquoRFSDT C2-HF0RGS ilaquo60 C3-lt R6SraquoampMQSHFGDR0S)SIlaquolaquolaquo C4-RFSDHFS ielaquoe CC-DRQSRFS C7-DRFSRFS C8-RGSRFS RC1raquoRF5DHFSHFQ RC2-VERraquo(-iee+RflStgtHQSgtHFG HS2gtCQS2EXF(P-43 4)

CRLCULRTE INLET TEHP TO CORE TAUP-VPlRFSHP TP1-ltDTTPITAUPTP1gtltDT+TAUPgt

CALCULATE CHANGES IH TR1 PROFILE HP-COPUP 8 TB-TP1 ASSIGN 225 TO R 00 229 J-140 TAlaquoltTR+TPltJgtgt2 Tl-TRKJ) T2-TR2CJ) 00 TO laquobullbull DTRKJ)- 5laquoDTR CONTINUE

CALCULATE CHANQCS IN TR2 PROFILE HSl-COSiWSmdash raquobull( 873 eei2ltTSft-23ftgtgt TR-TDlt21gt Zmdashl ASSION 215 TO R 00 239 J-128 TA-(Traquo+TSltJgtgt2 Tl-TRKJ) T1D-TRK41-J) T2-TR2CJ) T20 -TR2lt4 i -Jgt 00 TO C l TR2(JgtTR2ltJgt+ 5DTR TR2(41-J)-TR2lt41-Jgt 5DTR0 CONTIHUC

CALCULATE NEH TP AND TR1 PROFILE TR-TP1 ASSION 245 TO R DO 249 J - l 4 laquo TA-ltT I+TPltJgtgt2 Tl-7RKJgt+0TRl(Jgt T2-7R2ltJgt

TPXJWD

Hm Ti no IMgt Aim PROFILE

XOTltRFSVFLgt TDlt lgtltTD( lgt XltHt TSlt2raquogtCPRHI TF IgtVlt l+XraquotMBCPRNIgtgt X-ilS-DTltRFSADOZgt DO 3C9 J2lt 2 1

TDltJgt-ltXTDltJ-lgtTDltJ))ltXi)

Wraquo TIIraquo IH MTURNLODP

4JB 4M 438

999 MO MS

OUTPUT TO TIHf NampT 1aTlaquoMlaquo0T UK ITS (3iagtTPl TRlltlgtTR2ltl)Ttgtlt21gtTTPli Tfti(40gt Tlaquo2lt40)TSlt2gtPKB-Utgt US U6 UFALF(2Bgt FOMMT ltS4F8 I tlaquoX T - F 1 bull 4F3 1 A 2F6 2 laquoF8 1 F8 4gt CONTINUE

FINISHED TO TIM NHlaquoOT UNITE t 410) H W lt442gtI 10 TO (430 I t laquo 130 SM S58gt 1 FORMAT (SIX -STOPSTMTCONT It DBTftPROFUE i 2 3 4 3 bullgt FORMAT ( I l gt STOP

1C MITlaquo OUTPUT UNITE ltlaquo mgtTP T laquo Tt2 T5 TD ALF P PP US XB fiLFR Vamp TP1- TPU HraquoCLTFITFI 04) TO 400

PNQPILE OUTPUT MITE ltT 90gtTP]TP(Z1gtTP1 TPU M 553 J - i M NNITE lt 5laquo9gtALFltJgt TSltJgtTPltJ)rCiUgtTR2(Jgt TKlt41-Jgt rK41-Jgt TPlt41-Jgt CONTINUE FOMHtT lt llaquotF8 18X2F8 132X F6 igt

ltF8-4 7F8 igt

COHMM ROUTINES bullbullltlt- S4Z0)2X-4TR+ raquo24laquoJraquoTlaquo-gt 494gtTA+1740 9 errgtlaquoltlt- M M T E - U - T laquo - bull 7 7 3 K - I I gt T R - 283araquoc-8gtTft + TT403t-SgtTlt 20448E-3gtTA- 42044C-1 VMNNWOT laquoJraquolaquoeacuteHraquolaquoltlt lS5038gt4rA- 7raquotlC-2gtlaquorftraquot 8237gtITA-Tigt laquobulleurobullbullltTl-Tgt Traquo-ltT1INraquoM-OPCPPVTPOgt)(MP62Vgt raquoTClaquo0TC1tN(laquoP-Mgt 00 TO t

8jNCtt4gtltTl-T2gt laquo bull bull lt laquo bull bull (T10-Traquogt tSilaquoNUlT3-TAgt bullfSMSl4gtlt Traquo-Traquogtlaquo T2-TSA gt 19 tS-0S4gtlaquoll

laquoS01laquoltSl(T20-TAgt ojwwsaraquoaao-T$wgtlaquoltT2o-Tsw) I F ltosoa-osoigtti2

If C-XICtX VraquoTraquo raquobullT0t$VM4a^P+ClTSltJ)gtltlSK+Cigt IfF ltltTSraquolaquo3 C13 rtW-TIN)ltTraquo-Vgt

laquo 317438E83 0 313989Elaquo 8 314413E+83 O 3123S2E+B3 e 31152E83 0 310138E+83 oslash 3ee3e+oslash3 e 387472E+83 0 30til93E+03 6 394353E+83 9 383733E+83 8 3B2SeE+e3 8 381437E+83 laquo 3O0363Ee3 8 299384E+03 8 293279E+93 e 297288E03 6 29Eacute330E+03 8293404E+83 A 2943l8E03 293643E+03 8 292811E+83 oslash 292003E+03 B 291227E+8J 8 29047CE+83 8 289731E+03 8 289BS1E83 9 283376E83 0 2B7724E+B3 0287B93EB3 0 286489E+83 82839B3E+B3 8 235339E+03 8284794E+83 9-2S426SE83 0 2837pound1E03 0 28322E83 0 28280BE83 oslash 232344E03 0 28J9B4E83_ 8 307913E403 630laquolaquo84E83 laquo303483E83 0384310E49 8 383167E+83 O 3B2B34E+83 038897ZE+B3 8 99928E83 0 298898EB3 4 297907E03 0 29pound946EB3 0 296814E83 O 295112Eacute+83 B 294239E+83 0 293394E+03 8 292577E+83 8 291787EB3 laquo291B23EB3 0 298285E+B3 8 289372E+83 0 2888S3E83 8 288218E+03 8 28737CE+B3 laquo 286936E+B3 8 286338E+8X

826B392E+83 82CS392E+83 a268392E+B3 8 268392E+B3 a 2C83raquoE+B3 laquo 268352603 8 268392E+83 8 268392683 8268392E+83 0263982E+03 8263982E83 8 263982E+83 8263982E+83 8263982E+83 8283982E+83 8 2E39S2E+B3 a 23982E+B3 B 2C3982E+03 82laquo3982E+83 y 8 2C39S2E493 fd 0 2lt39f2E+03 8263982E+B3 82C3982E483 S 2C3982E+83 8 2S39I2E+93 8283982E+83 8 263982E483 a283902E+83 8 20982E+83 a 263982E+83 8 aaaeaac^ao 8 49183W-83 laquo 11S499E409 8 206234(48 laquo2798011+88 8- 348623E+M 8 3917raquoE80 a 433478E+8 84732141480 8 386192E+M at a 333271E+8laquo 0 S61141E4H 8 584326E+88 9 683248Eraquo0 0624246E+0 I6419881+88 I637312Eacute+08 8 672196E+88 8683083E+88 8690462Eeoslash 8S37897Ea2 p

-8 133338E-83 fi 8 431996E+04 tA

-8 668146E-82 X 8 69S443E+8laquo r 8 616933E+81 J

oslash 281985E+83 - d - 7 ^ 0 423888E+84 gt 8 883480E+81 4 8 319808183 71pound a 2268881483 ^mdash fy

J ta ttraquo t Sea

raquo bull H M bull laquo

inn nnnnun bull raquo bull

ffi ITiTfl i M I i i i i i i | i ii| iii i iii iii iii iii iii iii i u iii iii i iii iii i i iii iii iii i ih Ui 5s s SHT ss UiUi Ui S5 |

ist ais Sis | f a Sis Ui Ui Ui Ui Ui | |s |

J I raquo s s p m ^ n n i

raquogt gt N M

S S 5 S i

bull n

yl ll i SSI

sss ss5

s s

laquoi iig KM laquol raquo i raquoS I iii iii iii iii iii iii aring

IM 5pound II =i- iit lli Ui

ului ul ni mm

m m m S S 2 S S S 8 ft fi jt fgt bull fi 3 M W M M N M M H T C M M M M W N M N n M l H

bull raquo r

bull bull bull bull - bull

iii iii iii iii tit NNfl A M laquo HNrl HHD MMlaquot

iii iii iii iii iii raquog laquog laquoraquog -raquog laquoraquog Ur Ui Ui Ui Ui bull laquo bull S n S 8 ~5

SS Ut Ut il IIlaquo

iitHiiittttttittitii M M M M M M N M M M M W M M M M M M M laquo

iiiiiiiiiiiiiiiiiiii ummmnmm

bull bull m raquo m m bull- bullgtraquobull laquo)raquo bull

ftttlll bull

- 112 -

APPENDIX K

List of f i l e s on DEC-tape PNR DEC74

TRPE PWR OEC 1974

FPL FP FLAP LIBRARV FILE DECS SVSTEH SL FP FLOP LIBRRRV FILE HVBAL SVSTEM MSL FP FLAP SVHBOL TABLE EXTENSION NLHL 8BAL LIBRARV FILE HVBAL SVSTEn

Pi FT PI LD P3 FT P3 LD

TEN-SHELL SEKTION FUEL MODEL DO IN LOAD FORMAT STEAM GENERATOR MODEL DO IN LOAD FORMAT

P318B IC IC-FILE FOR DO 188X LOAD

P2 88 PRESSURISER MODEL P2 SV DO IN SAVE FORMAT

PUR 8B PHR1 SB PUR2 88 PUR3 88 PUR SV PUR IC

PUR

IC-

PLfiMT MODEL DO DO DO DO

FILE FOR DO

PDP8 CODE SECTION FPP CODE SECTION 1

DO DO 2 DO DO 3

IN SAVE FORMAT

PUR ST STATIK DATA FOR DO PUR SP POTENTIOMETER FILE FOR DO

1216 LABEL FPL SL HSL ML PI PI P3 P3 P3198 P2 P2 PWR PMR1 PMR2 PUR3 PWR PUR PUR PUR

74

FP FP FP ML FT LD FT LD IC 8B SV 8B 86 8B 8B SV IC

ST SP

ltEHPTVgt 343 FREF

2 56 26 2 31

7 15 17 19 8 18 14 33 16 26 28 37 3 38 5

343

121674 61473 182974 21274 111574 121874 121874 121874 121874 121874 12474 12474 121 74 12674 121174 112374 121174 121674 121674 121174

BLOCKS

- 113 -

APPENDIX L

Example of logging of main variables for the power plant model

FLUX 1 2 3 3 1

587 E+813 862 E+814 592 E+814 487 E+814 416 E+813

3 313 E+614 3 491 E+614 3 158 E+814

3 881 E+814 3397 E814 2595 E+814

3 978 E+814 3 586 E+814 1 815 E814

3 888 E814 3 689 E+814

NUKLEAR EFFEKT I 128 3 192 7 192 2 198 2

224 8 283 9

228 8 1959

218 4 1759

2849 144 1

198 8 188 3

URAN TENP 474 5 611 8 632 5 648 6

6793 6635

6923 658 5

675 2 6142

651 3 5563

642 5 479 4

KAPSEL TEMP 295 9 386 4 325 1 328 5

3131 3319

3178 333 7

3191 3348

3288 3325

3238 329 2

VAND TEMP 2817 283 5 286 5 385 2 387 9 3189

289 9 318 7

2933 3133

2966 3136

299 3 317 5

382 4 3188

VAND TAETHED 7682 7684 7558 7175 7114

6838

7492

7833 7424 6987

7338

6921 7294 6863

7236

6823

VOID I X 88 11

81

13 82 28

83 27

83

36 ec 44

88 92

FASTE KONTROLSTAENOER 888 888 188 266 166 156 666

REMKTOft fFFEKT 3967 t RIO JT6KB POS 9112 RE6 STWO VM6T 3966 BOlaquo K6NCCNTMUM t PFU 14467 NtHMfff TVK 14664 PftlMCt MCTNIRWTtm s IS t

tmnm Mraquo4t _ _ DM bulltlMTMM I K$ m

LP

EL ttftt f m-

+ -

Page 18: User manual for teh PWR-PLASIM model
Page 19: User manual for teh PWR-PLASIM model
Page 20: User manual for teh PWR-PLASIM model
Page 21: User manual for teh PWR-PLASIM model
Page 22: User manual for teh PWR-PLASIM model
Page 23: User manual for teh PWR-PLASIM model
Page 24: User manual for teh PWR-PLASIM model
Page 25: User manual for teh PWR-PLASIM model
Page 26: User manual for teh PWR-PLASIM model
Page 27: User manual for teh PWR-PLASIM model
Page 28: User manual for teh PWR-PLASIM model
Page 29: User manual for teh PWR-PLASIM model
Page 30: User manual for teh PWR-PLASIM model
Page 31: User manual for teh PWR-PLASIM model
Page 32: User manual for teh PWR-PLASIM model
Page 33: User manual for teh PWR-PLASIM model
Page 34: User manual for teh PWR-PLASIM model
Page 35: User manual for teh PWR-PLASIM model
Page 36: User manual for teh PWR-PLASIM model
Page 37: User manual for teh PWR-PLASIM model
Page 38: User manual for teh PWR-PLASIM model
Page 39: User manual for teh PWR-PLASIM model
Page 40: User manual for teh PWR-PLASIM model
Page 41: User manual for teh PWR-PLASIM model
Page 42: User manual for teh PWR-PLASIM model
Page 43: User manual for teh PWR-PLASIM model
Page 44: User manual for teh PWR-PLASIM model
Page 45: User manual for teh PWR-PLASIM model
Page 46: User manual for teh PWR-PLASIM model
Page 47: User manual for teh PWR-PLASIM model
Page 48: User manual for teh PWR-PLASIM model
Page 49: User manual for teh PWR-PLASIM model
Page 50: User manual for teh PWR-PLASIM model
Page 51: User manual for teh PWR-PLASIM model
Page 52: User manual for teh PWR-PLASIM model
Page 53: User manual for teh PWR-PLASIM model
Page 54: User manual for teh PWR-PLASIM model
Page 55: User manual for teh PWR-PLASIM model
Page 56: User manual for teh PWR-PLASIM model
Page 57: User manual for teh PWR-PLASIM model
Page 58: User manual for teh PWR-PLASIM model
Page 59: User manual for teh PWR-PLASIM model