usgs - mineral deposit models (1986 - singer and donald)(ml033560398)

393
L '..~~ ,I C-~~~~~/~ HAROLD E. LEFEYRE Min-eral Deposit Models * * A P P gO p P

Upload: godangshaban

Post on 07-Nov-2014

147 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

L '..~~,I C-~~~~~/~

HAROLD E. LEFEYRE

Min-eral Deposit Models

* * A P P gOp P

Page 2: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Mineral Deposit Models

DENNIS P. COX and DONALD A. SINGER, Editors

U.S. GEOLOGICAL SURVEY BULLETIN 1693

Page 3: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary Owl

U.S. GEOLOGICAL SURVEYDallas L. Peck, Director

Reprinted 1987

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1986

For sale by theBooks and Open-File Reports SectionU.S. Geological SurveyFederal Center, Box 25425Denver, CO 80225

Library of Congress Cataloging-in-Publication Data

Mineral deposit models.

(U.S. Geological Survey Bulletin 1693)Bibliography1. Ore-deposits. 2. Mines and mineral resources. 1. Cox,Dennis P. II. Singer, Donald A. Ill. Series.QE75.B9 No. 1693 622 s 86-600250ITN2631 1622'.1]

Page 4: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

PREFACE

By Paul B. Barton

Conceptual models that describe the essentialcharacteristics of groups of similar deposits have along and useful role in geology. The first models wereundoubtedly empirical attempts to extend previousexperiences into future success. An example might bethe seeking of additional gold nuggets in a stream inwhich one nugget had already been found, and theextension of that model to include other streams aswell. Emphasis within the U.S. Geological Survey onthe synthesis of mineral deposit models (as contrastedwith a long line of descriptive and genetic studies ofspecific ore deposits) began with the collation by R. L.Erickson (1982) of 48 models. The 85 descriptivedeposit models and 60 grade-tonnage models presentedhere are the culmination of a process that began in1983 as part of the USGS-INGEOMINAS CooperativeMineral Resource Assessment of Colombia (Hodges andothers, 1984). Effective cooperation on this projectrequired that U.S. and Colombian geologists agree on aclassification of mineral deposits, and effectiveresource assessment of such a broad region requiredthat grade-tonnage models be created for a largenumber of mineral deposit types. A concise one-pageformat for descriptive models was drawn up by DennisCox, Donald Singer, and Byron Berger, and Singerdevised a graphical way of presenting grade andtonnage data. Sixty-five descriptive models (Cox,1983a and b) and 37 grade-tonnage models (Singer andMosier, 1983a and b) were applied to the Colombianproject. Because interest in these models ranged farbeyond the Colombian activity, it was decided toenlarge the number of models and to include otheraspects of mineral deposit modeling. Our colleagues inthe Geological Survey of Canada have preceded thiseffort by publishing a superb compilation of models ofdeposits important in Canada (Eckstrand, 1984). Notsurprisingly, our models converge quite well, and inseveral cases we have drawn freely from the Canadianpublication.

It is a well-known axiom in industry that anyexcuse for drilling may find ore; that is, successfulexploration can be carried out even though it isfounded upon an erroneous model. Examples includesuccessful exploration based on supposed (but nowproven erroneous) structural controls for volcanogenicmassive sulfide deposits in eastern Canada and forcarbonate-hosted zinc in east Tennessee. As the olderideas have been replaced, additional ore has beenfound with today's presumably more valid models.

Although models have been with us forcenturies, until recently they have been almostuniversally incomplete when descriptive andunreasonably speculative when genetic. What is newtoday is that, although we must admit that all are

incomplete in some degree, models can be put torigorous tests that screen out many of our heretoforesacred dogmas of mineral formation. Examples arelegion, but to cite a few: (I) fluid-inclusion studieshave shown conclusively that the classic MississippiValley-type ores cannot have originated from eithersyngenetic processes or unmodified surface waters; (2)epithermal base- and precious-metal ores have beenproved (by stable-isotope studies) to have formedthrough the action of meteoric waters constitutingfossil geothermal systems; and (3) field and laboratoryinvestigations clearly show that volcanogenic massivesulfides are the products of syngenetic, submarine,exhalative processes, not epigenetic replacement ofsedimentary or volcanic rocks. Economic geology hasevolved quietly from an "occult art" to a respectablescience as the speculative models have been put todefinitive tests.

Several fundamental problems that may have noimmediate answers revolve around these questions: Isthere a proper number of models? Must each depositfit into one, and only one, pigeon-hole? Who decides(and when?) that a model is correct and reasonablycomplete? Is a model ever truly complete? Howcomplete need a model be to be useful?

In preparing this compilation we had to decidewhether to discuss only those deposits for which thedata were nearly complete and the interpretationsconcordant, or whether to extend coverage to includemany deposits of uncertain affiliation, whosecharacteristics were still subjects for major debate.This compilation errs on the side of scientificoptimism; it includes as many deposit types aspossible, even at the risk of lumping or splitting typesincorrectly. Nevertheless, quite a few types ofdeposits have not been incorporated.

The organization of the models constitutes aclassification of deposits. The arrangement usedemphasizes easy access to the models by focusing onhost-rock lithology and tectonic setting, the featuresmost apparent to the geologist preparing a map. Thesystem is nearly parallel to a genetic arrangement forsyngenetic ores, but it diverges strongly for theepigenetic where it creates some strangejuxtapositions of deposit types. Possible ambiguitiesare accommodated, at least in part, by using multipleentries in the master list in table 1.

In considering ways to make the modelcompilation as useful as possible, we have becomeconcerned about ways to enhance the ability of therelatively inexperienced geoscientist to find themodel(s) applicable to his or her observations.Therefore, we have included extensive tables ofattributes in which the appropriate models areidentified.

Our most important immediate goal is toprovide assistance to those persons engaged in mineralresource assessment or exploration. An important

III

Page 5: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

secondary goal is to upgrade the quality of our modelcompilation by encouraging (or provoking?) input fromthose whose experience has not yet been captured inthe existing models. Another target is to identifyspecific research needs whose study is particularlypertinent to the advance of the science. We havechosen to err on the side of redundancy at the expenseof neatness, believing that our collectiveunderstanding is still too incomplete to rule out somealternative interpretations. Thus we almost certainly

have set up as separate models some types that willultimately be blended into one, and there surely aregroupings established here that will subsequently bedivided. We also recognize that significant gaps incoverage still exist. Even at this stage- the modelcompilation is still experimental in several aspects andcontinues to evolve. The product in hand can be usefultoday. We anticipate future editions, versions, andrevisions, and we encourage suggestions for futureimprovements.

IV

Page 6: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

CONTENTS

Preface, by Paul B. Barton III

Introduction, by Dennis P. Cox, Paul B. Barton, and Donald A. Singer 1

Deposit models

Deposits related to mafic and ultramafic intrusions in stable environments

1 Descriptive model of Stillwater Ni-Cu, by Norman J Page 11

2a Descriptive model of Bushveld Cr, by Norman J Page 13

2b Descriptive model of Merensky Reef PGE, by Norman J Page 14

3 Descriptive model of Bushveld Fe-Ti-V, by Norman J Page 15

Deposits related to mafic-ultramafic rocks in unstable areas

5a Descriptive model of Duluth Cu-Ni-PGE, by Norman J Page 16

5b Descriptive model of Noril'sk Cu-Ni-PGE, by Norman J Page 17

6a Descriptive model of komatiitic Ni-Cu, by Norman J Page 18

Grade and tonnage model of komatiitic Ni-Cu, by Donald A. Singer, Norman J Page, and

W. David Menzie 18

6b Descriptive model of dunitic Ni-Cu, by Norman J Page 24

Grade and tonnage model of dunitic Ni-Cu, by Donald A. Singer and Norman J Page 24

7a Descriptive model of synorogenic-synvolcanic Ni-Cu, by Norman J Page 28

Grade and tonnage model of synorogenic-synvolcanic Ni-Cu, by Donald A. Singer,

Norman J Page, and W. David Menzie 28

7b Descriptive model of anorthosite Ti, by Eric R. Force 32

8a Descriptive model of podiform chromite, by John P. Albers 34

Grade and tonnage model of minor podiform chromite, by Donald A. Singer and

Norman J Page 34

8b Grade and tonnage model of major podiform chromite, by Donald A. Singer, Norman J Page,

and Bruce B. Lipin 38

Bc Descriptive model of Limassol Forest Co-Ni, by Norman J Page 45

8d Descriptive model of serpentine-hosted asbestos, by Norman J Page 46

Grade and tonnage model of serpentine-hosted asbestos, by Greta J. Orris 46

9 Descriptive model of Alaskan PGE, by Norman J Page and Floyd Gray 49

Deposits related to alkaline intrusions

10 Descriptive model of carbonatite deposits, by Donald A. Singer 51

Grade and tonnage model of carbonatite deposits, by Donald A. Singer 52

12 Descriptive model of diamond pipes, by Dennis P. Cox 54

Deposits related to felsic phanerocrystalline intrusive rocks

14a Descriptive model of W skarn deposits, by Dennis P. Cox 55

Grade and tonnage model of W skarn deposits, by W. David Menzie and Gail M. Jones 55

14b Descriptive model of Sn skarn deposits, by Bruce L. Reed and Dennis P. Cox 58

Grade and tonnage model of Sn skarn deposits, by W. David Menzie and Bruce L. Reed 58

14c Descriptive model of replacement Sn, by Bruce L. Reed 61

V

Page 7: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Grade and tonnage model of replacement Sn, by W. David Menzie and Bruce L. Reed 62

15a Descriptive model of W veins, by Dennis P. Cox and William C. Bagby 64

Grade and tonnage model of W veins, by Gail M. Jones and W. David Menzie 65

15b Descriptive model of Sn veins, by Bruce L. Reed 67

Grade and tonnage model of Sn veins, by W. David Menzie and Bruce L. Reed 67

15c Descriptive model of Sn greisen deposits, by Bruce L. Reed 70

Grade and tonnage model of Sn greisen deposits, by W. David Menzie and Bruce L. Reed 71

Deposits related to felsic porphyroaphanitic intrusions

16 Descriptive model of Climax Mo deposits, by Stephen D. Ludington 73

Grade and tonnage model of Climax Mo deposits, by Donald A. Singer, Ted G. Theodore, and

Dan L. Mosier 73

17 Descriptive model of porphyry Cu, by Dennis P. Cox 76

Grade and tonnage model of porphyry Cu, by Donald A. Singer, Dan L. Mosier, and

Dennis P. Cox 77

18a Descriptive model of porphyry Cu, skarn-related deposits, by Dennis P. Cox 82

Grade and tonnage model of porphyry Cu, skarn-related deposits, by Donald A. Singer 82

18b Descriptive model of Cu skarn deposits, by Dennis P. Cox and Ted G. Theodore 86

Grade and tonnage model of Cu skarn deposits, by Gail M. Jones and W. David Menzie 86

18c Descriptive model of Zn-Pb skarn deposits, by Dennis P. Cox 90

Grade and tonnage model of Zn-Pb skarn deposits, by Dan L. Mosier 90

18d Descriptive model of Fe skarn deposits, by Dennis P. Cox 94

Grade and tonnage model of Fe skarn deposits, by Dan L. Mosier and W. David Menzie 94

18e Descriptive model of carbonate-hosted asbestos, by Chester T. Wrucke Jr. and

Andrew F. Shride 98

19a Descriptive model of polymetallic replacement deposits, by Hal T. Morris 99

Grade and tonnage model polymetallic replacement deposits, by Dan L. Mosier,

Hal T. Morris, and Donald A. Singer 101

19b Descriptive model of replacement Mn, by Dan L. Mosier 105

Grade and tonnage model of replacement Mn, by Dan L. Mosier 105

20a Descriptive model of porphyry Sn, by Bruce L. Reed 108

20b Descriptive model of Sn-polymetallic veins, by Yukio Togashi 109

20c Descriptive model of porphyry Cu-Au, by Dennis P. Cox 110

Grade and tonnage model of porphyry Cu-Au, by Donald A. Singer and Dennis P. Cox 110

21a Descriptive model of porphyry Cu-Mo, by Dennis P. Cox 115

Grade and tonnage model of porphyry Cu-Mo, by Donald A. Singer, Dennis P. Cox, and

Dan L. Mosier 116

21b Descriptive model of porphyry Mo, low-F, by Ted G. Theodore 120

Grade and tonnage model porphyry Mo, low-F, by W. David Menzie and Ted G. Theodore 120

22a Descriptive model of volcanic-hosted Cu-As-Sb, by Dennis P. Cox 123

22b Descriptive model of Au-Ag-Te veins, by Dennis P. Cox and William C. Bagby 124

22c Descriptive model of polymetallic veins, by Dennis P. Cox 125

Grade and tonnage model polymetallic veins, by James D. Bliss and Dennis P. Cox 125

i

VI

Page 8: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Deposits related to subaerial mafic extrusive rocks

23 Descriptive model of basaltic Cu, by Dennis P. Cox 130

Deposits related to marine maflc extrusive rocks

24a Descriptive model of Cyprus massive sulfide, by Donald A. Singer 131

Grade and tonnage model of Cyprus massive sulfide, by Donald A. Singer and

Dan L. Mosier 131

24b Descriptive model of Besshi massive sulfide, by Dennis P. Cox 136

Grade and tonnage model of Besshi massive sulfide, by Donald A. Singer 136

24c Descriptive model of voloanogenic Mn, by Randolph A. Koski 139

Grade and tonnage model of volcanogenic Mn, by Dan L. Mosier 139

24d DescriptivIe model of Blackbird Co-Cu, by Robert L. Earhart 142

Deposits related to subaerial felsic to mafic extrusive rocks

25a Descriptive model of hot-spring Au-Ag, by Byron R. Berger 143

25b Descriptive model of Creede epithermal veins, by Dan L. Mosier, Takeo Sato, Norman J Page,

Donald A. Singer, and Byron R. Berger 145

Grade and tonnage model of Creede epithermal veins, by Dan L. Mosier, Takeo Sato, and

Donald A. Singer 146

25c Descriptive model of Comstock epithermal veins, by Dan L. Mosier, Donald A. Singer, and

Byron R. Berger 150

Grade and tonnage model of Comstock epithermal veins, by Dan L. Mosier, Takeo Sato, and

Donald A. Singer 151

25d Descriptive model of Bado epithermal veins, by Dan L. Mosier, Byron R. Berger, and

Donald A. Singer 154

Grade and tonnage model of Sado epithermal veins, by Dan L. Mosier and Takeo Sato 155

25e Descriptive model of epithermal quartz-alunite Au, by Byron R. Berger 158

Grade and tonnage model of epithermal quartz-alunite Au, by Dan L. Mosier and

W. David Nenzie 159

25f Descriptive model of volcanogenic U, by William C. Bagby 162

Grade and tonnage model of volcanogenic U, by Dan L. Mosier 162

25g Descriptive model of epithermal Mn, by Dan L. Nosier 165

Grade and tonnage model of epithermal Mn, by Dan L. Mosier 166

25h Descriptive model of rhyolite-hosted Sn, by Bruce L. Reed, Wendell Duffield,

Stephen D. Ludington, Charles H. Maxwell, and Donald H. Richter 168

Grade and tonnage model rhyolite-hosted Sn, by Donald A. Singer and Dan L. Mosier 169

25i Descriptive model of volcanic-hosted magnetite, by Dennis P. Cox 172

Grade and tonnage model volcanic-hosted magnetite, by Dan L. Mosier 172

26a Descriptive model of carbonate-hosted Au-Ag, by Byron R. Berger 175

Grade and tonnage model carbonate-hosted Au-Ag, by William C. Bagby, W. David Menzie,

Dan L. Mosier, and Donald A. Singer 175

27a Descriptive model of hot-spring Hg, by James J. Rytuba 178

Grade and tonnage model of hot-spring Hg by James J. Rytuba 178

27b Descriptive model of Almaden Hg, by James J. Rytuba 180

VII

Page 9: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

27c Descriptive model of silica-carbonate Hg, by James J. Rytuba 181

Grade and tonnage model of silica-carbonate Hg, by James J. Rytuba and

Simon M. Cargill 181

27d Descriptive model of simple Sb deposits, by James D. Bliss and Greta J. Orris 183

Grade and tonnage model of simple Sb deposits, by James D. Bliss and Greta J. Orris 184

27e Grade and tonnage model of disseminated Sb deposits by James D. Bliss and

Greta J. Orris 187

Deposits related to marine felsic to mafic extrusive rocks

28a Descriptive model of kuroko massive sulfide, by Donald A. Singer 189

Grade and tonnage model kuroko massive sulfide, by Donald A. Singer and Dan L. Mosier 190

28b Descriptive model of Algoma Fe, by William F. Cannon 198

Deposits in elastic sedimentary rocks

29a Descriptive model of quartz pebble conglomerate Au-U, by Dennis P. Cox 199

29b Descriptive model of Olympic Dam Cu-U-Au, by Dennis P. Cox 200

30a Descriptive model of sandstone-hosted Pb-Zn, by Joseph A. Briskey 201

Grade and tonnage model of sandstone-hosted Pb-Zn, by Dan L. Mosier 202

30b Descriptive model of sediment-hosted Cu, by Dennis P. Cox 205

Grade and tonnage model of sediment-hosted Cu, by Dan L. Mosier, Donald A. Singer, and

Dennis P. Cox 206

30c Descriptive model of sandstone U, by Christine E. Turner-Peterson and

Carroll A. Hodges 209

31a Descriptive model of sedimentary exhalative Zn-Pb, by Joseph A. Briskey 211

Grade and tonnage model of sedimentary exhalative Zn-Pb, by W. David Menzie and

Dan L. Mosier 212

31b Descriptive model of bedded barite, by Greta J. Orris 216

Grade and tonnage model of bedded barite, by Greta J. Orris 216

31c Descriptive model of emerald veins, by Dennis P. Cox 219

Deposits in carbonate rocks

32a Descriptive model of southeast Missouri Pb-Zn, by Joseph A. Briskey 220

32b Descriptive model of Appalachian Zn, by Joseph A. Briskey 222

Grade and tonnage model of southeast Missouri Pb-Zn and Appalachian Zn deposits, by

Dan L. Mosier and Joseph A. Briskey 224

32c Descriptive model of Kipushi Cu-Pb-Zn, by Dennis P. Cox and Lawrence R. Bernstein 227

Chemical-sedimentary deposits

34a Descriptive model of Superior Fe, by William F. Cannon 228

Grade and tonnage model of Superior Fe and Algoma Fe deposits, by Dan L. Mosier and

Donald A. Singer 228

34b Descriptive model of sedimentary Mn, by William F. Cannon and Eric R. Force 231

Grade and tonnage model of sedimentary Mn, by Dan L. Mosier 231

34c Descriptive model of upwelling type phosphate deposits, by Dan L. Mosier 234

VIII

Page 10: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Grade and tonnage

34d Descriptive model

Grade and tonnage

model of upwelling type phosphate deposits,

of warm-current type phosphate deposits, by

model warm-current type phosphate deposits,

by Dan L. Mosier 234

Dan L. Mosier 237

by Dan L. Mosier 237

Deposits related to regionally metamorphosed rocks

36a Descriptive model of low-sulfide Au-quartz veins, by Byron R. Berger 239

Grade and tonnage model low-sulfide Au-quartz veins, by James D. Bliss 239

36b Descriptive model of Homestake Au, by Byron R. Berger 244

Grade and tonnage model of Homestake Au, by Dan L. Mosier 245

37a Descriptive model of unconformity U-Au, by Richard I. Grauch and Dan. L. Mosier 248

Grade and tonnage model of unconformity U-Au, by Dan L. Mosier 249

37b Descriptive model of gold on flat faults, by Bruce A. Bouley 251

Deposits related to surficial processes and unconformities

38a Descriptive model of lateritic Ni, by Donald A. Singer 252

Grade and tonnage model lateritic Ni, by Donald A. Singer 252

38b Descriptive model of laterite type bauxite deposits, by Sam H. Patterson 255

Grade and tonnage model laterite type bauxite deposits, by Dan L. Mosier 255

38c Descriptive model of karst type bauxite deposits, by Sam H. Patterson 258

Grade and tonnage model karst type bauxite deposits, by Dan L. Mosier 258

39a Descriptive model of placer Au-POE, by Warren E. Yeend 261

Grade and tonnage model of placer Au-PGE, by Greta J. Orris and James D. Bliss 261

39b Descriptive model of placer PGE-Au, by Warren E. Yeend and Norman J Page 265

Grade and tonnage model of placer PGE-Au, by Donald A. Singer and Norman J Page 265

39c Descriptive model of shoreline placer Ti, by Eric R. Force 270

Grade and tonnage model of shoreline placer Ti, by Emil D. Attanasi and

John H. DeYoung, Jr. 270

39d Descriptive model of diamond placers, by Dennis P. Cox 2741

39e Descriptive model of alluvial placer Sn, by Bruce L. Reed 275

References 276

Appendixes

A. Locality abbreviations 291

B. Summary statistics of grade-tonnage models, by Donald A. Singer 293

C. Commodity geochemical index, by Paul B. Barton 303

D. Mineralogical index, by Paul B. Barton 318

E. Index of deposits 349

Ix

Page 11: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

FIGURES

1. Tree diagram showing relationship of broad lithologic-tectonic environments to deposit models 22. Flow sheet showing the evolution of model types 93. Schematic growth patterns for the understanding of some typical genetic model 104. Comparison of the relative levels of understanding of some important model types 105. Diagram of a typical mafic-ultramafic stratiform complex 126. Cartoon cross-section of a typical komatiitic volcanic sedimentary sequence 197. Tonnages of komatiitic Ni-Cu deposits 208. Nickel and gold grades of komatiitic Ni-Cu deposits 219. PGE grades of komatiitic Ni-Cu deposits 2210. Base metal grades among komatiitic Ni-Cu deposits 2311. Tonnages of dunitic Ni-Cu deposits 2612. Nickel grades of dunitic Ni-Cu deposits 2613. PGE grades of dunitic Ni-Cu deposits 2714. By-product grades of dunitic Ni-Cu deposits 2715. Tonnages of synorogenic-synvolcanic Ni-Cu deposits 2916. Nickel grades of synorogenic-synvolcanic Ni-Cu deposits 3017. Copper grades of synorogenic-synvolcanic Ni-Cu deposits 3018. By-product grades of synorogenic-synvolcanic Ni-Cu deposits 3119. Cartoon cross-section of anorthosite ferrodiorite intrusions 3320. Cartoon cross-section of podiform chromite deposits 4021. Tonnages of podiform chromite deposi a typical mafic-ultramafic stratiform complex 4122. Chromite grades of podiform chromite deposits from California and Oregon, U.S.A. 4123. PGE grades of podiform chromite deposits from California and Oregon, U.S.A. 4224. Tonnages of major podiform chromite deposits 4325. Chromite grades of major podiform chromite deposits 4326. PGE grades of major podiform chromite deposits; A, rhodium; B, iridium; C, ruthenium;

D, palladium; E, platinum 4427. Tonnage of serpentine-hosted asbestos deposits 4828. Asbestos grade of serpentine-hosted asbestos deposits 4829. Generalized geologic map of a zoned ultramafic complex 5030. Tonnages of carbonatite deposits 5231. Grades of carbonatite deposits 5332. Tonnages of W skarn deposits 5733. Tungsten grades of W skarn deposits 5734. Cartoon cross section showing relationship between Sn skarn, replacement Sn and Sn vein

deposits to granite intrusions 5935. Tonnages of Sn skarn deposits 6036. Tin grades of Sn skarn deposits 6037. Tonnages of replacement Sn deposits 6338. Tin grades of replacement Sn deposits 6339. Maps and sections of W-vein deposits illustrating mineral and alteration zoning 6540. Tonnages of W vein deposits 6641. Tungsten grades of W vein deposits 6642. Tonnages of Sn vein deposits 6943. Tin grades of Sn vein deposits 6944. Cartoon cross section of a Sn greisen 7145. Tonnages of Sn greisen deposits 7246. Tin grades of Sn greisendeposits 7247. Cartoon cross section of a Climax Mo deposit 7448. Tonnages of Climax Mo deposits 7549. Molybdenum grades of Climax Mo deposits 7550. Cartoon cross section of illustrating a generalized model for porphyry Cu deposits 7951. Tonnages of porphyry Cu deposits 8052. Copper grades of porphyry Cu deposits 8053. By-product grades of porphyry Cu deposits 8154. Tonnages of porphyry Cu-skarn-related deposits 8455. Copper grades of porphyry Cu-skarn-related deposits 8456. By-product grades of porphyry Cu-skarn-related deposits 8557. Cartoon cross section of a Cu skarn deposit 8758. Tonnages of Cu skarn deposits 8859. Copper grades of Cu skarn deposits 8860. Precious metal grades of Cu skarn deposits 8961. Tonnages of Zn-Pb skarn deposits 9162. Zinc grades of Zn-Pb skarn deposits 92

x

Page 12: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

63. Lead grades of Zn-Pb skarn deposits 9264. Silver grades of Zn-Pb skarn deposits 9365. Metal grades of Zn-Pb skarn deposits 9366. Tonnages of Fe skarn deposits 9767. Iron grades of Fe skarn deposits 9768. Generalized map showing metal- and mineral-zoning in a polymetallic replacement deposits 10069. Tonnages of polymetallic replacement deposits 10270. Lead grades of polymetallic replacement deposits 10271. Zinc grades of polymetallic replacement deposits 10372. Copper grades of polymetallic replacement deposits 10373. Silver grades of polymetallic replacement deposits 10474. Gold grades of polymetallic replacement deposits 10475. Tonnages of replacement Mn deposits 10676. Manganese and copper grades of replacement Mn deposits 10777. Cartoon cross section of a porphyry Cu-Au deposit 11178. Tonnages of porphyry Cu-Au deposits 11279. Copper grades qf porphyry Cu-Au deposits 11280. Gold grades of porphyry Cu-Au deposits 11381. By-product grades of porphyry Cu-Au deposits 11482. Cartoon cross section of a porphyry Cu-Mo deposit 11683. Tonnages of porphyry Cu-Mo deposits 11784. Copper grades of porphyry Cu-Mo deposits 11785. Molybdenum grades of porphyry Cu-Mo deposits 11886. Gold grades of porphyry Cu-Mo deposits 11887. Silver grades of porphyry Cu-Mo deposits 11988. Tonnages of porphyry Mo-low F deposits 12289 Molybdenum grades of porphyry Mo-low F deposits 12290. Tonnages of polymetallic vein deposits 12791. Silver grades of polymetallic vein deposits 12792. Gold grades of polymetallic vein deposits 12893. Lead grades of polymetallic vein deposits 12894. Zinc and copper grades of polymetallic vein deposits 12995. Generalized stratigraphic column through the Troodos ophiolite showing Cyprus massive sulfides

and other deposit types and their associated rock types 13396. Cross section through the Kalavos district Cyprus showing relationship of massive sulfide

deposits to faults and spreading axis 13397. Tonnages of Cyprus massive sulfide deposits 13498. Copper grades of Cyprus massive sulfide deposits 13499. By-product grades of Cyprus massive sulfide deposits 135

100. Tonnages of Besshi massive sulfide deposits 137101. Copper grades of Besshi massive sulfide deposits 138102. By-product grades of Besshi massive sulfide deposits 138103. Tonnages of volcanogenic Mn deposits 141104. Metal grades of volcanogenic Mn deposits 141105. Cartoon cross-section of a hot-spring Au-Ag deposit 144106. Cartoon cross section of a typical Creede type epithermal vein deposit 146107. Tonnages of Creede epithermal vein deposits 147108. Copper grades of Creede epithermal vein deposits 147109. Lead grades of Creede epithermal vein deposits 148110. Zinc grades of Creede epithermal vein deposits 148111. Silver grades of Creede epithermal vein deposits 149112. Gold grades of Creede epithermal vein deposits 149113. Tonnages of Comstock epithermal vein deposits 152114. Gold grades of Comstock epithermal vein deposits 152115. Silver grades of Comstock epithermal vein deposits 153116. By-product grades of Comstock epithermal vein deposits 153117. Tonnages of Sado epithermal vein deposits 156118. Gold grades of Sado epithermal vein deposits 156119. By-product of Sado epithermal vein deposits 157120. Tonnages of epithermal quartz-alunite vein deposits 160121. Gold grades of epithermal quartz-alunite vein deposits 160122. Silver grades of epithermal quartz-alunite vein deposits 161123. Copper grades of epithermal quartz-alunite vein deposits 161124. Tonnages of volcanogenic U deposits 164125. Uranium grade of volcanogenic U deposits 164126. Tonnages of epithermal Mn deposits 167

XI

Page 13: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

127. Manganese grade of epithermal Mn deposits 167128. Cartoon cross section of a rhyolite-hosted Sn deposit 170129. Tonnages of rhyolite-hosted Sn deposits 171130. Tin grades of rhyolite-hosted Sn deposits 171131. Tonnages of volcanic-hosted magnetite deposits 173132. Iron grades of volcanic-hosted magnetite deposits 174133. Phosphorus grades of volcanic-hosted magnetite deposits 174134. Tonnages of carbonate-hosted Au-Ag deposits 177135. Precious metal grades of carbonate-hosted Au-Ag deposits 177136. Tonnages of hot-spring Hg deposits 179137. Mercury grades of hot-spring Hg deposits 179138. Tonnages of silica-carbonate Hg deposits 182139. Mercury grades of silica-carbonate Hg deposits 182140. Tonnages of simple Sb deposits 185141. Antimony grades of simple Sb deposits 185142. Precious metal grades of simple Sb deposits 186143. Tonnages of disseminated simple Sb deposits 188144. Antimony grades of disseminated simple Sb deposits 188145. Cartoon cross section of a kuroko massive sulfide deposit 194146. Tonnages of kuroko massive sulfide deposits 195147. Copper grades of kuroko massive sulfide deposits 195148. Lead-zinc grades of kuroko massive sulfide deposits 196149. Precious metal grades of kuroko massive sulfide deposits 197150. Tonnages of sandstone-hosted Pb-Zn deposits 203151. Lead grades of sandstone-hosted Pb-Zn deposits 203152. Zinc grades sandstone-hosted Pb-Zn deposits 204153. Silver grades sandstone-hosted Pb-Zn deposits 204154. Tonnages of sediment-hosted Cu deposits 207155. Copper grades of sediment-hosted Cu deposits 207156. By-product grades of sediment-hosted Cu deposits 208157. Cartoon sections showing diagenetic and roll-front mineralization in sandstone U deposits 210158. Cartoon cross section showing mineral zoning in sedimentary exhalative Zn-Pb deposits 213159. Tonnages of sedimentary exhalative Zn-Pb deposits 213160. Zinc grades of sedimentary exhalative Zn-Pb deposits 214161. Lead grades of sedimentary exhalative Zn-Pb deposits 214162. Silver grades of sedimentary exhalative Zn-Pb deposits 215163. Copper grades of sedimentary exhalative Zn-Pb deposits 215164. Tonnages of bedded barite deposits 218165. Barite grades of bedded barite deposits 218166. Cartoon cross section of a southeast Missouri Pb-Zn deposit 221167. Cartooncross section illustrating a typical Appalachian Zn deposit 223168. Tonnages of southeast Missouri Pb-Zn and Appalachian Zn deposits 225169. Zinc grades of southeast Missouri Pb-Zn and Appalachian Zn deposits 225170. Lead grades of southeast Missouri Pb-Zn and Appalachian Zn deposits 226171. Silver grades of southeast Missouri Pb-Zn and Appalachian Zn deposits 226172. Tonnages of Algoma Fe and Superior Fe deposits 229173. Iron grades of Algoma Fe and Superior Fe deposits 230174. Phosphorus grades of Algoma Fe and Superior Fe deposits 230175. Cartoon cross section showing relation of sedimentary facies to sedimentary Mn deposits 232176. Tonnages of sedimentary Mn deposits 233177. Metal grades of sedimentary Mn deposits 233178. Tonnages of upwelling type phosphate deposits 236179. P205 grades of upwelling type phosphate deposits 236180. Tonnages of warm-current type phosphate deposits 238181. P205 grades of warm-current type phosphate deposits 238182. Tonnages of low-sulfide Au-quartz vein deposits 242183. Precious metal grades of low-sulfide Au quartz vein deposits 243184. Tonnages of Homestake Au deposits 246185. Gold grades of Homestake Au deposits 247186. Silver grades of Homestake Au deposits 247187. Tonnages of unconformity U-Au deposits 250188. Uranium grades of unconformity U-Au deposits 250189. Tonnages of lateritic Ni deposits 254190. Metal grades of lateritic Ni deposits 254191. Tonnages of laterite type bauxite deposits 257192. Alumina grades of laterite type bauxite deposits 257

XII

Page 14: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

193. Tonnages of karst type bauxite deposits 260194. Alumina grades of karst type bauxite deposits 260195. Cartoon cross section showing three stages of heavy mineral concentrations typical of placer Au-

PGE deposits 263196. Tonnages of placer Au-PGE deposit 263197. Precious metal grades of placer Au-PGE deposits 264198. Tonnages of placer PGE-Au deposits 267199. Precious metal grades of placer PGE-Au deposits 268200. Other PGE grades of placer PGE-Au deposits 269201. Tonnages of shoreline placer Ti deposits 271202. ZrO2 grades from zircon in shoreline placer Ti deposits 272203. TiO2 grades from ilmenite in shoreline placer Ti deposits 272204. TiO2 grades from rutile in shoreline placer Ti deposits 273205. Other metal grades of shoreline placer Ti deposits 273206. Matrix diagram showing deposit models and their geochemical signature 304

TABLES

1. Classification of deposit models by lithologic-tectonic environment 32. Comparison of application of the five model subtypes by various users 103. Types of hydrothermal alteration characteristic of porphyry copper and other deposit models 79

XIII

Page 15: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Mineral Deposit ModelsDennis P. Cox and Donald A. Singer, Editors

INTRODUCTION

By Dennis P. Cox, Paul B. Barton,and Donald A. Singer

The U.S. Geological Survey has a long anddistinguished history in assessing the mineral resourcesof the public domain, and that role remains activetoday in programs designed to assess the mineralresources of the lands administered by the U.S. Bureauof Land Management and Forest Service, the AlaskaMineral Resource Assessment Program, and theConterminous United States Mineral AssessmentProgram. The Survey has thus an immediate andconstantly recurring need to upgrade and maintain thecapability of its staff to identify and assess areasfavorable for mineral deposits. One major step towardfulfilling this need is the assembly of a comprehensivegroup of mineral deposit models that enable anygeologist to compare his or her observations with thecollective knowledge and experience of a much widergroup of geoscientists.

This report deals exclusively with nonfuel minerals(including uranium), for these show a commonality ofgeologic expressions that differ markedly from thoseof the areally much larger (and economically evenmore important) coal, oil, and gas deposits.

CITATION AND ACKNOWLEDGMENTS

This report has been assembled through thegenerous efforts of many persons. The authors of theindividual models and many of the other sections areindicated. We all would appreciate it if the individualauthors could be cited whenever practical rather thansimply refering to the whole compilation.

Among the editors, Dennis Cox had the lead insoliciting the model authors and in assembling thebrief models; Donald Singer played a similar role forall of the grade and tonnage models; and Paul Bartonprovided the attribute cross-indexes and carefullyreviewed the overall package. The editors greatlyappreciate the encouragement and suggestions from (inalphabetical order) Larry Bernstein, John H. DeYoung,Jr., Bob Earhart, Ralph Erickson, Fred Fisher, BillGreenwood, Carroll Ann Hodges, Kate Johnson, SteveLudington, Dick McCammon, Hal Morris, RobRobinson, Don White, and many others. The editorswere greatly helped by suggestions from geologistsoutside the USGS, particularly D. F. Sangster, R. V.Kirkham, and 3. M. Franklin of the Geological Survey

J2 of Canada, and by Ryoichi Kouda, Takeo Sato, and

Yukio Togashi of the Geological Survey of Japan.Among the many geologists from private industry whoprovided helpful information and suggestions were R.G. Blair, A. E. Soregaroli, E. 1. Bloomstein, and G. E.McKelvey.

SOME FUNDAMENTAL DEFINITIONS

A "mineral occurrence" is a concentration of amineral (usually, but not necessarily, considered interms of some commodity, such as copper, barite orgold) that is considered valuable by someonesomewhere, or that is of scientific or technicalinterest. In rare instances (such as titanium in arutile-bearing black sand), the commodity might noteven be concentrated above its average crustalabundance.

A "mineral deposit" is a mineral occurrence ofsufficient size and grade that it might, under the mostfavorable of circumstances, be considered to haveeconomic potential.

An "ore deposit" is a mineral deposit that hasbeen tested and is known to be of sufficient size,grade, and accessibility to be producible to yield aprofit. (In these days of controlled economies andintegrated industries, the "profit" decision may bebased on considerations that extend far beyond themine itself, in some instances relating to the overallhealth of a national economy.)

On one hand, the field observations usuallybegin with "mineral occurrences" (or with clues totheir existence) and progress with further study to"mineral deposits" and only rarely to "ore deposits,"but we must present information that helps us dealwith all classes of "mineral occurrences," not just "oredeposits." On the other hand, in terms of accessibleinformation our sample is strongly biased toward "oredeposits," for it is only in them that sufficientexposure is available to develop a real knowledge ofthe overall character of the mineralization process.Some mineral occurrences are, therefore,unrecognized mineral deposits, while others are simplymineralized localities where ore-forming processeswere so weak or incomplete that a deposit was notformed. Thus we summarize the state of knowledgeregarding ore deposit models, and we call them"mineral deposit models" with the hope that what wehave learned about large and high-grade metalconcentrations will help us sort out all mineraloccurrences to identify their true character and, wehope, to recognize which have potential to constituteore deposits.

I

Page 16: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

The attributes or properties of a mineraloccurrence are, of course, those features exhibited bythe occurrence. When applied to a model, these termsrefer to those features possessed by the class ofdeposits represented by the model. It is useful toconsider attributes on at least two scales: the firstdeals with local features that may be observed directlyin the field (mineralogy, zonal patterns, local chemicalhaloes, and so on); the second is those featuresconcerning the regional geologic setting and whichmust be interpreted from the local studies or may beinferred from global tectonic considerations (forinstance, that the rock sequence under studyrepresents a deep-water, back-arc rift environment, orthat the area is underlain by anomalously radioactivehigh-silica rhyolite and granite). Two of the mostprominent attributes, the commodities/geochemicalpatterns and the mineralogy, are cross-indexed tomodel types in Appendixes C and D, respectively.

To the greatest extent possible, models wereconstructed so as to be independent of site-specificattributes and therefore contain only those featureswhich are transferable from one deposit to another.This goal is difficult to attain, because we do notalways know which features are site specific.

The term "model" in an earth-science contextelicits a wide variety of mental images, ranging fromthe physical duplication of the form of a subject, as ina scale model of the workings of a mine, to a unifyingconcept that explains or describes a complexphenomenon. In this context we shall apply only thelatter usage. Therefore, let us propose a workingdefinition of "model" in the context of mineraldeposits, the overriding purpose being to communicateinformation that helps mankind find and evaluatemineral deposits. A mineral deposit model is thesystematically arranged information describing theessential attributes (properties) of a class of mineraldeposits. The model may be empirical (descriptive), inwhich instance the various attributes are recognized asessential even though their relationships are unknown;or it may be theoretical (genetic), in which instancethe attributes are interrelated through somefundamental concept.

One factor favoring the genetic model over thesimply descriptive is the sheer volume of descriptiveinformation needed to represent the many features ofcomplex deposits. If all such information were to beincluded, the number of models would escalate until itapproached the total number of individual depositsconsidered. Thus we should no longer have models, butsimply descriptions of individual deposits. Therefore,the compilers must use whatever sophisticated orrudimentary genetic concepts are at their disposal todistinguish the critical from the incidental attributes.It is commonly necessary to carry some possiblysuperficial attributes in order not to preclude somepermissible but not necessarily favored, multipleworking concepts.

The following example illustrates the problem.One of the commonly accepted attributes of the modelfor the carbonate-hosted lead-zinc deposits of theMississippi Valley type is the presence of secondarydolomite. But do we know that this is essential?Suppose a deposit were found in limestone; would wereject its assignment to the Mississippi Valley class?

2

Or could it be correct that the critical property ispermeability and that the formation of dolomite either(1) enhances permeability (and thereby makes theground more favorable), or (2) reflects pre-existingpermeability that is exploited by both the dolomite andthe ore? Perhaps the dolomite merely records aparticular range of Ca/Mg ratio in the fluid which inturn is characteristic of the basinal brines thatconstitute the ore fluid. In any event, the dolomite isa powerful ore guide and belongs somewhere in the"final model."

CLASSIFICATION OF MODELS USED IN THISCOMPILATION

For the purpose at hand the classificationscheme has two requirements: (1) it must be open sothat new types of deposits can be added in the future,and (2) the user must be able to find easily theappropriate models to apply to the rock and tectonicenvironments being investigated.

Figure 1 maps out the four logic trees thatconstitute a broad lithotectonic classification; thissystem is similar to one developed by Page and others(1 982c). The classification of deposits by theenvironment of formation of their host rocks iscontinued on a finer scale in table 1. Thisclassification scheme is relatively straightforward fordeposits formed essentially contemporaneously withtheir host rock. However, for epigenetic deposits aconflict arises between the lithotectonic environmentof the formation of the host and the lithotectonicenvironment of the mineralization process. Therefore,for epigenetic deposits we have selected the mostimportant aspect of the lithotectonic alternatives andclassified the deposit accordingly. This procedure

GEOLOGIC-TECTONIC ENVIRONMENT DEPOSIT M1ODELS

fStable Ae - I 4o4Mob- ultram fi

Mafia -u l Lbhstable ead . .te I 0

Intrusive Alaline nd basic lI t 12

Ftsi. {Ph erwVstafilt13 I15igrwows FIlsb Porphgr ophanitit .6 t. 22

E Mafic 23 4 24

.xi _ _ fFelsb -mafi 2S-- - 1 to 25

Clasrt rocks to 31

SodimctaryC Creounage rocks 32

Chemhcal sediments 33 to 35

Regional Metaveklant Vnd metasodimkota,' b3y

metamorphIe I Metap~ltte l nd metaarentto A,

SurfIcil Residual StDepositioua 39

Figure 1. Tree diagram showing relationship of broadgeologic-tectonic environments to models. Thesedeposit models are classified on a finer scale in table1.

Page 17: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Table 1. Classification of deposit models by lithologic-tectonic environment

(*indicates that model is not included in this bulletin]

Deposit environment Model No.

Mafic and ultramafic intrusions

A. Tectonically stable area; stratiform complexesStratiform deposits

Basal zoneStillwater Ni-Cu --------------------------------------- 1

Intermediate zoneBushveld chromitite ------------------------------------2aMerensky Reef PE --------------------------------------…2b

Upper zoneBushveld Fe-Ti-V --------------------------------------- 3

Pipe-like depositsCu-Ni pipes ----------------------------------------------4aPGE pipes -----------------------------------------------4b#

B. Tectonically unstable areaIntrusions same age as volcanic rocks

Rift environmentDuluth Cu-Ni-PGE ---------------------------------------5aNorilt sk Cu-Ni-PGE -------------------------------------5b

Greenstone belt in which lowermost rocks ofsequence contain ultramafic rocks

Komatiitic Ni-Cu ---------------------------------------6aDunitic Ni-Cu ------------------------------------------6b

Intrusions emplaced during orogenesisSynorogenic in volcanic terrane

Synorogenic-synvolcanic Ni-Cu --------------------------7aSynorogenic intrusions in non-volcanic terrane

Anorthosite-Ti ---------------------------------------…YbOphiolites

Podiform chromite --------------------------------------8aMajor podiform chromite --------------------------------8b(Lateritic Ni) ----------------------------------------- (38a)(Placer Au-PGE) ---------------------------------------- (39a)Serpentine

Limassol Forest Co-Ni -------------------------------- BcSerpentine-hosted asbestos ---------------------------…d(Silica-carbonate Hg) -------------------------------- (270)(Low-sulfide Au-quartz vein) -------------------------(36a)

Cross-cutting intrusions (concentrically zoned)Alaskan PGE --------------------------------------------9(Placer POE-Au) ---------------------------------------- (39b)

C. Alkaline intrusions in stable areasCarbonatite ------------------------------------------------ 10

Alkaline complexes --------------------------------------- 11'Diamond pipes --------- 12

Felsic intrusions

D. Mainly phanerocrystalline texturesPegmatitic

Be-Li pegmatites -----------------------------------------13a'Sn-Nb-Ta pegmatites ------------- …-----------------------13b*

Granitic intrusionsWallrocks are calcareousW skarn ---------------------------------------- 1aSn skarn ----------------------------------------------- 14bReplacement Sn ----------------------------------------- 14c

3

Page 18: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Table 1. Classification of deposit models by lithologic-tectonic environment--Continued

Deposit environment Model No.

D. Mainly phanerocrystalline textures--ContinuedGranitic intrusions--Continued

Other wallrocksW veins --- …----------------------------------------15aSn veins -----------------------------------------------15bSn greisen ---------------------------------------------15c(Low-sulfide Au-quartz vein) ---------------------------(36a)(Homestake Au) -----------------------------------------(36b)

Anorthosite intrusions(Anorthosite Ti) -----------------------------------------(7b)

E. Porphyroaphanitic intrusions presentHigh-silica granites and rhyolitesClimax Mo ------------------------------------------------16(Fluorspar deposits) ------------------------------------- (26b*)

Other felsic and mafic rocks including alkalicPorphyry Cu ----------------------------------------------17Wallrocks are calcareous

Deposits near contactPorphyry Cu, skarn-related ---------------------------18aCu skarn ---------------------------------------------18bZn-Pb skarn ------------------------------------------ 18Fe skarn ---------------------------------------------18dCarbonate-hosted asbestos ----------------------------18e

Deposits far from contactPolymetallic replacement -----------------------------19aReplacement Mn ---------------------------------------19b(Carbonate-hosted Au) -------------------------------- (26a)

Wallrocks are coeval volcanic rocksIn granitic rocks in felsic volcanics

Porphyry Sn ------------------------------------------20aSn-polymetallic veins --------------------------------20b

In calcalkalic or alkalic rocksPorphyry Cu-Au ---------------------------------------20c(Epithermal Mn) -------------------------------------- (25g)

Wallrocks are older igneous and sedimentary rocksDeposits within intrusions

Porphyry Cu-Mo ---------------------------------------21aPorphyry Mo, low-F -----------------------------------21bPorphyry W -------------------------------------------21c'

Deposits within wallrocksVolcanic hosted Cu-As-Sb -----------------------------22aAu-Ag-Te veins ---------------------------------------22bPolymetallic veins -----------------------------------22c(Epithermal quartz-alunite Au) -----------------------(25e)(Low-sulfide Au-quartz vein) ------------------------- (36a)

Extrusive rocks

F. Mafic extrusive rocksContinental or rifted craton

Basaltic Cu ----------------------------------------------23(Sediment-hosted Cu.) ------------------------------------- (30b)

Marine, including ophiolite-relatedCyprus massive sulfide -----------------------------------24aBesshi massive sulfide -----------------------------------24bVolcanogenic Mn ------------------------------------------24cBlackbird Co-Cu ------------------------------------------24d(Komatiitic Ni-Cu) --------------------------------------- (6a)

4

Page 19: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Table 1. Classification of deposit models by lithologic-tectonic environment--Continued

Deposit environment Model No.

G. Felsic-mafic extrusive rocksSubaerial

Deposits mainly within volcanic rocksHot-spring Au-Ag --------------------------------------- 25aCreede epithermal vein ---------------------------------25bComstock epithermal vein ------------------------------- 25cSado epithermal vein ----------------------------------- 25dEpithermal quartz-alunite Au ---------------------------25eVolcanogenic U ----------------------------------------- 25fEpithermal Mn ------------------------------------------25gRhyolite-hosted Sn ------------------------------------- 25hVolcanic-hosted magnetite ------------------------------25i(Sn polymetallic veins) -------------------------------- (20b)

Deposits in older calcareous rocksCarbonate-hosted Au-Ag --------------------------------- 26aFluorspar deposits -------------------------------------26b*

Deposits in older clastic sedimentary rocksHot-spring Hg ------------------------------------------27aAlmaden Hg --------------------------------------------- 27bSilica-carbonate Hg ------------------------------------ 270Simple Sb ---------------------------------------------- 27d

MarineKuroko massive sulfide ----------------------------------- 28aAlgoma Fe ------------------------------------------------ 28b(Volcanogenic Mn) ---------------------------------------- (24c)(Volcanogenic U) ----------------------------------------- (25f)(Low-sulfide Au-quartz vein) ----------------------------- (36a)(Homestake Au) ------------------------------------------- (36b)(Volcanogenic U) ----------------------------------------- (25f)

Sedimentary rocks

H. Clastic sedimentary rocksConglomerate and sedimentary breccia

Quartz pebble conglomerate Au-U --------------------------29aOlympic Dam Cu-U-Au --------------------------------------29b(Sandstone U) --------------------------------------------…(30c)(Basaltic Cu) --------------------------------------------…(23)

SandstoneSandstone-hosted Pb-Zn ----------------------------------- 30aSediment-hosted Cu --------------------------------------- 30bSandstone U ---------------------------------------------- 30c(Basaltic Cu) --------------------------------------------…(23)(Kipushi Cu-Pb-Zn) --------------------------------------- (32c)(Unconformity U-Au) -------------------------------------- (37a)

Shale-siltstoneSedimentary exhalative Zn-Pb -_-------------_----31aBedded barite ------------- _-_-_-----------------------31bEmerald veins -------------------------------------------- 31c(Basaltic Cu) --------------------------------------------…(23)(Carbonate-hosted Au-Ag) --------------------------------- (26a)(Sediment-hosted Cu) ------------------------------------- (30b)

I. Carbonate rocksNo associated igneous rocks

Southeast Missouri Pb-Zn ---------------------------------32aAppalachian Zn -------------------------------------------32bKipushi Cu-Pb-Zn -------------------------------------- 320(Replacement Sn) -----------------------------------------(14c)

5

Page 20: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Table 1. Classification of deposit models by lithologic-teetonic environment--Continued

Deposit environment Model No.

I. Carbonate rocks--ContinuedNo associated igneous rocks--Continued

(Sedimentary exhalative Zn-Pb) --------------------------- (31a)(Karst bauxite) ------------------------------------------ (38c)

Igneous heat sources present(Polymetallic replacement) ----- …---------------------…(19a)(Replacement Mn) ----------------------------------------- (19b)(Carbonate-hosted Au-Ag) --------------------------------- (26a)(Fluorspar deposits) ------------------------------------- (26b*)

J. Chemical sedimentsOceanicMn nodules ---------------------------------------------- 33a*Mn crusts ------------------------------------------------33b*

ShelfSuperior Fe -------------------------------------------- 34aSedimentary Mn ------------------------------------------- 34bPhosphate, upwelling type --------------------------------34cPhosphate, warm-current type -----------------------------34d

Restricted basinMarine evaporate ----------------------------------------- 35a}Playa evaporate ------------------------------------------ 35b'(Sedimentary exhalative Zn-Pb) ---------------------------(31a)(Sedimentary Mn) -----------------------------------------(34b)

Regionally metamorphosed rocks

K. Derived mainly from eugeosynclinal rocksLow-sulfide Au-quartz vein --------------------------------- 36aHomestake Au ----------------------------------------------- 36b(Serpentine-hosted asbestos) ------------------------------- (8d)(Gold on flat faults) -------------------------------------- (37b)

L. Derived mainly from pelitic and other sedimentary rocksUnconformity U-Au ------------------------------------------37aGold on flat faults ---------------------------------------- 37b

Surficial and unconformity-related

H. ResidualLateritic Ni -----------------------------------------------38aBauxite, laterite type -------------------------------------38bBauxite, karst type ----- …--------------------------------38c(Unconformity U-Au) ----------------------------------------(Ma)

N. DepositionalPlacer Au-PGE -------------------------------------------- 39aPlacer PGE-Au ---------------------------------- ---------- 39bShoreline placer Ti ---------------------------------------- 39cDiamond placers -------------------------------------------- 39dStream placer Sn ------------------------------------------- 39e(Quartz pebble conglomerate Au-U) --------------------------(29a)

inevitably introduces a substantial bias on the part of MODEL NAMESthe classifier, thus we have followed a system ofincluding, parenthetically, alternative classifications Each model has been assigned a name that isless favored by the compiler at the appropriate derived either from the special characteristics of thealternative points in the classification scheme. classes or from a type locality. The latter strategy

6

Page 21: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

was employed to avoid excessively long descriptivenames. The use of type names derived from specificdeposits does produce confusion in some readers,however, who may feel, for example, that a depositthat does not look "exactly" like Comstock cannot berepresented by a "Comstock epithermal vein" model.This confusion may be minimized by realizing thatmost models are blends of attributes from a largenumber of deposits and that the names are onlyconveniences, not constrictions. The contributors tothis report and the literature in general are notwithout disagreements regarding nomenclature (as wellas genetic aspects and some facets of the groupingsmade here), but provision for alternative names ismade in the model format under the heading ofapproximate synonyms.

DESCRIPTIVE MODELS

Because every mineral deposit, like everyfingerprint, is different from every other in somefinite way, models have to progress beyond the purelydescriptive in order to represent more than singledeposits. Deposits sharing a relatively wide varietyand large number of attributes come to becharacterized as a "type," and a model representingthat type can evolve. As noted above, generallyaccepted genetic interpretations play a significant rolein establishing model classes. Here we shall emphasizethe more descriptive aspects of the deposits becauseour goal is to provide a basis for interpreting geologicobservations rather than to provide interpretations insearch of examples. The attributes listed are intendedto be guides for resource assessment and forexploration, both in the planning stage and in theinterpretation of findings.

The descriptive models have two parts. Thefirst, the "Geological Environment," describes theenvironments in which the deposits are found; thesecond gives the identifying characteristics of thedeposits. The headings "Rock Types" and "Textures"cover the favorable host rocks of deposits as well assource rocks believed to be responsible forhydrothermal fluids which may have introducedepigenetic deposits. "Age" refers to the age of theevent responsible for the formation of the deposit."Tectonic Setting" is concerned with major features orprovinces (perhaps those that might be portrayed onlyat 1:1,000,000 or smaller scale), not ore control bystructures that are local and often site-specific."Associated Deposits" are listed as deposits whosepresence might indicate suitable conditions foradditional deposits of the type portrayed by the model.

The second part of the model, the "DepositDescription," provides the identifying characteristicsof the deposits themselves, particularly emphasizingaspects by which the deposits might be recognizedthrough their geochemical and geophysical anomalies.In most cases the descriptions also contain data usefulin project planning for mineral assessment orexploration; this aspect is especially important wherelimited financial and manpower resources must beallocated to the more significant tasks.

GRADE-TONNAGE MODELS

Estimated pre-mining tonnages and grades fromover 3,900 well-explored, well-characterized depositswere used to construct 60 grade-tonnage models.Where several different estimates were available for adeposit, the estimated tonnages associated with thelowest cutoff grades were used. Grades not available(always for by-products) were treated as zero. Exceptfor a few instances, the data base is so large as topreclude specific references. Several publishedcompilations of data were particularly useful sourcesfor multiple deposit types (Canada Department ofEnergy, Mines and Resources, 1980; DeYoung andothers, 1984; Krauss and others, 1984; Laughlin, 19894;Menzie and Mosier, 1985; Mosier and others, 1983;Mosier and others, in press; Singer and others, 1980;Yamada and others, 1980). The U.S. Geological Surveyhas a great deal of data available in the MineralResources Data System.

The grade-tonnage models are presented Ingraphical format to make it easy to compare deposittypes and to display the data; All plots show eithergrade or tonnage on the horizontal axis, while thevertical axis is always the cumulative proportion ofdeposits. Plots of the same commodity or tonnagesare presented on the same scale; a logarithmic scale isused for tonnage and most grades. Each dot representsan individual deposit (or, rarely, a district), cumulatedin ascending grade or tonnage. Where a large numberof deposits is plotted, individual digits represent thenumber of deposits. Smoothed curves are plottedthrough arrays of points, and intercepts for the 90th,50th, and 10th percentiles are constructed. Fortonnages and most grades, the smoothed curvesrepresent percentiles of a lognormal distribution thathas the same mean and standard deviation as theobserved data; exceptions are plots where only a smallpercentage of deposits had reported grades and gradeplots that are presented on an arithmetic scale, suchas iron or manganese, for which the smoothed curvewas fit by eye. Summary statistics by deposit type areprovided in Appendix B. The number of deposits ineach type is indicated at the upper right of eachdiagram. The deposits used to construct each modelare listed with the model and cross-indexed to modeltypes in Appendix E. Correlations among grades andbetween tonnage and each grade are indicated onlywhen significant at the 1 percent level.

There are important limitations inherent in thedata base used for all grade-tonnage models.Estimates of cutoff grades within individual deposittypes can vary because of regional, national, oroperator differences. All too commonly there is nomention of the actual cutoff grades or mining widthsthat are incorporated Into published reserve figures;nevertheless, the grade-tonnage figures given dorepresent material that the company or thegovernment believed might someday be economic tomine. Stratiform deposits of large areal extent, suchas phosphate or sedimentary manganese, are specialproblems because of differences in opinion andpractice regarding how closely drilled they must be to"prove" ore tonnages and regarding the thicknesses anddepths of what may be considered for eventualmining. Effects of another source of variation, mining

7

Page 22: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

methods, are recognized in some of the placer models;typically, however, mining methods are fairlyconsistent within a deposit type. In a few instances,irregular cumulative frequency plots reflect mixing ofeconomic and scientific data sources, such as in theplot of gold in porphyry copper deposits. In spite ofthe current difficulty of quantifying variation ofgrades and tonnages with respect to changes in cutoffgrades or mining methods, the models presented hereare believed to account for the main source ofvariation in grades and tonnages of mineral deposits-variation due to differences among types of deposits.

The question of whether one counts depositswithin a cluster of related deposits as individuals or asa total will probably never be resolved to everyone'ssatisfaction. Some geostatisticians would separateeach ore body (and then argue about whether twooperations on the same body should be countedseparately), whereas some economic geologists wouldlump everything from a single district (and then argueabout district boundaries). For the most part theentities summarized are individual deposits, but insome instances such data are mixed with datarepresenting entire districts. Because of theseinconsistencies, some care is necessary in comparinggrade-tonnage models between deposit types or incomparing this summary with those prepared usingalternative methods.

Care is also warranted in interpreting the gradedistributions for which data are missing; this concernsprincipally by-product grades. In some instances, suchas the platinum-group element (PGE) contents inpodiform chromite and the cobalt content of laterites,the fragmentary information given probably representsthe entire class. In other instances, such as the leadcontent of Cyprus massive sulfide deposits, the missinggrades probably represent values below the lowestreported grades. The grades derived from studies oftrace elements in ores more probably represent theformer situation rather than the latter.

Deposits strongly suspected to be small or verylow grade are seldom sampled well enough to becharacterized in terms of grade and tonnage, thus thesample of many deposit classes is truncated byeconomics. Nonetheless, probably 40 percent of thedeposits used in these models are, in fact, non-economic today; and a perusal of the figures willdiscover examples of both small deposits and low-grade deposits.

Potential metal supply is dominated by the veryfew largest tonnage deposits, as shown by Singer andDeYoung (1980), who also pointed out that inversecorrelations between grade and tonnage aresurprisingly rare. Thus the fact that a deposit is largedoes not necessarily mean that it will prove to be oflow grade. This means that most low-grade depositsare not likely to have huge resources and also that theomission of a few low-grade or small tonnage depositswill not seriously degrade the predictions of potentialnational supplies for most commodities. In contrast,the missing low-grade and small deposits suggest thatthe grade-tonnage models represent a biased sample ofthe large number of low-grade or small-tonnageoccurrences and prospects found by exploration. Thisfact must be considered in cases where the number ofundiscovered deposits is estimated. In order for the

8

estimated number of deposits to be consistent with agrade-tonnage model, approximately half of thedeposits estimated should have greater than themodel's median tonnage or grade. Thus the probabilitythat an untested prospect represents a significantdeposit can too easily be overestimated.

OTHER TYPES OF MODELS -AND THEIRINTERRELATIONSHIPS

The bulk of this report deals with descriptivemineral deposit models and their grade-tonnagecounterparts, but there are other useful aspects whichwe wish to discuss even though we have not yet hadthe opportunity to develop or exploit them. They arethe genetic, occurrence probability, and quantitativeprocess models.

Many authors prefer to keep a clear distinctionbetween descriptive and genetic models, apparentlyfeeling that the descriptive models somehow represent"pure truth" whereas the genetic constitute a lessobjective philosophical position (or at least make theinvestigator "skate on thin ice"). It is altogetherdesirable to avoid confusing interpretation with fact;but it is well to remember, for example, that eachtime a field geoscientist extrapolates geology across acovered area he or she adds an element of"interpretation" to a "factual" map, and that thisinterpretation is not necessarily any more "real" (or"unreal") than, for example, an isotope geologist'sconclusion that a given oxygen and hydrogen isotopicsignature extracted from fluid inclusions points to ameteoric origin for the fluid. The point is that thewhole of our professional knowledge rests on a broadcontinuum of interpretations; many of them are socommonly accepted that they are no longerquestioned, but many others still evoke challenges.Thus we suggest that a combination descriptive-genetic model is not inconsistent with professionalpractice. The model begins as a description, butvarious aspects of the model become genetic as theyacquire satisfactory genetic explanations. Eventuallymuch of the model becomes genetic, as has happened,for example, with the Cyprus-type massive sulfidedeposits or the sandstone uranium deposits of theColorado Plateau.

As the attributes of a model become understoodin a genetic sense, the descriptive model evolves to agenetic model:

1. Genetic models are compilations of theproperties of a group of related depositsin which the reasons for certain attributesbeing favorable are identified.Descriptive models evolve into geneticmodels, and as such they become far moreflexible and powerful.

We have presented the three model subtypesabove as if they constituted a linear logical sequenceleading toward the "final" model, but in fact theremust be an iterative relationship among descriptive,genetic, and grade/tonnage models. The consequenceof examining any of these three may be a reassessmentof the groupings of deposits chosen to be representedby a model type and the redesignation of the attributesdiagnostic for that type.

With a dominantly genetic model in hand, two

Page 23: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

more model types can be generated:2. Occurrence probability models are models

that predict the probability of a deposit(of a size and grade indicated by theappropriate grade-tonnage models)occurring within a given area. As with thedescriptive and genetic models,probability models that are tied to lithicor structural geologic entities (that is,they are genetic) are far more focused; infact, it is probably impossible to generatea useful probability model before theestablishment of a genetic model.Accurate probability models are verydifficult to construct because although thetechnical community has very completedata on mineral producers (mines), thedata on non-producing mineral deposits(prospects and mineral shows) are muchless well documented, a point also coveredin the discussion of grade-tonnagemodels. Even more importantly, data onbarren areas are sparse. We mustextrapolate from a very fragmentary basetoward a completely unseen target.

There is much to learn before the probabilitymodel can be made a dependable tool; yet thesuccessful targeting of exploration programs byindustry demonstrates that, at least on a qualitativebasis, areas with better-than-average probabilities canbe identified. It is worth noting, also, that mineralfuels are much more predictable and now can haverealistic probability-of-occurrence values attached tospecific volumes of sediments provided that the initialcharacter and postdepositional histories of thesediments are well known. It is a distant but notunreasonable dream to anticipate that some day weshall approach that level of certainty for some typesof nonfuel mineral deposits.

3. Quantitative process models are models thatdescribe quantitatively some processrelated to mineral deposit formation; theyare offshoots of the genetic model.Examples would be models of heat or fluidflow around a cooling pluton; rates ofcrystal growth as functions ofsupersaturation, impurities, andtemperature; or sequences and amounts ofminerals deposited from evaporatingseawater.

All five of these model subtypes can be parts of the"final" model, and recycling of the model back to theoriginal groupings stage helps refine the selectionprocess. Figure 2 shows the flow of information thatresults in the generation of the models we havediscussed.

Table 2 compares the five model subtypes withfive distinct types of uses for the information. Notethat persons engaged in research guidance andespecially exploration and development have broad-ranging needs, whereas those dealing with theavailability of minerals or of land-use allocation haveless use for genetic or quantitative process models.Overall there is a need for a comprehensive array ofmineral deposit models to meet these individualobjectives.

Figure 2. Flow sheet showing evolution of modeltypes. Individual model subtypes are discussed intext. It is essential that such a structure representsthe repetitive cycling of information leading tocontinual refinement of groupings of deposits thatrepresent each model type.

MATURITY OF DESCRIPTIVE-GENETIC MODELS

The rate at which we gain understanding andthe current levels of genetic knowledge varyconsiderably from one deposit type to another, asfigures 3 and 4 show. Such types as placers andevaporites are well known genetically and theproblems in their exploration and utilization concernlocal site-specific geologic issues rather than mineralgenesis or the degree of maturation of the model. Incontrast, others such as the Coeur d'Alene Ag-Pb-Znveins, or the massive Zn-Mn-Fe oxide/silicate bodiesat Franklin and Sterling Hill, or the Cu-U-Au atOlympic Dam, or the Cu-Zn-Pb-Ge ores of Kipushi andthe Tsumeb pipe remain genetic enigmas despite, inthe instances of the first two, extensive researchspanning many years. Still others, such as thediamond-bearing kimberlite pipes, are geologicallywell understood regarding their origin yet very poorlyunderstood in terms of the reasons for their existing atany particular site. Our rate of acquisition ofinformation is very irregular, as the schematicdiagram in figure 3 shows. The several scarps betweenplateaus in the knowledge curve for the marinephosphate model might mark, successively, therecognition that the phosphate was a chemicalprecipitate, that it occurred on continental shelveswhere upwelling of deep marine waters occurred, andthat the upwelling regions were related to wind andcurrent patterns that were tied to the globalconfiguration of the continents and ocean basins. A

9

Page 24: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Table 2. Comparison of application of the five model subtypesby various users

[Level of use: Major, X; minor, X; minimal, x]

Subtypes of models

5 0

41 41) >1 >a > X @ 4W 4

X a. -n a: e.4 0. U 44 U 4W

W S4 .4 50 .4W

S 0 C 00 red

Exploration/development X I X X XSupply potential I x x x xLand use X X x I xEducation x X I X XResearch guidance X X I X X

COMPLETE

0

t,

z

o

'C0Z-

0

NIlL

PERSON-YEARS OF EFFORT (Schematic log scale)

second example from the Mississippi Valley-type oresmight involve scarps marking the recognition (fromfluid-inclusion evidence) that the ores were depositedfrom warm (about 100 0 C) highly saline solutions thatcould represent neither simple surface nor marinewaters. A second scarp might be associated with therecognition that the deposits were integral parts of aregional hydrologic regime whose distribution andcharacter was susceptible to interpretation.

Figures 3 and 4 bring out another point: someaspects of any model always remain to be determined,thus we never acquire a "complete" model. Indeed, theapproach to "complete" understanding is asymptotic,and a lot of additional effort to clear up the "last"uncertainty in a nearly perfect model is probablyunwarranted. But, as the examples in figure 3 show,new ideas and new technologies can provide theimpetus for new spurts in knowledge for heretoforeincomplete models.

Note that the horizontal axis in figure 3 issimply "years of effort" devoted to fundamentalgeologic investigation. The scale certainly needs to beexponential in order to fit the intensively studied andsparsely studied deposit types, but this figure isstrictly schematic, there being no source ofdocumentation for either coordinate. The figure alsoindicates that different deposit types may requiredifferent amounts of effort to achieve a similar levelof genetic understanding.

Figure 4 shows a hypothetical growth curvealong which different types of deposits have beenschematically arrayed. Because some deposits (such asvolcanogenic massive sulfides) are so much moredifficult to understand than others (gold placers), thehorizontal axis has been "normalized" by plotting aratio of effort done to effort needed therebypermitting a smooth, although admittedly subjective

Figure 3. Schematic growth patterns forunderstanding of some typical genetic models.Individual curves discussed in text.

and schematic, curve to be illustrated. As with figure3, there is no documentation to support this diagram,although the general concept meets with agreementamong most contributors to this volume.

wil "I".

I

PIA0r Au, tvaparitesLat.rlt.s

Magmati. sulfidesPhsphtrils

Baded i..n-fermsn

VWenogeni. massive sulfides

Porphyry Cu-Mo

Epitlhrmal Au-A9

Sandstone U

Sedinmntwar fn

Pediform chromite

MississiPpi Valley Pb-Zn

Sedimentarwy .dalafiiv Zn-Pb

Kipushi Cuw-b-Zn

Coeur dAlene T# so ra so poorlq understood that

Franklin Furnw ss ti d fl .l ncsfieatn. Eodh deposit

ol0npi. Dam consiftul.. its * n 6IaSJ

RATIO OF EFFORT EXUEDOED TO EFFORT NEEDED

Figure 4. Comparison of relative levels ofunderstanding of some important model types.Vertical coordinate same as for figure 3; but becausedifficulty of acquiring the genetic information differsso widely among model types, the horizontalcoordinate is "normalized" as noted in text.

10

Page 25: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 1

DESCRIPTIVE MODEL OF STILLWATER Ni-Cu

By Norman J Page

APPROXIMATE SYNONYM Stratiform mafic-ultramafic Ni-Cu.

DESCRIPTION Ni, Cu sulfides at base of large repetitively layered mafic-ultramafic intrusion.(see fig. 5).

GENERAL REFERENCES Geological Society of South Africa, Special Publication 1 (1969); EconomicGeology, v. 77, no. 6 (1982) and v. 71, no. 7 (1976).

GEOLOGICAL ENVIRONMENT

Rock Types Layered intrusion contains norite, gabbro-norite, dunite, harzburgite, peridotite,pyroxenite, troctolite, anorthosite, and gabbro.

Textures Cumulate textures; layers with gradational proportions of euhedral crystals; locally withpoikilitic matrix.

Age Range Generally Precambrian, but may be as young as Tertiary.

Depositional Environment Intruded into granitic gneiss or volcanic-sedimentary terrane.

Tectonic Setting(s) Cratonal, mostly in Precambrian shield areas.

Associated Deposit Types Bushveld Cr, Merensky Reef PGE, Bushveld Fe-Ti-U. PGE placers.

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + chalcopyrite + pentlandite + cobalt sulfides, by-product platinum groupmetals (PGE).

Texture/Structure Locally massive; interstitial to silicates; disseminated.

Alteration None related to ore.

Ore Controls Basins in basal contact of intrusion with rapidly varying lithologies. Sulfides mayintrude fractures in footwall country rock. Ingress of sulfur through fractures in footwall may beimportant ore control.

Weathering Gossan.

Geochemical Signature Cu, Ni, PGE, Co. High Mg; low Na, K, and P.

EXAMPLESStillwater Complex, USMT (Page, 1977)

11

Page 26: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 1--Con.

Cumulus ferrogabbroto diorite

Cumulus gabbro andgabbro- norite

Cumulus anorthosite,troctolite, gabbro

Cumulus norite, anorthos-ite, minor troctolite

.6. %fill

------

---- 10�

------ft

V-Ti magnetite laUers(Bushveld Fe-TI-V)

PGE zone (Merensky Reef PGE)

Chromite lauers canoccur (Bushveld Cr)

Massive and matrixdisseminated Cu-NI sulfides(Stillwater Cu-Ni)

o-o-0---

-o--<>o-o-- 0-0-0-

-0-0---0-Cumulus pyroxenite - -0 - 0 -o

-0-0-0--

Cumulus harzburgite, _OO0-dunite, pyroxenitc -o-o-

Cumulus pyroxenite,norite, gabbroDiabese and norite dikesand sills

Metasedimentary rocks

-0-o-a-

-0-a-

_ _

_- _m

Figure 5. Diagram of typical mafic-ultramafic stratiform complex, 500 to1,500 m thick, showing stratigraphic relations of rock units and mineraldeposits. Deposit models shown in parentheses.

12

Page 27: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 2a

DESCRIPTIVE MODEL OF BUSHVELD Cr

By Norman J Page

SYNONYM Stratiform mafic-ultramafic Cr.

DESCRIPTION Layered chromitite in lower intermediate zone of large repetitively layered mafia-ultramafic intrusions (see fig. 5).

GEOLOGICAL ENVIRONMENT

Rock Types Intrusion may contain norite, gabbro-norite, dunite, harzburgite, peridotite,pyroxenite, troctolite, anorthosite, and gabbro.

Textures Cumulate textures; layers with gradational proportions of euhedral crystals; locally withpoikilitic matrix.

Age Range Generally Precambrian, but may be as young as Tertiary.

Depositional Environment Intruded into granitic gneiss or into volcanic-sedimentary terrane.

Tectonic Setting(s) Cratonal, mostly in Precambrian shield areas.

Associated Deposit Types Stillwater-Ni-Cu, Merensky Reef PGE, and Bushveld Fe-Ti-V deposits. PGEplacers.

DEPOSIT DESCRIPTION

Mineralogy Chromite j ilmenite ± magnetite t pyrrhotite ± pentlandite t chalcopyrite * PGE minerals(dominantly laurite, cooperate, and braggite).

Texture/Structure Massive to disseminated layers, cumulus texture.

Alteration None related to ore.

Ore Controls May be in dunite, orthopyroxenite, or anorthosite. Thickness of chromite increasesin basinal depressions in layering.

Weathering Abundant blocks of chromitite in soil and alluvium.

Geochemical Signature Cr, PGE. High Mg; low Na, K, P.

EXAMPLESBushveld Complex, SAFR (Cameron and Desborough, 1969)Stillwater Complex, USMT (Jackson, 1969)Great Dyke, ZIMB (Bichan, 1969)

13

Page 28: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 2b

DESCRIPTIVE MODEL OF MERENSIT REEF PGE

By Norman J Page

SYNONYM Stratiform mafic-ultramafic PGE.

DESCRIPTION Disseminated PGE-rich sulfides in olivine-rich rocks in anorthosite-gabbro zone oflarge layered intrusions (see fig. 5).

GEOLOGICAL ENVIRONMENT

Rock Types Norite, gabbro-norite, dunite, harzburgite, peridotite, pyroxenite, troctolite,anorthosite, and gabbro.

Textures Cumulate textures; layers with gradational proportions of euhedral crystals; locally withpoikilitic matrix.

Age Range Generally Precambrian, but may be as young as Tertiary.

Depositional Environment Intruded into granitic gneiss or into volcanic-sedimentary terrane.

Tectonic Setting(s) Cratonal, mostly in Precambrian shield areas.

Associated Deposit Types Stillwater Ni-Cu, Bushveld Cr, and Bushveld Fe-Ti-V. PGE placers.

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + chalcopyrite + pentlandite * chromite * graphite. PCE minerals arebraggite, cooperate, kotulskite, vysotskite, sperrylite, moncheite, and alloys of platinum-groupmetals.

Texture/Structure Clots of massive sulfide and disseminated grains.

Alteration None related to ore.

Ore Controls In layers near first reappearance of olivine as a cumulate phase after thickaccumulation of plagioclase pyroxene rocks. May be related to introduction of new magma. Locallyassociated with pipes of Fe-rich olivine.

Weathering Difficult to see ore zone on weathered surface, exploration requires extensive samplingand chemical analysis.

Geochemical Signature PGE, Cu, Ni, Cr, Ti. High Mg; low Na, K, P.

EXAMPLESBushveld Complex, SAFR (Vermaak and Hendriks, 1976)Stillwater Complex, USMT (Todd and others, 1982)

14

Page 29: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 3

DESCRIPTIVE MODEL OF BUSHVELD Fe-Ti-V

By Norman J Page

SYNONYM Stratiform mafic-ultramafic Fe-Ti-V.

DESCRIPTION Layers of Ti-V-rich magnetite in upper parts of large repetitively layered mafic-ultramafic intrusions (see fig. 5).

GEOLOGICAL ENVIRONMENT

Rock Types Norite, gabbro-norite, dunite, harzburgite, peridotite, pyroxenite, troctolite,anorthosite, and gabbro.

Textures Cumulate textures; layers with gradational proportions of euhedral crystals; locally withpoikilitic matrix.

Age Range Generally Precambrian, but may be as young as Tertiary.

Depositional Environment Intruded into granitic gneiss or into volcanic-sedimentary terrane.

Tectonic Setting(s) Cratonal, mostly in Precambrian shield areas.

Associated Deposit Types Bushveld Cr, Stillwater Ni-Cu, and Merensky Reef PGE. PGE placers.

DEPOSIT DESCRIPTION

Mineralogy Vanadium-bearing magnetite t ilmenite * traces of sulfides.

Texture/Structure Massive magnetite-ilmenite, cumulus textures.

Ore Controls Layers near top of intrusion. Layers may be cut by pipes and veins rich in l1menite.

Weathering Blocks of magnetite in soil and alluvium.

Geochemical Signature Fe, Ti, V.

EXAMPLESBushveld Complex, SAFR (Williams, 1969; Molyneux, 1969)

15

Page 30: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 5a

DESCRIPTIVE MODEL OF DULUTH Cu-Ni-PGC

By Norman J Page

DESCRIPTION Sporadically distributed massive to disseminated sulfides associated with basalportion of large layered intrusions in rift environments.

GENERAL REFERENCE Weiblen and Morey (1980).

GEOLOGICAL ENVIRONMENT

Rock Types Peridotite, harzburgite, pyroxenite, norite, augite, troctolite, anorthosite.Associated with pyritic shale, anhydrite, or recognizable source of sulfur to contaminate magma.

Textures Cumulus textures, locally diabasic or ophitic textures.

Age Range Precambrian to Tertiary(?).

Depositional Environment Intruded during rifting into metasedimentary (slate, argillite,graywacke) and metavolcanic rocks.

Tectonic Setting(s) Rift environment.

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + pentlandite + chalcopyrite + cubanite * PGE minerals * graphite.

Texture/Structure Disseminated, matrix, and massive sulfides.

Alteration Locally sulfides may show evidence of hydrothermal remobilization.

Ore Controls Zone of active syn-intrusion faulting forming basins, in basal part of intrusion;source of external sulfur; source of silicic material to contaminate magma.

Geochemical Signature Ni/Cu approximately 1/3, Cu, Ni; PGE, Co, Ti; sulfur isotopes show non-magmatic sulfur.

EXAMPLESDuluth Complex, USMN (Weiblen and Morey, 1980;(Dunka Road deposits) Bonnichsen, 1972; Ripley, 1981)

16

Page 31: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 5b

DESCRIPTIVE MODEL OF NORIL'SK Cu-Ni-PGE

By Norman J Page

DESCRIPTION Massive to disseminated sulfides in small shallow mafic to ultramafic intrusives withan external source of sulfur.

GEOLOGICAL ENVIRONMENT

Rock Types Flood basalts, picritic intrusive rocks, picritic gabbro, norite, olivine gabbro,dolerite, intrusive and volcanic breccias. Associated with evaporates or some external source ofsulfur.

Textures Ophitic, subophitic, gabbroic, cumulate.

Age Range Paleozoic.

Depositional Environment Magma has intruded through evaporates or pyritic shale, and formed sillsin flood basalts during active faulting.

Tectonic Setting(s) Rift environment.

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + pentlandite + chalcopyrite + cubanite + millerite + vallerite + pyrite +bornite + gersdorffite + sperrylite + PGE alloys + polarite + PGE tellurides, arsenides, andantimonides.

Texture/Structure Lenses, layers of massive, matrix, and disseminated sulfide.

Alteration None related to ore.

Ore Controls External source of sulfur; sulfides form persistent basal layers to intrusion anddike-like bodies into country rock; and form in fault-bounded depressions.

Geochemical Signature Ni/Cu = 1.5 to 0.5, Co/Ni - 1/16; Pt/(Pd/Ni) = 1/500

EXAMPLESNoril'sk, USSR (Krauss and Schmidt, 1979)

17

Page 32: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a

DESCRIPTIVE MODEL OF KOHATIITIC Ni-Cu

By Norman J Page

DESCRIPTION Lenticular, irregular elongate to tabular, pipelike Ni-Cu sulfides associated withkomatiitic volcanic extrusive rocks (see fig. 6).

GENERAL REFERENCE Arndt and Nisbet (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Dunite, pyroxenite, peridotite, basalt, komatiites, komatiitic basalts. Rocks containmore than 15 percent and may approach 40 percent MgO.

Textures Bladed olivine or pyroxene with skeletal appearance in random or parallel orientations;spinifex textures, fracture or joint patterns that resemble pillows.

Age Range Archean or Proterozoic generally, but some may be Cretaceous or Tertiary.

Depositional Environment Mafic to felsic rock sequences with numerous volcanic events.

Tectonic Setting(s) Greenstone belts.

Associated Deposit Types Dunitic Ni.

DEPOSIT DESCRIPTION

Mineralogy Pyrite + pyrrhotite + chalcopyrite + pentlandite, by-product PGE.

Texture/Structure Sulfide contents vary from base to top of deposit. Base contains massivesulfide grading into net-textured or matrix sulfide into disseminated sulfide.

Alteration None related to ore.

Ore Controls In lowermost flows more than 10 m thick; in zones of increased spinifex development;and near feeder areas for the flows. Orebodies show evidence of active faulting at the time theflows were deposited and have thickening and thinning of flows along strike. Ore occurs inirregularities at bottom of flows. Unit contains greater than 1,000 ppm sulfur or is associatedwith sulfide-bearing chert and argillite. Shale or iron carbonate sequences occur below flows.

Weathering Develop gossans, laterites.

Geochemical Signature High Mg, Ni, Cu, Mg, PGE. Gossans contain 15 to 30 ppb Pd and 5 to 10 ppbIr over known Ni-Cu deposits where Cu and Ni are leached out of the gossan.

EXAMPLESKambalda, AUWA (Gresham and Loftus-Hills, 1981)Damba, ZIMB (Williams, 1979)Langmuir, CNON (Green and Naldrett, 1981)

GRADE AND TONNAGE MODEL OF KOMATIITIC Ni-Cu

By Donald A. Singer, Norman J Page, and W. David Menzie

COMMENTS Nickel grade is correlated with tonnage (r = -0.47) and with copper grade(r = 0.59, n - 21). Au, Ir, Pt, and Pd grades are based on reported analyses of samples from thedeposits. See figs. 7-10.

18

Page 33: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a--Con.

DEPOSITS

Name

Carnilya E.Carnilya HillDambaEpochE. ScotiaHituraHunters RoadKambaldaKotalahtiLangmuir 1Langmuir 2MarbridgeMcWattersMiriamMt. EdwardsMt. Windarra

Country

AUWAAUWAZIMBZIMBAUWAFNLDZIMBAUWAFNLDCNONCNONCNQUCNONAUWAAUWAAUWA

Name Country

MundaNepeanPerseveranceRankin InletRedrossScotiaSelukweShanganiSothman Twp.SpargovilleS. WindarraTextmontTrojanWannawayWigie 3

AUWAAUWAZIMBCNNTAUWAAUWAZIMBZIMBCNONAUWAAUWACNONZIMBAUWAAUWA

Figre 6. Cartoon cross section of typical komatiitic volcanic sedimentarysequence showing ore controls of komatiitic Ni-Cu deposits. Modified fromMarston and others (1981).

19

Page 34: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a--Con.

KOMATIITE NICKEL-COPPER

1.0

0 n.31

0.0

0

0.7~~~~~~~

0.6~~~~~~~

0E 0

z~~~~~~~~~

Pi, 00

OL 0.0 .3

0.2 -

00 0

o 0. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __0_ _2_ _ _ _ _

0Q 0 005 01 . s fz 2 10 An 1W 60

MILLION TONNES

Figure 7. Tonnages of komatiitic Ni-Cu deposits.

20

Page 35: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a--Con.

KOMATIITE NICKEL-COPPER

I0)

aIL

0

A. NICKEL GRADE IN PERCENT

B, GOLD GRADE IN GRAMS PER TONNE

Figure S. Nickel and gold grades of komatlitic Ni-Cu deposits. A,Nickel. B, Gold.

21

Page 36: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a--Con.

0.4

03

02

0.1

0.0

KOMATIITIC NICKEL-COPPER

I I I I I I I I Inz 31

0

0

00

2 4 a 16 32 63 130 250 500 1.000

A. PALLADIUM GRADE IN PARTS PER BILLION

0

0.w-0IL0

2

0

0L

03

02

0.1

0.0

B. IRIDIUM GRADE IN PARTS PER BILLION

0.2

0.1

0.0

C. PLATINUM GRADE IN PARTS PER BILLION

Figure 9. PCE grades of komatiitic Ni-Cu deposits. A, Palladium.B, Iridium. C, Platinum.

22

Page 37: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6a--Con.

KOMATIMC NICKEL-COPPER

2(n

c°,c

50waU-0z0

00.

A. COBALT GRADE IN PERCENT

1.0 -

0.9

0 _

0.7

0

0 OOoj 0.1LUia

0

Oa.60I

02

0.1

00 -0.032

B_

Figure 10.Cobalt. B,

------ - - ---- - - -- - - ----I I I I I I I I

0

0

0

00

I . I .a I I I I

1 7 r a l l0

Q~~~~

\o~~~~

\o~~~

0

0

1 .09~ I 0.280.056 0.1 o.18 2 0.6 1.0 1tD 32 -5 10.0

COPPER GRADE IN PERCENT

Base-metal grades among komatiitic Ni-Cu deposits. A,Copper.

23

Page 38: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6b

DESCRIPTIVE MODEL OF DUNITIC Ui-Cu

By Norman J Page

DESCRIPTION Disseminated sulfide mineralization in intrusive dunites.

GENERAL REFERENCE Marston and' others (1981); Ross and Travis (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Dunite, olivine peridotite in subconcordant lenses 500-1,000 m long, 50-100 m thick.

Textures Dunite; coarse-grained (2-20 mm) subequant olivine (FoR7g ) interlocked to givepolygonal to mosaic texture; olivine peridotite; ovate olivine with intercumulus pyroxene, sulfideand oxide minerals.

Age Range Precambrian.

Depositional Environment Intruded into contacts between elastic sedimentary and felsic volcanicrocks and mafic to ultramafic volcanic rocks.

Tectonic Setting(s) Greenstone belts.

Associated Deposit Types Komatiitic Ni, synorogenic-synvolcanic-Ni talc-carbonate Ni-Au, layeredsedimentary Ni.

DEPOSIT DESCRIPTION

Mineralogy High grade (1-9 percent Ni): pyrrhotite + pentlandite + magnetite + pyrite +chalcopyrite + chromite. Low grade (0.4-1 percent Ni): the same minerals * millerite *

heazlewoodite * godlevskite * polydymite * vaesite t awaruite * bravoite * cobaltite *nickeliferous linnaeite * cubanite * Fe-Ni arsenides.

Texture/Structure Lenticular shoots of massive, matrix, and breccia ores are fine to mediumgrained, also occurs as interstitial films. Olivine is commonly rounded when sulfide is present.

Alteration Prograde and retrograde serpentinization after deposition; usually metamorphosed.

Ore Controls Dunitic lenses close to major strike-slip faults and at high stratigraphic positionin volcanic pile; most Ni-rich ores concentrated at one margin,.perhaps at base of intrusion.

Weathering Lateritic zones may be enriched in PGE.

Geochemical Signature Ni, Cu, PGE, Cr, Co, Mg. Ni/Cu = 19-70+, Ni/Co=30-70. Massive sulfide ores4-9percent Ni, disseminated ores up to 3 percent Ni.

EXAMPLESAgnew (Perseverance), AUWA (Martin and Allchurch, 1975)Mt. Keith, AUWA (Burt and Sheppy, 1975)

GRADE AND TONNAGE MODEL OF DUNITIC Ni-Cu

By Donald A. Singer and Norman J Page

COMMENTS Nickel grade is correlated with tonnage (r = -0.54) andcopper grade (r - 0.84, n = 12). Ir, Pd, Au, and Co grades are based on reported analyses ofsamples from the deposits. See fig. 11-14.

24

Page 39: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6b--Con.

DEPOSITS

Name

Agnew (Perserverance)AmaxBirch TreeBlack SwanBowden LakeBuckoDiscoveryDumontForrestania GroupGeol. Reser. No. 34Hambone

Country

AUWACNMNCNMNA1JWACNMNCNMNCNMNCNQUAUWACNMNCNMN

Name

Honeymoon WellManibridgeMoakMt. KeithMystery LakePipeSix MileSoab N.Saab S.ThompsonWeebo Bore

Country

AUWACNMNCNMNAUWACNMNCNMNAUWACNMNCNMNCNMNAUWA

25

Page 40: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 6b--Con.

DUNITIC NICKEL-COPPER

U)

U)0a.Liia

z0

00L2

I - I I I I I I I I

0 n - 22

K 1 xI l

7 ~~~~~0

0

0

I I I I I M I I0

Figure 11. Tonnages of dunitic Ni-Cudeposits.

- . ---I U., 1.0 "J 25 100 410 1600 0300 20000 100000

MILLION TONNES

DUNITIC NICKEL--COPPER

U)

U1)0wa

IL0

z0

IE

0~

Figure 12. Nickel grades of dunitic Ni-Cudeposits.

1.0 -

0.e

0.e

0.7

0.6

o.s

0.4

03

0.2

0.1

0.00.032

NICKEL GRADE IN PERCENT

26

Page 41: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

DUNITIC NICKEL--COPPERModel 6b--Con.

0.9

08

0.7 _-

(0

0 o.6LuIn

o 0.5

20

M 0.420Ir0.

I I I I I I I I n J22

L I II L 28I L l I_ I _

03 _-

0.2 _-

0.1 _-

0.0

A2 4 6 16 32 63 130 250 SW *c

IRIDIUM GRADE IN PARTS PER BILLIONo0

I I I I I I I I I

0

0

0

0

I I I I I I I I

o.1 L-

0.0Figure 13. PGE grades of dunitic Ni-Cu

o deposits. A, Iridium. B, Palladium.2 4 8 18 32 83 130 2So 500 IC

PALLADIUM GRADE IN PARTS PER BILLIONB.

DUNmC NICKEL-COPPER

0.3

0.2

0.1

0.00.

EO-

n 0.20.wLL0 1

01

z

02F 0.02 O.

M

I I I I I I I I I

0 n . 22

- of --j- I I ~ I I I I I

01 0.025 0.063 0.16 0.4 1.0 2.5 6.3 18 40 100

k. GOLD GRADE IN GRAMS PER TONNE

I I I I I I I I I0

_ N0o0.b I I I I I I I I.01 0.016 0.025 0.04 0.063 0.1 0.16 0.25 04 0L.3 I.E

B. COBALT GRADE IN PERCENT

02 I-

o . . . . . .I T0

0o

0.1 I.-

, Figure 14. By-product grades of' dunitic0.0 I I 0.1 i I I I I I I I Ni-Cu deposits. A, Gold. B, Cobalt. C,

0.032 0.06 0.1 0.18 0.32 0.56 1.0 Is 3.2 5.6 10.0 -C p_. _PER GRADE IN TCopper. a

C. COPPER GRADE IN PERCENT & 9

Page 42: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7a

DESCRIPTIVE MODEL OF STNOROGENIC-SYNVOLCANIC Ni-Cu

By Norman J Page

APPROXIMATE SYNONYMS Gabbroid class (Ross and Travis, 1981), gabbroid associated (Marston andothers, 1981).

DESCRIPTION Massive lenses, matrix and disseminated sulfide in small to medium sized gabbroicintrusions in greenstone belts.

GEOLOGICAL ENVIRONMENT

Rock Types Norite, gabbro-norite, pyroxenite, peridotite, troctolite, and anorthosite forminglayered or composite igneous complexes.

Textures Phase and cryptic layering sometimes present, rocks usually cumulates.

Age Range Archean to Tertiary, predominantly Archean and Proterozoic.

Depositional Environment Intruded synvolcanically or during orogenic development of a metamorphicterrane containing volcanic and sedimentary rocks.

Tectonic Setting(s) Metamorphic belts, greenstone belts, mobile belts.

Associated Deposit Types Komatiitic Ni-Cu, dunitic Ni-Cu, talc-carbonate Ni-Au (no modelavailable).

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + pentlandite + chalcopyrite t pyrite * Ti-magnetite * Cr-magnetite ±graphite--by-product Co and PGE.

Texture/Structure Predominantly disseminated sulfides; commonly highly deformed and metamorphosedso primary textures and mineralogy have been altered. Deformation about the same age as thedeposit.

Ore Control Sulfides commonly are in the more ultramafic parts of the complex and near the basalcontacts of the intrusion.

Weathering Lateritic.

Geochemical Signature Ni, Cu, Co, PGE.

EXAMPLESSally Malay, AUWA (Thornett, 1981)Rana, NRWY (Boyd and Mathiesen, 1979)Moxie pluton, USMA (Thompson and Naldrett, 1984)

GRADE AND TONNAGE MODEL OF SYNOROGENIC-SYNVOLCANIC Ni-Cu

By Donald A. Singer, Norman J Page, and W. David Menzie

COMMENTS Pd, Pt, Au, and Co grades are based on reported analyses of samples from the deposits.See figs. 15-18.

DEPOSITS

Name Country Name Country

Bamble NRWY Funter Bay USAKCarr Boyd AUWA Gap USPAEmpress ZIMB Giant Mascot CNBCFlaat NRWY Hosanger NRWY

28

Page 43: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7a-Con.

KenbridgeKylmakoskiLainijaurLappuattnetLaukunkawgesLorraineLynn LakeMadziwaMakolaMjodvattnetMontcalmMt. Sholl

CNONFNLDSWDNSWDNFNLDCNQUCNMNZIMBFNLDSWDNCNONAUWA

PhoenixPikweRenzyRislidenSelebiSelebi N.SelkirkTekwaneThierryVakkerlienVammalaYakobi Island

BOTSBOTSCNQUSWDNBOTSBOTSBOTSBOTSCNONNHWYFNLDUSAK

SYNOROGENIC-SYNVOLCANIC NICKEL-COPPER

(n)

0~tL0IL0

0a.

MILLION TONNES

Figure 15. Tonnages of synorogenie-synvolcanic Ni-Cu deposits.

29

Page 44: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7a--Con.

SYNOROGENIC-SYNVOLCANIC NICKEL-COPPER

1.0

09

0.8

0.7

07F-

o 0.6(L0 4

o 06

z0

o0r

0a.

0.3

02

0.1

Figure 16. Nickel grades of synorogenic-synvolcanic Ni-Cu deposits.

0.0

NICKEL GRADE IN PERCENT

SYNOROGENIC--SYNVOLCANIC NICKEL-COPPER

03

0L

0

0.

Figure 17. Copper grades of synorogenic-synvolcanic Ni-Cu deposits.

COPPER GRADE IN PERCENT

30

Page 45: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7a--Con.

SYNOROGENIC-SYNVOLCANIC NICKEL-COPPER

0.2 I

0.l

0

0.0 I 7 I I I I I I0.0! 0.016 0.025 0.04 0.063 0.1 0.16 025 0.4 0.63 1.0

A. COBALT GRADE IN PERCENT

0.1L020

2 0.t t .35 I 1 I I I I I Io 0JD1 0.025 0.063 0.16 0.4 1.0 2S 63 1S 40 100

o B. GOLD GRADE IN PARTS PER MILLIONz0

02

tE 0.1 _0o w

0.0 I II I te Os 2 4 a 16 32 63 130 250 600 1000

C. PALLADIUM GRADE IN PARTS PER BILLION

0.2

0.1

0.0

D. PLATINUM GRADE IN PARTS PER BILLION

Figure 18. By-product grades of synorogenic-synvolcanic Ni-Cudeposits. A, Cobalt. B, Gold. C, Palladium. D, Platinum.

31

Page 46: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7b

DESCRIPTIVE HODEL OF ANORTHOSITE Ti

By Eric R. Force

DESCRIPTION Ilmenite (and rutile) deposits in granulite metamorphic terranes intruded byanorthosite-ferrodiorite-clan plutons. Two subsets (1 and 2) distinguished below (see fig. 19).

GEOLOGICAL ENVIRONMENT

Rock Types (1) Andesine anorthosite massifs in granulite-facies country rocks (associatedmineralization includes rutile if andesine is antiperthitic).

(2) Ferrodiorite-type intrusive rocks (gabbro, charnockite, jutunite) generallyyounger than anorthosite, with associated ilmenite * apatite mineralization.

Textures Granulation in anorthosite, quartz platy and blue where present.

Age Range Most, and perhaps all, between 900 and 1,500 m.y. in age.

Depositional Environment Lower crust, intrusion under hot, dry conditions.

Tectonic Setting(s) Not well known.

Associated Deposit Types None known.

DEPOSIT DESCRIPTION

Mineralogy: (1) Ilmenite * rutile(2) Ilmenite * apatite

Deposit value is much greater if intergrown magnetite and ulvospinel are absent.

Texture/Structure (1) Disseminations to veinlets along anorthosite margins, hosted by both impureanorthosite and adjacent country rock.

(2) Both concordant layers within or at base of ferrodiorite-clan sheets, and vein-like massive bodies in underlying structural units (especially anorthosite).

Alteration None related to ore.

Ore Controls (1) High-temperature metasomatism between Ti-Fe oxides-rich country rock, andanorthosite, coupled with unknown processes in anorthosite magma. Especially concentrated inswarms of anorthosite sills.

(2) Immiscible Ti, P liquid in ferrodioritic magma, forming both cumulate-likebodies and fracture fillings.

Weathering Residual enrichment may occur in weathering zone.

Geochemical and Geophysical Signature (2) High Ti, P, and Zr. Magnetic anomalies.

EXAMPLES(1T Roseland, USVA (Herz and Force, 1984)

Pluma Hidalgo, MXCO (Paulson, 1964)(2) Roseland, USVA (Herz and Force, 1984)

Sanford Lake, USNY (Gross, S. O., 1968)Laramie Range, USWY (Eberle and Atkinson, 1983)

32

Page 47: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 7b--Con.

EXPLANATION

* Massive ilmenite-apatite

MeI Granulite-facies country rock

R, Disseminated rutileI, Disseminated ilmenite

Figure 19. Cartoon cross section of a typical anorthositeferrodiorite intrusionshowing relation between differentforms of Ti concentrations.

33

Page 48: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8a

DESCRIPTIVE MODEL OF PODIFORM CHROMITE

By John P. Albers

APPROXIMATE SYNONYM Alpine type chromite (Thayer, 1964).

DESCRIPTION Podlike masses of chromitite in ultramafic parts of ophiolitecomplexes (see fig. 20).

GENERAL REFERENCE Dickey (1975).

GEOLOGICAL ENVIRONMENT

Rock Types Highly deformed dunite and harzburgite of ophiolite complexes;commonly serpentinized.

Textures Nodular, orbicular, gneissic, cumulate, pull-apart; most relicttextures are modified or destroyed by flowage at magmatic temperatures.

Age Range Phanerozoic.

Depositional Environment Lower part of oceanic lithosphere.

Tectonic Setting(s) Magmatic cumulates in elongate magma pockets along spreading plateboundaries. Subsequently exposed in accreted terranes as part of ophiolite assemblage.

Associated Deposit Types Limassol Forest Co-Ni-S-As.

DEPOSIT DESCRIPTION

Mineralogy Chromite * ferrichromite * magnetite * Ru-Os-Ir alloys * laurite.

Texture/Structure Massive coarse-grained to finely disseminated.

Alteration None related to ore.

Ore Controls Restricted to dunite bodies in tectonized harzburgite or lower portions of ultramaficcumulate (see fig. 99).

Weathering Highly resistant to weathering and oxidation.

Geochemical Signature None recognized.

EXAMPLESHigh Plateau, Del Norte Cty, USCA (Wells and others, 1946)Coto Mine, Luzon, PLPN (LeBlanc and Violette, 1983)

GRADE AND TONNAGE MODEL OF MINOR PODIFORM CHROKITE

By Donald A. Singer and Norman J Page

DATA REFERENCES Singer and others (1980); Calkins and others (1978); Carlson and others (1985).

COMMENTS All deposits in this grade-tonnage compilation are from California and Oregon. The twolargest tonnage deposits are actually districts rather than individual deposits. The majority ofthe grades represent shipping grades. Grades less than 35 percent typically represent in-place"ore". The mixture of shipping grades and in-place grades may explain the significant negativecorrelation (r = -0.25) between grade and tonnage. Rh, Ir, Ru, Pd, and Pt grades are based onreported analyses of samples from the deposits. Unreported PGE grades are probably similar tothose presented here. Rhodium is correlated with chromite (r = 0.35,n = 69), platinum (r= 0.69, n = 31), iridium (r = 0.47, n = 35), ruthenium (r = 0.56, n = 28).Ruthenium is correlated with palladium (r = 0.72, n = 21) and iridium (r = 0.59, n = 29). Seefigs. 21-23.

34

Page 49: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8a--Con.

DEPOSITS

Name CountryAce of Spades USCAAdobe Canyon Gp. USCAAjax USORAlice Mine USCAAllan (Johnson) USCAAlta Hill USCAAlthouse USORAlyce and Blue Jay USCAAmerican Asbestos USCAAnti Axis USCAApex (Del Norte Co.) USCAApex (El Dorado Co.) USCAApplegate USORAssociated Chromite USORBabcock USORBabyfoot USORBeat USCABig Bear USORBig Bend USCABig Chief USORBig Dipper (Robr) USCABig Four USORBig Pine Claim USCABig Yank No. I USORBinder No. 1 USCABlack Bart (Great Western) USCABlack Bart Claim (Avery) USCABlack Bart Group USCABlack Bear USCABlack Beauty USORBlack Boy USORBlack Chrome USCABlack Diamond USORBlack Diamond (Grey EagleGp.) USCA

Black Hawk USORBlack Otter USORBlack Rock Chrome USCABlack Streak USORBlack Warrior USORBlue Brush USCABlue Creek Tunnel USCABlue Sky (Lucky Strike) USCABoiler Pit USCABonanza USCABooker Lease USCABowden Prospect USCABowie Estate USCABowser USORBragdor USCABriggs Creek USORBrown Scratch USORBunker USCABurned Cabin USORButler Claims USCAButler, Estate Chrome, etc USCAButtercup Chrome USCACamden Mine USCACampbell USORCamptonville area USCA

NameCastro MineCattle SpringsCavyell Horse CCavyell Horse MountainCedar CreekCelebrationChallange areaChambersChicagoChristian PlaceChrome CampChrome GulchChrome HillChrome King (Josephine Co.)Chrome King (Jackson Co.)Chrome No. 3Chrome RidgeClara HClary and LangfordCleopatraClover LeafCodd ProspectCogginsCollard MineCommanderCoon Mt. Nos. 1-3Copper Creek (Low Divide)CourtwrightCourtwright (Daggett)Cow Creek Op.CrouchCrownCyclone GapCynthiaDaisy (Aldelabron)Dark StarDarringtonDeep Gorge ChromeDelare ProspectDetertDiamondDickersonDickey and DrisbachDirty FaceDoe FlatDon PedroDorrissDozierDry CreekEarl SmithEarly SunriseEdelineEdenEggling and WilliamsEl PrimeroElder ClaimElder CreekElder Creek Op.Elk Creek ClaimElkhorn Chromite

CountryUSCAUSCAUSORUSORUSOBUSORUSCAUSORUSCAUSCAUSCAUSCAUSCAUSORUSORUSORUSORUSCAUSCAVSORUSCAUSCAUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSORUSORUSCAUSOBUSCAUSOBUSCAUSORUSORUSCAUSCAUSCAUSCAUSOBUSCAUSCAUSCAUSCAUSORUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSOR

35

Page 50: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8a--Con.

EllingwoodEllisEsterly ChromeEsther and PhyllisFairviewFiddler's GreenFields and Stoker

FinanForest Queen

FosterFour PointFourth of JulyFrench HillFridayGallagherGardner MineGas CanyonGeachGibsonvilleGill (Gill Ranch)GillanGillis ProspectGlory HoGolconda FractionGold Bug ClaimGoncoldaGray BoyGray Buck Gp.Green (Americus)Green MineGreen RidgeGreen's Capco LeasesGriffin ChromiteGunn ClaimsHalf ChromeHanscumHappy Go LuckyHarp and Sons RanchHawks Rest ViewHayden and HiltHelemarHendricks No. 2High DomeHigh PlateauHill-Top ChromeHodge RanchHoffHolbrook and McGuireHolseman (and others)Holston (Vaughn)HorseshoeHorseshoe ChromeHouser & BurgesHudson (Fuller Claims)I-WonderIllinois RiverIndependenceIrene ChromiteIron KingIron MountainJack ForthJack Sprat Gp.Jackson

USCAUSCAUSORUSCAUSCAUSCAUSCAUSCA

USCA

USORUSORUSCAUSCAUSORUSORUSORUSCAUSCAUSCAUSCAUSCAUSCAUSORUSCAUSCAUSORUSORUSORUSCAUSCAUSCAUSCAUSORUSCAUSCAUSORUSCAUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSORUSORUSCAUSCAUSORUSORUSORUSORUSORUSCAUSCAUSOR

Jim BusJohnsJosephineJosephine No. 4Judy (Hicks)JulianKangaroo Court MineKingsleyKleinsorge Gp.Kremmel and FroelichLaceyLambertLangley ChromeLassic PeakLast BuckLast Chance (Coos)Last Chance (JosephinoLatonLettyLibertyLiberty Bond ClaimLinda MarieLittle BoyLittle Castle CreekLittle HopeLittle Rock MineLittle SiberiaLone GravelLong Ledge Gp.Lost LeeLottyLucky BoyLucky FridayLucky GirlLucky HunchLucky L. & R.Lucky Nine Gp.Lucky StarLucky Strike (Lake Co.Lucky Strike (S.L.O. CLucky Strike (Curry CcLucky StrikeMackayMadeiraMadridManchesterMaralls Capro LeasesMarks & TompsonMary JaneMary WalkerMaxwellMayflowerMcCaleb's SourdoughMcCartyMcCormickMcGuffy Creek Gp.McMurtyMeeker (Sonoma Chrome)MerrifieldMighty JoeMiltonMockingbirdMoffett Creek Gp.

Oe.

:.)

USORUSORUSCAUSORUSCAUSCAUSCAUSORUSCAUSCAUSCAUSCAUSORUSCAUSORUSORUSORUSCAUSCAUSCAUSCAUSORUSORUSCAUSCAUSCAUSORUSCAUSCAUSORUSCAUSCAUSORUSCAUSORUSORUSORUSORUSCAUSCAUSORUSORUSCAUSCAUSCAUSCAUSCAUSORUSCAUSORUSCAUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSORUSCAUSORUSCA

36

Page 51: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model Ba--Con.

Mohawk Claim

MooreMoscatelliMoscatelli No. 2Mountain ViewMountain View Gp.MuNalyMulcahy ProspectMule CreekMum and Alice June ClaimMurphyMuzzleloader (Stevens

No. 1)New HopeNew Hope ClaimNewmanNichelini MineNickel MountainNickel RidgeNo. 5Noble Electric Co.NorcrossNorth End, West End,

Spotted FawnNorth Fork ChromeNorth StarNorth Star (Red Mtn)NorwayOak RidgeOlive B.OlsenOnion SpringsOregon ChromeOxfordP. U. P. (Zenith)Paradise No. 1Paradise No. 2Park's RanchParkerParkesonPearsoll PeakPeewanPeg Leg (Lambert)Pennington ButtePerconi RanchPillikinPine Mountain ClaimPinesPleasant No. I & 2Poco Tiempo QuartzPony ShoePoodle DogPorter PropertyPowersPraterPyramidQueen of MayQuiggRainbowRainy DayRancherieRandallRattlesnake Mountain

USORUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCA

USCAUSCAUSOBUSCAUSCAUSORUSORUSCAUSCAUSCA

USCAUSCAUSORUSCAUSORUSCAUSORUSCAUSORUSORUSCAUSCAUSORUSORUSCAUSCAUSCAUSORUSCAUSCAUSORUSCAUSCAUSCAUSORUSORUSCAUSCAUSCAUSCAUSORUSORUSCAUSORUSCAUSORUSORUSORUSCAUSCA

Ray (Tip Top)Ray SpringRed LedgeRed MountainRed Slide Gp.RedskinRichardsRichey, U.S. & S.J.Robt. E.Rock CreekRock Wren MineRose ClaimRosie ClaimRound BottomRoupeSad SackSaddle ChromeSaintSally AnnSalt RockSaturday AnneSchmidSeiad Creek (Mt. View)September MornSexton MountainShade ChromiteShafer LeaseShamrockShellySheppard MineShotgun CreekSilver LeaseSimmonsSimonSimsSix-MileSkyline MineSkyline No. 1Skyline No. 2Smith GeitsfieldSnakehead (Jumbo)Snowy RidgeSnowy RidgeSnyderSour DoughSousa RanchSouthern Pacific PropertySpotSpring HillSt. Patrick (Camp 8)StaffordStark BeeState SchoolStevens-MillerStewartStone & HaskinsStore GulchStray DogSullivan and KahlSunnyslopeSunriseSunset (Fresno Co.)Sunset (Placer Co.)

USORUSORUSCAUSORUSCAUSCAUSCAUSCAUSORUSORUSCAUSCAUSORUSCAUSCAUSORUSORUSCAUSORUSORUSORUSORUSCAUSCAUSORUSORUSCAUSCAUSCAUSCAUSCAUSORUSCAUSCAUSCAUSORUSCAUSCAUSCAUSORUSCAUSCAUSORUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSORUSCAUSORUSORUSORUSCAUSCAUSCAUSCAUSCA

37

Page 52: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8a--Con.

SunshineSutro MineSuzy6 Bell (Lucky Strike)SwayneSweetwaterTangle Blue DivideTennessee ChromeTennessee PassThompson Gp.TomkinToujours GaiTrinidadTwin CedarsTwin ValleyUnnamedUncle SamUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown NameUnknown Name

USCAUSCAUSCAUSCAUSCAUSCAUSORUSORUSORUSCAUSCAUSCAUSORUSORUSCAUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSORUSOR

Unknown NameValen ProspectValentiVictory No. 3VioletVogelgesangWaitWaiteWalkerWar BondWar Eagle-MillerWardWard and LyonsWashoutWelch ProspectWest ChromeWestern MagnesiteWhite BearWhite CedarWhite FeatherWhite Pine MineWild Cat ClaimWilder (Fish Creek)Windy PointWolf CreekWolf Creek areaWonderWonder Gp.Yellow PineYoungYoung's MineZerfirg Ranch

USORUSORUSCAUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSORUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSORUSCAUSORUSCAUSCAUSORUSORUSCAUSORUSORUSCA

GRADE AND TONNAGE HDDEL OF MAJOR PODIFORM CHROMITE

By Donald A. Singer, Norman J Page, and Bruce R. Lipin

DATA REFERENCES Page and others (1979), Page and others (1982b), Page and others (1984).

COMMENTS This model, number 8b, is provided as an alternative to the podiform chromite model,number Ba, based on California and Oregon deposits because of the significant difference in tonnageof the two groups. The two groups are geologically similar and share the same descriptive model.Rh, Ir, Ru, Pd, and Pt grades are based on reported analyses of samples from the deposits.Platinum grade is correlated with chromite grade (r 0.76, n 12) and iridium grade (r = 0.71, n= 8). Rhodium is correlated with iridium grade (r 0.88, n 7). See figs. 24-26.

DEPOSITS

Name Country Name Country

AbdashtAkarcaAkoabukAkkoyaAlice LouiseAlphaAltindagAmoresAndizlikAnna MadeleineAsagi ZorkumAventuraAvsar38

IRANTRKYTRKYTRKYNCALNCALTRKYCUBATRKYNCALTRKYCUBATRKY

BaginBagirsakdireBalcicakiriBatikefBati-N. YarmaBati-TabanBati- W. YarmaBellacosciaBellevueBereketBezkere-BulurliiBicir-CakirBicir-Gul

TRKYT RKYTHKYTRKYTRKYTRKYTRKYNCALNCALTRKYTRKYTRKYTRKY

Page 53: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8b--Con.

BonsecoursBozkonusBozotluk-No. 551BuguganBuyiik GurleyenBuyiik KaramanliCaledoniaCamagueyCatakCatak-KoraalanCatolsinir ICatolsinir IICengerCenger-AdatepeCenger-DemirkCenger-DomuzaCezniChagrinChild HaroldConsolationCosanCotoCromitaDagardiDagkupluDanacikDcev 7DeltaDemirliDinagatDogu EzanDogu KefDomuzburnu IIDovisEast Ore BodyEl CidEldirekErmenisFanroucheFindikliFindikli #301Findikli #306-1307Findikli #326General GallieniGerdagGolalanGorunurGovniikbelenGr2hGuillerminaGunlet-UckopurGunliik BasiHerpit YaylaIkisulu-GercekJoseKagit OctuKandiraKapinKaraculhaKaragebanKaraniKaraninarKarasivri

NCALTRKYTRKYTRKYTRKYTRKYCUBACUBATRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYNCALNCALNCALTRKYPLPNCUBATRKYTRKYTRKYNCALCUBATRKYPLPNTRKYTRKYTRKYIRANPLPNCUBATRKYTRKYNCALTRKYTRKYTRKYTRKYNCALTRKYTRKYTRKYTRKYNCALCUBATRKYTRKYTRKYTRKYCUBATRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKY

Karatas-KumocakKartalkoyuKavakcaliKavakdereKazadere-KandilKefdag-EastKemikli InbasiKilic-Kafasi 1Kilic-Kafasi 2KiranocakKocaKomekKoyeegiz-CurukouKoycegiz-KurardiKoycegiz-OrtaKuldodenKundikan-KeluskdereKundikan-KelusktepeKurudereKuyuluk IsletmesiKuzkavakLa CarididLagonoyLa VictoriaLolitaMarais KikiMeululterMiddle Ore BodyMirandag KoruMirandag MevkiMorrachiniMusa DanismanNarcisoNi Te OcutesOchanocagiOfeliaOrta EzanOtmanlar-HarpuzluOtmanlar-MesebukuPanamana-AnP. B.PerginiPotosiRuff Claim No. 32SakaSalurSarialanSarikayaSaysinSekiorenShahinSicankaleSiracSofuluSoghamSta. CruzStephaneSuluiyehSuluSulukSutpinarSuzanneTekneli

TRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYTRKYCUBAPLPNCUBACUBANCALTRKYPLPNTRKYTRKYNCALTRKYCUBACUBATRKYCUBATRKYTRKYTRKYPLPNNCALTRKYCUBAPLPNTRKYTRKYTRKYTRKYTRKYTRKYIRANTRKYTRKYTRKYIRANPLPNNCALIRANTRKYTRKYTRKYNCALTRKY

39

Page 54: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8b--Con.

TepebasiTerlikTiebaghiTilkim-KaranlikTogobomarTosinToparlar-AlacikTuzlakayaUckopruVieille Montagne 1Vieille Montagne 2

TRKYTRKYNCAL.TRKYPLPNTRKYTRKYTRKYTHKYNCALNCAL

West Ore BodyYanikaraYaprakliYayca BoynaYilmaz OcagiYukari ZorkumYunus YaylaYurtlakZambales ChZimparalik

PLPNTRKYTRKYTRKYTRKYTRKYTRKYTRKYPLPNTRKY

10 km

Figure 20. Cartoon cross section of a typical ophiolite sequenceshowing locations of podiform chromite deposits. From Dickey(1975).

40

Page 55: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model Ba--Con.PODIFORM CHROMITE

(0

IL

0

0

2

IL

MILLION TONNES

O.1 0.4

Figure 21. Tonnages of podiform chromitedeposits from California and Oregon,U.S.A. Individual digits represent numberof deposits.

PODIFORM CHROMITE

1.0

0.9

0.8

0.7

co

UoO 0.6

02

C 0.

0c0.4

0.3

02

0.1

0.0

CHROMFTE GRADE IN PERCENT Cr203Figure 22. Chromite grades of podiformchromite deposits from California andOregon, U.S.A. Individual digits representnumber of deposits.

41

Page 56: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8a--Con.

0.2_

0.1_

PODIFORM CHROMITE

I I I I I I I I In- 435

2. ~ N".

0.0

0.2

0.1

0.0

I-

g 02wUl

0 0.1

0.00

a.F

02

0.1

0.0

0.2

0.1

0.0

0.0

I I 56a I I ".1 , I I I I> 1 2 4 8 IS 32 63 130 250 500 1000

RHODIUM GRADE IN PARTS PER BILLION

t I { l l l l l l I~~~~~I

1 2 4 l Is 32 63 130 250 Soo tO000

IRIDIUM GRADE IN PARTS PER BILLION

2 4 a 16 32 63 130 250 SW 10

RUTHENIUM GRADE IN PARTS PER BILLION

C. I 3 I1 ,

t2 4 a8 16 32 63 130 250 100 000

PALLADIUM GRADE IN PARTS PER BILLION

1 2 4 8 16 32 63 130 250 500 1000

E. PLATINUM GRADE IN PARTS PER BILLION

Figure 23.and Oregon,Palladium.deposits.

PGE grades of podiform chromite deposits from CaliforniaU.S.A. A, Rhodium. B, Iridium. C, Ruthenium. D,E, Platinum. Individual digits represent number of

42

Page 57: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8b--Con.MAJOR PODIFORM CHROMITE

1.0

o-s r

DA

0.7

(/)

O 0.w

Q .04

rL0 .

0.3

02

0.1

a,' I I I I I I I In 174

I

,\

In~ I2 I al nzl I ; 1 2 I ,. L I I

)D4 0.0015 D.003 U.WO a.1 0.4 1.6 6.3 ZS 100 4

MILLION TONNES

MAJOR PODIFORM CHROMITE

Figure 24. Tonnages of major podiformchromite deposits. Individual digitsrepresent number of deposits.

1.0

0.9

0.8

0.7

U)

COO 0.6w0

O 0.5z

0.4

IL

0.3

02

0.1

0.0

CHROMITE GRADE IN PERCENT Cr203Flgure 25. Chromite grades of majorpodiform chromite deposits. Individualdigits represent number of deposits.

43

Page 58: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8b--Con.

MAJOR PODIFORM CHROMITE0.1t.. } I 1 I , I I I I I 1, . 174 1

o~o l 1 1 5 1 * I , I I I I I I1 2 4 8 le 32 ti3 130 250 500 1000

A. RHODIUM GRADE IN PARTS PER BILLION

02 1 1 1 1 1 1

n I l l l l l f Z l I~~~~~II~~~~~~~~~~~ O

u.u

P

2 0

UJ

I-a

o 0.1

g

0

o 0.0z

tL0I-0.

02

1 2 4 a 1S 32 63 130 250 500 10t

B. IRIDIUM GRADE IN PARTS PER BILLION

I I I I I I I IUI P E L1 2 4 a le 32 t.3 130 250 Soo 10t

G. RUTHENIUM GRADE IN PARTS PER BILLION

la

1 2 4 a8 1 32 63 130 260 500 1000

D. PALLADIUM GRADE IN PARTS PER BILLION

02 1 1 I i I 1 I

021

0.0 I 1 I ' 1 I I It 2 4 a 16 32 63 130 250 Soo t00

E. PLATINUM GRADE IN PARTS PER BILLION

Figure 26. PCE grades of major podiform chromite deposits. A,Rhodium. B, Iridium. C, Ruthenium. D, Palladium. E, Platinum.Individual digits represent number of deposits.

44

Page 59: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8c

DESCRIPTIVE MODEL OF LIMASSOL FOREST Co-Ni

By Norman J Page

DESCRIPTION Irregular veins, pods and lenses associated with serpentinized peridotite and duniteor nearby country rocks.

GEOLOGICAL ENVIRONMENT

Rock Types Highly serpentinized dunite, harzburgite, pyroxenite; quartz-carbonate rocks.

Textures Sheared.

Age Range Paleozoic and Mesozoic.

Depositional Environment Faults, fractures associated with serpentinized ultramafic rocks of anophiolite.

Tectonic Setting(s) Unstable, acoreted terranes, near plate boundaries.

Associated Deposit Types Podiform chromite, Ni-laterite, Co-Ni-Cu ophiolite sulfide.

DEPOSIT DESCRIPTION

Mineralogy: Pyrrhotite + pyrite * pentlandite * chalcopyrite * vallerite * loellingite * niccolite* maucherite * skutterudite * gersdorffite * cobaltite * magnetite * chromite * mackinawite *

pararammelsbergite.

Texture/Structure Irregular vein and fracture fillings.

Alteration Serpentinization and quartz-carbonate.

Ore Controls Serpentinized ultramafic rock, possible external source of arsenic (see fig. 99).

Geochemical Signature As, Co, Ni

EXAMPLESBou Azzer, MRCO (LeBlanc, 1981; LeBlanc and Bilaud,

1982)Limmasol Forest, CYPS (Panayiotou, 1980)

45

Page 60: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8d

DESCRIPTIVE MODEL OF SERPENTINE-HOSTED ASBESTOS

By Norman J Page

APPROXIMATE SYNONYM Quebec Type (Shride, 1973).

DESCRIPTION Chrysotile asbestos developed in stockworks in serpentinized ultramafic rocks.

GEOLOGICAL ENVIRONMENT

Rock Types Serpentinites, dunite, harzburgite, pyroxenite.

Textures Highly fractured and veined, serpentinized ultramafic rocks.

Age Range Paleozoic to Tertiary.

Depositional Environment Vsually part of an ophiolite sequence. Later deformation and igneousintrusion may be important.

Tectonic Setting(s) Unstable accreted oceanic terranes.

Associated Deposit Types Podiform chromite.

DEPOSIT DESCRIPTION

Mineralogy Chrysotile asbestos + magnetite + brucite + talc + tremolite-actinolite.

Texture/Structure Stockworks of veins in serpentinized ultramafic rocks.

Alteration None associated with ore, but silica-carbonate, talc may be developed.

Ore Controls Two periods of serpentinization, an earlier pervasive one and a later period near theend of intense deformation accompanied by hydrothermal activity perhaps as a function of intrusionof acidic, igneous rocks highly dependent upon major faulting, and fracture development.

Geochemical signature None.

EXAMPLES:Thetford-Black Lake, CNQU (Riordon, 1957)

GRADE AND TONNAGE MODEL OF SERPENTINE-HOSTED ASBESTOS

By Greta J. Orris

COMMENTS Long and short fibers are combined. Some literature did not specify if reportedproduction was tons of fiber or tons of ore. In these cases, production was assumed to be tons ofore which may have led to underestimation of some deposit tonnages. See Figs. 27, 28.

46

Page 61: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8d--Con.

DEPOSITS

Name

AbitibiAdvocateAsbestos HillAsbestos IslandBelvidereBlack LakeBritish CanadianCaleyCarey/East BroughtonCana BravaCassiar MineClinton CreekContinentalCourvan MineCranbourneDaffodilEagleGilmontGolden AgeHavelock MineJefferson LakeJeffrey LakeKinlockKolubara-AzbestKudu Asbestos Mine

Country Name Country

CNQUCNNFCNQUCNQUUSVTCNQUCNQUCNYTCNQUBRZLCNBCCNYTCNQUCNQUCNQUCNONUSAKCNQUCNQUSWAZUSCACNQUSAFRYUGOZIMB

LafayetteLake AsbestosLas BrisasLiliMcAdamMidlothianHoladezhnoyeMunroNationalNicolet AsbestosNormandie/PenhalePontbriandQala-el-Nahl?ReevesRexRoberge LakeSt. Adrien Mtn.St. CyrSantiago PapaloShihmienSteele BrookThetford GroupWindsorWoodsreef MineZindani

CNQUCNQUCLBACNQUCNQUCNONURRSCNONCNQUCNQUCNQUCNQUSUDNCNONCNYTCNQUCNQUCNQUMXCOCINACNQUCNQUCNQUAUNSGREC

47

Page 62: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 8d--Con.

SERPENTINE--HOSTED ASBESTOS

(n0

I

0a

0z

0

0~

Figure 27. Tonnages of serpentine-hostedasbestos deposits.

MILLION TONNES

SERPENTINE--HOSTED ASBESTOS

1.0

0.9

0.7

o 0.6a-LL

0

U.

O 0.5

0 0'4

a:0.3

0.2

0.1

Figure 28. Asbestos grades of serpentine- 0.0hosted asbestos deposits.

ASBESTOS GRADE IN PERCENT FIBER

48

Page 63: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 9

DESCRIPTIVE MODEL OF ALASKAN PGE

By Norman J Page and Floyd Gray

APPROXIMATE SYNONYMS Zoned ultramafic Cr-Pt; Kachkanar-type (Cabri and Naldrett, 1984).

DESCRIPTION Crosscutting ultramafic to felsic intrusive rocks with approximately concentric zoningof rock types containing chromite, platinum, and Ti-V-magnetite (see fig. 29).

GEOLOGICAL ENVIRONMENT

Rock Types Dunite, wehrlite, harzburgite, pyroxenite, magnetite-hornblende pyroxenite, two-pyroxene gabbros, hornblende gabbro, hornblende clinopyroxenite, hornblende-magnetiteclinopyroxenite, olivine gabbro, norite. Post-orogenic tonalite and diorite are commonly spatiallyrelated. Orthopyroxene-bearing rocks absent in Klamath Mountains.

Textures Cumulus textures, poikilitic, mush flow textures, lineated fabrics, layered.

Age Range Precambrian to late Mesozoic, most Paleozoic and Mesozoic.

Depositional Environment Deposits occur in layered ultramafic and mafic rocks that intrude intogranodiorite, island arc or ophiolite terranes. Evidence indicates shallow levels of emplacement.

Tectonic Setting(s) Unstable tectonic areas.

Associated Deposit Types PGE placer deposits.

DEPOSIT DESCRIPTION

Mineralogy Assemblage 1: chromite + Pt-Fe alloys + Os-Ir alloys + platinum-iridium * pentlandite± pyrrhotite * native gold * POE arsenides. Assemblage 2: Ti-V magnetite * Pt-Fe alloys * Os-Iralloys * cooperate * bornite * chalcopyrite.

Texture/Structure Assemblage 1: clots, pods, schlieren, wisps of chromite in dunite,clinopyroxenite, harzburgite. Assemblage 2: magnetite segregations, layers in wehrlite,pyroxenite, gabbro (see fig. 29).

Alteration None: post-mineralization serpentinization.

Ore Controls Appear to be restricted to specific rock types by magmatic processes.

Weathering Mechanical weathering produces placers; chemical weathering could produce laterites.

Geochemical Signature Cr, POE, Ti, VY Cu, Ni, S, As. Assemblage 2 ores in Klamath Mountains arelow in Cr and Ni.

EXAMPLESUrals, USSR (Duparc and Tikonovitch, 1920)Duke Island, USAK (Irvine, 1974)Guseva-Gora, USSR (Razin, 1976)Tin Cup Peak, USOR (Page and others, 1982a)

49

Page 64: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 9--Con.

Figure 29. Generalized geologic map of zoned ultramafic complex at Lower CoonMountain, Calif. (from Gray and Page, 1985). V-rich magnetite layers andanomalous PGE concentrations typical of Alaskan Cr-Pt deposits are associated withplutons of this type.

50

Page 65: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 10

DESCRIPTIVE MODEL OF CARBONATITE DEPOSITS

By Donald A. Singer

APPROXIMATE SYNONYM Apatite-magnetite and rare earths in carbonatites.

DESCRIPTION Apatite-magnetite and rare-earth deposits and combinations of these in zoned complexesconsisting of central plug of carbonatite or syenite breccia surrounded by ring dikes and conesheets of alternating rock types.

GENERAL REFERENCE Tuttle and Gittins (1966).

GEOLOGICAL ENVIRONMENT

Rock Types Apatite-magnetite deposits tend to be in sovite (calcitic carbonatite); RE types tendto occur in ankerite carbonatite; most deposits have both. In general pyroxenite, nepheline andfeldspathic pyroxenite, carbonatite, fenite, iJolite, dunite, picrite-porphyrites, gneiss andalkalic fenitized gneiss, and locally alkaline volcanics rocks.

Textures Hypidiomorphic-granular, poikiloblastic. Breccias abundant. Carbonatites show intrusiverelations. Wallrocks fenitized.

Age Range Almost all known carbonatite complexes are intrusive into Precambrian shields, however,the carbonatites themselves may be much younger.

Depositional Environment Multiple stages of igneous, deuteric and metasomatic crystallization incarbonatite magma.

Tectonic Setting(s) Continental shields. Spatially related to fault lineaments such as EastAfrican rift system. Locally related to alkaline volcanism.

Associated Deposit Types None.

DEPOSIT DESCRIPTION

Mineralogy Apatite-magnetite-type: apatite, magnetite, pyrochlore t columbite * perovskite *niocalite. RE-type: barite, strontianite * siderite * rhodochrosite * ankerite t bastnaesite *chlorites * parisite t monagite * breunnerite. General: calcite, dolomite, fluorite, pyrrhotite,ilmenite, molybdenite, chalcopyrite, pyrite, sphalerite, pyroxene, biotite, phlogopite, amphibole,spinel, t galena, * hematite, t quartz, * forsterite, t serpentine, t zircon * sphene, * anatase, *rutile, t brookite, * fersmite.

Texture/Structure Disseminated and banded.

Alteration Fenitization (widespread alkali metasomatism of quartzo-feldspathic rock; mostlyalkalic feldspar with some aegerine and subordinate alkali-hornblende and accessory sphene andapatite) near contact of carbonatite intrusion. Locally, chloritization.

Ore Controls Commonly restricted to carbonatite dikes, sills, breccias, sheets, veins, and largemasses, but may occur in other rocks associated with the complex rocks.

Weathering May result in goethite-rich soil enriched in P, Nb, and RE.

Geochemical Signature Radiometric anomalies, magnetic anomalies, high gravity anomalies, Th, U,Ti, Zn, Nb, Y, Ce, Mo, Cu, V, P, Mn, S, La, Sm, Pb, Zr, Ba, Eu. High values of Be, B, Li, Sn, Ta,Hf, and W are rare.

EXAMPLESOka, CNQUIron Hill, USCOSt. Honore, CNQUGem Park, USCOMountain Pass, USCA

(Gold and others, 1966)(Temple and Grogan, 1965)(Dawson, 1974)(Parker and Sharp, 1970)(Olson and others, 1954)

51

Page 66: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 10--Con.

GRADE AND TONNAGE MODEL OF CARBONATITH DEPOSITS

By Donald A. Singer

COMMENTS Locally these carbonatite complexes may contain economically interesting grades ofuranium, thorium, titanium, iron, copper, vermiculite, zirconium or phosphorus; frequently, theseother commodities are in different zones than the niobium-rich parts of the complex. See figs. 30,31.

DEPOSITS

Name Country Name Country

AraxaBingoDominion GulfCatalaoIron HillJames BayLuesheMbeyaMartison LakeManitou Island

BRZLZIRECNONBRZLUSCOCNONZIRETNZNCNONCNON

Mountain PassMrima HillNemogos (Lackner Lake)Oka CNQUSalitreSerra NegraSdveSukuluSt. Honore (Soquem)Tapira

USCAKNYACNON

BRZLBRZLNRWYUGNDCNQUBRZL

CAR8ONATITE

1.0

0.8

0.7

(AI-C,

o o.s0 0.wC'0LI-o 0.5z0

cc0.40.

0.a.0.3

0.2

0.1

0.0

MILLION TONNES

Figure 30. Tonnages of carbonatite deposits.

52

Page 67: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 10--Con.

CARBONATITE

a,Pa,

0

20a-

A. NIOBIUM GRADE IN PERCENT Nb20S

0.3

02

0.1

B. RARE--EARTH OXIDE GRADE IN PERCENT RE2O5

Figure 31. Grades of carbonatite deposits. A, Niobium. B, Rare-earth oxides.

53

Page 68: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 12

DESCRIPTIVE MODEL OF DIAMOND PIPES

By Dennis P. Cox

DESCRIPTION Diamonds in kimberlite diatremes and other alkaline mafic rocks.

GENERAL REFERENCE Orlov (1973), Dawson (1980), Gold (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Kimberlite diatremes. Olivine lamproite (K-rich Mg-lamprophyre) and leucite lamproite.

Textures Pipes: porphyritic igneous texture. Breccias with inclusions of many rocks from mantle,basement and overlying sequences. Lapilli tuft locally fills upper levels of diatreme.

Age Range Most productive pipes are 80-100, 250, and 1,000-1,100 m.y. in age.

Depositional Environment Pipes intruded from mantle source under high pressure but with rapidquenching.

Tectonic Setting(s) Most pipes intrude cratonal areas, stable since Early Proterozoic. Someintrude folded cover rocks that overlie deformed cratonal margins. Pipes are not correlated withorogenic events but occur in areas of epeirogenic warping or doming and along major basementfracture zones. Some pipes occur at intersections of regional zones of weakness visible in LANDSATor SLAR.

Associated Deposit Types Diamond placers.

DEPOSIT DESCRIPTION

Mineralogy Diamond, bort or carbonado (polycrystalline generally dark colored), ballas(spherulitic polycrystalline), and amorphous carbonado.

Texture/Structure Diamonds are sparsely disseminated as phenocrysts or xenocrysts in breccia.Mined kimberlites yield from 0.1 to 0.6 ppm diamond.

Alteration Serpentinization resulting in "blue clay" zones. Silicification and carbonatealteration of country rock near pipe; rarely, alkalic metasomatism forming K-feldspar and Na-amphiboles.

Ore Controls Diamond distribution is irregular and restricted to kimberlite or lamproite pipes andupward-flaring crater zones. Productive pipes are rare and, at present, can only be identified bytheir diamond content.

Weathering Pipes weather rapidly to form topographic depressions.

Geochemical Signature Cr, Ti, Mn, Ni, Co, PGE, Ba. Anomalous Ni, Nb, and heavy minerals pyrope,garnet, phlogopite, and Mg-ilmenite indicate nearby pipes. Lamproite pipes lack ilmenite.

EXAMPLESAfrican deposits (Sutherland, 1982)Western Australia deposits (Atkinson and others 1984)Wyoming-Colorado (Lincoln, 1983)

54

Page 69: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14a

DESCRIPTIVE MODEL OF W SKARN DEPOSITS

By Dennis P. Cox

DESCRIPTION Scheelite in cale-silicate contact metasomatic rocks.

GENERAL REFERENCE Einaudi and Burt (1982), Einaudi and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite, granodiorite, quartz monzonite; limestone.

Textures Granitic, granoblastic.

Age Range Mainly Mesozoic, but may be any age.

Depositional Environment Contacts and roof pendants of batholith andthermal aureoles of apical zones of stocks that intrude carbonate rocks.

Tectonic Setting(s) Orogenic belts. Syn-late orogenic.

Associated Deposit Types Sn-W skarns, Zn skarns.

DEPOSIT DESCRIPTION

Mineralogy Scheelite * molybdenite * pyrrhotite * sphalerite * chalcopyrite ± bornite ±arsenopyrite * pyrite * magnetite * traces of wolframite, fluorite, cassiterite, and nativebismuth.

Alteration Diopside-hedenbergite + grossular-andradite. Late stage spessartine + almandine.Outer barren wollastonite zone. Inner zone of massive quartz may be present.

Ore Controls Carbonate rocks in thermal aureoles of intrusions.

Geochemical Signature W, Ho, Zn, Cu, Sn, Bi, Be, As.

EXAMPLESPine Creek, USCA (Newberry, 1982)MacTung, CNBC (Dick and Hodgson, 1982)Strawberry, USCA (Nokleberg, 1981)

GRADE AND TONNAGE MODEL OF W SKARN DEPOSITS

By V. David Menzie and Gail M. Jones

COMMENTS All mines associated with the contact zone of a particular intrusive with a favorablehost rock were combined to form a single deposit. In the absence of detailed geologic information,mines within 10 km of each other were combined. See figs. 32, 33.

DEPOSITS

Name

BaileyBrejuiCabCalvert (Red Button)CantungDublin Gulch (GSZ)Enerald-DodgerIron MountainKing Island

Country

CNYTBRZLCNYTUSMTCNNTCNYTCNBCUSNMAUTS

Name

Lost CreekLucky MikeMactungMaykhuraMilford areaNevada-MassachusettsNevada-ScheeliteOsgood RangePine Creek

Country

USMTCNBCCNNTURTDUSUTUSNVUSNYUSNVUSCA

55

Page 70: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14a--Con.

QuixabaRay GulchSang DongStormy GroupTem Piute district

BRZLCNYTSKORCNYTUSNV

Tyrny-AuzUludagVictoryYellow Pine districtYsxjoberg

URRSTRKYCNBCUSIDSWDN

58

Page 71: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14a--Con.

TUNGSTEN SKARN

P(n0w0.C-ILJa

0z0

0R0ErIL

Figure 32. Tonnages of W skarn deposits.MILLION TONNES

TUNGSTEN SKARN

f2F-

C0

w0

U-0z0cc00~cc(L

1.0

0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

TUNGSTEN GRADE IN PERCENT WO3 Figure 33. Tungsten grades of W skarndeposits.

57

Page 72: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14b

DESCRIPTIVE MODEL OF Sn SKARN DEPOSITS

By Bruce L. Reed and Dennis P. Cox

DESCRIPTION Tin, tungsten, beryllium minerals in skarns, veins, stockworksand greisens near granite-limestone contacts (see fig. 34).

GENERAL REFERENCE Einaudi and Burt (1982), Einaudi and others (1981), Scherba (1970).

GEOLOGICAL ENVIRONMENT

Rock Types Leucocratic biotite and(or) muscovite granite, specialized phase or end members common,felsic dikes, carbonate rocks.

Textures Plutonic textures most common (granitic, seriate, fine-grained granitic). Alsoporphyritic-aphanitic; skarn is granoblastic to hornfelsic, banded skarn common.

Age Range Mainly Mesozoic, but may be any age.

Depositional Environment Epizonal(?) intrusive complexes in carbonate terrane.

Tectonic Setting(s) Granite emplacement generally late (post orogenic).

Associated Deposit Types W skarn, Sn greisen, and. quartz-cassiterite-sulfide veins; at increasingdistances from intrusive-carbonate contact Sn replacement and fissure lodes may develop (as atRenison Bell).

DEPOSIT DESCRIPTION

Mineralogy Cassiterite t minor scheelite * sphalerite + chalcopyrite t pyrrhotite * magnetite ±pyrite t arsenopyrite * fluorite in skarn. Much Sn may be in silicate minerals and bemetallurgically unavailable.

Texture/Structure Granoblastic skarn, wrigglite [chaotic laminar pattern of alternating light(fluorite) and dark (magnetite) lamellae], stockworks, breccia.

Alteration Greisenization (quartz-muscovite-topaz ± tourmaline, fluorite, cassiterite, sulfides)near granite margins and in cusps. Topaz tourmaline greisens. Idocrase + Mn-grossular-andradite ±Sn-andradite * malayaite in skarn. Late-stage amphibole + mica + chlorite and mica + tourmaline +fluorite.

Ore Controls Mineralized skarns may or may not develop at intrusive contact with carbonate rocks;major skarn development up to 300 m from intrusion controlled by intrusion-related fractures;cross-cutting veins and felsic dikes.

Weathering Erosion of lodes may lead to deposition of tin placer deposits.

Geochemical Signature Sn, W, F, Be, Zn, Pb, Cu, Ag, Li, Rb, Cs, Re, B. Specialized granitescharacteristically have SiO2 > 73 percent, K20 > 4 percent and are depleted in CaO, TiO2, MgO, andtotal Fe. They are enriched in Sn, F, Rb, Li, Be, W, Mo, Pb, B, Nb, Cs, U, Th, Hf, Ta, and mostREE. They are depleted in Ni, Cu, Cr, Co, V, Sc, Sr, La, and Ba.

EXAMPLESLost River, USAK (Dobson, 1982)Moina, AUTS (Kwak and Askins, 1981)

(Scherba, 1970)

GRADE AND TONNAGE MODEL OF Sn SKARN DEPOSITS

By W. David Menzie and Bruce L. Reed

COMMENTS Normally a grade-tonnage model would not be built with so few deposits. However, thismodel is presented because tin skarn deposits are significantly different than replacement deposits

58

Page 73: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14b--Con.

in grades, tonnages, and other characteristics. Because of the small number of deposits plotted,the cumulative plot of discrete data points differes from the continuous lognormal curve. If thedeposits had been plotted in descending order, the points would fall on the other side of thecurve. Potential by-products from these deposits include tungsten, fluorite, beryllium, zinc, andgold. See figs. 35, 36.

DEPOSITS

Name Country

Gilliam AUQLLost River USAKMoina AUTSPinnacles AUQL

tfLSn veins and stockworkSn replacementS cassiterite + dsulfides (Renison Bell) J !

... .. i .. ... f ; OH T 0x x

' '- '- '. . . L * L . . . *v1.v. . . . . . . . . . . . . . . . ., ' .. . . . . t . . . . ... . ..L '. ' '

. 1 \ \ ~~~~~~~\ Claslic

Sn-rich skarn a cu Sn veins \Sedimnentary

hee(on).... . . . . . . . .... . . .. .. . .. . . .... . . roc

% /%/ ~Sn skarn, calesilicate rCarkbonateGreisens rf: rock * cassiterite roc

Specialized leucogranite4.. LOst River)/.. . . . . . . . . . . 1 + . . . . . . . . . . . . . .

S ' ffl W++++++~~~~~~~~~+ + -. . . . . . . . . . .l~lllas

~~~~~+ + . . L_ .I .1 S.. . + F++++ + + +++++. . . . . . . . . . . . ....... T.

500 m n

Flgpre 34. Cartoon cross section showing relation between Sn skarn,replacement Sn and Sn vein deposits, and granite intrusions.

59

Page 74: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14b--Con.

TIN SKARN

0C-LU

tLL

0zQ

0

a_

Figure 35. Tonnages of Sn skarn deposits.

MILLION TONNES

TIN SKARN

ci)0

I-0a-w0LL0z0

0cc

Figure 36. Tin grades of Sn skarndeposits.

60

TIN GRADE IN PERCENT

Page 75: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14c

DESCRIPTIVE MODEL OF REPLACEMERT Sn

By Bruce L. Reed

APPROXIMATE SYNONYM Exhalative Sn (Plimer, 1980; Hutchinson, 1979).

DESCRIPTION Stratabound cassiterite-sulfide (chiefly pyrrhotite) replacement of carbonate rocksand associated fissure lodes related to underlying granitoid complexes (see fig. 34).

GENERAL REFERENCE Patterson and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Carbonate rocks (limestone or dolomite); granite, monzogranite, quartz porphyry dikesgenerally present; quartz-tourmaline rock; chert, pelitic and iron-rich sediments, and volcanicrocks may be present.

Textures Plutonic (equigranular, sernate, porphyritic).

Age Range Paleozoic and Mesozoic most common; other ages possible.

Depositional Environment Epizonal granitic complexes in terranes containing carbonate rocks.Note: the epigenetic replacement classification for these deposits has been questioned and analternative exhalative synsedimentary origin followed by postdepositional metamorphic reworkinghypothesis proposed (Hutchinson, 1979, 1982; Plimer, 1980; Lehmann and Schneider, 1981).

Tectonic Setting(s) Late orogenic to postorogenic passive emplacement of high-level granitoids infoldbelts containing carbonate rocks; alternatively, tin and associated metals were derived fromsubmarine exhalative processes with subsequent reequilibration of sulfide and silicate minerals.

Associated Deposit Types Greisen-style mineralization, quartz-tourmaline-cassiterite veins, Sn-W-Mo stockworks, Sn-W skarn deposits close to intrusions.

DEPOSIT DESCRIPTION

Mineralogy Pyrrhotite + arsenopyrite + cassiterite + chalcopyrite (may be major) + ilmenite +fluorite; minor: pyrite, sphalerite, galena, stannite, tetrahdedrite, magnetite; late veins:sphalerite + galena + chalcopyrite + pyrite + fluorite.

Texture/Structure Vein stockwork ores, and massive ores with laminations following bedding inhost rock, locally cut by stockwork veins, pyrrhotite may be recrystallized.

Alteration Greisenization (t cassiterite) near granite margins; sideritic alteration of dolomitenear sulfide bodies; tourmalization of elastic sediments; proximity to intrusions may producecontact aureoles in host rocks.

Ore Controls Replacement of favorable carbonate units; fault-controlled fissure lodes common.Isolated replacement orebodies may lie above granitoid cupolas; faults provide channels formineralizing fluids.

Geochemical Signature Sn, As, Cu, B, W, F, Li, Pb, Zn, Rb.

EXAMPLESRenison Bell, AUTS (Patterson and others, 1981)Cleveland, AUTS (Collins, 1981)Mt. Bischoff, AUTS (Groves and others, 1972)Changpo-Tongkeng, CINA (Liang and others, 1984)

61

Page 76: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14c--Con.

GRADE AND TONNAGE MODEL OF REPLACEMENT Sa

By W. David Menzie and Bruce L. Reed

COMMENTS This model is built with deposits from Tasmania. Deposits of this type also occur in theDachang and Geijui ore fields of the Peoples Republic of China. Potential by-products from thistype of deposit include zinc, lead, and copper. See figs. 37, 38.

DEPOSITS

Name Country

Cleveland AUTSMount Bischoff AUTSQueen Hill AUTSRazorback AUTSRenison Bell AUTSSt. Dizier AUTS

62

Page 77: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 14c--Con.

TIN REPLACEMENT

, ~ ~ ~ ~~~ , ,IoI. * X

co

0ILw0U-0zQI-

0ir

1.0

0.

0.9

0.7

0.6

0.5

0.4

Ca0.3

0.2

0.1

0.00.0

0

§ l l l g _ g g g |~

p .

0

\ 7

1. I 521I I I I004 0.0015 0.0053 0.025 0.1 0.4 16 63

MILLION TONNES

TIN REPLACEMENT

25 100 400

Figure 37. Tonnages of Sn replacementdeposits.

I-

w

0U0~

z

0a-020r

0

TIN GRADE IN PERCENTFigure 38. Tin grades of' Sn replacementdeposits.

63

Page 78: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15a

DESCRIPTIVE MODEL OF V VEINS

By Dennis P. Cox and William C. Bagby

APPROXIMATE SYNONYM Quartz-wolframite veins (Kelly and Rye, 1979).

DESCRIPTION Wolframite, molybdenite, and minor base-metal sulfides in quartz veins (see fig. 39).

GEOLOGICAL ENVIRONMENT

Rock Types Monzogranite to granite stocks intruding sandstone, shale, and metamorphic equivalents.

Textures Phanerocrystalline igneous rocks, minor pegmatitic bodies, and porphyroaphanitic dikes.

Age Range Paleozoic to late Tertiary.

Depositional Environment Tensional fractures in epizonal granitic plutons and their wallrocks.

Tectonic Setting(s) Belts of granitic plutons derived from remelting of continental crust.Country rocks are metamorphosed to greenschist facies.

Associated Deposit Types Sn-W veins, pegmatites.

DEPOSIT DESCRIPTION

Mineralogy Wolframite, molybdenite, bismuthinite, pyrite, pyrrhotite, arsenopyrite, bornite,chalcopyrite, scheelite, cassiterite, beryl, fluorite; also at Pasto Bueno, tetrahedrite-tennantite, sphalerite, galena, and minor enargite.

Texture/Structure Massive quartz veins with minor vugs, parallel walls, local brecoia.

Alteration Deepest zones, pervasive albitization; higher pervasive to vein-selvage pink K-feldsparreplacement with minor disseminated REE minerals; upper zones, vein selvages of dark-gray muscoviteor zinnwaldite (greisen). Chloritization. Widespread tourmaline alteration at Isla de Pinos.

Ore Controls Swarms of parallel veins cutting granitic rocks or sedimentary rocks near igneouscontacts.

Weathering Wolframite persists in soils and stream sediments. Stolzite and tungstite may beweathering products.

Geochemical Signature W, Mo, Sn, Bi, As, Cu, Pb, Zn, Be, F.

EXAMPLESPasto Bueno, PERU (Landis and Rye, 1974)Xihuashan, CINA (Hsu, 1943; Giuliani, 1985; and

personal visit)Isla de Pinos, CUBA (Page and McAllister, 1944)Hamme District, USNC (Foose and others, 1980)Round Mountain, USNV (Shawe and others, 1984)Chicote Grande, BLVA (Personal visit)

64

Page 79: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15a--Con.

GRADE AND TONNAGE MODEL OF V VEINS

By Gail M. Jones and W. David Menzie

COMMENTS Data are for vein systems rather than for individual veins or mines. Some data are basedon past production only. Xihuashan is the sole deposit from the Peoples Republic of China. Seefigs. 40,41.

DEPOSITS

Name Country Name Country

Carrock FellChicote GrandeGrey RiverHamme DistrictIsla de PinosJosefinaKamiLos Condores

GRBRBLVACNNFUSNCCUBAAGTNBLVAAGTN

MontredonNeedle HillOakleigh CreekPanasqueriaPasto BuenoSan MartinStoreys CreekXihuashan

FRNCHONGAUTSPORTPERUAGTNAUTSCINA

Figure 39. Maps and sections of W vein deposits illustrating mineral andalteration zoning. A, Chicote Grande deposit, Bolivia. B. Xihuashan, China.

65

Page 80: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15a--Con.

TUNGSTEN VEIN

0a-w

L-0

zIL

00cc

Figure 40. Tonnages of W vein deposits.

MILLION TONNES

TUNGSTEN VEIN

U)I-L

U)

0

z0

a:

Figure 41. Tungsten grades of W veindeposits.

66

TUNGSTEN GRADE IN PERCENT WO3

Page 81: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15b

DESCRIPTIVE mODEL OF Sn VEINS

By Bruce L. Reed

APPROXIMATE SYNONYM Cornish type lodes.

DESCRIPTION Simple to complex quartz-cassiterite * wolframite and base-metal sulfide fissurefillings or replacement lodes in ore near felsic plutonic rocks (see fig. 34).

GENERAL REFERENCE Hosking (1974), Taylor (1979).

GEOLOGICAL ENVIRONMENT

Rock Types Close spatial relation to multiphase granitoids; specialized biotite and(or) muscoviteleucogranite common; pelitic sediments generally present.

Textures Common plutonic textures.

Age Range Paleozoic and Mesozoic most common; may be any age.

Depositional Environment Mesozonal to hypabyssal plutons; extrusive rocks generally absent; dikesand dike swarms common.

Tectonic Setting(s) Foldbelts and secreted margins with late orogenic to postorogenic granitoidswhich may, in part, be anatectic; regional fractures common.

Associated Deposit Types Sn greisen, Sn skarn, and replacement Sn deposits.

DEPOSIT DESCRIPTION

Mineralogy Extremely varied; cassiterite * wolframite, arsenopyrite, molybdenite, hematite,scheelite, beryl, galena, chalcopyrite, sphalerite, stannite, bismuthinite; although variations andoverlaps are ubiquitous, many deposits show an inner zone of cassiterite * wolframite fringed withPb, Zn, Cu, and Ag sulfide minerals.

Texture/Structure Variable; brecciated bands, filled fissures, replacement, open cavities.

Alteration Sericitization (greisen development) t tourmalization common adjacent to veins andgranite contacts; silicification, chloritization, hematization. An idealized zonal relation mightconsist of quartz-tourmaline-topaz, quartz-tourmaline-sericite, quartz-sericite-chlorite, quartz-chlorite, chlorite.

Ore Controls Economic concentrations of tin tend to occur within or above the apices of graniticcusps and ridges; localized controls include variations in vein structure, lithologic andstructural changes, vein intersections, dikes, and cross-faults.

Weathering Cassiterite in stream gravels, placer tin deposits.

Geochemical Signature Sn, As, W, B are good pathfinder elements; elements characteristic ofspecialized granites (F, Rb, Be, Nb, Cs, U, Mo, REE, see model 14b).

EXAMPLESCornwall, GRBR (Hosking, 1969)Herberton, AUQL (Blake, 1972)

GRADE AND TONNAGE MODEL OF Sn VEINS

By W. David Menzie and Bruce L. Reed

COMMENTS The grade-tonnage model for this deposit type is built with data from 43 deposits, or insome cases, districts. The imprecise definition of what constitutes a deposit has arisen herebecause many lodes were mined by a number of operators during the second half of the nineteenthcentury. Data for most deposits and districts consist of past production, although for some

67

Page 82: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15b--Con.

deposits, especially those still operating, reserves are included. Of the 43 deposits in themodel, 27 are from Australia. These include most of the small tonnage deposits. This is thoughtto be an artifact of data reporting. For example, if data were available for many of the smalldeposits in Cornwall, the deposits would undoubtedly fall within the low tonnage part of thecurve. See figs. 42, 43.

DEPOSITS

Name Country

AberfoyleAdventure CreekBakervilleBassetBloodwood CreekBrownsvilleCarn Brea-TincroftCarocolesConrad LodesCoolgarra Dist.Dargo Range Dist.DulcoathEmu CreekEmu Dist.GeevorGleneindale Dist.GrenvilleGundieGurrumba Dist.Hales SidingHerbertonIrvine Bank

AUTSAUQLAUQLGRBRAUQLAUQLGRBRBLVAAUNWAUQLAUQLGRBRAUQLAUQLGRBRAUQLGRBRAUNWAUQLAUQLAUQLAUQL

Name

Kelapa KampitKillifrethKrupkaLevantMaranboyMawohiMount Nolan Dist.Mount PaynterMount WellingtonMowbray CreekNount WellsNymbool Dist.Ottery LodePahangRoyal GeorgeSilver ValleySouth CroftyStannary HillsWatsonvilleWheal JaneWheal Kitty-Penhalls

Country

INDOGRBRCZCLGRBRAUNTBRMAAUQLAUNSGRBRAUQLAUNSAUQLAUNSMLYSAUTSAUQLC B RAUQLAUQLGRBRGRCB

68

Page 83: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15b-Con.

TIN VEIN

Co

CogI02

00a.

MILLION TONNES Figure 42. Tonnages of Sn vein deposits.

TIN VEIN

13

Co

ga

IOL

02

00.

t.o

0.9

0.8

0.7

0.8

0.5

0.4

0.3

I I I I cj0Vy

0

a0

00

0000 I000

00

00

0

0

1. 1 1.3 1 .

I I I In .43

02_

L. I I I I

0.032 0.056 0.1 0.18 .032

TN GRADE

0.66 1.0 1.

E IN PERCENT

32 5.6 10

Figure 43. Tin grades of Sn vein deposits.

69

Page 84: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15c

DESCRIPTIVE MODEL OF Sn GREISEN DEPOSITS

By Bruce L. Reed

DESCRIPTION Disseminated cassiterite, and cassiterite-bearing veinlets, stockworks, lenses, pipes,and breccia in greisenized granite (see fig. 44).

GENERAL REFERENCE Scherba (1970), Taylor (1979), Reed (1982), Tischendorf (1977).

GEOLOGICAL ENVIRONMENT

Rock Types Specialized biotite and(or) muscovite leucogranite (S-type); distinctive accessoryminerals include topaz, fluorite, tourmaline, and beryl. Tin greisens are generally post-magmaticand associated with late fractionated melt.

Textures Common plutonic rock textures, miarolitic cavities may be common; generally nonfoliated;equigranular textures may be more evolved (Hudson and Arth, 1983); aplitic and porphyritic texturescommon.

Age Range May be any age; tin mineralization temporally related to later stages of granitoidemplacement.

Depositional Environment Mesozonal plutonic to deep volcanic environment.

Tectonic Setting(s) Foldbelts of thick sediments t volcanic rocks deposited on stable cratonicshield; accreted margins; granitoids generally postdate major folding.

Associated Deposit Types Quartz-cassiterite sulfide lodes, quartz-cassiterite * molybdenitestockworks, late complex tin-silver-sulfide veins.

DEPOSIT DESCRIPTION

Mineralogy General zonal development of cassiterite + molybdenite, cassiterite + molybdenite+ arsenopyrite + beryl, wolframite e beryl + arsenopyrite + bismuthinite, Cu-Pb-Zn sulfideminerals + sulphostannates, quartz veins * fluorite, calcite, pyrite.

Texture/Structure Exceedingly varied, the most common being disseminated cassiterite in massivegreisen, and quartz veinlets and stockworks (in cupolas or in overlying wallrocks); less common arepipes, lenses, and tectonic breccia.

Alteration Incipient greisen (granite): muscovite * chlorite, tourmaline, and fluorite.Greisenized granite: quartz-muscovite-topaz-fluorite, i tourmaline (original texture of granitesretained). Massive greisen: quartz-muscovite-topaz * fluorite t tourmaline (typically no originaltexture preserved). Tourmaline can be ubiquitous as disseminations, concentrated or diffuse clots,or late fracture fillings. Greisen may form in any wallrock environment, typical assemblagesdeveloped in aluminosilicates.

Ore Controls Greisen lodes located in or near cupolas and ridges developed on the roof or alongmargins of granitoids; faults and fractures may be important ore controls.

Weathering Granite may be "reddened" close to greisen veins. Although massive greisen may not beeconomic as lodes, rich placer deposits form by weathering and erosion.

Geochemical Signature Cassiterite, topaz, and tourmaline in streams that drain exposed tin-richgreisens. Specialized granites may have high contents of SiO (>73 percent) and K20 (>4 percent),and are depleted in CaO, TiO2, MgO, and total FeO. They are enriched in Sn, F, Rb, Li, Be, W, Mo,Pb, B, Nb, Cs, U, Th, Hf, Ta, and most REE, and impoverished in Ni, Cu, Cr, Co, V, Sc, Sr, La, andBa.

EXAMPLESLost River, USAK (Dobson, 1982; Sainsbury, 1964)Anchor Mine, AUTS (Groves and Taylor, 1973)Erzgebirge, CZCL (Janecka and Stemprok, 1967)

70

Page 85: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15o--Con.

GRADE AND TONNAGE MODEL OF Sn GREISEK DEPOSITS

By W. David Menzie and Bruce L. Reed

COMMENTS See figs. 45, 46.

DEPOSITS

Name

AltenbergAnchorArcherCinovecCista

Country

CRMEAUTSAUTSCZCLCZCL

Name Country

Coal CreekE. KempvilleHubPotosiPrebuz

USAKCNNSCZCLBRZLCZCL

ites ts . ,^, K,3KU"

4 m0 S.. MV N

f 400 m - - - -Albitized leucocrati Ic

granite (specialized phase)

Figure 44. Cartoon cross section of a Sn greisen.

71

Page 86: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 15c--Con.

TIN GREISEN

1.0

0.9

0.7

fe

o 0.6

0

o 0.5z

m 0.4

00o Q

0.3

02

0.1

0.00.1Figure 45. Tonnages of Sn greisen

deposits.MILLION TONNES

TIN GREISEN

8ok

0~U.0

z

IL

Figure 46. Tin grades of Sn greisendeposits.

TIN GRADE IN PERCENT

72

Page 87: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 16

DESCRIPTIVE MODEL OF CLIMAX Mo DEPOSITS

By Stephen D. Ludington

APPROXIMATE SYNONYM Granite molybdenite (Mutschler and others, 1981).

DESCRIPTION Stockwork of quartz and molybdenite associated with fluorite ingranite porphyry (see fig. 47).

GENERAL REFERENCE White and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Granite-rhyolite with >75 percent SiO2. Rb, Y, Nb are high, Ba, Sr, Zr low. Stockswith radial dikes; small breccias common.

Textures Porphyry with fine- to medium-grained aplitic groundmass.

Age Range Examples are mainly mid-Tertiary.

Depositional Environment Multistage hypabyssal intrusions.

Tectonic Setting(s) Mainly extensional zones in cratons. May be related to subduction, but foundfar from continental margins in areas of thick crust, and late in the cycles.

Associated Deposit Types Ag-base-metal veins, fluorspar deposits. On the basis of similargeochemistry of associated rhyolite magmas, rhyolite-hosted Sn deposits may be a surfaceexpression. Porphyry tungsten deposits, as at Mount Pleasant, Canada, may be W-rich Climaxsystems.

DEPOSIT DESCRIPTION

Mineralogy: Molybdenite + quartz * fluorite * K-feldspar * pyrite * wolframite * cassiterite *topaz.

Texture/Structure Predominantly in veinlets and fractures; minor disseminations.

Alteration Intense quartz and quartz + K-feldspar veining in ore zone. Upper phyllic andpropylitic zones. Halo of rhodochrosite, rhodonite, spessartine garnet. Minor greisen veins belowore body.

Ore Controls Stockwork ore zone draped over small, <1 km2 stocks. Multiple phases of intrusionand mineralization are highly favorable.

Weathering Yellow ferrimolybdite stains.

Geochemical Signature Mo, Sn, W and Rb anomalies close above ore zones. Pb, Zn, F, and Uanomalies in wall rocks up to a few kilometers distant. Cu anomaly external to Mount Emmonsdeposit. In panned concentrates, Sn, W, Mo, and F may be important.

EXAMPLESRedwell Basin, Winfield, Middle Mtn.Climax, Henderson,and Mt. Emmons, USCO (White and others, 1981)

Pine Grove, USUT (Abbott and Williams, 1981)Mount Hope, USNV (Westra, 1982b)Big Ben, USMT (Witkind, 1973)

GRADE AND TONNAGE MODEL OF CLIMAX Mo DEPOSITS

By Donald A. Singer, Ted G. Theodore, and Dan L. Mosier

COMMENTS See figs. 48, 49.

73

Page 88: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 16--Con.

DEPOSITS

Name Country

Big BenClimaxHendersonMalmbjergMount Emmons

USMTUSCOUSCOGRLDUSCO

Name

Mount HopePine GroveQuesta-Goat HillRedwell

Country

USNVUSUTUSNMUSCO

Alteration:

Argillic,propilitio .>

* *A- -

Quartz - sericitt

Potassic -Pervasive silicic

Intrusive porphyruycomplex <

.Mineralization:

Bast-metal sulfide-* 1 7 rhodochrosite-t: . ... fluorite veins

Molubdenitt ore shellwith fluorite andhuebnerite

Greisen veins

L 200 to 500 m

Figure 47. Cartoon cross section of Climax Mo deposit showing relationship ofore and alteration zoning to porphyry intrusions from Mutschler and others(1981). Cartoon represents a region about 1 km wide.

74

Page 89: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 16--Con.

MOLYBDENUM PORPHYRY-CLIMAX

1.0

0.9

0.8

07

CoV)

z

2a.

Ma

0.5

0.4

on

02

0.0

Figure 48. Tonnages of Climax Mo deposits.MILLION TONNES

MOLYBDENUM PORPHYRY-CLIMAX

1.0

0.9

0.8

P

zQ

20.

0.7

0.6

os

0.4

03

02

0.1

0.0,

MOLYBDENUM GRADE IN PERCENT Mo Figure 49. Molybdenum grades of Climax Modeposits.

75

Page 90: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17

DESCRIPTIVE MODEL OF PORPHYRY Cu

By Dennis P. Cox

DESCRIPTION This generalized model includes various subtypes all of which contain chalcopyrite instockwork veinlets in hydrothermally altered porphry and adjacent country rock (see fig. 50).

GENERAL REFERENCE Titley (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite to monzogranite or syenitic porphyry intruding granitic, volcanic, calcareoussedimentary, and other rocks.

Textures Porphyry has closely spaced phenocrysts and microaplitic quartz-feldspar groundmass.

Age Range Mainly Mesozoic and Cenozoic, but may be any age.

Depositional Environment High-level intrusive rocks contemporaneous with abundant dikes, brecciapipes, faults. Also cupolas of batholiths.

Tectonic Setting(s) Rift zones contemporaneous with Andean or island-arc volcanism alongconvergent plate boundaries. Uplift and erosion to expose subvolcanic rocks.

Associated Deposit Types Base-metal skarn, epithermal veins, polymetallic replacement, volcanichosted massive replacement. See also: Porphyry Cu-skarn related, porphyry Cu-Mo, and porphyry Cu-Au.

DEPOSIT DESCRIPTION

Mineralogy: Chalcopyrite + pyrite ± molybdenite; chalcopyrite + magnetite t bornite ± Au;assemblages may be superposed. Quartz + K-feldspar + biotite + anhydrite; quartz + sericite + clayminerals. Late veins of enargite, tetrahedrite, galena, sphalerite, and barite in some deposits.

Texture/Structure Stockwork veinlets and disseminated sulfide grains.

Alteration From bottom, innermost zones outward: sodic-calcic, potassic, phyllic, and argillic topropylitic. High-alumina alteration in upper part of some deposits. See table 3. Propylitic orphyllic alteration may overprint early potassic assemblage.

Ore Controls Stockwork veins in porphyry, along porphyry contact, and in favorable country rockssuch as carbonate rocks, mafia igneous rocks, and older granitic plutons.

Weathering Green and blue Cu carbonates and silicates in weathered outcrops, or where leaching isintense, barren outcrops remain after Cu is leached, transported downward, and deposited assecondary sulfides at water table or paleowater table. Fractures in leached outcrops are coatedwith hematitic limonite having bright red streak. Deposits of secondary sulfides containchalcocite and other Cu2S minerals replacing pyrite and chalcopyrite. Residual soils overlyingdeposits may contain anomalous amounts of rutile.

Geochemical Signature: Cu + Mo + Au + Ag + W + B + Sr center, Pb, Zn, Au, As, Sb, Se, Te, Mn, Co,Ba, and Rb outer. Locally Bi and Sn form most distal anomalies. High S in all zones. Somedeposits have weak U anomalies.

EXAMPLES

Bingham, USUT (Lanier and others, 1978)San Manuel, USAZ (Lowell and Guilbert, 1970)El Salvador, CILE (Gustafson and Hunt, 1975)

76

Page 91: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17--Con.

GRADE AND TONNAGE MODEL OF PORPHYRY Cu

By Donald A. Singer, Dan L. Mosier, and Dennis P. Cox

COMMENTS All porphyry copper deposits with available grades and tonnages were included in theseplots in order to provide a model for cases where it is not possible to use the gold-rich ormolybdenum-rich models. Parts of the porphyry copper deposits which could be considered skarnwere included in these data. Gold grade is correlated with tonnage (r = -0.49, n = 81) and withmolybdenum grade (r = -0.45, n = 55). See figs. 51-53.

DEPOSITS

Name

AftonAjaxAjoAmAmacanAndacollaAnnAnn MasonArieAtlas CarmenAtlas FrankAtlas LutopanAxeAya AyaBagdadBasayBearBell CopperBergBethlehemBig OnionBinghamBisbeeBluebirdBond CreekBoneng LoboBozshchakuBrendaBrenmacButiladButteCampanamahCananeaCanariacoCariboo BellCarpenterCashCasinoCastle DomeCatfaceCatheartCerro BlancoCerro ColoradoCerro ColoradoCerro VerdeChauchaChuquicamataCoalstounCopper Basin

Country

CNBCCNBCUSAZCNBCPLPNCILECNBCUSNVPPNGPLPNPLPNPLPNCNBCPLPNUSAZPLPNUSNVCNBCCNBCCNBCCNBCUSUTUSAZUSAZUSAKPLPNURRSCNBCUSWAPLPNUSMTAGTNMXCOPERUCNBCUSAZCNYTCNYTUSAZCNBCUSMNCILECILEPANAPERUECDRCILEAUQLUSAZ

Copper CitiesCopper CreekCopper FlatCopper MountainCordonCuajoneCubuaganDexingDizonDorothyDos PobresEagleEl AbraEl ArcoEl PachonEl SalvadorEl SoldadoEl TenienteElatsiteElyEscondidaEsperanzaExoticaFish LakeFlorenceFrieda RiverGalaxyGalore CreekGambier IslandGaspeGibraltarGlacier PeakGranisleHale-MayaboHeddlestonHelvetiaHighmontHinobaanHuckleberryIngerbelleInguaranIno-CapayaInspirationIron MaskIsland CopperIthaca PeakJuneKadzharanKalamaton

Name Country

USAZUSAZUSNMCNBCPLPNPERUPLPNCINAPLPNCNBCUSAZCNBCCILEMXCOAGTNCILECILECILEBULGUSNVCILECILECILECNBCUSAZPPNGCNBCCNBCCNBCCNQUCNBCUSWACNBCPLPNUSMTUSAZCNBCPLPNCNBCCNBCMXCOPLPNUSAZCNBCCNBCUSAZCNBCURAMPLPN

77

Page 92: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17--Con.

Kalamazoo-San ManuelKalmakyrKennonKing-KingKirwinKounradKrainKwanikaLa AlumbreraLa CaridadLa FloridaLa VerdeLakeshoreLights CreekLornexLorraineLos BroncesLos PelambresLos PilaresLumbayLuna-BashMacArthurMaggieMajdanpekMamutMantos BlancosMapulaMarcopperMargaretMarianMazamaMetcalfMichiquillayMiddle ForkMineral ButteMistyMochaMocoaMoniwaMorenciMorocochaMorrisonMountain MinesMount CannindaNamosi EastNamosi WestNorth ForkOkOk TediOrange HillPampa NortePangunaParamillosParksPashpap

USAZURUZPLPNPLPNUSWYURKZCNBCCNBCAGTNMXCOMXCOMXCOUSAZUSCACNBCCNBCCILECILEMXCOPLPNPLPNUSNVCNBCYUGOMDGSCILEPLPNPLPNUSWAPLPNUSWAUSAZPERUUSWAUSAZCNBCCILECLBABRMAUSAZPERUCNBCPLPNAUQLFIJIFIJIUSWACNBCPPNGUSAKCILEPPNGAGTNAUNSPERU

PetaquillaPhilippinePima-MissionPlurhinalerPoison MountainPotrerillosPrimerQuebrada BlancaQuellevecoRayRecskRed ChrisRed MountainRio BlancoRio ViviSacaton (E-W)Safford (KCC)Saindak EastSaindak NorthSaindak SouthSamarSan AntonioSan FabianSan JuanSan XavierSanchezSanta RitaSanto NinoSanto TomasSanto TomasSar CheshmehSchaft CreekSierra GordaSilver BellSipalayStar Mt.-FubilanStar Mt.-FutikStar Mt.-Nong RiverStar Mt.-OlgalSugarloaf HillTagpuraTanamaTawi-TawiTaysanToledoToquepalaTrojanTwin ButtesTyroneValley CopperVekolWashingtonYanderaYeovalYerington

PANAPLPNUSAZTHLDCNBCCILECNBCCILEPERUUSAZHUNGCNBCUSAZCILEPTRCUSAZUSAZPKTNPKTNPKTNPLPNPLPNPLPNUSAZUSAZUSAZUSNMPLPNMXCOPLPNIRANCNBCCILEUSAZPLPNPPNGPPNGPPNGPPNGCNBCPLPNPTRCPLPNPLPNPLPNPERUCNBCUSAZUSNMCNBCUSAZMXCOPPNGAUNSUSNV

78

Page 93: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17--Con.

Figure 50. Cartoon cross section illustrating generalized modelCu deposits showing relation of ore minerals, alteration zoning,enrichment and associated skarn, replacement, and vein deposits.

for porphyrysupergene

Table 3. Types ofdeposit models

hydrothermal alteration characteristic Of porphyry copper and other

Type of alterationand synonyms Original mineral replaced by Appearance

Potassic plagioclase------- K-feldspar Rocks look freshalteration hornblende-------- fine-grained but may have pinkish(K-silicate) biotite + K-teldspar veinlets.

rutile + pyrite and black biotiteor magnetite. veinlets and clustersAnhydrite of fine biotite after

maric phenocrysts.

Sodic-calcic K-feldspar-------- oligoclase or Rocks are hard andalteration albite dull white. Biotite(albitic) biotite----------- actinolite + is absent. Veinlets of

sphene actinolite, epidote, andhematite have hard,white alteration haloes.

Phyllic plagioclase ------ sericite Rocks are soft andalteration hornblende and dull to lustrous white.(quartz-sericite) biotite----------- sericite + Pyrite veinlets have

chlorite + distinct, soft translucentrutile + pyrite gray, sericite haloes.

Tourmaline rosettes may bepresent.

Propylitic plagioclase------- albite or oligoclase Rocks are hard and dullalteration + epidote or greenish gray. Veinlets

calcite of pyrite or chlorite andepidote lack prominent

hornblende alteration haloes.and biotite------- chlorite + rutile +

magnetite or pyrite

Argillic plagioclase------- clay + sericite Rocks are soft and white.alteration Tongue will stick to clay-

maric minerals---- clay + sericite altered minerals.+ chlorite +

pyrite

High alumina All original and earlier hydrothermal Rocks are light colored(alsic, advanced minerals converted to pyrophyllite, and moderately soft.argillic) alunite, andalusite, corundum, and

diaspore with variable amounts of clayand sericite.

79

Page 94: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17--Con.

PORPHYRY COPPER

1.0I..

CD)

R0

0U-0z

IL

Figure 51. Tonnages of porphyry Cudeposits. Individual digits representnumber of deposits.

MILLION TONNES

PORPHYRY COPPER

1.0

0.9 1-

0.6 I-

0.7 I-

I0

0~

0

0.

0.6

0.

0.4

0.3

I I I I 1. I I I I I I

I °

Ii

0.2

0.1

Figure 52. Copper grades of porphyry Cudeposits. Individual digits representnumber of deposits.

o.o L0.03 1.6 3.2 5.6 10.00.1 0.18 0.32 0.56 1.0

2 0.056 o.1 0.18 O.V 0.s6 1.0 1 z 32 5.5 10.0

COPPER GRADE IN PERCENT

80

Page 95: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 17-Con.

G4

03

02

0.1

0.0

PORPHYRY COPPER

I I I I I I I I I

_ a n _ 2011~~~1

)4. 1.0 25 63 16 40 100 250 630 16G0 401

A. SILVER GRADE IN GRAMS PER TONNE0.4

g 03t,IaLL 02O 02

z0S 0.1

0.00

0.0 I

I I I I I I I I I

! ' ' ~~~~~II 11 IA I I I1 0.025 0.0m3 0.l 0.4 1.0 2.5 6.3 16 40 lt 0

B. GOLD GRADE IN GRAMS PER TONNE05

C. MOLYBDENUM GRADE IN PERCENT Mo

Figure 53. By-product grades of porphyry Cu deposits. A, Silver.B, Gold. C, Molybdenum. Individual digits represent number ofdeposits.

81

Page 96: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18a

DESCRIPTIVE MODEL OF PORPHYRY Cu, SKARN-RELATED DEPOSITS

By Dennis P. Cox

DESCRIPTION Chalcopyrite in stockwork veinlets in hydrothermally altered intrusives and in skarnwith extensive retrograde alteration (see fig. 50).

GENERAL REFERENCE Einaudi and others (1981), p. 341-354.

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite to monzogranite intruding carbonate rocks or calcareous elastic rocks.

Textures Porphyry has microaplitic groundmass.

Age Range Mainly Mesozoic and Tertiary, but may be any age.

Depositional Environment Epizonal intrusion of granitic stocks into carbonate rocks. Intensefracturing.

Tectonic Setting(s) Andean-type volcanism and intrusion superimposed on older continental shelfcarbonate terrane.

Associated Deposit Types Skarn copper, replacement Pb-Zn-Ag.

DEPOSIT DESCRIPTION

Mineralogy Chalcopyrite + pyrite + magnetite in inner garnet pyroxene zone; bornite +chalcopyrite + sphalerite . tennantite in outer wollastonite zone. Scheelite and traces ofmolybdenite and galena may be present. Hematite or pyrrhotite may be predominant.

Texture/Structure Fine granular calc-silicates and quartz sulfide veinlets.

Alteration Potassic alteration in pluton is associated with andradite and diopside in calcareousrocks. Farther from contact are zones of wollastonite or tremolite with minor garnet, idocrase,and clinopyroxene. These grade outward to marble, Phyllic alteration in pluton is associated withretrograde actinolite, chlorite, and clay in skarn.

Ore Controls Intense stockwork veining in igneous and skarn rocks contains most of the copperminerals. Cu commonly accompanies retrograde alteration.

Weathering Cu carbonates, silicates, Fe-rich gossan.

Geochemical Signature Cu, Mo, Pb, Zn, Au, Ag, W, Bi, Sn, As, Sb.

EXAMPLES

Ruth,(Ely), USNV (Westra, 1982a)Gaspe, CNQU (Allcock, 1982)Christmas, USAZ (Koski and Cook, 1982)Silver Bell, USAZ (Graybeal, 1982)

GRADE AND TONNAGE MODEL OF PORPHYRY Cu. SKARN-RELATED DEPOSITS

By Donald A. Singer

DATA REFERENCES Einaudi and others (1981), Einaudi (1981).

COMMENTS Skarn copper deposits associated with porphyry copper deposits are included in thismodel. Tonnages and grades attributable to skarn were estimated for some deposits from estimatedproportions of skarn provided by Einaudi and others (1981) and Einaudi (1981). See figs. 54-56.

82

Page 97: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18a--Con.

DEPOSITS

Name

Cananea (Capote)Carr ForkChristmasContinentalCopper Basin (Battle Mt.Copper CanyonCraigmontElyGaspe (Needle Mountain)

Country Name Country

MXCOUSUTUSAZUSNM

D.) USNVUSNVCNBCUSNVCNQU

Gold CoastLakeshoreLyonPima-MissionPotrerillosReaskSanta RitaSilver BellTwin Buttes

PPNGUSAZUSNVUSAZCILEHUNGUSUMUSAZUSAZ

83

Page 98: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18a--Con.

PORPHYRY COPPER-SKARN-RELATED

IL0z0

LL0

a-

Figure 54. Tonnages of porphyry Cu-skarn-related deposits.

MILLION TONNES

PORPHYRY COPPER-SKARN-RELATED

Ca0

0.

8w

£°

t

z

2

Figure 55. Copper grades of porphyry Cu-skarn-related deposits.

COPPER GRADE IN PERCENT

84

Page 99: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18a--Con.

PORPHYRY COPPER-SKARN--RELATED

0.

0.4

I I I I I I I I\0o .n. 18

0. _

0

0

0

\°~~~

0o

02

0

I I I 12 I I I I I I0.0 I -. . A A _ A .A

04 1.0 2.5 la 15 40 10 250 W30 1M00 4.

A. SILVER GRADE IN GRAMS PER TONNE

x^

03

8 02

0.1

I Ps I I I I I I I

I I I OO. I I I I II Iit 0.9 O 1A 0.025 0.063 0.18 0. 5.0 2.5 6.3 i 40 100

B. GOLD GRADE IN GRAMS PER TONNE

0.3 1 1 1 1 1 1 1 1 1

0 10,2 -0 1

an I II 0.0" I I I0.00° 0.002 0.004 0o079 &O16 0.0 0.063 0.13 0.25 05 1.0

C. MOLYBDENUM GRADE IN PERCENT Mo

Figure 56. By-product grades of porphyry Cu-skarn-relateddeposits. A, Silver. B, Gold. C, Molybdenum.

85

Page 100: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18b

DESCRIPTIVE MODEL OF Cu SXARN DEPOSITS

By Dennis P. Cox and Ted G. Theodore

DESCRIPTION Chalcopyrite in cale-silicate contact metasomatic rocks (see fig. 57).

GENERAL REFERENCES Einaudi and Burt (1982), Einaudi and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite to monzogranite intruding carbonate rocks or calcareous elasticrocks.

Textures Granitic texture, porphyry, granoblastic to hornfelsic in sedimentary rocks.

Age Range Mainly Mesozoic, but may be any age.

Depositional Environment Miogeosynclinal sequences intruded by felsic plutons.

Tectonic Setting(s) Continental margin late orogenic magmatism.

Associated Deposit Types Porphyry Cu, zinc skarn, polymetallic replacement, Fe skarn.

DEPOSIT DESCRIPTION

Mineralogy Chalcopyrite + pyrite * hematite 1 magnetite * bornite * pyrrhotite. Also molybdenite,bismuthinite, sphalerite, galena, cosalite, arsenopyrite, enargite, tennantite, loellingite,cobaltite, and tetrahedrite may be present. Au and Ag nay be important products.

Texture/Structure Coarse granoblastic with interstitial sulfides. Bladed pyroxenes are common.

Alteration Diopside + andradite center; wollastonite + tremolite outer zone; marble peripheralzone. Igneous rocks may be altered to epidote + pyroxene + garnet (endoskarn). Retrogradealteration to actinolite, chlorite, and clays may be present.

Ore Controls Irregular or tabular ore bodies in carbonate rocks and calcareous rocks near igneouscontacts or in xenoliths in igneous stocks. Breccia pipe, cutting skarn at Victoria, is host forore. Associated igneous rocks are commonly barren.

Weathering Cu carbonates, silicates, Fe-rich gossan. Calc-silicate minerals in stream pebbles area good guide to covered deposits.

Geochemical Signature Rock analyses may show Cu-Au-Ag-rich inner zones grading outward to Au-Agzones with high Au:Ag ratio and outer Pb-Zn-Ag zone. Co-As-Sb-Bi may form anomalies in some skarndeposits. Magnetic anomalies.

EXAMPLESMason Valley, USNV (Harris and Einaudi, 1982)Victoria, USNV (Atkinson and others, 1982)Copper Canyon, USNV (Blake and others, 1979)Carr Fork, USUT (Atkinson and Einaudi, 1978)

GRADE AND TONNAGE MODEL OF Cu SKARN DEPOSITS

By Gail M. Jones and W. David Menzie

COMMENTS Data used in this model were restricted to copper skarns associated with barren stocks asrecommended by Einaudi and others (1981). Some of the data are from districts. See figs. 58-60

86

Page 101: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18b--Con.

DEPOSITS

Name

Agordo-BrossoArctic ChiefB. C.Benson LakeBest ChanceBlack CubBlue GrouseBluestoneCaledoniaCassiusCastingCerro de CobreChalcobambaCoast CopperCobrizaConcepcion Del OroCopper QueenCornellCowley CreekDouglas HillGemHiraganeHopeIideIndian ChiefKamaishiKedbeg CopperKeewenawKodiak CubLily (Ikeno)Little ChiefLucky Four

Country Name Country

ITLYCNYTCNBCCNBCCNYTCNYTCNBCUSNYCNBCHATIUSNVCLBAPERUCNBCPERUMXCOCNBCCNBCCNYTUSNVCNYTJAPNCNBCJAPNCNBCJAPNURRSCNYTCNYTCNBCCNYTCNBC

Loei-ChiengkarnLudwigMackeyMalko TrnovaMarble BayMason Valley-MalachiteMcConnellMemeMina El SapoMina ViejaMother Lode-SunsetObiraOregonOro Denoro (Ema)PhoenixQueen Victoria (Swift)RositaSan PedroSasca MontanaSasagataniSnowshoeStrandzhaTasu-WesfrobTintayaTraversellaTsumoVanandaWar EagleWestern NevadaWexfordYrekaZip

THLDUSNYUSIDBULCCNBCUSNVUSNYHATICLBACLBACNBCJAPNCNBCCNBCCNBCCNBCNCRGUSNMRMNAJAPNUSNHBULGCNBCPERUITLYJAPNCNBCCNYTUSNVCNBCCNBCCNBC

Thermal iaureol: 0arnot-pgroxane

Replacement hoads Pyroxomi-tpideto, alteration (.ndoskarn)of chaloopjjrfto, or potassic Mnd/or phyllhc alteration *pyrtt., pyrrhotflt. dissemnkated chbopyjrtto -molbdenitoWAd Magnetite. ~ r

Tenalt.e or granodiorittpluto,,

Shalt Limestone Calcareous Swandton.sandstono

B-SAwia of mthoral zone ja thermal aureole

Figure 57. Cartoon cross section of Cuskarn deposit showing relationship betweencontact metamorphic zones, ore bodies, andigneous intrusion.

87

Page 102: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18b--Con.

COPPER SKARN

w

0

a

R

0

FI.ure 58. Tonnages of Cu skarn deposits.

z

MILLION TONNES

COPPER SKARN

Figure 59. Copper grades Of Cu skarndeposits.

COPPER GRADE IN PERCENT

88

Page 103: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18b--Con.

0.3

ct2

0.1

o01

w0U-0

To

COPPER SKARN

I I I I I I I I I

_ 0 n. e4

10 . 01 0 1_ D~~~~~00

1 1 1 1 1 ~~~~ 01 1 01

'A t.0 21 6.3 16 40 100 250 630 1600 0

A. SILVER GRADE IN GRAMS PER TONNE

X 300.202 Oo>

0.1 _01

°a0.01 0=.0 0.063 0.16 0.4 1.0 2.5 3 16 40 100

B. GOLD GRADE IN GRAMS PER TONNE

Figure 60. Precious-metal grades of Cu skarn deposits. A,Silver. B, Gold.

89

Page 104: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 1Be

DESCRIPTIE MDDEL OF Zn-Pb St&RN DEPOSITS

By Dennis P. Cox

DESCRIPTION Sphalerite and galena in cale-silicate rocks.

GENERAL REFERENCES Einaudi and Burt (1982); Einaudi and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Granodiorite to granite, diorite to syenite. Carbonate rocks, calcareous elasticrocks.

Textures Granitic to porphyritic; granoblastic to hornfelsic.

Age Range Mainly Mesozoic, but may be any age.

Depositional Environment Miogeoclinal sequences intruded by generally small bodies of igneousrock.

Tectonic Setting(s) Continental margin, late-orogenic magmatism.

Associated Deposit Types Copper skarn.

DEPOSIT DESCRIPTION

Mineralogy Sphalerite + galena * pyrrhotite * pyrite * magnetite * chalcopyrite * bornite sarsenopyrite * scheelite * bismuthinite * stannite * fluorite. Gold and silver do not formminerals.

Texture/Structure Granoblastic, sulfides massive to interstitial.

Alteration Mn-hedenbergite * andradite * grossular * spessartine * bustamite * rhodonite. Latestage Mn-actinolite * ilvaite * chlorite * dannemorite * rhodochrosite.

Ore Controls Carbonate rocks especially at shale-limestone contacts. Deposit may be hundreds ofmeters from intrusive.

Weathering Gossan with strong Mn oxide stains.

Geochemical Signature Zn, Pb, Mn, Cu, Co, Au, Ag, As, W, Sn, F, possibly Be.Magnetic anomalies.

EXAMPLESBan Ban, AUQU (Ashley, 1980)Hanover-Fierro district, USNM (Hernon and Jones, 1968)

GRADE AND TONNAGE MODEL OF Zn-Pb SKARN DEPOSITS

By Dan L. Mosier

COMMENTS Zinc grade is correlated with lead grade (r = 0.66, n = 30) and with copper (r a 0.61, n- 17). See figs. 61-65.

DEPOSITS

Name Country Name Country

Aguilar AGTN El Mochito HNDRAmmeberg SWDN Falun SWDNAravaipa USAZ Garpenberg Norra SWDNBlack Hawk USNM Garpenberg Odal SWDNDolores MXCO Groundhog USNM

90

Page 105: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18c--Con.

KalvbackenKennecott

ali LangbanMcDame BelleMeat CoveMount HundereNyseterParroquio-MagistralRajabasaRyllshyttanSalaSaxberget

SWDNUSNMSWDNCNBCCNNSCNYTNRWYMXCOINDS3WDNSWDNSWDN

ShuikoushanStollbergSvardsioTetyukheTienpaoshanUchucchacuaUlchinWashington CampYanchiachangtzeYeonhwa IYeonhwa IIZip

CINASWDNSWDNURRSCINAPERUSKORUSAZCINASKORSKORCNBC

ZINC-LEAD SKARN

a

z

20

MILLION TONNES

Figure 61. Tonnages of Zn-Pb skarn deposits.

91

Page 106: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18c--Con.

ZINC-LEAD SKARN

1.0

0.0

0.8

f2

z0

0.cca-

0.7

o0

0.5

0.4

03

02

O.1

0.0oFigure 62. Zinc grades of Zn-Pb skarndeposits.

ZINC GRADE IN PERCENT

ZINC-LEAD SKARN

0I-

20L-0z0

I-

0~

Figure 63. Lead grades of Zn-Pb skarndeposits.

LEAD GRADE IN PERCENT

92

Page 107: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18c--Con.ZINC-LEAD SKARN

1.0

0e

0.6

0.7

02I 0.6

w

0.5

2

Q

0

O .scc

1 o

02

0.1

0.0

SILVER GRADE IN GRAMS PER TONNE Figure 64. Silver grades of Zn-Pb skarndeposits.

ZINC--LEAD SKARN

Aq

I

I

4

n4. 34

0.2

0

0

~~~~~~~~~~~~030~~~

A.0 I 0,ooo I I G PRTN

In

0IL0

w

°

F

I

9.04o 0.050 U.1 0.18 0.32 050i 1 ' s .2 5.0 10.0

B. COPPER GRADE IN PERCENT Figure 65. Metal grades of Zn-Pb skarndeposits. A, Gold. B, Copper.

93

Page 108: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18d

DESCRIPTIVE MODEL OF Fe SKARN DEPOSITS

By Dennis P. Cox

DESCRIPTION Magnetite in cale-silicate contact metasomatic rocks.

GENERAL REFERENCES Einaudi and Burt (1982), Einaudi and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Gabbro, diorite, diabase, syenite, tonalite, granodiorite, granite, and coeval volcanicrocks. Limestone and calcareous sedimentary rocks.

Textures Granitic texture in intrusive rocks; granoblastic to hornfelsic textures in sedimentaryrocks.

Age Range Mainly Mesozoic and Tertiary, but may be any age.

Depositional Environment Contacts of intrusion and carbonate rocks orcalcareous elastic rocks.

Tectonic Setting(s) Miogeosynclinal sequences intruded by felsic to mafic plutons. Oceanic islandarc, Andean volcanic arc, and rifted continental margin.

DEPOSIT DESCRIPTION

Mineralogy Magnetite t chalcopyrite t Co-pyrite * pyrite t pyrrhotite. Rarely cassiterite in Feskarns in Sn-granite terranes.

Texture/Structure Granoblastic with interstitial ore minerals.

Alteration Diopside-hedenbergite + grossular-andradite + epidote. Late stage amphibole * chlorite* ilvaite.

Ore Controls Carbonate rocks, calcareous rocks, igneous contacts and fracture zones nearcontacts. Fe skarn ores can also form in gabbroic host rocks near felsic plutons.

Weathering Magnetite generally crops out or forms abundant float.

Geochemical and Geophysical Signature Fe, Cu, Co, Au, possibly Sn. Strong magnetic anomaly.

EXAMPLESShinyama, JAPN (Uchida and Iiyama, 1982)Cornwall, USPA (Lapham, 1968)Iron Springs, USUT (Mackin, 1968)

GRADE AND TONNAGE MODEL OF Fe SKARN DEPOSITS

By Dan L. Mosier and W. David Menzie

COMMENTS Some of the data represent districts. See figs. 66-67.

DEPOSITS

Name Country Name Country

Adaevka central URRS Alagada PORTAdaevka north URRS Aleshinka URRSAdaevka south URRS Argonaut CNBCAgalteca HNDR Asvan TRKYAin Mokra ALGR Auerbach URURAin Oudrer ALGR Ayazmant TRKYAkatani JAPH Baghamn IRAN

94

Page 109: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18d-Con.

BaisoaraBeckBeni DoualaBenkalaBessemerBizmisen-AkusagiBlairtonBolsherechenskBulacanBrynorCalabogieCamlgliaCapacmarcaCapitanCarmenCave CanyonCeheginChichibuChilds MineColquemarcaCopper FlatCuchillo-NegroDaiquiriDammer NissarDannemoraDaytonDivrigiDungunDzamaEagle MountainEl PedrosoEl Sol y La LunaEl Volcan-Piedra ImanEltayEstyuninFierro-HannoverGallinasGiresunGora MagnitnayaGora VysokayaHatilloHierro IndioHuacravilcaHualpaiHuancabambaHullImanocasaInoIron DukeIron HatIron MikeIron Mountain (Colfax Co.)Iron Mountain (Sierra Co.)Iron SpringsJedwayJerez de los CaballerosJibJicarillaJones CampJuncosKacharKalkanKambaikhin central

RMNAUSCAALGRURRSCNONTRKYCNONURRSPLPNCNBCCNONITLYPERUUSNMCILEUSCASPANJAPNCNONPERUUSNMUSNMCUBAPKTNSWDNUSNVTRKYMDGSURRSUSCASPANMXCOMXCOURRSURRSUSNMUSNMTRKYURRSURRSDMRPAGTNPERUCNBCPERUCNQUPERUJAPNCNBCUSCACNBCUSNMUSNMUSUTCNBCSPANCNBCUSNMUSNMCNBCURRSTRKYURRS

Kambaikhin eastKambaikhin northKaramadaziKaunisvaara-MasugnsbynKesikkopruKozyrevkaKroumovoKruglogorskKurzhunkulLa CarmenLa LagunaLa PalomaLa Piedra ImanLas Animas Cerro PrietoLas TruchasLarap-CalambayunganLava BedLebyazhkaLivitaca-VelilleLomonosovMaanshanMacMarbellaMarmoratonMartinovoMaslovoMatiMogpogMonte CarmeloMunesadaNimpkishNovo MaslovoNovo PeschanskOcna de FierOld Dad MountainsOrograndeOsokino-AleksandrovskPambuhan SurPampachiriParacalePena ColoradaPerda NieddaPersbergPeschanskPioilaPiddigPlagiaPokrovskRankinRecibimientoRondoniRoseRudna GlavaSabana GrandeSamliSan CarlosSan Juan de ChacnaSan LeoneSankyoSanta LuciaSanta RitaSarbaySenor de Huarquisa

URRSURRSTRKYSWDNTRKYURRSURRSURRSURRSMXCODMRPMXCOMXCOKXCOMXCOPLPNUSCAURRSPERUURRSHONGCNBCSPANCNONBULCURRSPLPNPLPNNCRGJAPNCNBCURRSURRSRMNAUSCAUSNMURRSPLPNPERUPLPNMXCOITLYSWDNURRSKXCOPLPNGRECURRSCNONMXCOPERUCNBCYUGODMRPTRKYMXCOPERUITLYJAPNPERUUSNMURRSPERU

95

Page 110: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18d--Con.

Severnoe ISevernoe IISevernoe IIIShagyrkulShasta-CaliforniaShinyamaSilver LakesSorkaSosvaSouth SarbayTakanokuraTapairihuaTechaTecolote

URRSURRSURRSURRSUSCAJAPNUSCAURRSURRSURRSJAPNPERUURRSUSNM

TepusteteTexadaTovarnicaTsaitsukouVal Di PeioValuevVorontsovkaVulcanVyhneWagasenninYellow JacketZanitzaZarikanZeballos

MXCOCNBCYUGOCINAITLYURRSURRSUSCACZCLJAPNUSNMMXCOIRANCNBC

96

Page 111: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

IRON SKARN Model 18d--Con.

1.0

0o

OA

0.7

0

IL:00a-

watL0z0

0~

0.6

05

0.4

'1 n .160

I I1 1 0 172 I 1 160 I'' I'

0.2

0.1

.003 0.02 0.1 0.4 1.6 &3 25 100 400 1600 6w0o

MILLION TONNESFigure 66. Tonnages of Fe skarndeposits. Individual digits representnumber of deposits.

IRON SKARN

1.0

0.9

0.8

0.7

0

LL0

z0

(L

0.6

0.5

OA

02

0.1

0.0

IRON GRADE IN PERCENT Figure 67. Iron grades of Fe skarndeposits. Individual digits representnumber of deposits.

97

Page 112: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 18e

DESCRIPTIVE MODEL OF CARBONATE-BOSTED ASBESTOS

By Chester T. Wrucke and Andrew F. Shride

APPROXIMATE SYNONYM Arizona type (Shride, 1973).

DESCRIPTION Long-staple chrysotile asbestos in veins developed in tabular layers of serpentinethat replaced silicated limestone adjacent to diabase sheets, sills, and dikes.

GENERAL REFERENCE Shride (1969).

GEOLOGIC ENVIRONMENT

Rock Types Serpentine, diabase, silicated limestone, cherty dolomite.

Textures Original bedding details of cherty dolomite preserved in fine-grained metamorphiclimestone that includes nodular silicate masses partly to wholly replaced by serpentine.

Age Range Middle Proterozoic in Arizona, but may be of any age.

Depositional Environment Contact metamorphic aureole associated with injection of diabase magmainto cherty dolomite.

Tectonic Setting Probably rifted or partly rifted continental terrane, as suggested by regionallyvoluminous alkalic olivine tholeiite diabase in nearshore marine and terrestrial strata.

Associated Deposit Types Contact-metamorphic magnetite. Talc deposits exist widely in similarphysical settings.

DEPOSIT DESCRIPTION

Mineralogy Chrysotile asbestos, dense serpentine, magnetite, and calcite.

Texture/Structure Sharp-walled gash fracture and ribbon veins of cross-fiber chrysotile andcalcite with occasional veins of dense chrysotile in massive serpentine. Veins mostly less than0.3 cm wide but commonly 2-8 and rarely up to 25 cm.

Alteration Tremolite, diopside, and talc formed during prograde metamorphism were largely replacedby massive serpentine during retrograde metamorphism. Vein minerals were emplaced during latehydrothermal stage.

Ore Controls Favorable stratigraphic zones proximate (within 10 m) to diabase. Open folds formedon emplacement of the diabase were favorable sites for small-scale bedding and thrust faults whichwere repeatedly opened during metamorphism and mineralization.

EXAMPLESGila County, USAZ, Cuddappah district, INDAsouthwestern USMT, Barberton-Caroline District, SAFRHopeh Province, CINA, near Kanye, BOTS (Sinclair, 1955)

98

Page 113: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19a

DESCRIPTIVE MODEL OF POLTHETALLIC REPLACEMENT DEPOSITS

By Hal T. Morris

APPROXIMATE SYNONYM Manto deposits, many authors.

DESCRIPTION Hydrothermal, epigenetic, Ag, Pb, Zn, Cu minerals in massive lenses, pipes and veinsin limestone, dolomite, or other soluble rock near igneous intrusions (see fig. 68).

GENERAL REFERENCE Jensen and Bateman (1981), p. 134-146.

GEOLOGICAL ENVIRONMENT

Rock Types Sedimentary rocks, chiefly limestone, dolomite, andshale, commonly overlain by volcanic rocks and intruded by porphyritic, calb-alkaline plutons.

Textures The textures of the replaced sedimentary rocks are not important; associated plutonstypically are porphyritic.

Age Range Not important, but many are late Mesozoic to early Cenozoic.

Depositional Environment Carbonate host rocks that commonly occur in broad sedimentary basins,such as epicratonic miogeosynclines. Replacement by solutions emanating from volcanic centers andepizonal plutons. Calderas may be favorable.

Tectonic Setting(s) Most deposits occur in mobile belts that have undergone moderate deformationand have been intruded by small plutons.

Associated Deposit Types Base metal skarns, and porphyry copper deposits.

DEPOSIT DESCRIPTION

Mineralogy Zonal sequence outward: enargite + sphalerite + argentite + tetrahedrite + digenite *

chalcopyrite, rare bismuthinite; galena + sphalerite + argentite * tetrahedrite * proustite *

pyrargyrite, rare jamesonite, jordanite, bournonite, stephanite, and polybasite; outermostsphalerite + rhodochrosite (see fig. 68). Widespread quartz, pyrite, marcasite, barite. Locally,rare gold, sylvanite, and calaverite.

Texture/Structure Ranges from massive to highly vuggy and porous.

Alteration Limestone wallrocks are dolomitized and silicified (to form jasperoid); shale andigneous rocks are chloritized and commonly are argillized; where syngenetic iron oxide minerals arepresent, rocks are pyritized. Jasperoid near ore is coarser grained and contains traces of bariteand pyrite.

Ore Controls Tabular, podlike and pipelike ore bodies are localized byfaults or vertical beds; ribbonlike or blanketlike ore bodies are localizedby bedding-plane faults, by susceptible beds, or by preexisting solution channels, caverns, or caverubble.

Weathering Commonly oxidized to ochreous masses containing cerrusite, anglesite, hemimorphite, andcerargyrite.

Geochemical Signature On a district-wide basis ore deposits commonly arezoned outward from a copper-rich central area through a wide lead-silver zone, to a zinc- andmanganese-rich fringe. Locally Au, As, Sb, and Bi. Jasperoid related to ore can often berecognized by high Ba and trace Ag content.

ExamplesEast Tintic district, USUT (Morris and Lovering, 1979)Eureka district, USNV (Nolan, 1962)Manto deposit, MXCO (Prescott, 1926)

99

Page 114: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 1ga--Con.

} Metas | Dominant mineraloguTN t Ore Gangue

t z , -znt Sphalerite + Fine-grair.ii ~rhodochrosite pyjritic

Zn 9-Z n L jasperoidEXPLANATION Cu L

1) ffi \ t9 j; XGalena + Fine-grair

Replacement ore body 'C. Pb-Ag s argentite i barite cru^<x ^ z S Ag sultosalts and quart

-II l f i* tetrahedrite lined vugsPaleozoic carbonate rocks

['71 ,^ j§Enargitt- Medium-Monzonite of Tertiary age famatinite + grained j

I ~~~Cu-Au tonnantit.-Cu ' - tetrahedrite + peroid an

Northern limit of important /'. sphalerite + of quartzcopper ore bodies ..... .... o ose 11 ........ argentite + baritecopper arigbodt.

Z n _ ' * ' ' ~~~~~~~~~~~~~d i g en i t e

Southern limit of important 1 kmzinc ore bodies

ined

IedwithIstals

as-dIYstalsand

Figure 68. Generalized map showing metal and mineral zoning in polymetallic replacement depositsin the Main Tintic district, Utah. Modified from Morris (1968).

100

Page 115: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19a--Con.

GRADE AND TONNAGE MODEL OF POLYMETALLIC REPLACEMENT DEPOSITS

By Dan L. Mosier, Hal T. Morris, and Donald A. Singer

COMMENTS Carbonate-hosted replacement and transitional vein and other replacement deposits areincluded. Only districts with combined production and reserves of at least 100,000 tonnes areused. Tonnages for many districts, particularly in the U.S. are biased because only productiondata were available. The break in slope in the zinc grade plot at about 1 percent may be relatedto early difficulties of processing zinc oxides, and the consequent underreporting of zinc gradeswhere estimates were based on production. Lead grade is correlated with silver (r = 0.55, n45). See figs. 69-74.

DEPOSITS

Name Country Name Country

American ForkAtacochaBellBig Cottonwood-L.C.Blue BellBolkardagBristol (Jack Rabbit)Cerro GordoChalchihuitesCharcasCortezDarwinDrinaEast TinticEl Porvenir (Milpo)EurekaHunnanLa EncantadaLa ReformaLampazosLauriumLiaoningLone MountainMagdalenaMaria ChristinaMazapil

USUTPERUUSNVUSUTCNBCTRKYUSNVUSCAMXCONXCOUSNVUSCAYUGOUSUTPERUUSNVCINAMICOMXCOMXCOGRECCINAUSNVUSNMCILEMXCO

NakatatsuMitateNaicaNew CalumetOlympias ChalkidikiOphirPark CityPlomosasRush ValleySan FranciscoSanta EulaliaSantanderSaua-ToranicaSilva-AysenSombrereteSpruce MountainStarSumadisaTecopaTinticTombstoneTrepea-KopaonikVelardepaWhite PineYellow PineZimapan

JAPNJAPNMXCOCNQUGRECUSUTUSUTMXCOUSUTUSUTMXCOPERUYUGOCILEMXCOUSNVUSUTYUGOUSCAUSUTUSAZYUGOMXCOUSNVUSNVMXCO

101

Page 116: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19a--Con.

POLYMETALLIC REPLACEMENT

0

zQ

0cc

Figure 69. Tonnages of polymetallic replacement deposits.

1.0

0F

CE L

MILLION TONNES

POLYMETALLIC REPLACEMENT

I IUI I x X II I U I

00

00 Nn .52

ci

(0

0

0

0.

0.7

0.6

OS

0A

0.3

00000

a00

00

02 _

0.1 -

0.0 I I I I lit IS0.01 0.025 0.063 0.16 0.4 1.0 25

Figure 70. Lead grades of polymetallio replacement deposits. LEAD GRADE IN PERCENT

102

0

021 I I

Is 40 1iC

Page 117: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19a--Con.POLYMETALLIC REPLACEMENT

ZINC GRADE IN PERCENT

Figure 71. Zinc grades of polymetallic replacement deposits.

POLYMETALLIC REPLACEMENT

COPPER GRADE IN PERCENT

Figure 72. Copper grades of polymetallic replacement deposits.

103

Page 118: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19a--Con.POLYMETALLIC REPLACEMENT

U-0z0

0

10

0.8

0.7

0.6

o.s

0.4

03

I I I I I I I_

n -52

00

0

0000

0000

0IIpo0000

0

l l l l l l toO~002 F

0.0 _0.4 1.0 2.5 63 16 40 100 250

SILVER GRADE IN GRAMS PER TONNE

630 1600 41D03

Figure 73. Silver grades of polymetallic replacement deposits.

POLYMETALLIC REPLACEMENT

U,co

a-600LL0

0.

Figure 74. Gold grades of polymetallic replacement deposits. GOLD GRADEINGRAMSPERTONNE

104

Page 119: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19b

DESCRIPTIVE MODEL OF REPLACEMENT Mn

By Dan L. Nosier

DESCRIPTION Manganese oxide minerals occur in epigenetic veins or cavity fillings in limestone,dolomite, or marble, which may be associated with intrusive complexes.

GEOLOGICAL ENVIRONMENT

Rock Types Limestone, dolomite, marble, and associated sedimentary rocks; granite and granodioriteplutons.

Age Range Mainly Paleozoic to Tertiary, but may be any age.

Depositional Environment Miogeosynclinal sequences intruded by small plutons.

Tectonic Setting(s) Orogenic belts, late erogenic magmatism.

Associated Deposit Types Polymetallic vein, polymetallic replacement, skarn Cu, skarn Zn, porphyrycopper.

DEPOSIT DESCRIPTION

Mineralogy Rhodochrosite * rhodonite + calcite e quartz * barite * fluorite * jasper *manganocalcite * pyrite * chalcopyrite t galena * sphalerite.

Texture/Structure Tabular veins, irregular open space fillings, lenticular pods, pipes, chimneys.

Ore Controls Fracture permeability in carbonate rocks. May be near intrusive contact.

Weathering Mn oxide minerals: psilomelane, pyrolusite, and wad form in the weathered zone andmake up the richest parts of most deposits. Limonite and kaolinite.

Geochemical Signature Mn, Fe, P, Cu, Ag, Au, Pb, Zn.

EXAMPLESLake Valley, USNM (Farnham, 1961)Philipsburg, USMT (Prinz, 1963)Lammereck, ASTR (Lechner and Plochinger, 1956)

GRADE AND TONNAGE MODEL OF REPLACEMENT Mn

By Dan L. Mosier

only available for some of the low tonnage deposits. See figs. 75-76.COMMENTS Copper grades are

DEPOSITS

Name

Atlas tBear MountainBirchfieldBlinmanBrachyChloride Flat ICrown King ICynthiaDanville-HanchetteDetroit lDinamita IDjebel El AzizaEssex and Steptoe I

Country

JSAZJSNMJSNMWSA?RNC3SNMJSAZ3RECISAZJSUT4XCO!UNSISNV

Name

Golden GateHendricks-TwilightKahal de BrezinaKingstonLake ValleyLammereckLas AmbollasLas CabessesLone MountainLos VolcanesMammothMercedesPhilipsburg

Country

USAZUSAZALGRUSNMUSNMASTRFRNCFRNCUSNMMXCOUSAZCUBAUSMT

105

Page 120: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19b--Con.

Poludnig-HermagorOregonSalignySan CarlosSattelbergesSummit-No. 4

ASTRUSAZFRNCMXCOASTRUSAZ

ThuburnicUlukoyVeitschVorderen StrubbergesWaterloo

TUNSTRKYASTRASTRUSAZ

REPLACEMENT MANGANESE

z

I-

(.

MILION TONNES

Figure 75. Tonnages of replacement Mn deposits.

106

Page 121: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 19b--Con.

REPLACEMENT MANGANESE

fo

0.*

0.7

0.6

0.6

0.4

g

0

a-

0.3

0.2

0.1

o.

A.

0.032

S.

MANGANESE GRADE IN PERCENT

I I I I I I I

l.05eOssw

b.- ~0l 0

| I _ 0.531 1 10.1 0.18 02 0.6 1.0 1X

COPPER GRADE IN PERCENT

=I

32 U6 10.0

Figure 76. Manganese and copper grades of replacement Mn deposits.

107

Page 122: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20a

DESCRIPTIVE MODEL OF PORPHYRY Sn

By Bruce L. Reed

APPROXIMATE SYNONYM Subvolcanic tin (Grant and others, 1977).

DESCRIPTION Subvolcanic intrusive complexes containing disseminated, veinlet- and breccia-controlled fine-grained cassiterite in quartz porphyry and adjacent rocks.

GENERAL REFERENCE Grant and others (1980).

GEOLOGICAL ENVIRONMENT

Rock Types Intermediate to acid quartz porphyry stocks (quartz-latite, dacite, rhyodacite) andcogenetic calc-alkaline pyroclastics and lavas (quartz-latite to rhyodacite).

Textures Intrusions most closely associated with mineralization are strongly altered andbrecciated quartz porphyry.

Age Range May be any age. Classic Bolivian porphyry tin deposits are Miocene. Subvolcanic W-Mo-Sn deposits at Mount Pleasant, New Brunswick, are late Carboniferous.

Depositional Environment Subvolcanic stocks emplaced 1 to 3 km beneath or within vents ofterrestrial strato-voleanoes.

Tectonic Setting(s) Paleozoic foldbelt cut by subduction-generated high-level stocks and cogeneticvolcanic rocks.

Associated Deposit Types Sn veins and Sn polymetallic veins.

DEPOSIT DESCRIPTION

Mineralogy Cassiterite and quartz accompanied by sulfide minerals (chiefly pyrite) but includingpyrrhotite, stannite, chalcopyrite, sphalerite, and arsenopyrite; late veins commonly carry complexsulfostannates and Ag minerals.

Texture/Structure Disseminations, veinlets, and f iactures in igneous breccia and adjacentwallrock; stocks commonly funnel-shaped and 1-2 km .

Alteration Pervasive alteration and porphyry tin mineralization predates tin-silver veins;concentric zoning grades from a central quartz-tourmaline core (minor disseminated cassiterite),outward to sericite-tourmaline, sericite (closely related to disseminated cassiterite), andpropylitic alteration; argillic alteration present in upper parts of some systems.

Ore Controls Porphyry mineralization is breccia controlled and centered on stocks emplaced in theinner, deeper regions of volcanoes; close relation between disseminated cassiterite and sericiticalteration; late fracture- controlled quartz-cassiterite and quartz-cassiterite-sulfide veins occurwithin or near the margins of intrusive centers.

Weathering Surface iron staining variable (pyrite); supergene enrichment unlikely; cassiterite maybe concentrated in nearby placer deposits.

Geochemical Signature: Sn + B center; Sn, Ag, Pb, Zn, As, Sb, Cu, Ba in outer zone.

EXAMPLESChorolque, BLVA (Grant and others, 1980)Catavi (Salvadora stock,Llallagua), BLVA (Sillitoe and others, 1975)

108

Page 123: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20b

DESCRIPTIVE MODEL OF Sn-POLYMETILLIC VEINS

by Yukio Togashi (Geological Survey of Japan)

APPROXIMATE SYNONYMS Polymetallic xenothermal (Imai and others, 1978), Bolivian subvolcanicmultistage.

DESCRIPTION Multistage Cu-Zn-Sn-Ag-bearing veins associated with felsic ignimbrites andsubvolcanic intrusions.

GENERAL REFERENCES Nakamura and Hunahashi (1970), Grant and others (1977).

GEOLOGICAL ENVIRONMENT

Rock Types Rhyolitic tuft, welded tuft and tuff breccia. Rhyolitic to basaltic dikes. Sandstone,slate, chert, and basic tuff.

Textures Welded and airfall tuft. Porphyritic-aphanitic intrusives.

Age Range Late Cretaceous to Miocene in Japan, Miocene in Bolivia, but may be any age.

Depositional Environment Fissures in and around felsic ignimbrite.

Tectonic Setting(s) Continental margin. Syn-late orogenic.

Associated Deposit Types Polymetallic replacement, epithermal Ag veins, porphyry Sn.

DEPOSIT DESCRIPTION

Mineralogy Cassiterite, chalcopyrite, sphalerite, pyrrhotite, pyrite, galena, scheelite,wolframite, arsenopyrite, native bismuth, bismuthinite, argentite, native gold, magnetite,molybdenite, and complex sulfosalt minerals including teallite, frankeite, cylindrite, andstannite.

Texture/Structure Multistage composite veins with Sn, Cu, Zn, and Ag minerals occurring in thesame vein.

Alteration Minor quartz-chlorite-sericite alteration close to veins. Tourmaline, fluorite, orsiderite may be present.

Ore Controls Veins, breccia veins, and breccia pipes. Metal zoning sequence is Sn + W to Cu x Sn,Cu + Zn, Pb + Zn, Pb + Ag, Au + Ag from center to periphery, or from depths to shallow levels.Zones are commonly superimposed or "telescoped" to produce complex veins.

Weathering Limonitization. Cassiterite in soils and gossans.

Geochemical Signature Cu, Zn, Sn, Pb, W, Au, Ag, Bi, As.

EXAMPLESAshio, Akenobe, Ikuno, Kishu, JAPN (Nakamura, 1970)Potosi, BLVA (Turneaure, 1971)

109

Page 124: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20c

DESCRIPTIm MODEL OF PORPHYRY Cu-Au

By Dennis P. Cox

DESCRIPTION Stockwork veinlets of chalcopyrite, bornite, and magnetite in porphyritic intrusionsand coeval volcanic rocks. Ratio of Au (ppm) to Ho (percent) is greater than 30 (see fig. 77).

GENERAL REFERENCES Sillitoe (1979), Cox and Singer (in press).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite to monzogranite; dacite, andesite flows and tuffs coeval with intrusiverocks. Also syenite, monzonite, and coeval high-K, low-Ti volcanic rocks (shoshonites).

Textures Intrusive rocks are porphyritic with fine- to medium-grained apliticgroundmass.

Age Range Cretaceous to Quaternary.

Depositional Environment In porphyry intruding coeval volcanic rocks. Both involved and in large-scale breccia. Porphyry bodies may be dikes. Evidence for volcanic center; 1-2 km depth ofemplacement.

Tectonic Setting(s) Island-arc volcanic setting, especially waning stage of volcanic cycle. Alsocontinental margin rift-related volcanism.

Associated Deposit Types Porphyry Cu-Mo; gold placers.

DEPOSIT DESCRIPTION

Mineralogy Chalcopyrite * bornite; traces of native gold, electrum, sylvanite, and hessite.Quartz + K-feldspar + biotite + magnetite + chlorite + actinolite + anhydrite. Pyrite + sericite +clay minerals + calcite may occur in late-stage veinlets.

Texture/Structure Veinlets and disseminations.

Alteration Quartz * magnetite * biotite (chlorite) t K-feldspar * actinolite, t anhydrite ininterior of system. Outer propylitic zone. Late quartz + pyrite + white mica a clay may overprintearly feldspar-stable alteration.

Ore Controls Veinlets and fractures of quartz, sulfides, K-feldspar magnetite, biotite, orchlorite are closely spaced. Ore zone has a bell shape centered on the volcanic-intrusivecenter. Highest grade ore is commonly at the level at which the stock divides into branches.

Weathering Surface iron staining may be weak or absent if pyrite content islow in protore. Copper silicates and carbonates. Residual soils contain anomalous amounts ofrutile.

Geochemical Signature Central Cu, Au, Ag; peripheral Mo. Peripheral Pb, Zn, Mn anomalies may bepresent if late sericite pyrite alteration is strong. Au (ppm):Mo (percent) 30 in ore zone. Auenriched in residual soil over ore body. System may have magnetic high over intrusion surroundedby magnetic low over pyrite halo.

EXAMPLESDos Pobres, USAZ (Langton and Williams, 1982)Copper Mountain, CNBC (Fahrni and others, 1976)Tanama, PTRC (Cox, 1985)

GRADE AND TONNAGE MODEL OF PORPHYRY Cu-Au

By Donald A. Singer and Dennis P. Cox

COMMENTS See figs. 78-81.

110

Page 125: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20c--Con.

DEPOSITS

J, Name Country Name

AftonAmacanAtlas LutopanBasayBell CopperBoneng LoboCariboo BellCopper MountainCubuaganDizonDos PobresFish LakeFrieda RiverGalore CreekHinobaanIngerbelleKennonLa Alumbrera

LorraineLumbay

CNBCPLPNPLPNPLPNCNBCPLPNCNBCCNBCPLPNPLPNUSAZCNBCPPNGCNBCPLPNCNBCPLPNAGTNCNBCPLPN

MamutMapulaMarcopperMarianMountain MinesOk TediPanguanaRed ChrisRio ViviSaindak SouthSan AntonioSan FabianSanto NinoSanto TomasStar Mt.-FubilanStar Mt.-FutikTanamaTawi-TawiTaysanToledo

Country

MDGSPLPNPLPNPLPNPLPNPPNGPPNGCNBCPTRCPKTNPLPNPLPNPLPNPLPNPPNGPPNGPTRCPLPNPLPNPLPN

Figure 77. Cartoon cross section of porphyry Cu-Au deposit. Modified fromLangton and Williams (1982).

ill

Page 126: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20c--Con.

PORPHYRY COPPER-GOLD

1.0

0.7

0.8

0.7

CO)

2 0.6LUa

L)O 0.5

z0

0.4

02

0Cc

0.3

0.2

0.1

0.0Figure 78. Tonnages of porphyry Cu-Audeposits.

MILUON TONNES

PORPHYRY COPPER-GOLD

P0

20

zQ

a.

Figure 79. Copper grades of porphyry Cu-Audeposits.

112

COPPER GRADE IN PERCENT

Page 127: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20c--Con.

PORPHYRY COPPER-GOLD

1.0 TILI I x

x

I I I I I In. 40

0.9 _-

0.7 _-

0

0

0

10

2 0.6

Lii

0 0.5

z

W OA

0

a.

010

000

00o

00o

0.2

0.1

I,I I I I I I0.0 16 40 JVV

(0.01 0.025 0.063 0.16 0.4 1. W. X le 40 *0m

GOLD GRADE IN GRAMS PER TONNE

Figure 80. Gold grades of porphyry Cu-Audeposits.

113

Page 128: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 20e--Con.

PORPHYRY COPPER-GOLD

0

0

F

a.M

0.7

0.

0.4

0.3

02

0.1

0.0

A. SILVER GRADE IN GRAMS PER TONNE

B. MOLYBDENUM GRADE IN PERCENT Mo

Figure 81. By-product grades of porphyryCu-Au deposits. A, Silver. B, Molybdenum.

114

Page 129: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21a

DESCRIPTIVE MODEL OF PORPHYRY Cu-Ho

By Dennis P. Cox

DESCRIPTION Stockwork veinlets of quartz, chalcopyrite, and molybdenite in or near a porphyriticintrusion. Ratio of Au (in ppm) to Mo (in percent) less than 3 (See fig. 82).

GENERAL REFERENCE Titley (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite to monzogranite stocks and breccia pipes intrusive into batholithic, volcanic,or sedimentary rocks.

Textures Intrusions contemporaneous with ore commonly are porphyries with fine- to medium-grainedaplitic groundmass. Porphyry texture may be restricted to small dikes in some deposits (Brenda).

Age Range Mainly Mesozoic to Tertiary, but can be any age.

Depositional Environment High-level intrusive porphyry contemporaneous with abundant dikes,faults, and breccia pipes. Cupolas of batholiths.

Tectonic Setting(s) Numerous faults in subduction-related volcanic plutonic arcs. Mainly alongcontinental margins but also in oceanic convergent plate boundaries.

Associated Deposit Types Cu, Zn, or Fe skarns may be rich in gold, gold + base-metal sulfosalts inveins, gold placers. Volcanic-hosted massive replacement and polymetallic replacement.

DEPOSIT DESCRIPTION

Mineralogy Chalcopyrite + pyrite + molybdenite. Peripheral vein or replacement deposits withchalcopyrite + sphalerite + galena t gold. Outermost zone may have veins of Cu-Ag-Sb-sulfides,barite, and gold.

Texture/Structure Veinlets and disseminations or massive replacement of favorable countryrocks.

Alteration Quartz + K-feldspar + biotite (chlorite) * anhydrite (potassic alteration) gradingoutward to propylitic. Late white mica + clay (phyllic) alteration may form capping or outer zoneor may affect the entire deposit. High-alumina alteration assemblages may be present in upperlevels of the system (see table 3).

Ore Controls Ore grade is, in general, positively correlated with spacing of veinlets andmineralized fractures. Country rocks favorable for mineralization are ealcareous sediments;diabase, tonalite, or diorite.

Weathering Intense leaching of surface; wide areas of iron oxide stain. Fractures coated withhematitic limonite. Supergene copper as chalcocite may form blanket below leached zone. Residualsoils may contain anomalous amounts of rutile.

Geochemical Signature Cu + Mo + Ag t W + B + Sr center; Pb, Zn, Au, As, Sb, Se, Te, Mn, Co, Ba,and Rb in outer zone. Locally Bi and Sn form distal anomalies. High S in all zones. Ratio of Au(ppm): Mo (percent)<i3. Magnetic low.

EXAMPLESBrenda, CNBC (Soregaroli and Whitford, 1976)Sierrita Esperanza, USAZ (West and Aiken, 1982)

115

Page 130: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21a--Con.

GRADE AND TONNAGE MODEL OF PORPHYRY Cu-Mo

By Donald A. Singer, Dennis P. Cox, and Dan L. Mosier

COMMENTS These deposits are a subset of porphyry Cu-Mo deposits for which a Cu, Mo and Au gradewere available. See figs. 83-87.

DEPOSITS

Name Country Name Country

BergBethlehemBrendaGambler IslandCaspeGibraltarHighmontHuckleberry

CNBCCNBCCNBCCNBCCNQUCNBCCNBCCNBC

InspirationLornexMorenciRaySierrita-EsperanzaTyroneTwin ButtesValley Copper

USNMCNBCUSAZUSAZUSAZUSNMUSAZCNBC

Figure 82. Cartoon cross section of porphyry Cu-Mo deposit showingrelationship between mineral- and alteration-zoning and igneous intrusion.

116

Page 131: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21a-Con.

PORPHYRY COPPER-MOLYBDENUM

0

z0

5J

00.tL

1.0

OA

0.7

0.6

OS

0.3

02

0.1

0.0

MILLION TONNES Figure 83. Tonnages of porphyry Cu-Modeposits.

PORPHYRY COPPER-MOLYBDENUM

0

0

U.0z0FR0a.

COPPER GRADE IN PERCENT Figure 84. Copper grades of porphyry Cu-Modeposits.

117

Page 132: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21a--Con.

PORPHYRY COPPER-MOLYBOENUM

01

a

QI-

0rEL

1.0

0o

0.8

0.7

0.6

0.5

OA

03

02

0.1

0.0

I -I I ~I I I I I I

o n.1I

0

0

0

o

0

0

0

0

00

I n I 0 n I I I0F~~.0 21 0.016 0.5 X

Figure 85. Molybdenum grades of porphyryCu-Mo deposits.

e1 0002 0004 00079 0.0o6 0.032 0.063 0.13 0.25 0.5

MOLYBDENUM GRADE IN PERCENT Mo

PORPHYRY COPPER-MOLYBDENUM

o

CO00fh

zQ

0c-

Figure 86. Gold grades of porphyry Cu-Modeposits.

118

GOLD GRADE IN GRAMS PER TONNE

Page 133: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21a-Con.

PORPHYRY COPPER--MOLYBDENUM

I

0

I0

Cl

SILVER GRADE IN GRAMS PER TONNE

Figure 87. Silver grades of porphyry Cu-Mo deposits.

119

Page 134: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21b

DESCRIPTIVE MODEL OF PORPHYRY Mo, LOW-F

By Ted G. Theodore

APPROXIMATE SYNONYM Cale-alkaline Mo stockwork (Westra and Keith, 1981).

DESCRIPTION Stockwork of quartz-molybdenite veinlets in felsic porphyry and in its nearby countryrock.

GENERAL REFERENCE Westra and Keith (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Tonalite, granodiorite, and monzogranite.

Textures Porphyry, fine aplitic groundmass.

Age Range Mesozoic and Tertiary.

Depositional Environment Orogenic belt with calcalkaline intrusive rocks.

Tectonic Setting(s) Numerous faults.

Associated Deposit Types Porphyry Cu-Mo, Cu skarn, volcanic hosted Cu-As-Sb.

DEPOSIT DESCRIPTION

Mineralogy Molybdenite + pyrite + scheelite + chalcopyrite + argentian tetrahedrite. Quartz + K-feldspar + biotite + calcite + white mica and clays.

Texture/Structure Disseminated and in veinlets and fractures.

Alteration Potassic outward to propylitic. Phyllic and argillic overprint (see table 3).

Ore Controls Stockwork in felsic porphyry and in surrounding country rock.

Weathering Yellow ferrimolybdite after molybdenite. Secondary copper enrichment may form copperores in some deposits.

Geochemical Signature Zoning outward and upward from Mo + Cu * W to Cu + Au to Zn + Pb, + Au, +Ag. F may be present but in amounts less than 1,000 ppm.

EXAMPLESBuckingham, USNV (Blake and others, 1979)USSR deposits (Pavlova and Rundquist, 1980)

GRADE AND TONNAGE MODEL OF PORPHYRY Mo, LOW-F

By W. David Menzie and Ted G. Theodore

COMMENTS See figs. 88, 89.

DATA REFERENCE Theodore and Menzie (1983).

DEPOSITS

Name Country Name Country

Anduramba AUQL Boss Mountain CNBCAdanac (Ruby Creek) CNBC Boswell River CNYTAjax (Dak River) CNBC Buckingham USNYB. C. Moly CNBC Cannivan Gulch USMTBell Molybdenum CNBC Carmi CNBC

120

Page 135: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21b--Con.

CrestonEndakoGemGlacier GulchHallHaskin MountainKarenLucky ShipMachkaticaMount ThomlinsonMount TolmanPine Nut

MXCOCNBCCNBCCNBCUSNYCNBCCNBCCNBCYUGOCNBCUSWAUSNV

Pitman (JB)Quartz HillRed BirdRed MountainSerb CreekSetting Net LakeStorieSunshine CreekThompson CreekTrout LakeUV Industries

CNBCUSAKCNBCCNYTCNBCCNONCNBCCNBCUSIDCNBCUSNV

121

Page 136: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 21b--Con.

PORPHYRY MOLYBDENUM-LOW FLUORINE

0U-a

0zQ

0cc

Figure 88. Tonnages of porphyry Mo-low Fdeposits.

0

10U-0

z

0

a.

Figure 89. Molybdenum grades of porphyryMo-lowF deposits.

122

1.0

0.8

0.7

O's

o.s

0.4

03

02

0.1

0.0

MILLION TONNES

PORPHYRY MOLYBDENUM--LOW FLUORINE

MOLYBDENUM GRADE IN PERCENT Mo

Page 137: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22a

DESCRIPTIYE MODEL OF VOLCANIC-HOSTED Cu-As-Sb

By Dennis P. Cox

APPROXIMATE SYNONYM Enargite massive sulfide (Sillitoe, 1983)

DESCRIPTION Stratabound to pipelike massive copper sulfosalt deposits in volcanic flows, breccias,and tuffs near porphyry systems.

GENERAL REFERENCES Sillitoe (1983), Ashley (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Andesite, dacite, flows, breccias, and tuffs.

Textures Fine grained, porphyritic, brecciated.

Age Range Mainly Tertiary.

Depositional Environment Volcanic terrane, uppermost levels of intrusive systems.

Tectonic Settingts) Continental margins and island arcs.

Associated Deposit Types Porphyry Cu-Mo, porphyry Mo low-F.

DEPOSIT DESCRIPTION

Mineralogy All contain pyrite. In addition, enargite + luzonite + tennantite (Lepanto), enargite+ covellite + chalcocite + bornite + chalcopyrite (Bor), enargite + luzonite + tetrahedrite(Resck), tetrahedrite + sphalerite + ohalcopyrite + arsenopyrite (Sam Goosly). Most contain a fewparts per million Au; Sam Goosly is Ag-rich.

Texture/Structure Massive ore, breccia filling, replacement of clasts by sulfides.

Alteration Chalcedony plus high-alumina assemblages containing alunite, pyrophyllite, diaspore,dickite, andalusite. Dumortierite, tourmaline, barite, and scorzalite may be present.

Ore Controls Tuff-breccias or breccia pipes are the channelways for ore solutions originating fromyounger porphyry copper systems. Known deposits are separated from typical porphyry typemineralization by 500 to 700 m.

Geochemical Signature As, Sb, Cu, Zn, Ag, Au, * minor Sn (Lepanto), and W (Sam Goosly).

EXAMPLESLepanto, PLPN (Gonzales, 1956)Recsk, HUNG; Bor, YUGO (Sillitoe, 1983)Sam Goosly (Equity Silver), CNBC (Cyr and others, 1984)

123

Page 138: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22b

DESCRIPTIVE MODEL OF Au-Ag-Te VEINS

By Dennis P. Cox and William C. Bagby

DESCRIPTION Gold telluride minerals and fluorite in veins and breccia bodies related to hypabyssalor extrusive alkalic rocks.

GEOLOGICAL ENVIRONMENT

Rock Types Syenite, monzonite, or diorite; phonolite, monchiquite, and vogesite. Silica-undersaturated low-Ti basalts (shoshonites).

Textures Porphyro-aphanitic. Volcanic breccias and lapilli tuff.

Age Range Mainly Cretaceous and Tertiary, but could be any age.

Depositional Environment Volcanic centers, caldera rims, and caldera-fill breccias.

Tectonic Setting(s) Disrupted Precambrian craton with thin Phanerozoic cover. Also lateshoshonitic stage of volcanism in island arcs.

Associated Deposit Types Polymetallic veins, polymetallic replacement deposits.

DEPOSIT DESCRIPTION

Mineralogy Calaverite, sylvanite, hessite, coloradoite, fine-grained pyrite, galena, sphalerite,tetrahedrite, and stibnite in veins of smokey quartz, calcite, purple fluorite, barite, celestite,roscoelite (V-mica), and adularia. Fluorite absent in Fiji deposit.

Texture/Structure Veins mainly carbonates and quartz. Ore minerals in clusters and locally in vuglinings. Breccia-filling textures in some deposits.

Alteration Propylitic, dominated by carbonates (particularly dolomite) and pyrite. Sericiteintroduced in wallrocks. Silicification is rare.

Ore Controls Rich breccia ores in central zone of caldera. Veins on steep radial fractures and onfaults gently inclined toward caldera. Veins may follow porphyry dikes. Replacement ore bodiesmay form where veins cut limestone, organic-rich argillaceous limestone being especially favorable.

Weathering Tellurides easily destroyed by weathering. Resulting "flour" gold may not be retainedin placer deposits. Some tellurium redeposited as green oxides (emmonsite). Supergene enrichment,depositing native Au, occurs in some deposits.

Geochemical Signature Au, Ag, Te, Cu, Pb, Zn, Sb, Hg, F, Ba, PGE.

EXAMPLESCripple Creek, USCO (Loughlin and Koschman, 1935;

Lindgren and Ransome, 1906)Gold Hill, USCO (Kelly and Goddard, 1969)LaPlata district, USCO (Eckel, 1949)Zortman-Landusky (Little Rockies district), USMT (Corry, 1933)North Mocassin-Warm Springs district), USMT (Blixt, 1933)Emperor mine, Tavua, FIJI (Colley, 1976)

124

Page 139: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22c

DESCRIPTIVE MODEL OF POLYHETALLIC VEINS

By Dennis P. Cox

APPROXIMATE SYNONYM Felsic intrusion-associated Ag-Pb-Zn veins (Sangster, 1984).

DESCRIPTION Quartz-carbonate veins with Au and Ag associated with base metal sulfides related tohypabyssal intrusions in sedimentary and metamorphic terranes.

GEOLOGICAL ENVIRONMENT

Rock Types Calcalkaline to alkaline, diorite to granodiorite, monzonite to monzogranite in smallintrusions and dike swarms in sedimentary and metamorphic rocks. Subvolcanic intrusions, necks,dikes, plugs of andesite to rhyolite composition.

Textures Fine- to medium-grained equigranular, and porphyroaphanitic.

Age Range Most are Mesozoic and Cenozoic, but may be any age.

Depositional Environment Near-surface fractures and breccias within thermal aureol of clusters ofsmall intrusions. In some cases peripheral to porphyry systems.

Tectonic Setting(s) Continental margin and island arc volcanic-plutonic belts. Especially zonesof local domal uplift.

Associated Deposit Types Porphyry Cu-Mo, porphyry Mo low-F, polymetallic replacement. Placer Au.

DEPOSIT DESCRIPTION

Mineralogy Native Au and electrum with pyrite + sphalerite * chalcopyrite * galena * arsenopyritet tetrahedrite-tennantite * Ag sulfosalts t argentite * hematite in veins of quartz + chlorite +calcite * dolomite t ankerite t siderite t rhodochrosite t barite * fluorite * chalcedony tadularia.

Texture/Structure Complex, multiphase veins with comb structure, crustification, and colloformtextures. Textures may vary from vuggy to compact within mineralized system.

Alteration Generally wide propylitic zones and narrow sericitic and argillic zones.Silicification of carbonate rocks to form jasperoid.

Ore Controls Areas of high permeability: intrusive contacts, fault intersections, and brecciaveins and pipes. Replacement ore bodies may form where structures intersect carbonate rocks.

Weathering Minor gossans and Mn-oxide stains. Zn and Pb carbonates and Pb sulfate. Abundantquartz chips in soil. Placer gold concentrations in soils and stream sediments. Supergeneenrichment produces high-grade native and horn silver ores in veins where calcite is not abundant.

Geochemical Signature Zn, Cu, Pb, As, Au, Ag, Mn, Ba. Anomalies zoned from Cu-Au outward to Zn-Pb-Ag to Mn at periphery.

EXAMPLESSt. Anthony (Mammoth), USAZ (Creasey, 1950)Wallapai District, USAZ (Thomas, 1949)Marysville District, USMT (Knopf, 1913)Misima I., PPNG (Williamson and Rogerson, 1983)Slocan District, CNBC (Cairnes, 1934)

GRADE AND TONNAGE MODEL OF POLIHETALLIC VEINS

By James D. Bliss and Dennis P. Cox

COMMENTS The data used to generate grade and tonnage models for polymetallic veins reflectconsiderable complexity in the geology and economic conditions under which deposits are produced orevaluated. This model represents a first attempt to resolve these complexities. Four important

125

Page 140: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22c--Con.

factors may affect the adequacy of this model.1. Zinc grades are subject to considerable uncertainty because smelters have in the past

penalized producers for ore containing zinc which in turn caused mine operators to avoid zinc-bearing ore in their mining and milling. Zinc grades are likely underestimated. Irregularbehavior in the zinc-grade model may be due to these factors.

2. Polymetallic veins of two types appear to exist--a base-metal polymetallic vein workedprimarily for a base metal or metals and silver and a gold-silver polymetallic vein with copper,lead, and zinc production likely in less than half the deposits. Grade and tonnage models arepresented for the base-metal polymetallic veins. Grade and tonnge models are not presented for thegold-silver polymetallic veins because preliminary data are inadequate. In our data, districts inwhich both types occur generally have six times as many base-metal polymetallic veins as gold-silver polymetallic veins.

3. The Slocan Mining District, British Columbia, Canada, contributed nearly 60 percent of thedeposit data for the base-metal polymetallic veins, and this may bias the models in ways notidentified.

4. Deposits are defined as all workings within 1 km of each other and having a minimum of 100tonnes of ore. A few deposits are for districts with workings of unknown spacing. See figs. 90-94.

Name

Albert Lea GroupAltoona-Elkhor-MercuryAmazonAntoineArlingtonBadgerBaltic and RevenueBaltimoreBellBell and CaliforniaBell Boy-Niles-TowsleyBig FourBosumBullionC.O.D.California-Hartney-MarionCarnation-Jennie LindCentral Cerbat DistrictChampion-New LondonChlorite DistrictComstockCork-ProvinceDardanellesDefianceEva MayFisher Maiden GroupFlint-MartinGalena Farm and vicinityGray EagleIdaho-Alamo GroupIdaho-Alamo-Silver BellIvanhoe-CanadianKeno Hill-Galena HillKing SolomonLeadsmithLegal TenderLittle NellLiverpoolMajestic-Sapphire

126

Country

USAZCNBCUSMTCNBCCNBCUSAZUSCOUSMTCNBCUSCOUSMTUSMTCNBCUSCOUSAZCNBCCNBCUSAZUSAZUSAZCNBCCNBCCNBCUSAZUSMTCNBCCNBCCNBCUSMTCNBCCNBCCNBCCNYTUSMTCNBCUSMTUSMTUSMTCNBC

Name Country

Mammoth-St. AnthonyMariettaMineral ParkMinniehahaMolly GibsonMonitorMontezumaMountain Chief and vicinityMountain ConNoondayNorth Cerbat (Golconda)Northern Bell-JacksonPayne GroupPennsylvaniaQueen Bess and vicinityRambler-CaribooRioRobert EmmetSantiago-Commonwealth-

CentennialScraton-Pontiac-SunsetSilversmith-Richmond-

Ruth-HopeSlocan-SovereignSohoStandard and vicinityStocktonSunshine-CorinthSurprise-Noble Five and

vicinityTreasure HillTyboUnionUticaVancouver GroupVon Roi-Hewitt-A.U.WellingtonWintropWonderful-Elkhorn

USAZUSMTUSAZCNBCCNBCCNBCCNBCCNBCCNBCCNBCUSAZCNBCCNBCUSCOCNBCCNBCCNBCUSMT

USCOCNBC

CNBCCNBCCNBCCNBCUSAZCNBC

CNBCUSAZUSNVUSNVCNBCCNBCCNBCCNBCCNBCCNBC

IK

Page 141: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22c--Con.

POLYMETALLIC VEIN

MILION TONNES Figure 90. Tonnages of polynetallic veindeposits.

POLYMETALLIC VEIN

1.0

oh

Os

0.7

0.6

0.5

OA

0o

0.2

0.1

O0

SILVER GRADE IN GRAMS PER TONNE Figure 91. Silver grades of polymetallicvein deposits.

127

Page 142: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

------

Model 22a--Con.

POLYMETALLIC VEIN

0

Er

R0

Figure 92. Gold grades of polymetallicvein deposits.

GOLD GRADE IN GRAMS PER TONNE

POLYMETALLIC VEIN K,

oIL

0x'U0

zQ

00r(L

Figure 93. Lead grades of polymetallicvein deposits.

LEAD GRADE IN PERCENT

128

Page 143: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 22c--Con.

POLYMETALLIC VEIN1,0.8

0.7

0.6

P

aL

0

00m

QL

0.5

I I I I %I I I I IU n~~~~~~.75

0 0

I I 1 I I Si 174 10 I

02

01.

0.0 0 0.00 U.I-- - -0.4 . 1.0 .4 4. 15 40 ---Ii

A.0.025 0.063 0.16 0.4 IN C. Z CJ 1 4N E

ZINC GRADE IN PERCENT

oo

0.4

B. COPPER GRADE IN PERCENT

Figure 94. Zinc and copper grades ofpolymetallic vein deposits. A, Zinc. B,Copper.

129

Page 144: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 23

DESCRIPTIVE MODEL OF BASALTIC Cu

By Dennis P. Cox

APPROXIMATE SYNONYM Volcanic redbed Cu (Kirkham, 1984).

DESCRIPTION A diverse group including disseminated native copper and copper sulfides in the upperparts of thick sequences of subaerial basalt, and copper sulfides in overlying sedimentary beds.

GENERAL REFERENCE Kirkham (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Subaerial to shallow marine basalt flows, breccias and tuffs, red-bed sandstone,tuffaceous sandstone, conglomerate. Younger tidal facies limestone and black shale.

Textures Amygdules, flow-top breccias in lava. Laminated algal carbonate rocks. Sediments withhigh original porosity.

Age Range Proterozoic, Triassic and Jurassic, and Tertiary deposits known.

Depositional Environment Copper-rich (100-200 ppm) basalt interlayered with red elastic beds andoverlain by mixed shallow marine and continental deposits formed near paleo-equator.

Tectonic Setting(s) Intracontinental rift, continental margin rift. Regional low-grademetamorphism may mobilize copper in some districts. Deposits are characteristic of the Triassicpart of Wrangellia terrane in Alaska.

Associated Deposit Types Sediment-hosted copper. Volcanogenic Mn at Boleo, Mexico.

DEPOSIT DESCRIPTION

Mineralogy Native copper, native silver in flows and coarse elastic beds. Chalcocite and otherCu2S minerals and locally bornite and chalcopyrite are concentrated in overlying shale andcarbonate rocks. Fine-grained pyrite is common but not abundant with copper sulfide minerals.

Texture/Structure Flow-top breccia and amygdule fillings in basalt. Fine grains in matrix andalong shaley parting in elastics. Massive replacement of carbonates at Kennicott. Finely varvedchalcopyrite sediment at Denali.

Alteration Calcite-zeolite + epidote + K-feldspar. Red coloration due to fine hematite.

Ore Controls Flow-top breccias, amygdules, fractures in basalt; organic shale, limestone inoverlying sequence. Limestone is tidal, algal, with stromatolite fossils. Synsedimentary faultingmay be important.

Weathering Widely dispersed copper nuggets in streams draining basalts.

Geochemical Signature Cu-Ag-Zn-Cd. Co at Boleo, Mexico. Cu:Zn ratio is very high. Auanomalously low.

EXAMPLESKeweenaw, USMI (White, 1968)Calumet, USMI (Ensign and others, 1968)Kennicott, USAK (Bateman and McLaughlin, 1920)Denali, USAK (Seraphim, 1975)Boleo, MXCO (Wilson, 1955)Buena Esperanza, CILE (Ruiz, 1965)Redstone, CNNT (Ruelle, 1982)Sustut, CNBC (Harper, 1977)

130

Page 145: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24a

DESCRIPTIVE MODEL OF CYPRUS MASSIVE SULFIDE

By Donald A. Singer

APPROXIMATE SYNONYM Cupreous pyrite.

DESCRIPTION Massive pyrite, chalcopyrite, and sphalerite in pillow basalts (see figs. 95, 96).

GENERAL REFERENCE Franklin, and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Ophiolite assemblage: tectonized dunite and harzburgite, gabbro, sheeted diabasedikes, pillow basalts, and fine-grained metasedimentary rocks such as chert and phyllite (fig. 95).

Textures Diabase dikes, pillow basalts, and in some cases brecciated basalt.

Age Range Archean(?) to Tertiary--majority are Ordovician or Cretaceous.

Depositional Environment Submarine hot spring along axial grabens in oceanic or back-arc spreadingridges. Hot springs related to submarine volcanoes producing seamounts (fig. 96).

Tectonic Setting(s) Ophiolites. May be adjacent to steep normal faults.

Associated Deposit Types Mn and Fe-rich cherts regionally.

DEPOSIT DESCRIPTION

Mineralogy Massive: pyrite + chalcopyrite + sphalerite + marcasite + pyrrhotite. Stringer(stockwork): pyrite + pyrrhotite, minor chalcopyrite and sphalerite (cobalt, gold, and silverpresent in minor amounts).

Texture/Structure Massive sulfides (>60 percent sulfides) with underlyingsulfide stockwork or stringer zone. Sulfides brecciated and recemented. Rarely preserved fossilworm tubes.

Alteration Stringer zone--feldspar destruction, abundant quartz and chalcedony, abundant chlorite,some illite and calcite. Some deposits overlain by ochre (Mn-poor, Fe-rich bedded sedimentcontaining goethite, maghemite, and quartz).

Ore Controls Pillow basalt or mafic volcanic breccia, diabase dikes below;ores rarely localized in sediments above pillows. May be local faulting.

Weathering Massive limonite gossans. Gold in stream sediments.

Geochemical Signature General loss of Ca and Na and introduction and redistribution of Mn and Fein the stringer zone.

EXAMPLESCyprus deposits, CYPS (Constantinou and Govett, 1973)Oxec, GUAT (Petersen and Zantop, 1980)York Harbour, CNNF (Duke and Hutchinson, 1974)Turner-Albright, USOR (Koski and Derkey, 1981)

GRADE AND TONNAGE MODEL OF CTPRUS MASSIVE SULFIDE

By Donald A. Singer and Dan L. Mosier

DATA REFERENCE Mosier and others (1983).

COMMENTS Massive sulfide deposits from Mosier and others (1983) which had only mafic or ultramaficrocks immediately above through 500 m below, and had either pillow basalt or diabase dikes in thesequence were included in these plots. See figs. 97-99.

131

Page 146: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24a--Con.

DEPOSITS

Name Country Name Country

AarjaAgrokipiaAmbelikouAna Yatak-ErganiAplikiArinteiroBamaBarloBaydaBetts CoveBig MikeBonanzaBongbonganCarawisonCarmelColchesterFornasHand CampHuntingdonKapedhesKokkinoyiaKokkinopezoulaKure (Asikoy)Kure (Bakibaba)Kynousa

OMANCYPSCYPSTRKYCYPSSPANSPANPLPNOMANCNNFUSNVCNBCPLPNPLPNPLPNCNNFSPANCNNFCNQUCYPSCYPSCYPSTRKYTRKYCYPS

LasailLimniLittle BayLokkenLorraineMathiati NorthMavrovouniMousoulos-KalavasosNy SulitjelmaOxecPeravasaPlatiesRendall-JacksonRua CoveShaSiirt MadenkoySkorovassSkouriotissaSvanoTilt CoveTroulliTurner-AlbrightWhalesback-Little DeerYork Harbour

OMANCYPSCNNFNRWYPLPNCYPSCYPSCYPSNRWYGUATCYPSCYPSCNNFUSAKCYPSTRKYNRWYCYPSNRWYCNNFCYPSUSORCNNFCNNF

132

Page 147: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24a--Con.

Figure 95. Generalized stratigraphic column through the Troodos ophioliteshowing Cyprus massive sulfides and other deposit types and their asssociatedrock types. Modified from Constantinou(1980).

1 Direction of spreadingSea water

Figure 96. Cross section through the Kalavos district, Cyprus, showingrelationship of massive sulfide deposits to faults and alteration zones.Section is drawn normal to the spreading axis and represents a time periodprior to deposition of a thick sequence of pillow lavas and sedimentaryrocks. Modified from Adamides (1980).

133

Page 148: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24a--Con.

CYPRUS MASSIVE SULFIDE

Ia.

Figure 97. Tonnages of Cyprus massivesulfide deposits.

(0

0

Figure 98. Copper grades of Cyprus massivesulfide deposits.

MILLION TONNES

CYPRUS MASSIVE SULFIDE

COPPER GRADE IN PERCENT

134

Page 149: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24a-Con.

CYPRUS MASSIVE SULFIDE

a3

02

01

OLD

A. SILVER GRADE IN GRAMS PER TONNE

02

0.1

oa 0 4

00o 0.000 0.025 0.063 0.16 0.4 1.0 2.5 62 16 40 10

Q B. GOLD GRADE INGRAMSSPERTONNE

I Z : I ICL oo I I I I I I I I I

0-01 0.025 0.063 0.16 0A 1.0 2.5 6. 16 40 100

C. LEAD GRADE IN PERCENT

02

02

0.1

0.0

D. ZINC GRADE IN PERCENT

Figure 99. By-product grades of Cyprus massive sulfide deposits.A, Silver. B, Gold. C, Lead. D, Zinc.

135

Page 150: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24b

DESCRIPTIVE MODEL OF BESSHI MASSIVE SULFIDE

By Dennis P. Cox

APPROXIMATE SYNONYM Besshi type, Kieslager.

DESCRIPTION Thin, sheetlike bodies of massive to well-laminated pyrite, pyrrhotite, andchalcopyrite within thinly laminated elastic sediments and mafia turfs.

GENERAL REFERENCES Klau and Large (1980), Fox (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Clastic terrigenous sedimentary rocks and tholeiitic to andesitic tuff and breccia.Locally, black shale, oxide-facies iron formation, and red chert.

Textures Thinly laminated elastic rocks. All known examples are in strongly deformed metamorphicterrane. Rocks are quartzose and mafia schist.

Age Range Mainly Paleozoic and Mesozoic.

Depositional Environment Uncertain. Possibly deposition by submarine hot springs related tobasaltic volcanism. Ores may be localized within permeable sediments and fractured volcanic rocksin anoxic marine basins.

Tectonic Setting(s) Uncertain. Possibly rifted basin in island arc or back arc. Possiblyspreading ridge underlying terrigenous sediment at continental slope.

Associated Deposit Types None known.

DEPOSIT DESCRIPTION

Mineralogy Pyrite + pyrrhotite + chalcopyrite + sphalerite * magnetite * valleriite * galena *bornite t tetrahedrite * cobaltite * cubanite * stannite * molybdenite. Quartz, carbonate, albite,white mica, chlorite, amphibole, and tourmaline.

Texture/Structure Fine-grained, massive to thinly laminated ore with colloform and framboidalpyrite. Breccia or stringer ore. Cross-cutting veins contain chalcopyrite, pyrite, calcite orgalena, sphalerite, calcite.

Alteration Difficult to recognize because of metamorphism. Chloritization of adjacent rocks isnoted in some deposits.

Ore Controls Uncertain. Deposits are thin, but laterally extensive and tend to cluster in enechelon pattern.

Weathering Gossan.

Geochemical Signature Cu, Zn, Co, Ag, Ni, Cr, Co/Ni >1.0, Au up to 4 ppm, Ag up to 60 ppm.

EXAMPLESBesshi, JAPN (Kanehira and Tatsumi, 1970)Motoyasu, JAPN (Yui, 1983)Kieslager, ASTR (Derkman and Klemm, 1977)Raul, PERU (Ripley and Ohmoto, 1977)

GRADE AND TONNAGE MODEL OF BESSHI MASSIVE SULFIDE

By Donald A. Singer

DATA REFERENCE Yamada and others (1980).

COMMENTS Only deposits from Japan containing more than 10,000 tonnes are included. See figs. 100-102.136

Page 151: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24b--Con.

DEPOSITS

Name

Akinokawa (Onishi)AsakawaBesshiChojaChushiroEhimeHigashiyameHirabayaHirotaHitachiImade & OuchiImoriIyoIzushiKamegamoriKanayamaKotsuKuneMachimiMakimine, HibiraMinawaMiyawa

Country Name Country

JAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJJAPNJAPNJAPNJAPNJAPNJAPN

MotoyasuNakayamaNanogawaNaruyasuNiiNishinokawaNojiNonowakiOkukiOmineRyuoSazareShiiba, TakaragiShimokawaShimokawa (Kouchi)ShingaShiratakiTakauraTeranoYanaharaYoshimotoYuryo

JAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPN

BESSHI MASSIVE SULFIDE

co~

0

a-

MILLION TONNES

Figure 100. Tonnages of Besshi massive sulfide deposits.

137

Page 152: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24b--Con.

BESSHI MASSIVE SULFIDE

90

g0

U-0zQ

0a_

Figure 101. Copper grades of Besshimassive sulfide deposits.

COPPER GRADE IN PERCENT

02

0.1

00

I-

w

02

I0.1

CL no

BESSHI MASSIVE SULFIDE

0 .44

0

0~~~0~~~~~~~~~~~0

0

0

I~~~ 0 I 95 1I04 1.0 2S 63 16 40 100 250 630 1600 40<

A. SILVER GRADE IN GRAMS PER TONNE

I I oS I I I I I

$ A;, _~~

0.01

B.0.025 0O0t3 0.16 0.4 1.0 25 - -3

GOLD GRADE IN GRAMS PER TONNE

1e 40 1 00

02

0.1

Figure 102. By-product grades of Besshimassive sulfide deposits. A, Silver. B,Gold. C, Zinc.

0.0

C. ZINC GRADE IN PERCENT

138

Page 153: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24c

DESCRIPTIVE MODEL OF VOLCANIOGENIC Mn

By Randolph A. Koski

APPROXIMATE SYNONYM Volcanogenic-sedimentary (Roy, 1981)

DESCRIPTION Lenses and stratiform bodies of manganese oxide, carbonate, and silicate in volcanic-sedimentary sequences. Genesis related to volcanic (volcanogenic) processes.

GENERAL REFERENCE Roy (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Chert, shale, graywacke, tuff, basalt; chert, jasper, basalt (ophiolite); basalt,andesite, rhyolite (island-arc); basalt, limestone; conglomerate, sandstone, tuff, gypsum.

Age Range Cambrian to Pliocene.

Depositional Environment Sea-floor hot spring, generally deep water; some shallow water marine;some may be enclosed basin.

Tectonic Setting(s) Oceanic ridge, marginal basin, island arc, young rifted basin; all can beconsidered eugeosynclinal.

Associated Deposit Types Kuroko massive sulfide deposits.

DEPOSIT DESCRIPTION

Mineralogy Rhodochrosite, Mn-calcite, braunite, hausmannite, bementite, neotocite, alleghenyite,spessartine, rhodonite, Mn-opal, manganite, pyrolusite, coronadite, cryptomelane, hollandite,todorokite, amorphous MnO2.

Texture/Structure Fine-grained massive crystalline aggregates, botryoidal, colloform in bedded andlensoid masses.

Alteration Spilitic or greenschist-facies alteration of associated mafic lavas, silicification,hematitization.

Ore Controls Sufficient structure and porosity to permit subsea-floor hydrothermal circulation andsea-floor venting; redox boundary at seafloor-seawater interface around hot spring; supergeneenrichment to upgrade Mn content.

Weathering Strong development of secondary Mn oxides (todorokite, birnessite, pyrolusite,amorphous MnO2) at the surface and along fractures.

Geochemical Signature Although Mn is only moderately mobile and relatively abundant in most rocks,Mn minerals may incorporate many other trace elements such as Zn, Pb, Cu, and Ba.

ExamplesOlympic Peninsula, USWA (Park, 1942, 1946; Sorem and Gunn,

1967)Franciscan type, USCA, USOR (Taliaferro and Hudson, 1943; Crerar

and others, 1982; Snyder 1978; Kuypersand Denyer, 1979)

GRADE AND TONNAGE MODEL OF VOLCANOGENIC Mn

By Dan L. Mosier

COMMENTS Tonnage is correlated with manganese grade (r : -0.32) and with phosphorusgrade (r : -0.94, n _ 8). See figs. 103-104.

139

Page 154: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24c--Con.

DEPOSITS

Name

Abuhemsin (Abiulya)AbundanciaAkcakilise TopkirazlarAkoluukAkseki GokeeovacikAntonioAugusto Luis and othersAvispaBlack DiabloBlue JayBoston GroupBriseida Group and othersBuckeyeBueycitoBuritiramaCadizCastillode PalancoCavdarli-KomurlukCayirli KoyCharco Redondo-CasualidadCrescentCubenasCubuklu KoyuCummingsCuriol-Playa Real-PavonesDanismentDassoumbleDjebel GuettaraDurnovskoeEl CuervoEsperancitaEstrella-SopresaFabianFaucogneyFoster MountainGlib en NamGloria-Elvira-PolarisGocek KoyuGran PiedraGuanaba GroupGunbasi (Akeakese)Hyatt No. 1IdikelJ o 7JutinicuKomurluk Koyunun

Country

TRKYTRKYTRKYTRKYTRKYCUBACUBACUBAUSNVUSCACUBACUBAUSCACUBABRZLCUBASPANTRKYTRKYCUBAUSWACUBATRKYUSCACORITRKYIVCOALGRURRSSPANCUBACUBAUSCAFRNCUSCAMRCOCUBATRKYCUBACUBATRKYPANAMRCONCALCUBATRKY

Name

KorucularLa CalanesaLaddLagnokahaLasbelaLa UnicaLaverton-Mt. LuckyLibertyLucia (Generosa)LuciferMagdalenaManacas GroupManuelMontenegro-AdrianaMrimaPirkiPiskalaPonupoPonupo de ManacalPozo PrietoProgresoQuarzazateQuintoRaymondRhiwSabanillaSanta RosaSapalskoeSerenoSiguaSoloviejoSouth ThomasTaratanaTaritipanThatcher CreekThomasTiereTiouineTokoroTopkirozlarToscana (Cerchiara)TutunculerValle de MaganesoWelchWoody WoodyYeya

Country

TRKYSPANUSCAUVOLPKTNCUBAAUWAUSCACUBAMXCOCUBACUBACUBACUBAKNYATRKYTRKYCUBACUBACUBACUBAMRCOCUBANCALGRBRCUBACUBAURRSBRZLCUBASPANUSCACUBAINDSUSCAUSCAUWOLMRCOJAPNTRKYITLYTRKYCUBAUSCAAUWACUBA

140

Page 155: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

VOLCANOGENIC MANGANESE

Model 24c--Con.

g0

nrCL0zI

0a.

Figure 103. Tonnages of voloanogenic Hndeposits.MILLION TONNES

VOLCANOGENIC MANGANESE

1.0

0.9

0.5

0.7

P

20

0.F

OA

0.3

02

0.1

0.0

A. MANGANESE GRADE IN PERCENT

I I - 1 I I I I I

000. 01 1 2s t I I I I I1 I t

B.l PHOSPHORUS GRADE C." 0 PERCENTis

B. PHOSPHORUS GRADE IN PERCENT

J Figure 104. Metal grades of volcanogenicMMn deposits. A, Manganese. B, Phosphorus.

141

Page 156: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 24d

DESCRIPTIVE HODEL OF BLACKBIRD Co-Cu

By Robert L. Earhart

DESCRIPTION Massive and disseminated pyrite, pyrrhotite, arsenopyrite, cobaltite, chalcopyrite,and magnetite in stratabound lenses, stringers, and in quartz-tourmaline breccia pipes.

GENERAL REFERENCES Bennett (1977), Hughes (1983).

GEOLOGICAL ENVIRONMENT

Rock Types Fine-grained metasedimentary rocks (argillite, siltite, and quartzite), mafic metatuff,and magnetite-pyrite iron formation. Metasedimentary rocks may have large volcanic rock component.

Textures Fine-grained, thin-bedded turbidite sequences, graded beds, mafic dikes.

Age Range The Blackbird example is Proterozoic, but deposits could be of any age.

Depositional Environment Marine turbidite deposition with basaltic pyroclastic activity andsubmarine hot springs.

Tectonic Setting(s) Failed rift along continental margin.

Similar or Associated Deposit Types Besshi-type massive sulfide (?).

DEPOSIT DESCRIPTION

Mineralogy Cobaltite, chalcopyrite, pyrite, pyrrhotite, arsenopyrite, and magnetite. Gold andsilver are locally present in tourmaline breccia pipes. Breccias contain pyrite-arsenopyrite-pyrrhotite and minor chalcopyrite-cobaltite.

Texture/Structure Fine to fairly coarse sulfides and sulfarsenides in lenses and stringers,locally with cataclastic texture along shear zones. Pyrite locally has colloform structure.

Alteration Silicification and intense chloritization.

Ore Controls Ore commonly occupies disrupted beds, regional distribution of ore closely followsdistribution of mafic tuff and (or) iron-formation. Lenses may form at several stratigraphichorizons separated by barren metasedimentary rocks. Relationship between stratabound and brecciapipe mineralization is not understood.

Weathering Forms prominent gossans where sulfide and sulfarsenide-rich rocks crop out.

Geochemical Signature Enriched in Fe, As, B, Co, Cu, Au, Ag, Mn. May be depleted in Ca, Na.Rare-earth and trace-element distribution poorly known.

EXAMPLES Blackbird, USID (Bennett, 1977)

142

Page 157: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25a

DESCRIPTIVE MODEL OF HOT-SPRING Au-Ag

By Byron R. Berger

DESCRIPTION Fine-grained silica and quartz in silicified breccia with gold, pyrite, and Sb and Assulfides (see fig. 105).

GENERAL REFERENCE Berger (1985).

GEOLOGICAL ENVIRONMENT

Rock Types Rhyolite.

Textures Porphyritic, brecciated.

Age Range Mainly Tertiary and Quaternary.

Depositional Environment Subaerial rhyolitic volcanic centers, rhyolite domes, and shallow partsof related geothermal systems.

Tectonic Setting(s) Through-going fracture systems related to volcanism above subduction zones,rifted continental margins. Leaky transform faults.

Associated Deposit Types Epithermal quartz veins, hot-spring Hg, placer Au.

DEPOSIT DESCRIPTION

Mineralogy Native gold + pyrite + stibnite + realgar; or arsenopyrite * sphalerite * chalcopyrite* fluorite; or native gold + Ag-selenide or tellurides + pyrite.

Texture/Structure Crustified banded veins, stockworks, brecclas (cemented with silica oruncemented). Sulfides may be very fine grained and disseminated in silicified rock.

Alteration Top of bottom of system: chalcedonic sinter, massive silicification, stockworks andveins of quartz + adularia and breccia cemented with quartz, quartz + chlorite. Veins generallychalcedonic, some opal. Some deposits have alunite and pyrophyllite. Ammonium feldspar(buddingtonite) may be present.

Ore Controls Through-going fracture systems, brecciated cores of intrusive domes; cementedbreccias important carrier of ore.

Weathering Bleached country rock, yellow limonites with jarosite and fine-grained alunite,hematite, goethite.

Geochemical Signature Au + As + Sb + Hg + Tl higher in system, increasing Ag with depth,decreasing As + Sb + Tl + Hg with depth. Locally, NH4, W.

EXAMPLESMcLaughlin, USCA (Averitt, 1945 and Becker, 1888)Round Mountain, USNV (Tingley and Berger, 1985)Delamar, USID (Lindgren, 1900)

143

Page 158: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25a--Con.

Figure 105. Cartoon cross section of hot-spring Au-Ag deposit.

144

Page 159: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25b

DESCRIPTIVE MODEL OF CREEDE EPITHERMAL VEINS

By Dan L. Mosier, Takeo Sato, Norman J Page, Donald A. Singer,and Byron R. Berger

APPROXIMATE SYNONYM Epithermal gold (quartz-adularia) alkali-chloride-type, polymetallic veins(see fig. 106).

DESCRIPTION Galena, sphalerite, chalcopyrite, sulfosalts, + tellurides + gold in quartz-carbonateveins hosted by felsic to intermediate volcanics. Older miogeosynclinal evaporites or rocks withtrapped seawater are associated with these deposits.

GENERAL REFERENCES Buchanan (1980), Boyle (1979).

GEOLOGICAL ENVIRONMENT

Rock Types Host rocks are andesite, dacite, quartz latite, rhyodacite, rhyolite, and associatedsedimentary rocks. Mineralization related to calc-alkaline or bimodal volcanism.

Textures Porphyritic.

Age Range Mainly Tertiary (most are 29-4 m.y.).

Depositional Environment Bimodal and calc-alkaline volcanism. Deposits related to sources ofsaline fluids in prevolcanic basement such as evaporites or rocks with entrapped seawater.

Tectonic Setting(s) Through-going fractures systems; major normal faults, fractures related todoming, ring fracture zones, joints associated with calderas. Underlying or nearby older rocks ofcontinental shelf with evaporate basins, or island arcs that are rapidly uplifted.

Associated Deposit Types Placer gold, epithermal quartz alunite Au, polymetallic replacement.

DEPOSIT DESCRIPTION

'Mineralogy Galena + sphalerite + chalcopyrite + copper sulfosalts + silver sulfosalts t gold ttellurides * bornite * arsenopyrite. Gangue minerals are quartz + chlorite * calcite + pyrite +rhodochrosite + barite * fluorite * siderite t ankerite t sericite t adularia * kaolinite.Specularite and alunite may be present.

Texture/Structure Banded veins, open space filling, lamellar quartz, stockworks, colloformtextures.

Alteration Top to bottom, quartz * kaolinite + montmorillonite * zeolites * barite * calcite;quartz + illite; quartz + adularia t illite; quartz + chlorite; presence of adularia is variable.

Ore Controls Through-going or anastomosing fracture systems. High-grade shoots where vein changesstrike or dip and at intersections of veins. Hanging-wall fractures are particularly favorable.

Weathering Bleached country rock, goethite, jarosite, alunite--supergene processes often importantfactor in increasing grade of deposit.

Geochemical Signature Higher in system Au + As + Sb + Hg; Au + Ag + Pb + Zn + Cu; Ag + Pb + Zn, Cu+ Pb + Zn. Base metals generally higher grade in deposits with silver. W + Bi may be present.

EXAMPLESCreede, USCO (Steven and Eaton, 1975;

Barton and others, 1977)Pachuca, MXCO (Geyne and others, 1963)Toyoha, JAPN (Yajima and Ohta, 1979)

145

Page 160: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25b--Con.

GRADE AND TONNAGE MODEL OF CREEDE EPITHERMAL VEINS

By Dan L. Mosier, Takeo Sato, and Donald A. Singer

COMMENTS Gold grade is correlated with zinc grade (r = -0.52, n = 22). See figs. 107-112.

DEPOSITS

Name Country Name Country

AnimasBonanzaCasapalcaChavinCoco MinaColquiCreedeEl TigreEurekaHosokuraKataLake CityLos MantialesMadrigal

USCOUSCOPERUPERUNCGAPERUUSCOMxCOUSCOJAPNPERUUSCOAGTNPERU

NogalOeOganeOphirPachuca-Real del MonteRed MountainRio PallangaSaiSneffelsTellurideToyohaUruachicYatani

USNMJAPNJAPNUSCOMXCOUSCOPERUJAPNUSCOUSCOJAPNMXCOJAPN

Barren quartz + ¢alcit*± fluorite * barite

Figure 106. Cartoon cross section of typical Creede-type epithermal vein deposit.

146

Page 161: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25b--Con.

CREEDE EPITHERMAL VEIN

a

Oo00

of

wcc

0

0CL0

MILLION TONNES Figure 107. Tonnages of Creede epithermalvein deposits.

CREEDE EPITHERMAL VEIN

P

a-9w

2Q-

0a.

COPPER GRADE IN PERCENT Figure 108. Copper grades of Creedeepithermal vein deposits.

147

Page 162: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25b--Con.

CREEDE EPITHERMAL VEIN

f2

00..a

0U-0zQEir

0a.

Figure 109. Lead grades of Creedeepithermal vein deposits. LEAD GRADE IN PERCENT

CREEDE EPITHERMAL VEIN

1.0

0.8

0.7

0.0

0.5

f2

0.Ua-0

0

R

0a.

Figure 110. Zinc grades of Creedeepithermal vein deposits.

148

ZINC GRADE IN PERCENT

Page 163: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25b--Con.

CREEDE EPITHERMAL VEIN

2(0IL0z0

0.

1.0

0.0

0.8

07

0.6

0.5

0.4

03

0.2

0.1

0.0

SILVER GRADE IN GRAMS PER TONNE

CREEDE EPITHERMAL VEIN

Figure 111. Silver grades of Creedeepithermal vein deposits.

a

900.

GOLD GRADE IN GRAMS PER TONNE Figure 112. Gold grades of Creedeepithermal vein deposits.

149

Page 164: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25c

DESCRIPTIVE MODEL OF COMSTOCK EPITHERHAL VEINS

By Dan L. Mosier, Donald A. Singer, and Byron R. Berger

APPROXIMATE SYNONYM Epithermal gold (quartz-adularia) alkali-chloride type.

DESCRIPTION Gold, electrum, silver sulfosalts, and argentite in vuggy quartz-adularia veins hostedby felsic to intermediate volcanic rocks that overlie predominantly elastic sedimentary rocks, andtheir metamorphic equivalents (see fig. 106).

GENERAL REFERENCES Buchanan (1980), Boyle (1979).

GEOLOGICAL ENVIRONMENT

Rock Types Host rocks are andesite, dacite, quartz latite, rhyodacite, rhyolite; and associatedsedimentary rocks. Mineralization related to calc-alkaline or bimodal volcanism.

Textures Porphyritic.

Age Range Mainly Tertiary (most are 40-3.7 m.y.).

Depositional Environment Cale-alkaline and bimodal volcanism and associated intrusive activityover basement rocks composed of elastic sedimentary rocks and their metamorphic equivalents.Volcanic-related geothermal systems lack access to saline fluids from basement sources.

Tectonic Setting(s) Through-going fracture systems, major normal faults, fractures related todoming, ring fracture zones, joints.

Associated Deposit Types Placer gold and epithermal quartz-alunite Au.

DEPOSIT DESCRIPTION

Mineralogy Argentite + gold or electrum * silver sulfosalts * naumannite. Galena, sphalerite,chalcopyrite, tellurides, hematite, and arsenopyrite are moderate to sparse. Gangue minerals arequartz + pyrite * adularia * calcite * sericite * chlorite. Barite, fluorite, rhodochrosite,kaolinite, and montmorillonite are moderate to sparse. Ore minerals constitute only a few percentof vein.

Texture/Structure Banded veins, open space filling, lamellar quartz, stockwork.

Alteration From top to bottom of system: quartz + kaolinite + montmorillonite * zeolite * barite* calcite; quartz + illite; quartz + adularia * illite; quartz + chlorite; presence of adularia isvariable.

Ore Controls Through-going anastomosing fracture systems, centers of intrusive activity. Hangingwall more favorable.

Weathering Bleached country rock, limonite, jarosite, goethite, alunite, hematite, argillizationwith kaolinite.

Geochemical Signature Higher in system Au + As + Sb + Hg or Au + As + Cu; Au + Ag + Pb + Cu; alsoTe and W.

EXAMPLESComstock, USNY (Becker, 1882)Guanajuato, MXCO (Buchanan, 1980;

Wandke and Martinez, 1928)

150

Page 165: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25c--Con.

GRADE AND TONNAGE HODEL OF COMSTOCK EPITHERlAL VEINS

By Dan L. Mosier, Donald A. Singer, and Byron R. Berger

COMMENTS See figs. 113-116.

DEPOSITS

Name

AuroraBodieBovardCalicoCalistogaComstockDivideDoloresEl RinconFairviewFukeGold MountainGuanaceviGuanajuatoHostotipaquillaKatherineKushikino-ArakawaMochikoshiMogollonNawajiOatman

Country Name

USNVUSCAUSNYUSCAUSCAUSNVUSKYMXCOMXCOUSNVJAPNUSUTHXCOMXCOMXCOUSAZJAPNJAPNUSNMJAPNUSAZ

OhguchiOhitoOlinghouseOrientPattersonRepublicRosarioSand SpringsSearchlightSeikoshiSeven TroughSheep TankSilver CityTaioTayoltitaToiTonopahTuscaroraWeaverYugashima

JAPNJAPNUSNVUSWAUSCAUSWAHNDRUSNVUSNYJAPNUSNVUSAZUSNVJAPNMXCOJAPNUSNVUSAZUSAZJAPH

Country

151

Page 166: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25c--Con.

COMSTOCK EPITHERMAL VEIN

0.kwa

zQ

0R.

Figure 113. Tonnages of Ccmstockepithermal vein deposits. MILLION TONNES

COMSTOCK EPITHERMAL VEIN

co

Qiac,

0z0IU-

COL0

0cEL

Figure 11P. Gold grades of Comstockepithermal vein deposits. GOLD GRADE IN GRAMS PER TONNE

152

Page 167: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25c--Con.COMSTOCK EPITHERMAL VEIN

10

0.9

0.O

0.7

qUO

CO2 0.6

013

02

IL

o 0.52

2~0.3

01

0.0

0.0

SILVER GRADE IN GRAMS PER TONNE F:

eF

COMSTOCK EPITHERMAL VEIN

02 o I I I I I I I I I

RO n . ~~~~~~~~~~~~~~~~~~~~410.1 _ O

O101 I I

60o L2 e Jos6 0.1 0.18 0.32 0.56 1.0 1J3 32 56 10.0

A. COPPER GRADE IN PERCENT

2 02 1 1 1 1 1 1ro

ILLo 0.1

2

Q I

I B. ZINC GRADE IN PERCENT

0.2 _ 00.00

0.1F

0.0 I .11 I °I I0.01 0.025 0.063 0.16 0.4 1.0 2.5 6. 16 40 106

F:C. LEAD GRADE INPERCENT

z:

Igure 115. Silver grades of Comstockpithermal vein deposits.

Lgure 116. By-product grades of ConstookDithermal vein deposits. A, Copper. B,lnc. C, Lead.

153

Page 168: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25d

DESCRIPTIVE MODEL OF SADO EPITHEBMAL vEINS

By Dan L. Mosier, Bruce R. Berger, and Donald A. Singer

DESCRIPTION Gold, chalcopyrite, sulfosalts, and argentite in vuggy veins hosted by felsic tointermediate volcanic rocks that overlie older volcanic sequences or igneous intrusions (see fig.106).

GENERAL REFERENCE Boyle (1979).

GEOLOGICAL ENVIRONMENT

Rock Types Host rocks are andesite, dacite, quartz latite, rhyodacite, rhyolite, and associatedsedimentary rocks. Mineralization related to calb-alkaline or bimodal volcanism.

Textures Porphyritic.

Age Range Mainly Tertiary (most are 38-5 m.y.).

Depositional Environment Cale-alkaline and bimodal volcanism and associated intrusive activityover basement rocks composed of thick, older volcanic sequences or igneous intrusives(batholiths). Volcanic-related geothermal systems lack access to saline fluids from basementsources.

Tectonic Setting(s) Through-going fracture systems, major normal faults, fractures related todoming, ring fracture zones, joints.

Associated Deposit Types Placer gold and quartz-alunite Au.

DEPOSIT DESCRIPTION

Mineralogy Gold * argentite + electrum + chalcopyrite. Sulfosalts and tellurides are moderate,galena and sphalerite are sparse. Gangue minerals are quartz * pyrite * adularia * calcite.Chalcedony, adularia, kaolinite, rhodochrosite, chlorite, sericite, and barite are moderate tosparse.

Texture/Structure Banded veins, open space filling, lamellar quartz, stockwork, breccia pipes.

Alteration Silicification zoned by quartz + kaolinite + montmorillonite * alunite; may havepervasive propylitic alteration of chlorite + calcite.

Ore Controls Through-going fracture systems; major normal faults, fractures related to doming,ring fractures, joints.

Weathering Bleached country rock, limonite, hematite, goethite, Jarosite, alunite; argillizationwith kaolinite.

Geochemical Signature: Au + Ag; Au + Ag + Cu.

EXAMPLESTakeno, JAPN (Soeda and Watanabe, 1981)

154

Page 169: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Hodel 25d-Con.

GRADE AND TONNAGE MODEL OF SAWD EPITHERMAL VEINS

By Dan L. Mosier and Takeo Sato

COMMENTS The two lowest gold grades were not plotted because it is suspected that their reportedgrades are in error. See rigs. 117-119.

DEPOSITS

Name

BajoBentenBrunerChitoseGuadalupe and CalvoHayden HillHigh GradeInnaiKawasakiKoyama

Country

JAPNJAPNUSNVJAPNMXCOUSCAUSCAJAPNJAPNJAPN

Name Country

La LibertadMamuroMizobeNagamatsuSadoSaneiTakahataTakatamaTakenoWinters

MXCOJAPNJAPNJAPNJAPNJAPNJAPNJAPNJAPNUSCA

155

Page 170: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25d--Con.SADO EPITHERMAL VEIN

0

a.

Figure 117. Tonnages of Sado epithermalvein deposits.

MILLION TONNES

SADO EPITHERMAL VEIN

(nI=

ax6

zQ

a.

1.0

0o

0.8

0.7

0.0

0.5

0.4

03

02

0.1

0.0

Figure 118. Gold grades of Sado epithermalvein deposits.

156

GOLD GRADE IN GRAMS PER TONNE

Page 171: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25d--Con.

SADO EPITHERMAL VEIN1.0

0.6

Ol

0.7

2 0.6Ul

aIL0 0.5

z0

E 0.4

200r

0.3

0.2

0.1

0o.

I I i O

0I I a I

0o

0o

0\

0

0O

0

0

I I _

I I t,70 .I I !3I I 3noIO4 1.0 2.5 63 16 40 100 250 630 1600 aA. SILVER GRADE IN GRAMS PER TONNE

0.3

OL2 _

0.1

0.0~~~~~~~~~~~~~

0.018 0.032 0.1 0.18 0.32 0.56 1.0 1J .2 66 ¶0.0

B. COPPER GRADE IN PERCENT

Figure 119. By-product grades of Sado epithermal vein deposits. A,Silver. B, Copper.

157

Page 172: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25.

DESCRIPTIVE MODEL OF EPITHERHAL QUARTZ-ALUNITE Au

By Byron B. Berger

APPROXIMATE SYNONYM Acid-sulfate, or enargite gold (Ashley, 1982).

DESCRIPTION Gold, pyrite, and enargite in vuggy veins and breccias in zones of high-aluminaalteration related to felsic volcanism.

GENERAL REFERENCE Ashley (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Volcanic: dacite, quartz latite, rhyodacite, rhyolite. Hypabyssal intrusions ordomes.

Textures Porphyritic.

Age Range Generally Tertiary, but can be any age.

Depositional Environment Within the volcanic edifice, ring fracture zones of calderas, or areas ofigneous activity with sedimentary evaporates in basement.

Tectonic Setting(s) Through-going fracture systems: keystone graben structures, ring fracturezones, normal faults, fractures related to doming, joint sets.

Associated Deposit Types Porphyry copper, polymetallic replacement, volcanic hosted Cu-As-Sb.Pyrophyllite, hydrothermal clay, and alunite deposits.

DEPOSIT DESCRIPTION

Mineralogy Native gold + enargite + pyrite + silver-bearing sulfosalts * chalcopyrite * bornite ±precious-metal tellurides * galena * sphalerite + huebnerite. May have hypogene oxidation phasewith chalcocite + covellite * luzonite with late-stage native sulfur.

Texture/Structure Veins, breccia pipes, pods, dikes; replacement veins often porous, and vuggy,with comb structure, and crustified banding.

Alteration Highest temperature assemblage: quartz + alunite + pyrophyllite may be early stagewith pervasive alteration of host rock and veins of these minerals; this zone may contain corundum,diaspore, andalusite, or zunyite. Zoned around quartz-alunite is quartz + alunite + kaolinite +montmorillonite; pervasive propylitic alteration (chlorite + calcite) depends on extent of earlyalunitization. Ammonium-bearing clays may be present.

Ore Controls Through-going fractures, centers of intrusive activity. Upper and peripheral partsof porphyry copper systems.

Weathering Abundant yellow limonite, jarosite, goethite, white argillization with kaolinite, fine-grained white alunite veins, hematite.

Geochemical Signature Higher in system: Au + As + Cu; increasing base metals at depth. Also Teand (at El Indio) W.

EXAMPLESGoldfield, USNV (Ransome, 1909)Kasuga mine, JAPN (Taneda and Mukaiyama, 1970)El Indio, CILE (Walthier and others, 1982)Summitville, USCO (Perkins and Nieman, 1983)Iwato, JAPN (Saito and Sato, 1978)

158

Page 173: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25e--Con.

GRADE AND TONNAGE MODEL OF EPITHERHAL QUAMRZ-ALUNITE Au

By Dan L. Mosier and W. David Menzie

COMMENTS See figs. 120-123.

DEPOSITS

Name Country

Chinkuashih TIWNEl Indio CILEGoldfield USNVIwato JAPNKasuga JAPNMasonic USCAMohave USCAStedman USCA

159

Page 174: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25e--Con.EPITHERMAL QUARTZ--ALUNITE VEIN

AI-

w0U)

z

20cc

Figure 120. Tonnages of epithermal quartz-alunite vein deposits.

MILLION TONNES

EPITHERMAL OUARTZ-ALUNITE VEIN

ofU,

I-0

CL

0.w0cc-azrQL

Figure 121. Gold grades of epithermalquartz-alunite vein deposits.

160

GOLD GRADE IN GRAMS PER TONNE

Page 175: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25e--Con.

EPITHERMAL OUARTZ-ALUNITE VEIN

1.0

0.9

0.7

t=eno 0.6a-w

U.o 0.20I-11: 0.4

030cra-

0a

02

0.1

0.0

SILVER GRADE IN GRAMS PER TONNE Figure 122. Silver grades of epithermalquartz-alunite vein deposits. /

EPITHERMAL OUARTZ-ALUNITE VEIN

U)

a-U-0

20

0-

a-

COPPER GRADE IN PERCENT Figure 123. Copper grades of epithermalquartz-alunite vein deposits.

161

Page 176: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25f

DESCUIPTIVE MODEL OF VOLCANOGENIC U

By William C. Bagby

DESCRIPTION Uranium mineralization in epithermal veins composed of quartz, fluorite, and iron,arsenic, and molybdenum sulfides.

GENERAL REFERENCE Nash (1981).

GEOLOGICAL ENVIRONMENT

Rock Types High-silica alkali rhyolite and potash trachytes. Peralkaline and peraluminousrhyolite host ore.

Textures Porphyritic to aphyric vesicular flows and shallow intrusive rocks.

Age Range Precambrian to Tertiary.

Depositional Environment Subaerial to subaqueous volcanic complexes. Near-surface environment,association with shallow intrusive rocks is important.

Tectonic Setting(s) Continental rifts and associated calderas.

Associated Deposit Types Roll-front uranium in volcaniclastic sediments. Fluorite deposits.

DEPOSIT DESCRIPTION

Mineralogy Coffinite, uraninite, brannerite are most common uranium minerals. Other mineralsinclude pyrite, realgar/orpiment, leucoxene, molybdenite, fluorite, quartz, adularia, and barite.Gold is present in some deposits. Deposits associated with alkaline complexes may containbastnaesite.

Texture/Structure Open-space filling in breccias. Uraninite commonly encapsulated in silica.

Alteration Kaolinite, montmorillonite, and alunite are common. Silicification, accompanied byadularia, affects wallrocks spatially most closely associated with ore.

Ore Controls Through-going fractures and breccias formed along the margins of shallowintrusives. Vugs in surface flows are of minor importance.

Weathering Near-surface oxidation produces jordisite and a variety of secondary uraniumminerals. Supergene uranium enrichment is generally not important.

Geochemical Signature Li and Hg are zoned away from the ore. High anomalous As, Sb, F, Mo t Woccur near and with the ore. Mo is deep, Hg is shallow. REE may be highly anomalous. Anomalouslyradioactive.

EXAMPLESMarysvale, USUT (Kerr and others, 1957)Aurora prospect, USOR (Roper and Wallace, 1981)Rexspar, CNBC (Joubin and James, 1956)

GRADE AND TONNAGE MODEL OF VOLCANOGENIC U

By Dan L. Mosier

COMMENTS Only deposits with reported sizes greater than 1,000 tonnes are included. See figs. 124,125.

162

Page 177: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25f--Con.

DEPOSITS

-1/ Name Country

AuroraBen LomondBretzBuckhornCotejeEl MezquiteEl Nopal (Nopal I)Henry districtLa BajadaLaguna ColoradoLaguna del Cuervo

USORAUQLUSORUSNVBLVAMXCOMXCOUSUTUSNMAGTNMXCO

Name

Los PuertosLucky LassMacusaniMoonlightNopal IIINovazzaOsamu UtsumiPetersen Mtn.IexsparWhite King

Country

MXCOUSORPERUUSNVMXCOITLYBRZLUSCACNBCUSOR

163

Page 178: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25f--Con.VOLCANOGENIC URANIUM

0

C)0

0

a.LUa

Eg

20

0.

1.0

0.9

0.8

0.7

0.6

o0

0.4

0.3

02

0.1

0.0

I Ie I I I I I I I

0 n .21

0

0

0

0

0

0

0

0.~~~~~~

I I I.4 at t °'0 4 5.6

0.0004 0.0016 0.0063 0.025 0.1 0.4 1.6

MILLION TONNES

63 25 100 400

Figure 121. Tonnages of volcanogenic Udeposits.

VOLCANOGENIC URANIUM

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0

200

I20.

Figure 125. Uranium grades or volcanogenicU deposits.

164

URANIUM GRADE IN PERCENT U3 08

Page 179: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25g

DESCRIPTIVE MODEL OF EPITHERMAL Mn

By Dan L. Mosier

DESCRIPTION Manganese mineralization in epithermal veins filling faults and fractures in subaerialvolcanic rocks.

GEOLOGICAL ENVIRONMENT

Rock Types Flows, tuffs, breccias, and agglomerates of rhyolitic, dacitic, andesitic or basalticcomposition.

Age Range Tertiary.

Depositional Environment Volcanic centers.

Tectonic Setting(s) Through-going fracture systems.

Associated Deposit Types Epithermal gold-silver.

DEPOSIT DESCRIPTION

Mineralogy Rhodochrosite, manganocalcite, calcite, quartz, chalcedony, barite, zeolites.

Texture/Structure Veins, bunches, stringers, nodular masses, disseminations.

Alteration Kaolinitization.

Ore Controls Through-going faults and fractures; brecciated volcanic rocks.

Weathering Oxidization zone contains abundant manganese oxides, psilomelane, pyrolusite, braunite,wad, manganite, cryptomelane, hollandite, coronadite, and Fe oxides.

>~ Geochemical Signature Mn, Fe, P(Pb, Ag, Au, Cu). At Talamantes W is important.

EXAMPLESTalamantes, MXCO (Rocha and Wilson, 1948)Gloryana, USNM (Farnham, 1961)Sardegna, ITLY (Burckhardt and Falini, 1956)

165

Page 180: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25g--Con.

GRADE AND TONNAGE MODEL OF EPITHERMAL Mn

By Dan L. Mosier

COMMENTS See figs. 126-127.

DEPOSITS

Name

Abra NegraArmour GroupAtenguilloBlack Crow-San JuanCalifornia GroupCasa de JanosCasas GrandesCiudad ObregonClitf RoyEstacion LlanosGloryanaGrirrithHattonJ.M. Meadows GroupJVB ClaimKarangnunggalKaratasKliripanLajasLa LeonaLa NoriaLas Varas-La VacaLos BorregosLos VolcanesM and M GroupManganese ChiefManganese DevelopmentMatamorosMezealaMontosa

Country Name Country

MXCOUSAZMXCOUSNHUSAZMXCOMXCOMXCOUSNMMXCOUSNMUSNMUSAZUSAZUSNMINDSTRKYINDSMXCOMXCOMXCOMXCOMXCOMXCOUSNMUSNHMUSAZMXCOMXCOMXCO

MurguiaNacozariNiggerheadOviachic 1&2Phillips LeasePito RealRed Hill-Red Hill Ext.St. PietroSan BernardoSan Miguel El AltoSanta AnaSardegnaSatevoSelimiyeShag RockSierra de El AltoSierra de EnmedioSierra Los OrganosSotoTalamantesTerrenatesThurston & HardyTopockTurfullarU.S. GroupViterbo-RomaWest NiggerheadYahualicaZacate-Cerro Chino

MXCOMXCOUSNMMXCOUSNMMXCOUSNMITLYMXCOMXCOMXCOITLYMXCOTRKYCNBCMXCOMXCOMXCOMXCOMXCOMXCOUSAZUSAZTRKYUSAZITLYUSNMMXCOMXCO

166

Page 181: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25g--Con.

EPITHERMAL MANGANESE

g

oIL0z

0

0~

0.1 04 1b 63

MILLION TONNESFIgure 126. Tonnages of epithermal Mndeposits.

EPITHERMAL MANGANESE

0,P

0L-0

z

20B0w

1.0

0.9

0.8

0.7

0.6

05

OA

03

0.2

0.1

I ° do I I I I I I

9,~~~~~~~~~~nS

0

0

0

20 30 0I I I I I2 101 10.D

10 20 30 40 S0 60 70

MANGANESE GRADE IN PERCENT

so gO 100

Figure 127. Manganese grades of epithermalMn deposits.

167

Page 182: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25h

DESCRIPTIVE MODEL OF RHYOLITE-HOSTED Sn

By Bruce L. Reed, Wendell Duffield, Stephen D. Ludington, Charles H. Maxwell,and Donald H. Richter

APPROXIMATE SYNONYM Mexican-type.

DESCRIPTION Cassiterite and wood tin in discontinuous veinlets in rhyolite flow-dome complexes andderivative placers (see fig. 128).

GENERAL REFERENCES Lee-Moreno (1980), Huspeni and others (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Alkali-feldspar rhyolite with SiO >75 percent; includes topaz rhyolites of Burt andothe-rs1982) and Christiansen and others (1983). Distinctive accessory minerals may includetopaz, fluorite, bixbyite, pseudobrookite, and beryl. Petrochemical signature similar to ClimaxMo.

Textures Crystal-poor (5 'ercent) to crystal-rich (50 percent) rhyolite with quartz and sanidinephenocrysts; rare fayalite, biotite, or hornblende may be present.

Age Range Tertiary; chiefly Oligocene and Miocene.

Depositional Environment Rhyolite flow-dome complexes and related pyroclastic and epiclasticrocks.

Tectonic Setting(s) Silicic volcanic fields, generally in areas of thick continental crust.

Associated Deposit Types None are known, but based on geochemical similarity of associated magmas,these may be a surface expression of Climax Mo.

DEPOSIT DESCRIPTION

Mineralogy Cassiterite (including wood tin) plus hematite (characteristically specularite) *cristobalite, fluorite, tridymite, opal, chalcedony, beudantite, mimetite, adularia, durangite, andzeolite minerals.

Texture/Structure Most commonly as 0.1- to 10-cm-wide discontinuous veins and veinlets whose otherdimensions seldom exceed 75 m. These veins and veinlets may be clustered in zones of somewhatgreater dimension. Cassiterite also occurs as disseminations in the matrix of rhyolite flows orfault breccias. These two types of deposits are part of a continuum.

Alteration May be absent; tin may or may not occur in large areas of vapor-phase alteration(tridymite, sanidine, hematite, * pseudobrookite); alteration directly associated withmineralization may include cristobalite, fluorite, smectite, kaolinite, and other clay minerals.

Ore Controls Deposits are generally in the fractured and brecciated outer parts of flow-domecomplexes where permeability is high.

Weathering Weathering is generally minor, but a translucent red-orange clay mineral (smectite) ispresent in most deposits.

Ceochemical Signature Dispersion of associated elements (Sn, Fe, Be, Li, F, As, Sb, Pb, Zn, Bi,REE) in rock is minimal. Best exploration guide is presence of high concentrations of tin (>1,000ppm) in pan concentrate samples. Cassiterite in stream sediments is usually restricted to within2-3 km of tin deposits.

ExamplesBlack Range, USNM (Fries, 1940; Lufkin, 1972)Mexico deposits (Foshag and Fries, 1942; Smith and others,

1950; Ypma and Simons, 1969; Pan, 1974;Lee-Moreno, 1980)

168

Page 183: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25h--Con.

GRADE AND TONNAGE MODEL OF RBYOLITE-HOSTED Sn

By Donald A. Singer and Dan L. Mosier

COMMENTS See figs. 129-130.

DATA REFERENCES Bracho (1960, 1961).

COMMENTS Grade and tonnagewith tin grades (r = 0.36).

estimates were based on reserves. Tonnage is significantly correlated

DEPOSITS

Name Country

ArguilillasAmigosArrieros #2Arrieros #3Arrieros #4Arroyo DurangoCastritaCatas de las VacasCatas el DurangoCerro BlancoCerro GrandeCerro Prieto,

La Quemada, LaColocion

ChavarriaCordon EstanerosDon TeodoroEl AbraEl AtascaderoEl BaluarteEl BarrosoEl Borrego #1El Borrego #2El CalabroteEl CapulinEl ColoradilloEl CorralEl CristalEl DoradoEl DuraznilloEl Durazno (El

Aguila)El Durazno (Juan Aldama)El EncinoEl GoteraEl HuacalEl Indio, El

Plieto, Tadeo,San Antonio

El LadrilloEl MameyEl Naranjo, Buena

SuerteEl NoladeroEl Nopal (Juan Aldama)El Nopal (La Ochoa)El PenascoEl Perdido

MXCOMXCOMXCOMXCOMXCOMXCOMXCOMXC0MXCOMXCOMXCO

MXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOHXCO

MXCOMXCOMXCOMXCOMXCO

MXCOMXCOHXCO

MXCOMXCOMXCOMXCOMXCOMXCO

Name

El PicachoEl PleitoEl PolvilloEl ProfesorEl RomadizoEl Santo NinoEl Socavon #4El Socavon #5El Socavon #6El Socavon #7El Socavon #8El TarangoEl VenadoEl ZanzonGalvanGavilancillosGrupos 1 & 2-Vendo WGrupos 3 & 4GuadalupeHierbanizLa ChapeteadaLa ChilillaLa ChincheLa ChorreraLa Cinta CorridaLa CoconaLa DesparramadaLa EscondidaLa Esperanza (El Aguila)La Esperanza (La Ochoa)La Esperanza (Los Angeles)La EstrellaLa GueraLa HormigaLa HuacalonaLa LeonaLa LobaLa LiendreLa MulaLa PolvosaLa PuntillaLas AguilasLas AmarillasLas CalaverasLas FloresLas FundicionesLas MariasLas Pegazones

Country

MXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOHXCOMXCOMXCOMXCOHXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOHXCO

169

Page 184: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25h--Con.

Las PerlitasLas TablasLa TristeLa VenaditaLa ViboraLa VictoriaLa Vieja-El AguaLeoncitosLoretoLos AngelesLos ArrierosLos CaballosLos Campamentos #1Los Campamentos #2Los Campamentos #3Los CuatillosLos GarciaLos LobosLos PinacatesManga de LopezManzanillasMetal Negro

MXCOMXCOMXCOMXCOMXCoMxCOMXCOMxCOMXCOMXCOMXCOMxCOMXCOMXCOMXCONxCOMXCOHXCOMxCOMXCOMXCOMXCO

Mina del AireMina DuraPalo ColoradoPanchilloPlan de TecolotesPotrero del MolinoSan FranciscoSan HumbertoSan JuaneraSan RafaelSan RupertoSanta EfigeniaSanta GertrudisSanta LeonorSanta LuciaSocorro-GuadalupeSombreretilloSotoTecolotesTolanoVeta Blanca

MXCOMXCOMXCOMXCOMXCOMxCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCO

Alluvium and colluvium

FV =A.'2 '4 Epiclastic and pyroclasi

Flows and breccia IPyroclastic rocks | F

'2

tic rocks

low/dome complex

| 7- .1 .| Vein, disseminated, and placer tin mineralization

I Veins in flow-banded rhgolite2 Veins and disseminations in dome breccias3 Veins in epiclastic and pgroclastic rocks that are both contemporaneous with

and younger than the flow-dome complex4 Veins and disseminations in older pyroclastic rocks of the flow-dome complex

5 Residual placers6 Alluvial placers

Figure 128. Cartoon cross section of rhyolite-hosted Sn deposit showingrelationship of cassiterite concentrations to rhyolite dome.

170

Page 185: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25h--Con.

RHYOL1TE-HOSTED TIN

1.0

O0

0.7 I

rO

0~tI

0z0

00

OA I.

0.5 -

* I 1, I I I I I I I I I't n.t132

It

I 0. 1 0.001 I 0.421 ' 1. I I I

OA 0-

03a I

0.2 1

0.1

D020 0.0001 0.0004 0.0016 0.0003 0.025 0.1

MILLION TONNES

0.4 1. 63 2

Figure 129. Tonnages of rhyolite-hosted Sndeposits. Individual digits representnumber of deposits.

RHYOLITE-HOSTED TN

1.0

9UO

0Lua

cz

20a-s

TIN GRADE IN PERCENTFigure 130. Tin grades of rhyolite-hostedSn deposits. Individual digits representnumber of deposits.

121

Page 186: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25i

DESCRIPTIVE MODEL OF VOLCANIC-HOSTED MAGNETITE

By Dennis P. Cox

APPROXIMATE SYNONYM Porphyrite iron, Kiruna iron.

DESCRIPTION Massive concordant and discordant magnetite ore bodies in intermediate to alkalicvolcanic rocks with actinolite or diopside alteration.

GEOLOGICAL ENVIRONMENT

Rock Types Andesitic to trachytic flows and subvolcanic intrusions, also at Kiruna, quartzporphyry, syenite porphyry, monzonite, and diorite.

Textures Porphyroaphanitic to fine- to medium-grained equigranular. Flows may be amygdaloidal.

Age Range Mesozoic to Holocene in circum-Pacific area. In Sweden and Missouri, 1,300-1,500 m.y.

Depositional Environment Continental volcanic rocks and elastic sediments intruded by subvolcanicintermediate plutons.

Tectonic Setting(s) Continental margin, subduction-related volcanic terrane. Especially withhigh-K volcanic rocks, possibly related to waning stages of volcanism.

Associated Deposit Types Sedimentary Fe in associated elastic rocks, apatite-magnetite deposits,hematite in quartz-sericite alteration, possible disseminated Au.

DEPOSIT DESCRIPTION

Mineralogy Magnetite + apatite. Rarely pyrite, chalcopyrite, chalcocite, and covellite. Ti is insphene.

Texture/Structure Fine, granoblastic, skarn type textures.

Alteration Actinolite or diopside, andradite, biotite, quartz, albite, andesine, K-feldspar, sodicscapolite, epidote; carbonates, and locally, tourmaline, sphene, chlorite, barite, fluorite,kaolin, or sericite.

Ore Controls Magnetite in massive replacement, breccia filling and stockwork veins. Orebodies maybe stratabound, concordant to intrusive contacts or in cross-cutting veins. Possibly related tocupolas of deeper plutons.

Geochemical and Geophysical Signature Fe, P, V, and minor Ba, F, Bi, Cu, Co; strong magneticanomalies.

EXAMPLESKirunavaara, Sweden (Frietsch 1982, 1978)El Romeral, Chile (Bookstrom, 1977)Middle-Lower Yangtze Valley, (Research Group ofCINA Porphyrite Iron Ore, 1977)

GRADE AND TONNAGE MODEL OF VOLCANIC-HOSTED MAGNETITE

By Dan L. Mosier

COMMENTS Only deposits with abundant apatite are included. See figs. 131-133.

DEPOSITS

Name Country Name Country

Arnold Hill USNY Cerro de Mercado MXCOBenson USNY Chador-Malu IRAN

172

Page 187: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25i--Con.

ChahehgazChoghartEkstrombergEl AlgarroboEl DoradoEl EncinoEL RomeralGrangesbergGruvbergetGuadalupe & SolisHerculesIdkerbergetInfiernilloJoinvilleKiirunavaaraLa GrullaLa Perla-La NegraLeveaniemi

IRANIRANSWDNCILECILEMXCOCILESWDNSWDNMXCOMXCOSWDNCILEBRZLSWDNMXCOMXCOSWDN

Los VasitosLuossauaaraMalmbergetMinaretsMineville-Port HenryModarelliNakerivaaraNorthern AnomalyPainirovaPea RidgeRingwoodSaghandSavage RiverSe ChakhumSterling LakeTjarrojakkaUnnamed

MXCOSWDNSWDNUSCAUSNYUSNVSWDNIRANSWDNUSMOUSNJIRANAUTSIRANUSNYSWDNMXCO

VOL.CANIC-HOSTED MAGNETITE

0

20

MILLION TONNES

Flgure 131. Tonnages of volcanic-hosted magnetite deposits.

173

Page 188: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 25i--Con.

VOLCANIC--HOSTED MAGNETITE

I-w2

0UL0zQ

0a.

1.0

0.9

0.7

O.t

0.5

0.4

03

D2

0.0

0.0

Figure 132. Iron grades of volcanic-hostedmagnetite deposits.

IRON GRADE IN PERCENT

VOLCANIC-HOSTED MAGNETITE

0

0

is

z

Q

.o -

0.9

os

0.7

0.6

0.5

0.4

0.3

02

0.1

0.0-0.01

I I a I I I I I I

0~~~~~~~~~~~n-3

0

00

0

0

0s X~~\ 0

80

0

50

I I I o.s 21 In I eI2 10.02 0.04 - 0.6 0.16 032 0.63 1.3 2.5 5.0 10t0

PHOSPHORUS GRADE IN PERCENTFigure 133. Phosphnorus grades of volcanic-hosted magnetite deposits.

174

Page 189: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 26a

DESCRIPTIVE MODEL OF CARBONATE-HOSTED Au-Ag

-, By Byron R. Berger

APPROXIMATE SYNONYM Carlin-type or invisible gold.

DESCRIPTION Very fine grained gold and sulfides disseminated in carbonaceous calcareous rocks andassociated jasperoids.

GENERAL REFERENCE Tooker (1985).

GEOLOGICAL ENVIRONMENT

Rock Types Host rocks: thin-bedded silty or argillaceous carbonaceous limestone or dolomite,commonly with carbonaceous shale. Intrusive rocks: felsic dikes.

Textures Dikes are generally porphyritic.

Age Range Mainly Tertiary, but can be any age.

Depositional Environment Best host rocks formed as carbonate turbidites in somewhat anoxicenvironments. Deposits formed where these are intruded by igneous rocks under nonmarineconditions.

Tectonic Setting(s) High-angle normal fault zones related to continental margin rifting.

Associated Deposit Types W-Mo skarn, porphyry Mo, placer Au, stibnite-barite veins.

DEPOSIT DESCRIPTION

Mineralogy Native gold (very fine grained) + pyrite + realgar + orpiment * arsenopyrite * cinnabar* fluorite * barite * stibnite. Quartz, calcite, carbonaceous matter.

-J Texture/Structure Silica replacement of carbonate. Generally less than 1 percent fine-grainedsulfides.

Alteration Unoxidized ore: Jasperoid + quartz + illite . kaolinite + calcite. Abundant amorphouscarbon locally appears to be introduced. Hypogene oxidized ore: kaolinite + montmorillonite +illite + jarosite + alunite. Ammonium clays may be present.

Ore Controls Selective replacement of carbonaceous carbonate rocks adjacent to and along high-angle faults, or regional thrust faults or bedding.

Weathering Light-red, gray, and (or) tan oxides, light-brown to reddish-brown iron-oxide-stainedjasperoid.

Geochemical Signature: Au + As + Hg + W t Mo; As. Hg + Sb + Tl * F (this stage superimposed onpreceding); NH 3 important in some deposits.

EXAMPLESCarlin, USNV (Radtke and others, 1980)Getchell, USNV (Joralemon, 1951)Mercur, USUT (Gilluly, 1932)

GRADE AND TONNAGE MODEL OF CARBONATE-HOSTED Au-Ag

By William C. Bagby, W. David Menzie, Dan L. Mosier, and Donald A. Singer

COMMENTS See figs. 134-135

175

Page 190: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 26a--Con.

DEPOSITS

Name Country

Alligator RidgeAtlantaBlue StarCarlinCortezDeeEmigrant Springs #1Emigrant Springs #2Florida CanyonGetchellGiltedgeGold BarGold AcresGold QuarryHorse Canyon

USNYUSNVUSNVUSNYUSNVUSNYUSNVUSNVUSNYUSNfUSMSUSNVUSNVUSNVUSNV

Name

Jerritt CanyonMaggie CreekMercurNorthumberlandPinsonPrebleRainRelief CanyonRoberts Htns. Dist.Santa FeStandardToiyabeTolmanTonkin SpringsWindfall

Country

USNVUSNVUSUTUSNVUSNVUSNVUSNVUSNVUSNVUSNYUSNYUSNVUSIDUSNYUSNV

176

Page 191: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

CARBONATE--HOSTED GOLD-SILVERModel 26a--Con.

a)

0

2

0u,

n

Figure 134. Tonnages of carbonate-hostedAu-Ag deposits.

MILUON TONNES

CARBONATE-HOSTED GOLD--SILVER

gUJ0

LL0z

0

0~

A. GOLD GRADE IN GRAMS PER TONNE

0.2 . . . . .f . . .

01 L

MO 10

B.

I I o I

\ ,

1.0

SILVER

I I I I I ,

0. Figure 135. Precious-metal grades of

is o carbonate-hosted Au-Ag deposits. A,I 1 A _ I G _ Gold. B, Silver.

16 40 100 2s0 630 1600 41077GRADE IN GRAMS PER TONNE 177

Page 192: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27a

DESCRIPTIVE MODEL OF HOT-SPRING Hg

By James J. Rytuba

APPROXIMATE SYNONYM Sulphur Bank type of White (1981) or sulfurous type of Bailey and Phoenix(19441).

DESCRIPTION Cinnabar and pyrite disseminated in siliceous sinter superjacent to graywacke, shale,andesite, and basalt flows and diabase dikes.

GEOLOGICAL ENVIRONMENT

Rock Types Siliceous sinter, andesite-basalt flows, diabase dikes, andesitic tuffs, and tuffbreccia.

Age Range Tertiary.

Depositional Environment Near paleo ground-water table in areas of fossil hot-spring system.

Tectonic Setting(s) Continental margin rifting associated with small volume mafic to intermediatevolcanism.

Associated Deposit Types Hot-spring Au.

DEPOSIT DESCRIPTION

Mineralogy Cinnabar + native Hg + minor marcasite.

Texture/Structure Disseminated and coatings on fractures in hot-spring sinter.

Alteration Above paleo ground-water table, kaolinite-alunite-Fe oxides, native sulfur; below paleoground-water table, pyrite, zeolites, potassium feldspar, chlorite, and quartz. Opal deposited atthe paleo water table.

Ore Controls Paleo ground-water table within hot-spring systems developed along high-angle faults.

Geochemical Signature Hg + As + Sb + Au.

EXAMPLESSulfur bank, USCA (White and Roberson, 1962)

GRADE AND TONNAGE MODEL OF HOT-SPRING Hg

By James J. Rytuba

COMMENTS See figs. 136, 137.

DEPOSITS

Name Country Name Country

B and B USNV Idaho Almaden USIDBaldwin USNV Mahattan USCABretz USOR McDermitt USNYButte USNV Nevada Sulphur co. USNVColeman USNV Opalite USORCordero USNV Rim Rock and Homestake USNVF and L Mine USNV Silver Cloud USNVGlass Butte USOR Steamboat Springs USNVGoldbanks USNV Sulphur Bank USCAGovernor USNV Walibu USCA

178

Page 193: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27a--Con.

HOT-SPRING MERCURY

I

0i~

MILLION TONNES Figure 136. Tonnages of hot-spring Hgdeposits.

HOT-SPRING MERCURY

0)

a

0

0.

MERCURY GRADE IN PERCENT Figure 137. Mercury grades of hot-spring.Hg deposits.

179

Page 194: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27b

DESCRIPTIVE MODEL OF ALMADEN Ug

By James J. Rytuba

APPROXIMATE SYNONYM Almaden type.

DESCRIPTION Stratabound disseminated cinnabar and native mercury in volcaniclastic sedimentaryrocks.

GENERAL REFERENCE Saupe (1973).

GEOLOGICAL ENYIRONMENT

Rock Types Unmetamorphosed shale, graywacke, calcareous graywacke, andesitic lava and turf,andesite dikes. Volcanic vent breccia.

Age Range Almaden is Silurian, but deposits may be any age.

Depositional Environment Permeable sedimentary rocks, andesite dikes possibly near volcaniccenter.

Tectonic Setting(s) Volcanic centers along major deep-seated fault zone. Absence of regionalmetamorphism or plutonism following mineralization.

Associated Deposit Types Stibnite veins.

DEPOSIT DESCRIPTION

Mineralogy Cinnabar * native mercury + pyrite + calcite + quartz.

Texture/Structure Disseminated.

Ore Controls Mineralized zone follows major fault, highest grade ore in calcareous graywacke.

Geochemical Signature Hg, As, Sb.

EXAMPLESAlmaden, SPAN (Saupe, 1973)Santa Barbara, PERU (Berry and Singewald, 1922)Nueva Esperanza, CLBA (Lozano and others, 1977)

180

Page 195: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27c

DESCRIPTIVE MODEL OF SILICA-CARBONATE Hg

By James J. Rytuba

APPROXIMATE SYNONYM New Almaden type.

DESCRIPTION Cinnabar at contact of serpentine and siltstone-graywacke above subduction-relatedthrust.

GENERAL REFERENCE Bailey (1964).

GEOLOGICAL ENVIRONMENT

Rook Types Serpentine, siltstone-graywacke.

Age Range Tertiary.

Depositional Environment Serpentinized intrusive rocks (sills and dikes) into siltstone, andgraywacke and siltstone, fractures in altered serpentine.

Tectonic Setting(s) Deposits occur in acoreted terrane above subduction-related thrust fault.

Associated Deposit Types Stibnite veins.

DEPOSIT DESCRIPTION

Mineralogy Cinnabar, native Hg, other minor sulfides: pyrite, stibnite, chalcopyrite, sphalerite,galena, and bornite.

Texture/Structure Replacement and minor veins.

Alteration Replacement of serpentine by quartz and dolomite and minor hydrocarbons to form"silica-carbonate" rock.

Ore Controls Contact of serpentine with siltatone especially where contact forms antiform. Oreprimarily in silica-carbonate rock.

Geochemical Signature Unknown, probably Hg + Sb + Cu + Zn.

EXAMPLESNew Almaden, USCA (Bailey, 1964)

GRADE AND TONNAGE MODEL OF SILICA-CARBONATE Hg

By James J. Rytuba and Simon M. Cargill

COMMENTS (See figs. 138, 139)

DEPOSITS

Name Country Name Country

Abbott USCA Helen USCAAetna USCA Keystone USCABella Oak USCA Knoxville USCAChicago USCA La Joya USCAContact USCA La Libertad USCACorona USCA Lion Den USCACulver Bear USCA Mirabel USCADewey's USCA Mt. Diablo USCAEsperanza USCA New Almaden USCAGreat Eastern-Mt. Jackson USCA Patriquin USCAHarrison USCA Polar Star USCA

181

Page 196: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27c--Con.Red Elephant IRed RickReed

USCAUSCAUSCA

SocratesTwin PeaksWall Street

USCAUSCAUSCA

SILICA--CARBONATE MERCURY

U,L(a

0

0

Ir-

a.

Figure 138. Tonnages of silica-carbonateHg deposits.

MILLION TONNES

SIUCA--CARBONATE MERCURY

(0

0

z

Q

a.

Figure 139. Mercury grades of silica-carbonate Hg deposits.

MERCURY GRADE IN PERCENT182

Page 197: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27d

DESCRIPTIVE MODEL OF SIMPLE Sb DEPOSITS

By James D. Bliss and Greta J. Orris

APPROXIMATE SYNONYM Deposits of quartz-stibnite ore (Smirnov and others, 1983).

DESCRIPTION Stibnite veins, pods, and disseminations in or adjacent to brecciated or sheared faultzones.

GENERAL REFERENCES White (1962), Miller (1973).

GEOLOGICAL ENVIRONMENT

Rock Types One or more of the following lithologies is found associated with over half of thedeposits: limestone, shale (commonly calcareous), sandstone, and quartzite. Deposits are alsofound with a wide variety of other lithologies including slate, rhyolitic flows and tuffs,argillite, granodiorite, granite, phyllite, siltstone, quartz mica and chloritic schists, gneiss,quartz porphyry, chert, diabase, conglomerate, andesite, gabbro, diorite, and basalt.

Textures Not diagnostic.

Age Range Known deposits are Paleozoic to Tertiary.

Depositional Environment Faults and shear zones.

Tectonic Setting(s) Any orogenic area.

Associated Deposit Types Stibnite-bearing veins, pods, and disseminations containing base metalsulfides + cinnabar + silver + gold + scheelite that are mined primarily for lead, gold, silver,zinc, or tungsten; low-sulfide Au-quartz veins; epithermal gold and gold-silver deposits; hot-springs gold; carbonate-hosted gold; tin-tungsten veins; hot-springs and disseminated mercury,gold-silver placers; infrequently with polymetallic veins and tungsten skarns.

DEPOSIT DESCRIPTION

Mineralogy Stibnite + quartz * pyrite * calcite; minor other sulfides frequently less than 1percent of deposit and included * arsenopyrite * sphalerite * tetrahedrite * chalcopyrite tscheelite * free gold; minor minerals only occasionally found include native antimony, marcasite,calaverite, berthierite, argentite, pyrargyrite, chalcocite, wolframite, richardite, galena,jamesonite; at least a third (and possibly more) of the deposits contain gold or silver. Uncommongangue minerals include chalcedony, opal (usually identified to be a-cristobalite by X-ray),siderite, fluorite, barite, and graphite.

Texture/Structure Vein deposits contain stibnite in pods, lenses, kidney forms, pockets (locally);may be massive or occur as streaks, grains, and bladed aggregates in sheared or brecciated zoneswith quartz and calcite. Disseminated deposits contain streaks or grains of stibnite in host rockwith or without stibnite vein deposits.

Alteration Silicification, sericitization, and argillization; minor chloritization;serpentinization when deposit in mafic, ultramafic rocks.

Ore Controls Fissures and shear zones with breccia usually associated with faults; somereplacement in surrounding lithologies; infrequent open-space filling in porous sediments andreplacement in limestone. Deposition occurs at shallow to intermediate depth.

Weathering Yellow to reddish kermesite and white cerrantite or stibiconite (Sb oxides) may beuseful in exploration; residual soils directly above deposits are enriched in antimony.

Geochemical Signature Sb * Fe * As * Au * Ag; Hg * W * Pb * Zn may be useful in specific cases.

EXAMPLESAmphoe Phra Saeng, THLD (Gardner, 1967)Caracota, BLVA (U.S. Geological Survey Mineral Resources Data System)

183

Page 198: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27d--Con.

Coimadai AntimonyLast Chance, USNVLake George, CNNB

Mine, AUVT (Fisher, 1952)(Lawrence, 1963)(Scratch and others, 1984)

GRADE AND TONNAGE MODEL OF SIMPLE Sb DEPOSITS

By James D. Bliss and Greta J. Orris

COMMENTS Grade and tonnage have been modeled separately for vein-dominated and disseminated simpleantimony deposits. The vein-dominated deposits' grades and tonnages in this model reflect hand-sorting of the ore. A grade-tonnage model for deposits containing disseminated antimony, number27e, follows this model. At least 15 percent of the simple antimony veins are accompanied bydisseminated antimony mineralization. See figs. 140-142.

DEPOSITS

Name

Amphoe Phra SaeongAntimonialAntimony CanyonAntimony King IAntimony King IIAntimony LodeAntimony MinesAntimony RidgeApex AntimonyBlack WarriorBloody CanyonBlue DickBlue JayBlue NoseBlue RibbonBradleyBray-BeulahBurns BasinCervantiteChoatesCia Minera NorcroCoasanoCoeur d'AleneCoimadaiConyarigiCosterfieldCottonwoodDarwinDesertDoi Pha KhanDonatelliDrummDry CanyonEatonElalmisElectricEnterpriseFour-of-JulyFujinokawaGreen AntimonyGrey Eagle

Country Name Country

THLDUSNYUSUTUSNVUSNVUSNVUSMTUSIDUSNVUSNYUSNYUSNVUSORUSNVUSNYUSNVUSNVUSNYUSNVUSNYHNDRUSAKUSIDAUVTTRKYAUVTUSNYUSNVUSCATHLDUSNYUSNVUSNVUSNVTRKYUSNVUSNKUSIDJAPNUSNYUSOR

GribbleHappy ReturnHard LuckHermadaHollywoodHoytHuai Nai KhaoI.H.X.IchinokawaIdahoJay BirdJerritt CanyonJohnson-HeizerLast ChanceLithiaLofthouseLowryLucky KnockMerrimacMilton CanyonMizpahMugiNeardieNevada KingNievesOre DragPagePantherPruntyScraffordSnowdriftSt. GeorgeStewart MayStibniteSutherlandThompson FallsUpper BellingenVolcanic PeakW.P.Wall Canyon

USNVUSNVUSNYUSIDUSNVUSNVTHLDUSNVJAPNUSIDUSORUSNYUSNVUSNVUSNVUSNVUSNVUSWAUSNyUSNVUSNVJAPNAUQLUSNYMXCOUSNYUSNVUSNVUSNYUSAKUSNYAUQLUSARUSAKUSNVUSMTAUNSUSNVUSNVUSNV

184

Page 199: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27d-Con.

SIMPLE ANTIMONY

U)

2

U-a0

z

00~

MILLION TONNES Figure 140. Tonnages of simple Sbdeposits.

SIMPLE ANTIMONY

1.0

t(000UwaU-0

z00I-

0.9

0.8

0.7

on

05

0.4

03

0.2

0.1

0.0

ANTIMONY GRADE IN PERCENT Figure 141. Antimony grades of simple Sbdeposits.

185

Page 200: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27d--Con.

SIMPLE ANTIMONY

~0I

aIL0

06

1.0 -

0.6

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0._

nis

I OI¼,�

0.00

0.2

01

0.0

F igaSilv

_A 1.0 2 6o is 2 40 100 250 630 160 4000

A. SILVER GRADE IN GRAMS PER TONNE

I I & I I I

0~~~~~~~

0 I°.01 0.025 0.063 0.15 0.4 1.0 2.5 3 a 40 100

B. GOLD GRADE IN GRAMS PER TONNE

re 142. Precious-metal grades of simple Sb deposits. A,er. B, Gold.-

186

Page 201: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27e

GRADE AND TONNAGE MODEL OF DISSEMINATED Sb DEPOSITS

By James D. Bliss and Greta J. Orris

COMMENTS Disseminated simple antimony deposits, model 27e, is presented as an alternative to model27d because of major differences in grade between the two groups. The two groups are similargeologically and share the same descriptive model. See figs. 143, 144.

DEPOSITS

Name

Buyuk YeniceCamlica KoyeeCaracotaDagardiDemirkapiDerekoyDudasEmirliEskdaleEspiritu SantoGoynukKucuk Yenice

Country Name Country

TRKYTRKYBLVATRKYUSNVTRKYUSNYTRKYAUQLBLVATRKYTRKY

La CruzLake GeorgeMadeniMitchell RiverMontezumaOrendereQuien-SabeSan EmigdioTasdibiWest GoreWildrose Canyon

MXCOCNNBTRKYAUQLUSNYTRKYUSCAUSCATRKYCNNSUSCA

187

Page 202: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 27e--Con.

DISSEMINATED SIMPLE ANTIMONY

co

0

0

(LwaL1L02

c0

0~

Figure 143. Tonnages of disseminatedsimple Sb deposits.

0.1 0.4 1. 63 25 100

MILLION TONNES

DISSEMINATED SIMPLE ANTIMONY

(0

(00U-

2

0

0

0.

1.0 -

0.9

0.7

0.6

0.5

O.

0.4

0,3

0.2

0.1

1.A

- I I I I I I I I I0

0~~~~~~~~~~~~~~~~~n.2

0

0

0

0

0

0

0

0

0

0

0

0

I 1.8 I 3.61 17.0 I I I IF 1.6

Figure 144. Antimony grades ofdisseminated simple Sb deposits.

188

2S 4.0 63 10 16 25 40 63 100

ANTIMONY GRADE IN PERCENT

Page 203: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a

DESCRIPTIVE MODEL OF [UROKO MASSIVE SULFIDE

By Donald A. Singer

APPROXIMATE SYNONYM Noranda type, volcanogenic massive sulfide, felsic to intermediate volcanictype.

DESCRIPTION Copper- and zinc-bearing massive sulfide deposits in marinevolcanic rocks of intermediate to felsic composition (see fig. 145).

GENERAL REFERENCES Ishihara (1974), Franklin and others (1981), Hutchinson and others (1982),Ohmoto and Skinner (1983).

GEOLOGICAL ENVIRONMENT

Rock Types Marine rhyolite, dacite, and subordinate basalt and associated sediments, principallyorganic-rich mudstone or shale. Pyritic, siliceous shale. Some basalt.

Textures Flows, tufts, pyroclastics, breccias, bedded sediment, and in some cases felsic domes.

Age Range Archean through Cenozoic.

Depositional Environment Hot springs related to marine volcanism, probably with anoxic marineconditions. Lead-rich deposits associated with abundant fine-grained volcanogenic sediments.

Tectonic Setting(s) Island arc. Local extensional tectonic activity, faults, or fractures.Archean greenstone belt.

Associated Deposit Types Epithermal quartz-adularia veins in Japan are regionally associated butyounger than kuroko deposits. Volcanogenic Mn, Algoma Fe.

DEPOSIT DESCRIPTION

Mineralogy Upper stratiform massive zone (black ore)--pyrite + sphalerite + chalcopyrite tpyrrhotite * galena * barite * tetrahedrite - tennantite * bornite; lower stratiform massive zone(yellow ore)--pyrite + chalcopyrite t sphalerite * pyrrhotite * magnetite; stringer (stockwork)zone--pyrite + chalcopyrite (gold and silver). Gahnite in metamorphosed deposits.Gypsum/anhydrite present in some deposits.

Texture/Structure Massive (>60 percent sulfides); in some cases, an underlying zone of orestockwork, stringers or disseminated sulfides or sulfide-matrix breccia. Also slumped andredeposited ore with graded bedding.

Alteration Adjacent to and blanketing massive sulfide in some deposits--zeolites, montmorillonite (and chlorite?); stringer (stockwork) zone--silica,chlorite, and sericite; below stringer--chlorite and albite. Cordierite and anthophyllite infootwall of metamorphosed deposits, graphitic schist in hanging wall.

Ore Controls Toward the more felsic top of volcanic or volcanic-sedimentary sequence. Near centerof felsic volcanism. May be locally brecciated or have felsic dome nearby. Pyritic siliceous rock(exhalite) may mark horizon at which deposits occur. Proximity to deposits may be indicated bysulfide clasts in volcanic breccias. Some deposits may be gravity-transported and deposited inpaleo depressions in the seafloor. In Japan, best deposits have mudstone in hanging wall.

Weathering Yellow, red, and brown gossans. Gahnite in stream sediments near some deposits.

Geochemical Signature Gossan may be high in Pb and typically Au is present. Adjacent to deposit-enriched in Mg and Zn, depleted in Na. Within deposits--Cu, Zn, Pb, Ba, As, Ag, Au, Se, Sn, Bi,Fe.

189

Page 204: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

EXAMPLESKidd Creek, CNONMt. Lyell, AUTSBrittania, CNBCBuchans, CNNF

(Walker and others, 1975)(Corbett, 1981)(Payne and others, 1980)(Swanson and others, 1981)

GRADE AND TONNAGE MODEL OF XUROKO MASSIVE SULFIDE

By Donald A. Singer and Dan L. Mosier

DATA REFERENCE Mosier and others (1983).

COMMENTS Includes all deposits listed by Mosier and others (1983) that are associated with felsicor intermediate volcanic rocks. Tonnage is correlated with copper grade (r = -0.17) and with goldgrade (r = -0.19, n = 238). Zinc grade is correlated with lead grade (r = 0.55, n = 184) and withsilver grade (r = 0.52, n = 249). Lead grade is correlated with silver (r = 0.55, n = 153) andwith gold grade (r = 0.34, n = 124). Gold and silver grades are correlated (r = 0.39, n = 227).See figs. 146-149.

DEPOSITS

Name

Abeshiro (Sakura)Adak-LindskoldAfterthoughtAijalaAkarsenAkkoyAkulla VastraAlbertAldermacAllard RiverAlmagrera-LapillaAmulet AAmulet FAnayatak-CakmakkayaAnderson LakeAngeloAnneAntlerArcticArmstrong (A)As SafraAsen-eastAsen-westAsh ShizmAustin BrookAvocaAznacollarBagacayBailadoresBalaklalaBald MountainBandganBarrettBarrington LakeBarvallee-MogadorBaskoyBathurst-NorseminesBawdinBeatsonBedford Hill

Country Name

JAPNSWDNUSCAFNLDTRKYTRKYSWDNCNQUCNQUCNQUSPANCNQUCNQUTRKYCNMNAUWANRWYUSAZUSAKCNNBSAARSWDNSWDNSAARCNNBIRLDSPANPLPNVNZLUSCAUSMEPKTNUSMECNMNCNQUTRKYCNNTBRMAUSAKCNQU

Bell AllardBell ChannelBidjovagge (A)Bidjovagge (B)Bidjovagge (C)Bidjovagge (D)Big BendBig HillBinghamptonBirch LakeBjorkasenBjurforsBjurlidenBjurtraskBlue LedgeBlue MoonBodennecBolidenBossmoBritanniaBruceBrunswick No. 12Brunswich No. 6Buchans (LS-Roth.)Buchans (McLean)Buchans (OB-Orient.)Bully Hill-Rising St.BursiCampanarioCanadian JamiesonCanoe LandingCaptainCaptains FlatCaribouCarpioCastillo BuitronCastro VerdeCCCentennialChestatee

Country

CNQUCNQUNRWYNRWYNRWYNRWYUSCAUSMEUSAZCNSKNRWYSWDNSWDNSWDNUSCAUSCAFRNCSWDNNRWYCNBCUSAZCNNBCNNBCNNFCNNFCNNFUSCANRWYSPANCNONCNNBCNNBAUNSCNNBSPANSPANPORTCNBCCNMNUSGA

190

Page 205: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

ChesterChisel LakeClintonConceptionConigoCopper CrownCopper GeorgeCopper HillCorbetCoronationCrandonCroninCueva de la MoraCupra D'EstrieCuprusDavisDeer IsleDelbridgeDespinaDetourDevils ElbowDickstoneDon JonDouble EdDumagamiDumont BourlamqueDunraineDuthieDyce SidingEarly BirdEast SullivanEgoEmbury Lake

J~ EmersonEmpire Le TacErringtonEstacaoEulaminnaEustisF GroupFarewell LakeFilon Sur-EsperanzaFjeldgruveFL & DHFlambeauFlexarFlin FlonFonnfjellFoxFreddie WellsFretaisFrotet LakeFukazawaFuruhaugenFurutobe-AinaiGamle FolldalGaron LakeGaviaoGelvenakkoGeorge CopperGhost LakeGiken-CharlottaGirilambone

CNNBCNMNCNQUSPANCNQUCNBCAUWAUSCACNQUCNSKUSWICNBCSPANCNQUCNMNUSMAUSMECNQUCNQUCNQUCNNBCNMNCNMNCNBCCNQUCNQUCNQUCNBCCNMNUSCACNQUCNONCNMNUSMECNQUCNONCNONAUWACNQUCNONCNMNSPANNRWYCNMNUSWICNSKCNMNNRWYCNMNAUNSPORTCNQUJAPNNRWYJAPNNRWYCNQUPORTSWDNCNBCCNMNNRWYAUNS

GjersvikGolden GroveGoodenoughGray EagleGreen CoastGreens CreekGullbridgeHacanHalf Mile Lake (SG)HalllwellHanaoka (Doy.-Tsut.)Hanaoka (Mats.-Sha.)Hanawa (Aket.-Osak.)Hanson LakeHarkoyHeath Steele (A-C-D)Heath Steele (B)Heath Steele (E-F)HerculesHerreriasHersjoHigh LakeHixbarHoidalHood RiverHorne-QuemontHunterHWHyers IslandIron DykeIron KingIron MountainIrsahanIso-Magusi-New InscoIsrailIwami eastIwami westIzok LakeJabal SayidJakobsbakkenJamelandJeromeJoanneJolietJosselinJoutelKalkanliKam KotiaKamitkita (Kominosawa)KankbergKedtraskKelly-DesmondKey AnaconKeystoneKetstone-UnionKhans CreekKhnaiguiyahKidd CreekKillingdalKimhedenKittelgruvanKizilkayaKoff Zone

NRWYAUWACNMNUSCACNONUSAKCNNFTRKYCNMNCNQUJAPNJAPNJAPNCNSKTRKYCNNBCNNBCNNBAUTNSPANNRWYCNNTPLPNNRWYCNNTCNQUCNQUCNBCCNMNUSORUSAZUSCATRKYCNQUTRKYJAPNJAPHCNNTSAARNEWYCNONUSAZCNMNCNQUCNQUCNQUTRKYCNONJAPNSWDNSWDNCNQUCNNBUSCAUSCAAUNSSAARCNONNRWYSWDNSWDNTRKYCNMN

191

Page 206: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a-Con.

KoprubasiKosaka (Motoyama)Kosaka (Uch.-Uwa.)KostereKristinebergKunitomi (3-4-6)Kunitomi (7-8)Kunitomi (1-5-1N-Fud.)KurosawaKutcho CreekKutlularKuvarshanLa JoyaLa TorreraLa ZarzaLagunazoLahanosLake DufaultLanchaLangdalLangseleLenora-Twin JLeviLingwickLomero PoyatosLost LakeLousalLouvemLyndhurstLynxLyon LakeMacBride LakeMadenkoyMalaibaMamieMammothMandyMankayanMarcosMattabiMattagami LakeMcMasterMetsamonttuMic MaoMilanMillenbachMobrunMofjellMoinhoMokoman LakeMoleon LakeMonpasMons CupriMordeyMosMoskogaissaMoulton HillMount BulgaMount ChalmersMount LyellMount MorganMount MulcahyMurgul

TRKYJAPNJAPNTRKYSWDNJAPNJAPNJAPNJAPNCNBCTRKYTRKYSPANSPANSPANSPANSPANCNQUSPANSWDNSWDNCNBCSWDNCNQUSPANCNMNPORTCNQUCNQUCNQUCNONCNMNTRKYPLPNCNBCUSCACNMNPLPNPLPNCNONCNQUCNNBFNLDCNQUUSNHCNQUCNQUNRWYPORTCNSKCNQUCNQUAUWACNONNRWYNRWYCNQUAUNSAUQLAUTSAUQLAUWATRKY

Murray BrookMyra Falls-LynxNaslidenNepisiguitNew Bay PondNew HoscoNewtonNine Mile BrookNordre GjetryggenNoritaNormetalNorth BoundaryNorth KeystoneNorth StarNorthairNuqrahOld WaiteOrange PointOrchanOrijarviOsbourne LakeOshioOstra HogkullaPabineau RiverParonenParys MountainPaterPaymogoPecosPelicanPennPenobscotPerrunalPhelps DodgePilleys IslandPine BayPirayPoint LeamingtonPoirierPort Aux MoinesPot LakePricePyhasalmiQue RiverRadiore ERail LakeRakkejaurRambler-MingRamseyRavlidenRavlidmyranRosebery-ReadRed WingReed LakeRenstromRieppeRio TintoRocky TurnRodRodhammerenRodkleivRomaneraRomerito

CNNBCNBCSWDNCNNBCNNFCNQUUSCACNNBNRWYCNQUCNQUCNNBUSCACNMNCNBCSAARCNQUUSAKCNQUFNLDCNMNJAPNSWDNCNNBFNLDGRBRCNONSPANUSNMUSWIUSCAUSMESPANCNQUCNNFCNMNPLPNCNNFCNQUFRCNCNMNCNBCFNLDAUTSCNQUCNNNSWDNCNNFCNSKSWDNSWDNAUTSCNBCCNMNSWDNNRWYSPANCNNBCNMNNRWYNRWYSPANSPAN

192

Page 207: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

RostvangenRudtjebackenRuttanSabetjokSagmoSain BelSan AntonioSan DomingosSan Guillermo-SierraSan MateoSan PedroSan PlatonSan TelmoSanta RosaSchist LakeSelco-ScottShasta KingShunsbySierrecillaSilver QueenSkaideSolbecSotielSourdough BaySouth DufaultSouth Rusty HillSpencevilleSpruce PointStall LakeStekenjokkStirlingStowellStralakStratmatSturgeon LakeSuffieldSulatSunSunshineSusu LakeSutroTache LakeTaisho (Nishimata)Takijug LakeTaknar ITaknar IITapleyTashiroTaslica

NRWYSWDNCNMNNRWYNRWYFRNCSPANPORTSPANPLPNSPANSPANSPANSPANCNMNCNQUUSCACNONSPANCNBCNRWYCNQUSPANCNMNCNQUCNQUUSCACNMNCNMNSWDNCNNSUSCACNONCNNBCNONCNQUPLPNCNMNCKBCCNNTUSCACNQUJAPNCNNTIRANIRANUSMEJAPNTRKY

TeahanTediTerra NovaTeutonic BoreTexasThird PortageTjokkolaTomogonopsTrinintyTrout BayTsuchihata (Hatabira)Tsuchihata (Honniozaw.)Tsuchihata (Shiratsuc.)Tsuchihata (Uenono-Ok.)Tsuchihata (Washinosu)Tulk's PondTulsequahTuncaTverrfjelletUchiUddenUnduVaddasVampVauzeVermillion

VigsnesViscariaWaden BayWaite EastWallarooWedgeWeedonWeissWestarmWhim CreekWhite LakeWhundoWildcatWillechoWimWindyWoodlawnYavaYoichiYokota (Motoyama-Hama.)Yoshino (Hisaka)Yoshino (Main)z

CNNBCNBCCNNFAUWACNNBCNNBSWDNCNNBCNQUCNONJAPNJAPNJAPNJAPNJAPNCNNFCNBCTRKYNRWYCNONSWDNPiJiNRWYCNMNCNQUCNONNEWYSWDNCNSKCNQUAUWACNNBCNQUTRKYCNMNAUWACNMNAUWAPLPNCNONCNMNCNBCAUQLCNNTJAPNJAPNJAPNJAPNCNMN

193

Page 208: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

I~ ~ ~

_,..:- ....

______ ''Mudstone ors , chotw ore:1 pirite + chalcop~jrwte, Kwwvwwww

Chert- v - -8 recci fmh9 *nd ,, v~w | ! tej! w j; '; ' ' Changes h rick, , *, teein stockwork mre e to

*,''w cacopgrite *n galena, '* ba-: > ',i *srte 9,

, w : ::-' :' ;' ,p Chlorite+

*t* * p'r*bite * +Mqu+FrtNaY . ., ,; ,; ,: . . ,: .; .- ;. ;;~~; ''';' v ;;'''';' '''. . . . . . . . . . .:: :C^w:: hlorite;+F M. . . . . . . . . . . . .,...... ... +Mg -F _Na,

Figure 1It5. Catoon cross sec~t~ ~tionw w o rk ; ssive sufide de.os. i.t. . . . od.

. .rnk . ..n a o (1981)... .. . .. . .......................... ;... wtw' wt"'

..................... www tww www www www wtw wsw

.. . . . . . . . . . . . . . . . . . . . I ........ X ' ww ~ ~ ~ ~ ~ . . . . . . . . . . . .............. wwt wwww w wwww twwwtwwww wwww tt

-- ~~~~~~~: xl .teli .cla t cabnae . .lter.d vol..i rocks .

a Blzck ore pyrit + sphalerill wm Sbor*: pyrsit intrusonprt

* zealyites t czlay * caboates

1t# * pyrrhotite * quartz

Figure 145. Cartoon cross section of kuroko massive sulfide deposlit. Modifiedfrom Franklin and others (1981).

194

Page 209: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

KUROKO MASSIVE SULFIDE

1.0

PU-

0z-Qi-

0a.

MILLION TONNES

Figure 146. Tonnages of kuroko massivesulfide deposits. Individual digitsrepresent number of deposits.

KUROKO MASSIVE SULFIDE

P

0

IL0

z0z

00crGL

COPPER GRADE IN PERCENT

Figure 147. Copper grades of kurokomassive sulfide deposits. Individualdigits represent number of deposits.

195

Page 210: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

05

OA

03

02

0.t

0.00

KUROKO MASSIVE SULFIDE

I I I I I I I I II n . 432

a_ I I I I

I I 0.2 I it 0. 1.0 I I01 0.02S5 0.063 016 0.4 1. 26 6. 16 4

A. LEAD GRADE IN PERCENT

0

if0

Q

E.

B. ZINC GRADE IN PERCENT

Figure 148. Lead-zinc grades of kuroko massive sulfide deposits.A, Lead. B, Zinc. Individual digits represent number of deposits.

196

Page 211: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28a--Con.

KUROKO MASSIVE SULFIDE

os

os I..

E03

0OA

U-0 o.a

0.2

9-

I I I I I I I I. .I I . 432

16 11 11 .231 I '

2 _

0.1

V.9 - . __ -OL01 0.053 O.tS3 I.15 9A 1.0 25 5 15 40 0

A. GOLD GRADE IN GRAMS PER TONNE0.7

Os

Lu0

0.4

03

0.2

0.1

0.0

B. SILVER GRADE IN GRAMS PER TONNE

Figure 149. Precious-metal grades of kuroko massive sulfidedeposits. A, Gold. B, Silver. Individual digits represent numberof deposits.

197

Page 212: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 28b

DESCRIPTIVE MODEL OF ALGOMA Fe

By William F. Cannon

APPROXIMATE SYNONYM Volcanogenic iron-formation.

DESCRIPTION Beds of banded iron-rich rock typically in volcanic-sedimentary sequences formed intectonically active oceanic regions. (The grade-tonnage model for Algoma Fe is included underSuperior Fe).

GENERAL REFERENCE Goodwin (1973).

GEOLOGICAL ENVIRONMENT

Rock Types Mafic to felsic submarine volcanic rocks and deep-water elastic and volcaniclasticsediments.

Textures Pillowed greenstones, intermediate to felsic tuffs and agglomerates, poorly sortedelastic sediments.

Age Range Mostly Archean.

Depositional Environment Volcano-sedimentary basins (greenstone belts of Precambrian shields)generally with rapid turbidite sedimentation and thick volcanic accumulations.

Tectonic Setting(s) Tectonically active submarine volcanic belts, most commonly preserved inPrecambrian shields.

Associated Deposit Types Kuroko massive sulfides and Homestake Au deposits.

DEPOSIT DESCRIPTION

Mineralogy Magnetite, hematite, siderite. Interlayered fine-grained quartz.

Texture/Structure Banded on centimeter scale with chert beds interlayered with Fe-rich beds.

Alteration No syngenetic alteration, but commonly metamorphosed to varying degrees and weathered.

Ore Controls Local controls within general volcano-sedimentary setting are not well established.Sub-basin with low sediment and volcanic input is probably key factor.

Weathering Conversion of iron minerals to Fe-hydroxides; leaching of silica. Intense weatheringcan form high-grade supergene ores.

Geophysical Signature Magnetic anomalies.

ExamplesVermillion iron-formation, USMN James (1983)

198

Page 213: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 29a

DESCRIPTIVE MODEL OF QUARTZ PEBBLE CONGLOMERATE Au-U

By Dennis P. Cox

DESCRIPTION Placer Au, U, and PGE in ancient conglomerate.

GENERAL REFERENCES Pretorius (1981), Hinter (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Oligomictic mature conglomerate beds in thick sequence of less mature conglomerate andsandstone deposited on Archean granite-greenstone. Basal volcanic rocks locally. Thicksedimentary sequences underlying Superior type iron-formation.

Textures Well-rounded, well-packed pebbles of vein quartz, chert and pyrite. Bimodal clast-sizedistribution with well-sorted pebbles and well-sorted matrix. Matrix is quartz, mica, chlorite,pyrite, and fuchsite. Granite clasts are absent.

Age Range Major deposits are Archean to Early Proterozoic (3,100-2,200 m.y.), Tarkwa is 1,900 m.y.

Depositional Environment Very thick onlapping sedimentary deposits in elongate epicontinentalbasins or half-grabens. Middle and basal reaches of alluvial fans deposited on steeper side ofbasins. Reducing atmosphere believed to be necessary to preserve detrital pyrite and uraninite.

Tectonic Setting(s) Slow subsidence of Archean craton. Later moderate uplift and erosion toremove Phanerozoic strata and retain Early Proterozoic rocks.

Associated Deposit Types Recent gold placer deposits. Low-sulfide gold quartz veins and HomestakeAu in basement rocks. Superior Fe in overlying sequences.

DEPOSIT DESCRIPTION

Mineralogy Quartz, gold, pyrite, uraninite, brannerite, zircon, chromite, monazite, leucoxene,osmium-iridium alloys, isoferro platinum and sperrylite. By-product Ag. Middle Proterozoic(Tarkwa) and Phanerozoic occurrences have only traces of pyrite and no uraninite.

Texture/Structure Pyrite may occur as rounded grains, and concentrically layered concretions.Gold is in small angular grains, 0.005 to 0.1 mm in diameter.

Ore Controls Braided stream channels in broad unconformity surfaces in alluvial fans. Trough-cross bedding, current- or wave-winnowed bedding surfaces. Gold concentrated at base of matureconglomerate beds deposited on an erosion surface. Carbonaceous layers resembling algal matsdeposited at low-energy base of fan contain U and fine Au.

Weathering Residual gold in weathering zone.

Geochemical Signature Au, U, PGE; anomalous radioactivity.

EXAMPLESWitwatersrand, SAFR (Pretorius, 1981; Feather, 1976)Elliot Lake, CNON (Roscoe, 1969)Jacobina, BRZL (Gross, W., 1968; Cox, 1967)Tarkwa, GHNA (Sestini, 1973)

199

Page 214: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 29b

DESCRIPTIVE MODEL OF OLYMPIC DiN Cu-U-Au

By Dennis P. Cox

DESCRIPTION Hematite, bornite, and other minerals in sedimentary breccia filling grabens ingranitic basement.

GENERAL REFERENCE Roberts and Hudson (1983).

GEOLOGICAL ENVIRONMENT

Rock Types Proterozoic alkali granite with red K-feldspar, brecciated and forming clasts inmatrix-rich breccia. Felsic volcanic breccia and tutf. Hematite iron-formation.

Textures Granophyric intergrowth in granite. Breccias grade from clast-supported in interior Oabasin to matrix-supported in central iron-rich part.

Age Range The only example is 1,500 m.y. old.

Depositional Environment Proterozoic granite basement broken by a deep, narrow graben filled byrapidly deposited breccia, iron-formation, and minor felsic volcanic rocks.

Tectonic Setting(s) Narrow graben transcurrent to broad arch. Local gravity high caused by denseiron-formation. Trace Oa graben can be detected in post-ore cover rocks as photo lineaments.

Associated Deposit Types Sediment-hosted copper deposits, iron-formation.

DEPOSIT DESCRIPTION

Mineralogy Stratabound hematite + bornite + chalcopyrite; transgressive hematite + chalcocite +bornite with fluorite, barite, and minor carrollite, cobaltite, native silver, cotfinite,brannerite, bastnaesite, and florencite.

Texture/Structure Ore minerals in breccia matrix and in veins. Pisolitic siderite-fluorite-chlorite in stratabound ore.

Alteration Hematite-chlorite and sericite-quartz, also carbonates, fluorite, barite, rutile, andrare anhydrite, tourmaline, and magnetite. Intense chlorite alteration Ot granite below orebodies. K-feldspar replaced by chlorite.

Ore Controls Stratiform ore in matrix polymictic-breccia containing clasts Oa granite, pisoliticrock, hematite, and sulfides. Transgressive ore in fractures parallel to long axis Ot graben.

Weathering Type example not exposed.

Geochemical and Geophysical Signature Cu + U + Co + Au + Ag + light REE + F + Ba. Dispersionpattern not known. Cu associated with hematite. Co associated with lower pyrite-rich zone. U-REEassociated with Cu but Cu not always with U-REE. Au highest in late chalcocite ore. Pb, Zn verylow.

Radioactivity would be detectable it exposed or shallow. Magnetic high ot unknown origin.

EXAMPLESOlympic Dam, AUSA (Roberts and Hudson, 1983)

200

Page 215: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30a

DESCRIPTIVE MODEL OF SANDSTONE-HOSTED Pb-Zn

By Joseph A. Briskey

DESCRIPTION Stratabound to stratiform galena and sphalerite in multiple, thin, sheetlike orebodies in arenaceous sedimentary rocks.

GENERAL REFERENCES Bjdrlykke and Sangster (1981), Briskey (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Continental, terrigenous, and marine quartzitic and arkosic sandstone, conglomerate,grit, and siltstone. Local evaporates.

Textures Bedding, crossbedding, paleochannels, liquification structures, and intraformationalslump breocias. Quartz and subordinate calcite cement.

Age Range Proterozoic to Cretaceous host rocks.

Depositional Environment Host rocks deposited in combined continental and marine environmentsincluding piedmont, fluvial, lagoonal-lacustrine, lagoonal-deltaic, lagoonal-beach, and tidalchannel-sand bar environments. Commonly succeeded by marine transgressions.

Tectonic Setting(s) Deep weathering and regional peneplanation during stable tectonic conditions,accompanied by marine platform or piedmont sedimentation associated with at least some orogenicuplift. Sialic basement, mainly "granites" or granitic gneisses.

Associated Deposit Types Sediment-hosted Cu.

DEPOSIT DESCRIPTION

Mineralogy Fine- to medium-crystalline galena with sporadic smaller amounts of sphalerite, pyrite,barite, and fluorite. Minor chalcopyrite, marcasite, pyrrhotite, tetrahedrite-tennantite,chalcocite, freibergite, bournonite, jamesonite, bornite, linnaeite, bravoite, and millerite.Quartz and calcite are usual gangue minerals, and organic debris occurs in some deposits.

Texture/Structure Clots of galena 0.5 to several centimeters in diameter; disseminations 0.1-1 mmin diameter; locally massive. Ore and gangue minerals are intergranular. Galena bands locallyhighlight crossbedding, and other sedimentary structures in sandstone. Laisvall has crosscuttingcurvilinear features resembling roll fronts.

Alteration "Sericite" (white mica?) reported in some deposits; but may only be recrystallizedsedimentary illite.

Ore Controls Intergranular porosity. Ore may be massive where localized by porous sedimentarystructures (above), impermeable barriers, faults, joints, and fractures. Within or immediatelyabove paleochannels, or less commonly, paleoridges.

Weathering Surface oxidation of galena to cerussite, minor anglesite and pyromorphite,chalcopyrite to malachite, azurite, covellite, and chalcocite and (or) sphalerite to smithsonite,hemimorphite, hydrozincite, and goslarite.

Geochemical Signature: Anomalous amounts of Pb and Zn in host rocks and derivative soils; Ba, F,and Ag are enriched in lowermost parts of some deposits. Zinc tends to increase upward in thedeposits. Sialic basement may contain anomalous lead concentrations. Background in sandstone: Pb: 7 ppm; Zn = 16 ppm.

EXAMPLESLaisvall, SWDN (Rickard and others, 1979)Vassbo and Guttusjo, SWDN (Christofferson and others, 1979)Largentiere, FRNC (Samama, 1976; Michaud, 1980)Zeida-Bou Mia, MRCO (Schmitt and Thiry, 1977)Bou-Sellam, MRCO (Caia, 1976)

201

Page 216: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30a--Con.

Yava (Salmon B.), CNNSGeorge Lake, CNSK

Mechernich-Maubach, GRMY

(Hornbrook, 1967; Scott, 1980a, b)(Karup-Mdller and Brummer, 1970;Sangster and Kirkham, 1974)(Bjdrlykke and Sangster, 1981)

GRADE AND TONNAGE MODEL OF SANDSTONE-HOSTED Pb-Zn

By Dan L. Mosier

COMMENTS Silver grades tend to be reported for the larger deposits only. See figs. 150-153

DEPOSITS

Name

Belokany-LauraBou MiaBoylenGeorge LakeGuttusjonLaisvallLargentiereLovstrandMaivaMaubach

Country

URRSMRCOCNQUCNSKSWDNSWDNFRNCSWDNSWDNGRMY

Name Country

MechernichOberpfalzOsenSaglidenShertingdalSmithfieldTregioivoVassboYava (Silvermine)Zeida

GRMYGRMYNRWYSWDNNRWYCNNSITLYSWDNCNNSMRCO

202

Page 217: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30a--Con.

SANDSTONE-HOSTED LEAD-ZINC

PUD

0

06

MILLION TONNESFigure 150. Tonnages of sandstone-hostedPb-Zn deposits.

SANDSTONE-HOSTED LEAD--ZINC

PCD

0

Qs-

00O

1.0

0.9

0.8

0.7

01

0.

0.4

0.3

02

0.1

00

LEAD GRADE IN PERCENTFigure 151. Lead grades of sandstone-hosted Pb-Zn deposits.

203

Page 218: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30a--Con.

SANDSTONE-HOSTED LEAD-ZINC

~2

0

0zQ

0a.

Figure 152. Zinc grades of sandstone-hosted Pb-Zn deposits.

ZINC GRADE IN PERCENT

SANDSTONE--HOSTED LEAD--ZINC

e.0

0.9

Oh

0.7

T2

Q

I-

0

a-

0.6

as

0.4

03

0.2

0.l

0.0

Figure 153. Silver grades of sandstone-hosted Pb-Zn deposits.

204

SILVER GRADE IN GRAMS PER TONNE

Page 219: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30b

DESCRIPTIVE MODEL OF SEDIMENT-HOSTED Cu

By Dennis P. Cox

APPROXIMATE SYNONYM Sandstone Cu, includes Cu-shale (Lindsey, 1982).

DESCRIPTION Stratabound, disseminated copper sulfides in reduced beds of red-bed sequences.

GENERAL REFERENCES Tourtelot and Vine (1976), Gustafson and Williams (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Red-bed sequence containing green or gray shale, siltatone, and sandstone. Thinlylaminated carbonate and evaporate beds. Local channel conglomerate. Some deposits in thinlylaminated silty dolomite.

Textures Algal mat structures, muderacks, crossbedding and scour-and-fill structures. Fossil woodin channels.

Age Range Middle Proterozoic and Permian and early Mesozoic. Other Phanerozoic ages possible.

Depositional Environment Epicontinental shallow-marine basin near paleo-equator. Sabkhas. Highevaporation rate. Sediments highly permeable.

Tectonic Settings) Intracontinental rift or aulacogen--failed arm of triple junction of platespreading. Passive continental margin. Major growth faults.

Associated Deposit Types Halite, sylvite, gypsum, anhydrite. Sandstone uranium, basalt copper,and Kipushi Cu-Pb-Zn.

DEPOSIT DESCRIPTION

Mineralogy Chalcocite and other Cu2S minerals + pyrite * bornite * native silver. Cu2S0.1 replacement of early fine-grained pyrite is common. Deposits may be zoned with centers of

chalcocite * bornite, rims of chalcopyrite, and peripheral galena + sphalerite. Some depositscontain carrollite and Co-pyrite and Ge minerals.

Texture/Structure Fine disseminated, stratabound, locally stratiform. Framboidal or colloformpyrite. Cu minerals replace pyrite and cluster around carbonaceous clots or fragments.

Alteration Green, white, or gray (reduced) color in red beds. Regionally metamorphosed red bedsmay have purple color.

Ore Controls Reducing low-pH environment such as fossil wood, algal mat. Abundant biogenicsulfur. Pyritic sediments. Petroleum in paleoaquifers. High permeability of footwall sedimentsis critical. Boundaries between oxidized and reduced sediments.

Weathering Surface exposures may be completely leached. Secondary chalcocite enrichment down dipis common.

Geochemical Signature Cu, Ag, Pb, Zn (Mo, V, U) (Co, Ge). Au is low. Weak radioactivity in somedeposits.

EXAMPLESKupferschiefer, GRMY (Wedepohl, 1971)White Pine, USMI (Brown, 1971)Western Montana (Belt), USMT (Harrison 1972, 1982)Kamoto, ZIRE (Bartholome and others, 1976)

205

Page 220: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30b--Con.

GRADE AND TONNAGE MODEL OF SEDIMENT-HOSTED Cu

By Dan L. Mosier, Donald A. Singer, and Dennis P. Cox

probably underestimated for deposits in Zambia and Zaire due to poorto which mineralization exists between mines in Zambia and Zaire is notfor the deposits in Russia probably represent districts. See figs. 154-156

COMMENTS Tonnages arereporting. The extentconsidered. Estimates

DEPOSITS

Name Country

AlaskaBalubaBig Horn (Yarrow Ck)BurraBwana MkubwaCattle GridChacarillaChambiashiChibulumaChibuluma WestChingola-NchangaChongweCorocoroCretaCrowell AreaDikulume-MashambaDzhezhkazgan

(Magakyan)Gwai RiverKalengwaKalushi (Kalulushi)KamotoKanmantooKansanshiKapundaKilembeKonkola (Bancroft)LenaLubin (Legnica-

Glogow)LumwanaMammoth (Gunpowder)Mangula (Miriam)

ZIMBZMBACNALAUSAZMBAAUSABLVAZMBAZMBAZMBAZMBAZMBABLVAUSOKUSTXZIRE

URRSZIMBZMBAZMBAZIREAUSAZMBAAUSAUGNDZMBAURRS

Name

MangumMansfeldMatchlessMatchless WestMokamboMt. GunsonMt. OxideMufuliraMusoshiMusonoiNacimientoNorabOamitePintada-StauberPresque IsleRoan Antelope

(Luanshya)Rokana (Nkana)Ruwe (Mutoshi)ShackletonSilversideSnowstormSpar Lake (Troy)Tenke-FungurumeTshinsenda

(Kinsenda)UdokanWhite Pine

Country

USOKGRMYNAMBNAMBZMBAAUSAAUQLZMBAZIREZIREUSNMZIMBNAMBUSNMUSMI

ZMBAZMBAZIREZIMBZIMBUSMTUSMTZIRE

ZIREURRSUSMI

PLNDZMBAAUQLZIMB

206

Page 221: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30b--Con.

SEDIMENT-HOSTED COPPER

MILLION TONNES

SEDIMENT-HOSTED COPPER

Figure 154. Tonnages of sediment-hosted Cudeposits.

COPPER GRADE IN PERCENTFlIgure 155. Copper grades of sediment-hosted Cu deposits.

207

Page 222: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30b--Con.

SEDIMENT--HOSTED COPPER

1.0

09 t

08 F-

0.7 I-

COC0

g0U.0

ILok

0.6 F

0.5 I-

n . 57

I I I I I I 1

04

0o2

02

0.1

0.00.4

A.

1.0 2. .63 16 40 100 250 63o 1600 4000

SILVER GRADE IN GRAMS PER TONNE

02

B. COBALT GRADE IN PERCENT

Figure 156. By-product grades of sediment-hosted Cu deposits. A,silver. B, Cobalt.

208

Page 223: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30c

DESCRIPTIVE MODEL OF SANDSTONE U

By Christine E. Turner-Peterson and Carroll A. Hodges

APPROXIMATE SYNONYMS Tabular U ore, roll front U.

DESCRIPTION Microcrystalline uranium oxides and silicates deposited during diagenesis in localizedreduced environments within fine- to medium-grained sandstone beds; some uranium oxides alsodeposited during redistribution by ground water at interface between oxidized and reduced ground(see fig. 157).

GENERAL REFERENCE Turner-Peterson and Fishman (1986), Granger and Warren (1969).

GEOLOGICAL ENVIRONMENT

Rock Types Host rocks are feldspathic or tuffaceous sandstone. Pyroclastic material is felsic incomposition. Mudstone or shale commonly above and/or below sandstones hosting diagenetic ores (seefig. 157A).

Textures Permeable--medium to coarse grained; highly permeable at time of mineralization,subsequently restricted by cementation and alteration.

Age Range Most deposits are Devonian and younger. Secondary roll-front deposits mainly Tertiary.

Depositional Environment Continental-basin margins, fluvial channels, braided stream deposits,stable coastal plain. Contemporaneous felsic volcanism or eroding felsic plutons are sources ofU. In tabular ore, source rocks for ore-related fluids are commonly in overlying or underlyingmud-flat facies sediments.

Tectonic Setting(s) Stable platform or foreland-interior basin, shelf margin; adjacent majoruplifts provide favorable topographic conditions.

Associated Deposit Types Sediment-hosted V may be intimately associated with U. Sediment-hostedCu may be in similar host rocks and may contain U.

DEPOSIT DESCRIPTION

Mineralogy Uraninite, coffinite, pyrite in organic-rich horizons. Chlorite common.

Texture/Structure Stratabound deposits. Tabular U--intimately admixed with pore-filling humin intabular lenses suspended within reduced sandstone (fig. 157A). Replacement of wood and othercarbonaceous material. Roll front U--in crescentic lens that cuts across bedding, at interfacebetween oxidized and reduced ground (fig. 157B).

Alteration Tabular--Humic acid mineralizing fluids leach iron from detrital magnetite-ilmeniteleaving relict TiO2 minerals in diagenetic ores. Roll front--Oxidized iron minerals in rock updip,reduced iron minerals in rock downdip from redox interface.

Ore Controls Permeability. Tabular--Humin or carbonaceous material the main concentrator of U.Roll front--S species, "sour" gas, FeS2. Bedding sequences with low dips; felsic plutons or felsictuffaceous sediments adjacent to or above host rock are favorable source for U. Regional redoxinterface marks locus of ore deposition.

Weathering Oxidation of primary uraninite or coffinite to a variety of minerals, notably yellowcarnotite as bloom in V-rich ores.

Geochemical and Geophysical Signature U, V, Mo, Se, locally Cu, Ag. Anomalous radioactivity fromdaughter products of U. Low magnetic susceptibility in and near tabular ores.

EXAMPLESColorado Plateau (Fischer, 1974)Grants, USNM (Turner-Peterson and Fishman, 1986)Texas Gulf Coast (Reynolds and Goldhaber, 1983)USWY (Granger and Warren, 1969)

209

Page 224: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 30c--Con.

_Fluvial facies~~~_ ~~Mudflat facies

_ ns 3=>__ Plaua~~~P -lake facies... ~~~~~~~~~~~~~~~~.

...*. ........ __ _

Ti *xi s '~~~~rmblileached out) host sandstone10 mn DiagenetiUoxds

in organic-rich lensesLess permeableA 2 to I0 km rock

Ground-water movementSecondary roll-front are in permeable sandstone

Diagenetic U oro lenses ma g mbe present here, but are\_not essential to form aroll- fron' deoi

Figure 157 Carto s diagenetic hematit iZ edu~~Rdced rocks: and limonite; ~~~~diagenetic pyrite,;_; ; ~ ~ ~~~ marcasite, and ,20 to l OOmB ~~~~~~~organic material

Figure 157. Cartoon sections showing: A, Dlagenetic mineralization(from Turner-Peterson and Fishman, 1986); B, roll-frontmineralization in sandstone U deposits (from Nash and others, 1981).

210

Page 225: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31a

DESCRIPTIVE MODEL OF SEDIHENTARY EXHALATIVE Zn-Pb

By Joseph A. Briskey

APPROXIMATE SYNONYMS Shale-hosted Zn-Pb; sediment-hosted massive sulfide Zn-Pb.

DESCRIPTION Stratiform basinal accumulations of sulfide and sulfate minerals interbedded witheuxinic marine sediments form sheet- or lens-like tabular ore bodies up to a few tens of metersthick, and may be distributed through a stratigraphic interval over 1,000 m (see fig. 158).

GENERAL REFERENCES Large (1980, 1981, 1983).

GEOLOGICAL ENVIRONMENT

Rock Types Euxinic marine sedimentary rocks including: black (dark) shale, siltstone, sandstone,chert, dolostone, micritic limestone, and turbidites. Local evaporitic sections in contemporaneousshelf facies. Volcanic rocks, commonly of bimodal composition, are present locally in thesedimentary basin. Tuffites are the most common. Slump breccias, fan conglomerates, and similardeposits, as well as facies and thickness changes, are commonly associated with synsedimentaryfaults.

Textures Contrasting sedimentary thicknesses and fadies changes across hinge zones. Slumpbreccias and conglomerates near synsedimentary faults.

Age Range Known deposits are Middle Proterozoic (1,700-1,400 m.y.); Cambrian to Carboniferous530-300mn.y.).

Depositional Environment Marine epicratonic embayments and intracratonic basins, with smallerlocal restricted basins (second- and third-order basins).

Tectonic Setting(s) Epicratonic embayments and intracratonic basins are associated with hingezones controlled by synsedimentary faults, typically forming half-grabens. Within these grabens(first-order basins), penecontemporaneous vertical tectonism forms smaller basins (second-orderbasins) and assoniatgd rises. Smaller third-order basins (tens of kilometers) within the second-order basins (10 -10 km) are the morphological traps from the stratiform sulfides.

Associated Deposit Types Bedded barite deposits.

DEPOSIT DESCRIPTION

Mineralogy Pyrite, pyrrhotite, sphalerite, galena, sporadic barite and chalcopyrite, and minor totrace amounts of marcasite, arsenopyrite, bismuthinite, molybdenite, enargite, millerite,freibergite, cobaltite, cassiterite, valleriite, and melnikovite.

Texture/Structure Finely crystalline and disseminated, monomineralic sulfide laminae aretypical. Metamorphosed examples are coarsely crystalline and massive.

Alteration Stockwork and disseminated sulfide and alteration (silicification, tourmalization,carbonate depletion, albitization, chloritization, dolomitization) minerals possibly representingthe feeder zone of these deposits commonly present beneath or adjacent to the stratiformdeposits. Some deposits have no reported alteration. Celsian, Ba-muscovite, and ammonium clayminerals may be present.

Ore Controls Within larger fault-controlled basins, small local basins form the morphologicaltraps that contain the stratiform sulfide and sulfate minerals. The faults are synsedimentary andserve as feeders for the stratiform deposits. Euxinic facies.

Weathering Surface oxidation may form large gossans containing abundant carbonates, sulfates, andsilicates of lead, zinc, and copper.

Geochemical Signature Metal zoning includes lateral Cu-Pb-Zn-Ba sequence extending outward fromfeeder zone; or a vertical Cu-Zn-Pb-Ba sequence extending upward. NH3 anomalies may be present.Exhalative chert interbedded with stratiform sulfide and sulfate minerals; peripheral hematite-

211

Page 226: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31a--Con.

chert formations. Local (within 2 km) Zn, Pb, and Mn haloes. Highest expected background in blackshales: Pb = 500 ppm; Zn = 1,300 ppm; Cu = 750 ppm; Ba = 1,300 ppm; in carbonates: Pb = 9 ppm; Zn= 20; Cu = 4 pmm; Ba = 10.

EXAMPLESSullivan mine, CNBCMeggen mine, GRMYNavan, Silvermines, Tynagh, IRLD

(Hamilton and others, 1982)(Krebs, 1981)(Boyce and others, 1983;Taylor, 1984)

GRADE AND TONNAGE MODEL OF SEDIHENTARY EIXALATIVE Zn-Pb

By W. David Menzie and Dan L. Mosier

COMMENTS Deposits in this model include most commonly identified deposits of this type.Nevertheless, examination of the distribution of silver grade suggests the presence of twosubtypes. Lead grades are significantly correlated with silver grades (r = 0.77, n = 39). Seefigs. 159-163.

DEPOSITS

Name Country Name Country

BalmatBaroiBig SynclineBlack Mtn.Broken HillBroken HillCirqueDugald RiverDuncan LakeDyFaroFxGrumHBHiltonHomestakeHowards PassJersey EmeraldKing FissureLady LorettaMacMillanMatt Berry

USNYINDASAFRSAFRSAFRAUNTCNBCAUQLCNBCCNYTCNYTCNBCCNYTCNBCAUQLCNBCCNYTCNBCCNBCAUQLCHYTCNYT

McArthurMeggenMineral KingMount IsaNavanRajpura-DaibaRammelsbergRampura-AguchaRed DogReeves MacDonaldRosh PinahSilverminesSquirrel HillsSullivanSwim LakeTomTynaghVangordaWoodcuttersWigwamZawarZawarmala

AUNTCRMYCNBCAUQLIRLDINDAGRMYINDAUSAKCNBCNAMBIRLDAUQLCNBCCNYTCNYTIRLDCNYTAUNTCNBCINDAINDA

212

Page 227: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31a--Con.Chalcopyrite - pg rrhotite

Syinsed1mentaM '\\\ I Sphalerite-galeiHermatite-

3a ,Pyrite ,Barite Mn oxidesTAWu

Stratiforbearing

Crossomstockwchalcoppyrite,

lt ~ ~ ~ - I---'Z= _____ ._I- . ,_

rmore-/__-_-fa cie s ___________-___--_.-____-

itting /ork facies: -__i_ ___

*yrite, _

pyrrhotito | 50

\ I r . - - -- _ _ _ _ _ _

___ __ ___ - - .( 150 m =

Altered sedimentary rocks: silicification;

tourmaline, albite, dolomite, chlorite

9:,, tIntraformational slumping or brecia

Tuffaceous beds

t g Black shale, slltstone, sandstone, ehert,dolostone, micritko limestone

Figure 158. Cartoon cross section showingmineral zoning in sedimentary exhalativeZn-Pb deposits (modified from Large, 1980).

SEDIMENTARY EXHALATIVE ZINC-LEAD

10

0.7

O)

2 06Uj

t 0.5

2

0

0-

0.3

I I~ ~~~1 I I I 1 1 10

o .4

0

0

0

0000

0

0

00

0~~~1 1 1 1 1 0.7 1 1 30 0~

0.2

0.1

0.0016 0.0063 0.025 0.1 0.4 1i 6.3 25 100 400

Figure 159. Tonnages of sedimentaryexhalative Zn-Pb deposits.MILLION TONNE

213

Page 228: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31a--Con.

SEDIMENTARY EXHALATIVE ZINC-LEAD

0

0~

Figure 160. Zinc grades of sedimentaryexhalative Zn-Pb deposits. ZINC GRADE IN PERCENT

SEDIMENTARY EXHALATIVE ZINC--LEAD

tCi,

02QI-

Figure 161. Lead grades of sedimentaryexhalative Zn-Pb deposits.

LEAD GRADE IN PERCENT

214

Page 229: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31a--Con.

SEDIMENTARY EXHALATIVE ZINC-LEAD

1.0 - - -- T - - -

0.9 -

OJ _ ~~~~~C

0.7

OS

0.4 _

0.3

0.2

0.1

0.0 4 .

CA 10 .

SILVER GRADE IN GRAMS PER TONNE

SEDIMENTARY EXHALATIVE ZINC-LEAD

0.9

0.8 -

0.7 _

oA _

Os _

OA -

0.3 -

0.2

0.1

Oa 0.32

I I I I I I I I In.45

00

00

00

0

I I I a16 I P

Figure 162. Silver grades of sedimentaryexhalative Zn-Pb deposits.

10

Figure 163. Copper grades of sedimentaryexhalative Zn-Pb deposits.

215

AM056 A1 .18 0.32 06 - 1.0 1J 2 32 s6

COPPER GRADE IN PERCENT

Page 230: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31b

DESCRIPTIVE MODEL OF BEDDED BARITE

By Greta J. Orris

APPROXIMATE SYNONYM Stratiform barite.

DESCRIPTION Stratiform deposits of barite interbedded with dark-colored cherty and calcareoussedimentary rocks.

GEOLOGICAL ENVIRONMENT

Rock Types Generally dark-colored chert, shale, mudstone, limestone or dolostone. Also withquartzite, argillite, and greenstone.

Age Range Proterozoic and Paleozoic.

Depositional Environment Epicratonic marine basins or embayments (often with smaller localrestricted basins).

Tectonic Setting(s) Some deposits associated with hinge zones controlled by synsedimentary faults.

Associated Deposit Types Sedimentary exhalative Zn-Pb (see fig. 158).

DEPOSIT DESCRIPTION

Mineralogy Barite * minor witherite * minor pyrite, galena, or sphalerite. Barite typicallycontains several percent organic matter plus some H2S in fluid inclusions.

Texture/Structure Stratiform, commonly lensoid to poddy; ore laminated to massive with associatedlayers of barite nodules or rosettes; barite may exhibit primary sedimentary features. Smallcountry rock inclusions may show partial replacement by barite.

Alteration Secondary barite veining; weak to moderate sericitization has been reported in or nearsome deposits in Nevada.

Ore Controls Deposits are localized in second- and third-order basins.

Weathering Indistinct, generally resembling limestone or dolostone; occasionally weathered-outrosettes or nodules.

Geochemical Signature Ba; where peripheral to sediment-hosted Zn-Pb, may have lateral (Cu)-Pb-Zn-Ba zoning or regional manganese haloes. High organic C content.

EXAMPLESMeggen, GRMY (Krebs, 1981)Magnet Cove, USAR (Scull, 1958)Northumberland, USNV (Shawe and others, 1969)

GRADE AND TONNAGE MODEL OF BEDDED BARITE

By Greta J. Orris

COMMENTS See figs. 164- 165.

DEPOSITS

Name Country Name Country

Ballynoe IRLD Brookfield CNNSBarite Mtn. CNYT Castle Island USAKBarite (Mouse) CNYT Cathy (Walt) CNYTBarite Valley SAFR Cirque Barite CNBCBaw Hin Khao THLD Greystone USNV

216

Page 231: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31b--Con.

GurrandaKempfieldKhuzdarMagnet CoveMangampetta N.Mangampetta S.Meggen BariteMel Barite

AUNSAUNSPKTNUSARINDAINDAGRMYCNYT

Mountain SpringsNimiuktukRammelsberg BariteSnake MountainTeaUribeWeedaroo

USNVUSAKGRMYUSNVCNYTUSWAAUSA

217

Page 232: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 3lb--Con.

BEDDED BARITE

2U,

0

aLL0

z

R0

0~Sgc

Figure 164. Tonnages of bedded baritedeposits. MILLION TONNES

BEDDED BARITE

0

0

a.

0

0a.

I.0

0.9

08

0.7

06

0.6

0.4

03

0.2

0.1

0.0

Figure 165. Barite grades or bedded baritedeposits.

218

BARITE GRADE IN PERCENT

Page 233: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 31c

DESCRIPTIVE MODEL OF EMERALD VEINS

By Dennis P. Cox

DESCRIPTION Emerald in plagioclase-dolomite veins in black shale.

GENERAL REFERENCES Sinkankas (1981), p. 338-358, 407-435.

GEOLOGICAL ENVIRONMENT

Rock Types Black shale, claystone, siltstone, locally calcareous. Minor sandstone, limestone,conglomerate, and evaporates. Locally coarse dolomite breccia filled by carbonates and oligoclase.

Textures Diabasic dikes present but not prominent.

Age Range Cretaceous and Tertiary.

Depositional Environment Thick epicontinental anoxic marine shale. Evaporites may have providedsaline solutions.

Tectonic Settings) Major faults. Minor intrusions may have provided heat sources for fluidcirculation.

Associated Deposit Types May be associated with Pb-Zn deposits on a regional scale.

DEPOSIT DESCRIPTION

dineralogy Emerald + greenish beryl + oligoclase + dolomite + calcite + pyrite + fluorite + rutile+ quartz. Apatite, parasite, and BEE dolomite reported from Muzo.

Texture/Structure Crustified banding, vuggy, coarsely crystalline.

Alteration Shale altered to black hornfels, fossils replaced by oligoclase. Dolomitization.

Ore Controls Major fault at intersections of minor cross faults, sharp-walled veins, and tabularbreccia bodies. Veins locally confined to sedimentary strata that overlie or underlie ferruginousbeds.

Weathering Plagioclase weathers to pockets of kaolinite.

Geochemical Signature In veins: high Be, Na, Mg; low Li, Ba, K, Mo, Pb relative to shale outsideof mineralized areas. At Muzo, BEE in veins, Cu in underlying beds.

EXAMPLESGachala district, CLBA (Escovar, 1979)Muzo district, CLBA (Sinkankas, 1981)

219

Page 234: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 32a

DESCRIPTIVE MODEL OF SOUTHEAST MISSOURI Pb-Zn

By Joseph A. Briskey

SYNONYMS Carbonate-hosted Pb-Zn; Mississippi Valley type.

DESCRIPTION Stratabound, carbonate-hosted deposits of galena, sphalerite, and chalcopyrite inrocks having primary and secondary porosity, commonly related to reefs on paleotopographic highs(see fig. 166). (For grade-tonnage model see Appalachian Zn deposit model.)

GENERAL REFERENCES Snyder and Gerdemann (1968), Thacker and Anderson (1977).

GEOLOGICAL ENVIRONMENT

Rock Types Dolomite; locally ore bodies also occur in sandstone, conglomerate, and calcareousshales.

Textures Calcarenites are most common lithology. Tidalites, stromatolite finger reefs, reefbreccias, slump breccias; oolites, crossbedding, nicrites.

Age Range Known deposits are in Cambrian to Lower Ordovician strata.

Depositional Environment Host rocks are shallow-water marine carbonates, with prominent faciescontrol by reefs growing on flanks of paleotopographic basement highs. Deposits commonly occur atmargins of elastic basins.

Tectonic Setting(s) Stable cratonic platform.

Associated Deposit Types Precambrian volcanic-hosted magnetite; Ba-Pb deposits occur higher in theCambrian section.

DEPOSIT DESCRIPTION

Mineralogy Galena, sphalerite, chalcopyrite, pyrite, marcasite. Minor siegenite, bornite,tennantite, barite, bravoite, digenite, covellite, arsenopyrite, fletcherite, adularia, pyrrhotite,magnetite, millerite, polydymite, vaesite, djurleite, chalcocite, anilite, and enargite in order ofabundance. Dolomite and minor quartz.

Texture/Structure Early fine-grained replacement; main stage coarse-grained replacement and vuggyor colloform open space filling. Hypogene leaching of galena is common.

Alteration Regional dolomitization; latter brown, ferroan, and bitumen-rich dolomite; extensivecarbonate dissolution and development of residual shale; mixed-layer illite-chlorite altered to 2Mmuscovite; dickite and kaolinite in vugs; very minor adularia.

Ore Controls Open-space filling and replacement, most commonly at the interface between gray andtan dolomite, but also in traps at any interface between permeable and impermeable units. Anyporous units may host ore: sandstone pinchouts; dissolution collapse breccias; faults; permeablereefs; slump, reef, and fault breccias; coarsely crystalline dolostone.

Geochemical Signature Regional anomalous amounts of Pb, Zn, Cu, Mo, Ag, Co, and Ni in insolubleresidues. Zoning is roughly Cu (t Ni * Co)-Pb-Zn-iron sulfide going up section; ores contain about30 ppm Ag; inconsistent lateral separation of metal zones. Background for carbonates: Pb = 9 ppm;Zn = 20; Cu = 4.

EXAMPLESViburnum subdistrict, USMO (Economic Geology 1977; Heyl, 1982)

220

Page 235: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 32a--Con.

Figure 166. Cartoon cross section of a southeastMissouri Pb-Zn deposit (modified from Evans,1977).

221

Page 236: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 32b

DESCRIPTIVE HDDEL OF APPALACHIAB Zn

By Joseph A. Briskey

SYNONYMS Carbonate-hosted Zn; Mississippi Valley type.

DESCRIPTION Stratabound deposits of sphalerite and minor galena in primary and secondary voids infavorable beds or horizons in thick platform dolostone and limestone (see fig. 167).

GENERAL REFERENCE Hoagland (1976).

GEOLOGICAL ENVIRONMENT

Rock Types Dolostone and limestone.

Textures Subtidal, intratidal, and supratidal textures with high porosity are common, especiallyin the dolostones; limestones are commonly micritic, some with birdseye textures.

Age Range Appalachian deposits occur in rocks of Cambrian to Middle Ordovician age. Otherdeposits are in rocks as old as Proterozoic and as young as Triassic.

Depositional Environment Shallow-water, tidal and subtidal marine environments.

Tectonic Setting(s) Stable continental shelf.

Associated Deposit Types Stratabound carbonate-hosted deposits of barite-fluorite-sphalerite.

DEPOSIT DESCRIPTION

Mineralogy Sphalerite, with variable but subordinate pyrite and minor marcasite, and with minorbarite, fluorite, gypsum, and anhydrite. Galena is usually absent or rare, but may be abundantlocally.

Texture/Structure Mainly open space filling of coarse to medium crystalline sphalerite and pinkishdolomite. Sphalerite commonly displays banding. Locally, fine sphalerite in finely varveddolomite composes the breccia matrix.

Alteration Extensive finely crystalline dolostone occurs regionally and coarse crystallinedolomite is more common nearer to ore bodies. Silicification is typically closely associated withore bodies. Extensive limestone dissolution and development of residual shale.

Ore Controls Ore occurs within dissolution collapse breccias that occur (1) throughout readilysoluble limestone beds, or (2) in paleo-aquifer solution channels controlled by fractures or foldsin limestone. Breccias commonly have domal cross sections above limestone aquifers that have beenthinned by solution.

Weathering Zinc silicate and carbonate ores form in the zone of weathering and oxidation.

Geochemical Signature Readily detectable zinc anomalies in residual soils and in streamsediments. Primary zinc haloes in carbonate rocks near ore are not large enough to assist inexploration. Background in carbonate rocks: Zn - 20 ppm; Pb = 9 ppm.

EXAMPLESMascot-Jefferson City district, USTN (Crawford and Hoagland,

1968; McCormick and others,1971; Fulweiler andMcDougal, 1971)

Copper Ridge district, USTN (Hill and others, 1971)

222

Page 237: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

M~odel 32b--Con.

w7�7777$7$7$$777,77$77$7777$7,Crackle brecota / |

i .- qZ - . *A *:.. ..

.L~~d;.'-,-zE ~~~Crackle brcbi

- ... ..,~. .*4' B Co11apse brocci

>ne > t~Z 50 m

I______I_ Preferred locations of higher grade ore; sphalerite inbroccia matrix and in coarsely crystalline dolomitizedlimestone

Collapse breccia composed of clasts of dolostoneK .i .X and dolomitized limestone

Ir;YAIV Coarsely crystalline dolomitizedtIDs2Zs~ limestone

Dark-gray to black dolostone,lVght-gray dolostone

[I] Limestone

Figure 167. Cartoon cross section showing relationshipof zinc ore to collapse breccia and dolomitized limestonein the Mascott-Jefferson City district, Tennessee.Modified from Armstrong and Lawrence (1983).

223

Page 238: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Models 32a and 32b

GR&DE AND TONNAGE MODEL OF SOUTHEAST MISSOURI Pb-Zn AND APPALACHIAN Zn DEPOSITS

By Dan L. Mosier and Joseph A. Briskey

COMMENTS The models for stratabound carbonate-hosted Pb-Zn deposits, and for strataboundcarbonate-hosted Zn deposits, are treated as end members that, in a general way, define a largerclass of geologically complex stratabound carbonate-hosted deposits containing variable proportionsof Pb or Zn. Grade-tonnage estimates were made for districts only, because of difficulties indefining the limits of an individual deposit within these typically large regionally mineralizedsystems. Numerous small districts containing less than about a million tonnes of ore are notincluded in this compilation, mainly because of the paucity of reliable data about reserves andpast production, but also because they are outside the scope of this investigation. Lead grade iscorrelated with silver grade (r = 0.87, n = 10). See figs. 168-171.

DEPOSITS

Name

Alpine-LafatschAustinvilleCentral MissouriCentral TennesseeEast TennesseeFriedensvilleGayna R.-Godlin L.Kentucky-IllinoisMetallineMonarch-Kicking Horse

Country

ASTR-ITLY-YUGOUSVAUSMOUSTNUSTNUSPACNNTUSKNUSWACNBC

Name

NanisivikNewfoundland ZincNorth Arkansas-OzarkPine PointPolaris-EclipseRobb LakeSoutheast MissouriTri StateUpper Mississippi ValleyUpper Silesia

Country

CNNTCNNFUSARCNNTCNNTCNBCUSMoUSMO-USOKUSWIPLND

224

Page 239: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Models 32a and 32b--Con.

SOUTHEAST MISSOURI LEAD-ZINC AND APPALACHIAN ZINC

P(O

aAL0

0

2

00.I

MILLION TONNESFigure 168. Tonnages of southeast MissouriPb-Zn and Appalachian Zn deposits.

SOUTHEAST MISSOURI LEAD--ZINC AND APPALACHIAN ZINC

a

6

6

IL

ZINC GRADE IN PERCENTFigure 169. Zinc grades of southeastMissouri Pb-Zn and Appalachian Zn deposits.

225

Page 240: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Models 32a and 32b--Con.

SOUTHEAST MISSOURI LEAD-ZINC AND APPALACHIAN ZINC

1.0

0.S

Co

Co

0.7

U.a

O 0.4R

hA0a.

0.3

0.2

0.1

0.0

Figure 170. Lead grades of southeastMissouri Pb-Zn and Appalachian Zn deposits. LEAD GRADE IN PERCENT

SOUTHEAST MISSOURI LEAD-ZINC AND APPALACHIAN ZINC

1.0

0.0

O'

0.7

z!2mI-

0a.

0.6

Os

I I I I I I I I In. 20

0

0

0

L.4 I L I lI I I I I I

0.4

02

0.14 1.0 5 63 16 40 100 250 630 1600 4000

Figure 171. Silver grades of southeastMissouri Pb-Zn and Appalachian Zn deposits.

226

SILVER GRADE IN GRAMS PER TONNE

Page 241: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 32c

DESCRIPTIVE MODEL OF KIPUSHI Cu-Pb-Zn

By Dennis P. Cox and Lawrence R. Bernstein

DESCRIPTION Massive base-metal sulfides and As-sulfosalts in dolomite breccias characterized byminor Co, Ge, Ga, U, and V.

GEOLOGICAL ENVIRONMENT

Rock Types Dolomite, shale. No rocks of unequivocal igneous origin are related to oreformation. [The pseudoaplite at Tsumeb is herein assumed to be a metasedimentary rock following H.D. LeRoex (1955, unpublished report).]

Textures Fine-grained massive and carbonaceous, laminated, stromatolitic dolomites.

Age Range Unknown; host rocks are Proterozoic in Africa, Devonian in Alaska, Pennsylvanian inUtah.

Depositional Environment High fluid flow along tabular or pipe-like fault- or karst (?)-brecciazones.

Tectonic Setting(s) Continental platform or shelf terrane with continental or passive marginrifting. Ore formation at Tsumeb and Ruby Creek predates folding.

Associated Deposit Types Sedimentary copper, U-veins, barite veins. Sedimentary exhalative Pb-Znmay be a lateral facies.

DEPOSIT DESCRIPTION

Mineralogy Ruby Creek: pyrite, bornite, chalcocite, chalcopyrite, carrollite, sphalerite,tennantite. Tsumeb: galena, sphalerite, bornite, tennantite, enargite. Kipushi: sphalerite,bornite, chalcopyrite, carrollite, chalcocite, tennantite, pyrite. Less abundant minerals in thesedeposits are linnaeite, Co-pyrite, germanite, renierite, gallite, tungstenite, molybdenite, andnative Bi. Bituminuous matter in vugs. At Apex mine, marcasite.

Texture/Structure Massive replacement, breccia filling, or stockwork. Replacement textures ofpyrite after marcasite at Ruby Creek and Apex.

Alteration Dolomitization, sideritization, and silicification may be related to mineralization.Early pyrite or arsenopyrite as breccia filling or dissemination.

Ore Controls Abundant diagenetic pyrite or other source of S acts as precipitant of base metals inzones of high porosity and fluid flow. Bitumens indicate reducing environment at site of oredeposition.

Weathering Malachite-azurite, black Co-oxide, or pink Co-arsenate. Oxidation at Tsumeb hasproduced large crystals of many rare minerals. Oxidized Ge-Ga ore at Apex consists of iron oxidesand jarosite; Ge and Ga minerals are not observed.

Geochemical and Geophysical Signature Cu, Zn, Pb, As, Co, Ag, Ge, Ga, Mo, W, Sn, Bi, U and V.Metal ratios: high Cu/Fe and locally high Cu/S in interior zones; high Co/Ni, As/Sb and Ag/Au.May be weakly radioactive.

EXAMPLESRuby Creek, ASAK (Runnels, 1969)Tsumeb, NAME (Sohnge, 1961); Wilson (1977)Kipushi, ZIRE (Intiomale and Oosterbosch, 1974)Apex Mine, USUT (Bernstein, 1986)

227

Page 242: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34a

DESCRIPTIVE MODEL OF SUPERIOR Fe

By William F. Cannon

DESCRIPTION Banded iron-rich sedimentary rock, generally or great lateral extent, typicallylayered on centimeter scale with siliceous (chert) beds interlayered with iron-rich beds.

GENERAL REFERENCE James (1954).

GEOLOGICAL ENVIRONMENT

Rock Types Commonly interlayered with quartzite, shale, dolomite.

Textures Iron-formations and host rocks commonly contain sedimentary textures typical or shallow-water deposition in tectonically stable regions.

Age Range Mostly Early Proterozoic (2.0*0.2 b.y.). Less commonly Middle and Late Proterozoic.

Depositional Environment Stable, shallow-water marine environment, commonly on stable continentalshelf or intracratonic basin.

Tectonic Setting(s) Now commonly preserved in forelands of Proterozoic orogenic belts.

Associated Deposit Types Sedimentary manganese deposits may occur stratigraphically near or beinterbedded with iron-formations.

DEPOSIT DESCRIPTION

Mineralogy Hematite, magnetite, siderite, fine-grained quartz.

Texture/Structure Nearly always banded at centimeter scale; very fine grained where notmetamorphosed.

Alteration None related to ore deposition. Commonly metamorphosed to varying degrees or weatheredand enriched by supergene processes.

Ore Controls No primary controls of local importance. Supergene ores may be localized byirregularities in present or paleo erosion surface.

Weathering Alteration of original iron mineral to Fe-hydroxides and hematite. Silica partly tototally leached. End product of weathering is high-grade supergene ore.

Geophysical Signature Magnetic anomalies.

EXAMPLESMesabi Range, USMN (James, 1983)

GRADE AND TONNAGE MODEL OF SUPERIOR Fe AND ALGOMA Fe DEPOSITS

By Dan L. Mosier and Donald A. Singer

COMMENTS Archean and Proterozoic deposits (Algoma and Superior types) are both included becausethey are not significantly different in tonnage or grades. See figs. 172-174

DEPOSITS

Name Country Name Country

Altamira-Frontera VNZL Bellary INDAAmapa BRZL Bicholim INDAAn-shan CINA Burnt Hill-Knob Lake CNQUBahia BRZL Cerro Bolivar VNZLBailadila INDA Chityal and others INDA

228

Page 243: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34a--Con.

CuyunaDhalli-RajharaEl PaoFiskefjordFort ApacheFort GourandGogebicGorumahisani and othersGoulaisGunturIsuaIron Monarch-Iron KnobJussaariKanjamalai and othersKemmangundi and othersKoolyanobbingKrivoi-RogKudremukh and othersKung-changlingKusalpurLabrador QuebecLohara and othersLos CastillosMaria LuisaMarquetteMato GrossoMenomineeMesabiMinas Gerais

USMNINDAVNZLNRWYUSAZMAURUSMNINDACNONINDAGRLDAUSAFNLDINDAINDAAUWAURRSINDACINAINDACNQUINDAVNZLVNZLUSMNBRZLUSMNUSMNBRZL

Moose MountainMount GibsonMount GouldMount HaleMount PhilipMusanMutumNoamundi-Joda-Gua etc.NorbergPa-pan-lingPen-chi-huPiacoaPorkonenRowghatSangalwaraSanta BarbaraSerria do CarajasSirigaoSsu-chia-yingStripa-StribergSydvanangerTallering PeakThabazimbiTonkoliliVermilionVestpolltindWeld Range-Wilgie Mia

CNONAUWAAUWAAUWAAUQLNKORBLVAINDASWDNCINACINAVNZLFNLDINDAINDAVNZLBRZLINDACINASWDNNRWYAUWASAFRSRLNUSMNNRWYAUWA

ALGOMA AND SUPERIOR IRON

1.0

os

O.

0.7

to

Ua

0z0

0-

0.

0.6

0.5

0.4

03

0.2

0.0

MILLION TONNES

Figure 172. Tonnages of Algoma Fe and Superior Fe deposits.

229

Page 244: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34a--Con.

ALGOMA AND SUPERIOR IRON

CO

0

2

CL

1.0

0.9

OJ

0.7

0.6

0.5

0.4

0.3

02

0.1

0.0

Figure 173. Iron grades of Algoma Fe andSuperior Fe deposits. IRON GRADE IN PERCENT

ALGOMA AND SUPERIOR IRON

Ci

U.

0z0

F

0.

Figure 174. Phosphorus grades of Algoma Fe

and Superior Fe deposits.

230

PHOSPHORUS GRADE IN PERCENT

Page 245: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34b

DESCRIPTIVE MODEL OF SEDIMENTARY Mn

-, By William F. Cannon and Eric R. Force

APPROXIMATE SYNONYM Bathtub-ring Mn.

DESCRIPTION Shallow marine (non-volcanogenic) sedimentary Mn deposits formed around rims of anoxicbasins during transgression (see fig. 175).

GENERAL REFERENCE Cannon and Force (1983).

GEOLOGICAL ENVIRONMENT

Rook Types Shallow marine sediments, most commonly carbonates, clay, and glauconitic sand,commonly with shellbeds, in transgressive sequences associated with anoxic basins.

Age Range Mostly in "anoxic events," narrow time periods within the early Paleozoic, Jurassic, andmid-Cretaceous, but may be in rocks of any age associated with anoxic basins.

Depositional Environment Shallow (50-300 m) marine, commonly in sheltered sites around paleo-islands. Most deposits overlie oxidized substrates, but basinward, carbonate deposits may be inchemically reduced settings.

Tectonic Setting(s) Stable cratonic interior basin or margin.

Associated Deposit Types Locally, sedimentary phosporites, sediment-hosted Cu.

DEPOSIT DESCRIPTION

Mineralogy A variety of Mn carbonates (mostly basinward) and oxides (mostly landward).

Texture/Structure Commonly as oolites, pisolites, laminae, and shell replacements.

Alteration Supergene alteration to high-grade ore is common.

Ore Controls Oxidation-reduction interface (involves age, paleobasin reconstruction, paleodepth ofsite) and lack of elastic dilution.

Weathering Mn carbonates may weather to brown, nondescript rock. Black secondary oxides arecommon.

Geochemical Signature None known.

EXAMPLESMolango (Jurassic), MXCO (Tavera and Alexandri, 1972)Nikopol (Oligocene), USSR (Sapozhnikov, 1970)Groote Eyland (Cretaceous), AUTN (Frakes and Bolton, 1984)

GRADE AND TONNAGE MODEL OF SEDIMENTARY Mn

By Dan L. Mosier

DATA REFERENCES Most data from DeYoung and others (1984).

COMMENTS Because available grade and tonnage estimates represent mines from, in some cases, veryextensive deposits and because the numbers are calculated at differing cutoff grades, the endowmentof these deposits is undoubtedly much larger than indicated in these figures. See figs. 176-177.

231

Page 246: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34b--Con.

DEPOSITS

Name

AkviranAndhra PradeshAnsongoAzul-CarajasBolske-TokmakChiaturaChiwefweGroote EylandtGujaratHorseshoeHsiangtanIminiIstrancaKalahariKamenskoeKaochiaoMadhya PradeshManuel Killigrews

Country Name Country

TRKYINDAMALIBRZLURRSURRSZIMBAUNTINDAAUWACINAMRCOTRKYSAFRURRSCINAINDACNNF

Matese-CiociariaMolangoMorro da MinaNaniangoNikolaevskoeNikopolNizne-UdinakajaOtjosonduRavensthorpeSeibaShimoga (Karnatoka)TimnaUracumUrkutUsinskVarnaWafangtzu

ITLYMXCOBRZLUVOLURRSURRSURRSSAFRAUWAURRSINDAISRLBRZLHUNGURRSBULGCINA

Sea tevel\ Fn oxide Island, peninsula, or shoal MainlandSe evl I

Oxic_ -

~~~~~~Gray shale __-/

Older rocks Sandstone and

Black shale conglomerate

100 to 200 m

2 to 10 km

Figure 175. Cartoon cross section showing relation of sedimentary facies tosedimentary Mn deposits.

232

Page 247: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

SEDIMENTARY MANGANESEModel 34b--Con.

r

.-

.U0

0

Q.

MILLION TONNES

SEDIMENTARY MANGANESE

Figure 176. Tonnages of sedimentary Mndeposits.

1.0

0.9

0.9

0I I I I I I I I

n .30

0.7 1-0

\O

0OA

0IL0 0.5

0O

CA e

0

0_-

_

0.3 _-

00

0

0

0.2 _-

0.10o.N1 J91I iS I I I I I

0 10 20 30 40 50 60 70 80 0o too

A. MANGANESE GRADE IN PERCENT

oJ P I o0 I I I I I I _0.3~~~~~

0.2 - . _

0.1 I

0.0 -~~~~~~~

0.02I 04 I0 .1 02 .L 1- JO I

Figure 177. Metal grades of sedimentary Mndeposits. A, Manganese. B, Phosphorus.

2330.01

B.002 004 DPO S R 0 S16 0G32 R D I 1E 3 2.N

PHOSPHORUS GRADE IN PERCENTFA S10

Page 248: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34c

DESCRIPTIVE MODEL OF UPVELLING TYPE PHOSPHATE DEPOSITS

By Dan L. Mosier

DESCRIPTION Phosphorite sediments form a major stratigraphic unit within a sequence of marinesediments in upwelling areas in basins with good connection to the open sea.

GENERAL REFERENCES Slansky (1980), Sheldon (1964).

GEOLOGICAL ENVIRONMENT

Rock Types Phosphorite, marl, shale, chert, limestone, dolomite, and volcanic materials.

Age Range Precambrian through Miocene.

Depositional Environment Marine sedimentary basins with good connection to the open sea andupwelling, areas highly productive of plankton. Deposition occurs mostly in warm latitudes, mostlybetween the 40th parallels.

Tectonic Setting(s) Intra-plate shelf, platform, miogeosynclines, and eugeosynclines.

Associated Deposit Types Sedimentary manganese.

DEPOSIT DESCRIPTION

Mineralogy Apatite + fluorapatite + dolomite + calcite + quartz + clays (montmorillonite orillite) * halite * gypsum * iron oxides * siderite * pyrite * carnotite.

Texture/Structure Pellets, nodules, phosphatized shell and bone material.

Alteration None related to ore.

Ore Controls Basins, or parts of basins, favorable for the accumulation of organic rich sedimentsand for their evolution into phosphorites. Individual beds may be a meter thick or more and mayextend over hundreds of square kilometers.

Weathering Limonite and goethite.

Geochemical Signature P. N, F, C, and U. Anomalously radioactive.

EXAMPLESSoutheast, USID (Gulbrandsen and Krier, 1980)Meskala, MRCO (British Sulphur Corp. Ltd., 1980)Stra Quertane, TUNS (British Sulphur Corp. Ltd., 1980)

GRADE AND TONNAGE MODEL OF UPWELLING TYPE PHOSPHATE DEPOSITS

By Dan L. Mosier

COMMENTS See figs. 178-179.

DATA REFERENCE Krauss and others (1984).

234

Page 249: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34c--Con.

DEPOSITS

Name

Abu TarturAkashatAktyubinskAl-Hasa/OatranaAradBeershevaBu CraaBrooks RangeChilisaiDjebel OnkD-TreeDuchessEastern A&BEl HamraweinGanntourHahotoeHaikouHubsugulIdfu-QenaKalaa KhasbaKara TauKhneifissKondonakasiKun MingLady AnnieLee CreekLe KouifLily CreekMakhteshMazidagi

Country Name

EGPTIRAQURRSJRDNISRLISRLMRCOUSAKURRSALCRAUQLAUQLSYRAEGPTMRCOTOGOCINAMNGLEGPTTUNSURRSSYRAANGLCINAAUQLUSNCALCRAUQLUSRLTRKY

MdillaMeskalaMetalaouiMontanaMoularesMrataMzaitaNahal-ZinNew CuyamaOrontaOulad-AbdounPatos de MinasQusseirRedeyefRuseiraSafagarSan Juan de la CostaSechuraSehibS.E. IdahoShediyahSherrin CreekStra QuertaneTaibaThamar-KotraThiesUinta MtnsVernalWarm SpringsWyoming

Country

TUNSMRCOTUNSUSMTTUNSTUNSALGCISRLUSCAISRLMRCOBRZLEGPTTUNSJRDNEGPTMXCOPERUTUNSUSIDJRDNAUQLTUNSSNGL-INDASNGLUSUTUSUTUSMTUSWY

235

Page 250: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34c--Con.

PHOSPHATE, UPWELLING TYPE

PU,

al

0

z0

0caAL

1.0

0.9

0.8

0.7

0.6

05

0.4

03

02

0.1

0.0

Figure 178. Tonnages Of upwelling-typephosphate deposits. MILLION TONNES

PHOSPHATE, UPWELLING TYPE

l)I-

00.Ui

w

0U-0z

0

0.

1.0

0.9

0.8

0.

0.6

0.5

04

03

02

0.1

0.0

Figure 179. P2O, grades of upwelling-typephosphate deposits.

236

PHOSPHATE GRADE IN PERCENT P2 05

Page 251: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34d

DESCRIPTIVE MODEL OF WARM-CURRENT TmPE PHOSPHATE DEPOSITS

By Dan L. Mosier

DESCRIPTION Phosphorites formed in warm currents along the eastern coasts of continents; consistof phosphatic limestone or sandstone.

GENERAL REFERENCES Cathcart and Gulbrandsen (1973), Sheldon (1964).

GEOLOGICAL ENVIRONMENT

Rock Types Phosphatic limestone and sandstone; chert and diatomaceous material may be present.

Age Range Early Cretaceous through Pliocene.

Depositional Environment Basins of structural lows on the flanks of rising domes, at the mouths ofrivers and estuaries. Deposition occurs in warm latitudes, mostly between the 40th parallels.Deposits are formed by dynamic upwelling or by the cool countercurrent associated with warm densitycurrent.

Tectonic Setting(s) Continental shelf; may be associated with eugeosynclinal rocks.

DEPOSIT DESCRIPTION

Mineralogy Fluorapatite + quartz + dolomite + montmorillonite + kaolinite + calcite t wavellite *crandallite * illite * clinoptilolite * palygorskite * smectite * cellophane.

Texture/Structure Phosphatic pellets and fossil fragments with a carbonate matrix.

Ore Controls Stratigraphic phosphatic horizons within embayments and estuarine environments inproximity to the open sea. Basins on flanks of structural highs (domes, arches, anticlines) areimportant controls for phosphate deposition.

Weathering Goethite.

Geochemical Signature P, C, U, N, F. Anomalously radioactive.

EXAMPLESPaulista, BRZL (British Sulphur Corp. Ltd.

1980)East, north, and southFlorida, USFL

Offshore Savannah, USGA (Zellars-Williams Inc., 1978)

GRADE AND TONNAGE MODEL OF WARM-CURRENT TYPE PHOSPHATE DEPOSITS

By Dan L. Mosier

DATA REFERENCE Krauss and others, (1984).

COMMENTS About half of the deposits are actually districts. Grades have been adjusted to reflectin-place grades rather than commonly reported concentrate grades. See figs. 180-181.

DEPOSITS

Name Country Name Country

Big Four USFL Haynsworth USFLBonny Lake USFL Kingsford USFLClear Springs USFL Lonesome USFLEast Florida USFL Noralyn-Phosphoria USFLFort Green USFL North Florida USFLHard Rock USFL North Carolina USNC

237

Page 252: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 34d--Con.

Northeast FloridaOffshore SavannahPaulista

USFLUSGABRZL

Rockland USFLSavannah River USGASouth Florida USFL

PHOSPHATE, WARM-CURRENT TYPE

a)co00j

zQc-

Figure 180. Tonnages of warm-current typephosphate deposits.

MILLIONTONNESPHOSPHATE. WARM-CURRENT TYPE

1.0

0.0

0.7

0

EruJ

05

0.4

03

0.2

0.1

0o

Figure 181. P205 grades of warm-currenttype phosphate deposits.

PHOSPHATE GRADE IN PERCENT P2 05

238

Page 253: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36a

DESCRIPTIVE MODEL OF LOW-SULFIDE Au-QUARTZ VEINS

By Byron R. BergerAPPROXIMATE SYNONYMS Mesothermal quartz veins, Mother Lode veins.

DESCRIPTION Gold in massive persistent quartz veins mainly in regionally metamorphosed volcanicrocks and volcanic sediments.

GEOLOGICAL ENVIRONMENT

Rock Types Greenstone belts; oceanic metasediments: regionally metamorphosed volcanic rocks,graywacke, chert, shale, and quartzite. Alpine gabbro and serpentine. Late granitic batholiths.

Age Range Precambrian to Tertiary.

Depositional Environment Continental margin mobile belts, accreted margins. Veins are generallypost-metamorphic and locally cut granitic rocks.

Tectonic Setting(s) Fault and joint systems produced by regional compression.

Associated Deposit Types Placer Au-PGE, kuroko massive sulfide, Homestake gold.

DEPOSIT DESCRIPTION

Mineralogy Quartz + native gold + pyrite + galena + sphalerite + chalcopyrite + arsenopyrite *pyrrhotite. Locally tellurides * scheelite * bismuth * tetrahedrite * stibnite * molybdenite *fluorite. Productive quartz is grayish or bluish in many instances because of fine-grainedsulfides. Carbonates of Ca, Mg, and Fe abundant.

Texture/Structure Saddle reefs, ribbon quartz, open-space filling textures commonly destroyed byvein deformation.

Alteration Quartz + siderite and (or) ankerite + albite in veins with halo of carbonate-J alteration. Chromian mica + dolomite and talc + siderite in areas of ultramafic rocks. Sericite

and disseminated arsenopyrite + rutile in granitic rocks.

Ore Controls Veins are persistent along regional high-angle faults, joint sets. Best depositsoverall in areas with greenstone. High-grade ore shoots locally at metasediment-serpentinecontacts. Disseminated ore bodies where veins cut granitic rocks.

Weathering Abundant quartz chips in soil. Gold may be recovered from soil by panning.

Geochemical Signature Arsenic best pathfinder in general; Ag, Pb, Zn, Cu.

EXAMPLESGrass Valley, USCA (Lindgren, 1896)Mother Lode, USCA (Knopf, 1929)Ballarat Goldfield,Victoria, AUVT (Baragwanath, 1953)

Goldfields of Nova Scotia, CNNS (Malcolm, 1929)

GRADE AND TONNAGE MODEL OF LOW-SULFIDE Au-QUARTZ VEINS

By James D. Bliss

COMMENTS All mines within 1.6 km were combined and only deposits containing more than 99 tonnesare included. Gold grade is correlated with tonnage (r 2 -0.30) and with silver grade (r = 0.45, n= 39). See figs. 182-183.

239

Page 254: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36a--Con.

DEPOSITS

Name Country

AlAchillesAlabama ShootAlex Hill-Mad KissAliceAlleghany EastAlleghany WestAltoAmador CityAmerican BarAmpleAngels-CarsonArgoArgus HillAshlandAtlasBagbyBagby ValleyBallaratBarrandumBear ValleyBear Valley SouthBeaver DamBeldenBendigoBendigoBerry CreekBethangaBig Oak FlatBirthday-William FancyBlack BearBlack BoyBlackstoneBlockhouseBlue LeadBlue MountainBonanzaBondurantBradenBralorne-PioneerBroken HillsBrookfieldBuller-MokihinuiCaledoniaCanyon Creek-East ForkCaribouCaribou-AurumCarletonCarolinCassilisCentralCentral RawdonChewtonChichagofCleary HillClunes GoldfieldCoarsegoldCobolCochrane Hill

240

AUVTNZLDAUVTGUYNUSCAUSCAUSCAUSCAUSCAUSCACNBCUSCAUSCAAUVTUSORUSCAUSCAUSCAAUVTUSCAUSCAUSCACNNSUSCAAUVTNZLDUSCAAUVTUSCAAUVTUSCAUSCAUSCACNNSUSAKUSCANZLDUSCAUSORCNBCUSCACNNSNZLDAUVTUSCACNNSCNBCCNNSCNBCAUVTUSCACNNSAUVTUSAKUSAKAUVTUSCAUSAKCNNS

Name

ColfaxColomboCometConfidenceCoultervilleCoulterville SouthCountry HarbourCove DistrictCow BayCox, Bolyan & LobergCranberry HillDalesfordDamascusDefenderDeltaDemarestDineroDominion ConsolidatedDorotheaEagle Bluff-River BendEagle ShawmutEarly-SweetwaterEast RawdonEclipse No. 1Ecum SecumEl DoradoEl PortalEliza-SchroederEmpire-Lone StarEnterpriseEsmeraldaEster Dome SEExperimentalFeliciannaFifteen-mile BrookFifteen-mile StreamFifty-fiveFine GoldFinneyFive PinesForbestownFordForest HillFour Hells MineFourth CrossingFrancis OrmandFranklinFrenchFrench GulchFryer's CreekGabriels GullyGalice NorthGabrettaGabrinusGemGem OliveGerman BarGiant KingGibralter

Country

USCAUSCAUSAKUSCAUSCAUSCACNNSUSCACNNSUSAKCNNSAUVTUSCAUSCAUSCAUSCAUSCANZLDUSORUSCAUSCAUSCACNNSUSCACNNSUSCAUSCAUSCAUSCAUSCAUSCAUSAKUSCAUSCACNNSCNNSUSCAUSCAUSCAUSCAUSCAUSCACNNSUSCAUSCAAUVTUSCAUSCAUSCAAUVTNZLDUSORUSCAUSCAUSCAUSCAUSCAUSCAUSCA

Page 255: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36a--Con.

GladstoneGlencoe-WoodhouseGlobe-RalstonGold BugGold PointGold ReefGold RiverGold ChariotGolden EagleGolden JubileeGolden-El DoradoGoldenvilleGrand VictoryGranite HillGranite KingGrantGrass ValleyGreen ExcelsiorGreenbackGwynneHall CreekHam & BirneyHarrietHarrigan CoveHathawayHazelHedley CampHenry FordHermanHi-YuHillgroveHirst-ChichagofHomestake-McCartyHornitosHorseshoe IHunter ValleyIconoclastIndian Path MineInvincible LodeIsaac's HarbourJabal GuyanJamestownJoe WalkerJubileeJubilee-New JubileeJulian-BannerK.C.KelseyKelsey NorthKemptvilleKillagKinsleyKinsley NorthKotchkar MinesLake CatchaLamphearLawrence townLeipsigateLeviathanLibertyLittle SquawLocarnoLoch Fyne

USCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCAUSCACNNSUSCAUSORUSCAUSAKUSCAUSCAUSORUSCACNBCUSCACNBCCNNSUSCAUSCACNBCUSAKUSCAUSAKAUNSUSAKUSAKUSCAUSCAUSCAUSCACNNSNZLDCNNSSAARUSCAUSCANZLDAUVTUSCAUSCAUSCAUSCACNNSCNNSUSCAUSCAUSSRCNNSUSCACNNSCNNSAUVTUSCAUSAKUSCAAUVT

Lone MaryLong TunnelLord NelsonLucky BartLucky Shot-War BabyLyell GoldfieldMabelMalden NorthMammothMarinersMariposaMaude & Yellow GirlMidasMikadoMiller LakeMintoMizpahMohawk-Dome ViewMokelumneMolegaMontaqueMoore's FlatMoose RiverMooseheadMooselandMormon BarMorning StarMorris RavineMount BullionMount GainesMount PleasantMount ShastaMount UniackeMount VernonMountain KingNalden SouthNashvilleNationalnew BendigoNew Era-RoweNimrodNorth MurphyNorth StarNuggettyO'ConnorsOld DiggingsOldhamOphirOregon BellOrientialOro Grande-Buena VistaOturehua FieldOvensOyaPaloma-GwinPaparoa RangePatrickPenrynPhoenixPipestemPlacervillePleasant RiverPorto Rico

USCAAUVTAUVTUSORUSAKNZLDUSAKAUVTUSCAAUVTUSCAAUVTUSCAUSAKCNNSCNBCUSAKUSAKUSCACNNSCNNSUSCACNNSCNNSCNNSUSCAAUVTUSCAUSCAUSCAUSCAUSCACNNSUSCAUSCAAUVTUSCAUSCAAUVTAUVTAUVTUSCAUSAKAUVTAUVTUSCACNNSUSCAUSORAUVTUSCANZLDCNNSJAPNUSCANZLDUSCAUSCAUSCACNBCUSCACNNSCNBC

241

Page 256: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36a--Con.

PyramidR.R. Flat SouthRainbowRainbowRanchRavenswoodReefton GoldfieldReicher TrostRenfrewRichRich GulchRich Gulch (Virgilia)Rindge No. 1Robert ERobertsonRose of DenmarkRosethistle & ShamrockRoyal Mountain KingRyanRyan GroupS. Branch StweiackeSailor's GullySalmon RiverSalsigneSambasSandfordScott BarSeal HarbourSecond ReliefSesson MineSheep RanchShenandoah MineSligerSoo

USCAUSCAUSORUSCAUSCANZLDNZLDPLNDCNNSUSCAUSCAUSCAUSCAUSORUSORAUVTAUVTUSCAUSCAUSAKCNNSAUVTCNNSFRNCAUVTUSAKUSCACNNSCNBCUSCAUSCAUSCAUSCAUSAK

SoulsbyvilleSouth UniackeSpring GullyStonewallSultanSurf InletSutter CreekSylvaniteTangierTaylorTipperary MineToombouTreadwell MinesTruscottUncle SamUpper Seal HarbourValley ViewVogler's CoveWardWarringtonWashingtonWattle GullyWaverleyWaysideWest GoreWest JacksonvilleWestlandWhiteburnWhitlock EastWhitlock WestWilshire-BishopWine HarbourYankee HillZeila

USCACNNSAUVTUSCAAUVTCNBCUSCAUSORCNNSUSCANZLDAUVTUSAKUSCAUSCACNNSUSCACNNSCNBCUSCAUSCAAWVTCNNSCNBCCNNSUSCANZLDCNNSUSCAUSCAUSCACNNSUSCAUSCA

OW--SULFIDE GOLD--OUARTZ VEIN

ci)

0

U-a

0

Figure 182. Tonnages of low-sulfide Au-quartz vein deposits.

242MILLION TONNES

Page 257: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36a--Con.

LOW-SULFIDE GOW-OUARIZ VEIN

II

A. GOLD GRADE IN GRAMS PER TONNE0.2 l I

0.1-"1'"%;.|,|||

0.0 A . 2 100 250 30 1600 4000

B. SILVER GRADE IN GRAMS PER TONNE

Figure 183. Precious-metal grades of low-sulfide Au-quartz veindeposits. A, Gold. B, Silver.

243

Page 258: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36b

DESCRIPTIVE MODEL OF HOMESTAKE Au

By Byron R. Berger

APPROXIMATE SYNONYMS Volcanogenic gold, iron-formation-hosted Au, Archean lode gold.

DESCRIPTION Stratabound to stratiform gold deposits in iron-rich chemical sediments in Archeanmetavolcanic terrane.

GENERAL REFERENCES Ridler (1970), Hutchinson (1976), Philips and others (1984), Fripp (1976),Colvine and others (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Regionally metamorphosed mafic and felsic metavolcanic rocks, komatiites, andvolcaniclastic sediments interlayered with banded iron-formation. Intruded by felsic plutonicrocks and locally by quartz porphyry, and syenite porphyry.

Age Range Mainly Archean.

Depositional Environment Controversial: submarine hot-spring activity related to volcanism, orlater hydrothermal activity related to intrusive rocks.

Tectonic Setting(s) Archean greenstone belts. Commonly near regional division or "break" betweenpredominantly metavolcanic and predominantly metasedimentary rocks. Greenschist-faciesmetamorphism.

Associated Deposit Types Kuroko massive sulfide deposits, Algoma Fe, low-sulfide gold-quartzveins.

DEPOSIT DESCRIPTION

Mineralogy Native gold + pyrite + pyrrhotite * arsenopyrite * magnetite * sphalerite *chalcopyrite. May contain minor tetrahedrite + scheelite + wolframite + molybdenite * fluorite *stibnite. Realgar at Hemlo deposit. Some deposits show zoning from proximal pyrrhotite *magnetite to distal arsenopyrite.

Texture/Structure Narrow thinly laminated beds, veins, or lenses, overlying stringers(stockworks).

Alteration Host rocks contain quartz + siderite and (or) ankerite + tourmaline + chlorite +magnetite in mafic volcanic terranes. Chromian mica and chlorite particularly around veins andstockworks. Banded oxide-facies iron-formation replaced by pyrite~or pyrrhotite.

Ore Controls Bedded ores in Fe-rich siliceous or carbonate-rich chemical sediments with vein andstockworks in feeder zones to these sediments, often interlayered with flow rocks. Beds may be cutby condordant or sharply discordant quartz-carbonate veins with gold.

Weathering Gossans from oxide and carbonate iron-formation.

Geochemical Signature Au + Fe + As + B + Sb (+ platinum-group metals in mafic volcanicterranes). Bi, Hg, and minor Cu-Pb-Zn-Ag-Mo.

EXAMPLESHomestake, USSD (Rye and Rye, 1974)Passagem, BRZL (Fleisher and Routhier, 1973)Dome Mine, CNON (Fryer and others, 1979)Agnico Eagle, CNQB (Barnett and others, 1982)Vubachikwe, ZIMB (Fripp, 1976)

244

Page 259: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36b--Con.

GRADE AND TONNAGE MODEL OF 8OMESTAKE Au

By Dan L. Mosier

COMMENTS Deposits were combined wheneach other. Grades and tonnages wereassociated with different host rocks.

they occur within 1.6 km ofnot found to be significantly different for depositsSee figs. 184-186

DEPOSITS

Name

AgassizAlbinoAnkerite-Aunor-DelniteArrowheadAshleyBankfield-TombillBarbara-SurpriseBarber-LarderBarbertonBarry HollingerBellevueBidgood-Moffatt-HallBig BellBlack Range-OroyaBobBonnievaleBouscadillac and othersBroulan and othersBuffalo Red LakeBurbanksCalder-BousquetCampbell Red Lake-DickensonCarshaw-Tommy BurnsCathroy LarderCentral ManitobaCentral PatriciaCheminis-Fernland-OmegaChestervilleConnemaraCoolgardieCopperheadCosmopolitanCullaton LakeDavidsonDay Dawn-Main LineDe SantisDome-Paymaster-PrestonEdna MayEmu-Great EasternFraser'sFuller-TisdaleGeitaGimlet-SlipperyGladstome-Sand QueenGod's LakeGold Eagle-McKenzieGold HawkGold HillGolden RidgeGongo Socco

Country

CNMNCNONCNONCNQUCNONCNONAUWACNONSAFRCNONAUWACNONAUWAAUWAZIMBAUWACNONCNONCNONAUWACNQUCNONCNONCNONCNMNCNONCNONCNONZIMBAUWAAUWAAUWACNNTCNONAUWACNONCNONAUWAAUWAAUWACNONTNZNAUWAAUWACNMNCNONCNONCNONAUWABRZL

Name

GurneyHard Rock-McLeod-CockshuttHasaga-HoweyHollinger and othersHomestakeHuttiIda H.Island LakeJasonJeromeKerr AddisonKiabakariKilo-MotoKolarLaguerreLancefieldLapa CadillacLeitch-Sand RiverLingmanLittle Long LacMadsenMagnet Cons.Marble BarMartin-BirdMatachewan Cons. & othersMatona-StairsMcFinleyMcMarmacMcWattersMenziesMinto-TyraniteMorris-KirklandMorro VelhoMt. MagnetMt. MorgansNaybobNobles NobNorseman-DundasOrpitPaddy's FlatPalmer's FindPassagemPickle CrowQueenstonRapososRed CrestRed Lake Gold ShoreRossRouyn MergerSanshaw

Country

CNMNCNONCNONCNONUSSDINDAAUWACNMNCNONCNON-CNONTNZNCNGOINDACNONAUWACNQUCNONCNONCNONCNONCNONAUWACNONCNONCNONCNONCNONCNQUAUWACNONCNONBRZLAUWAAUWACNONAUWAAUWACNONAUWAAUWABRZLCNONCNONBRZLCNONCNONCNONCNQUCNON

245

Page 260: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36b--Con.

Shamva-Cymric Gp.Son of GwaliaStadaconaStarratt-OlsenTalmora LonglacThompson BousquetTimoniTriton

ZIMBAUWACNQUCNONCNONCNQUAUWAAUWA

UchiUpper BeaverUpper CanadaWasa LakeWhite FeatherWilmar and othersWiluna-MoonlightYouanmi

CNONCNONCNONCNQUAUWACNONAUWAAUWA

HOMESTAKE GOLD

0,

z

120

a.

MILLION TONNES

Figure 184. Tonnages of Homestake Au deposits.

246

Page 261: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 36b--Con.

HOMESTAKE GOLD

I0cR

1.0

0.9

0*6

0.7

0.6

0.5

DA

0.3

02

0.1

0.0

GOLD GRADE IN GRAMS PER TONNE

HOMESTAKE GOLD

Figure 185. Gold grades of Homestake Audeposits.

z

20a-

1.0

0.9

0*

0.7

0.6

05

OA

0n

02

0.1

Mc

SILVER GRADE IN GRAMS PER TONNEFigure 186. Silver grades of Honestake Audeposits.

247

Page 262: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 37a

DESCRIPTIVE MODEL OF UNCONFORMITY U-Au

By Richard I. Grauch and Dan L. Mosier

APPROXIMATE SYNONYM Veinlike type U (Dahlkamp and Adams, 1981).

DESCRIPTION Uranium mineralization occurs as fracture- and breccia-filling in metapelites,metapsammites and quartz arenites located below, above, or across an unconformity separating Earlyand Middle Proterozoic rocks.

GENERAL REFERENCE Nash and others (1981).

GEOLOGICAL ENVIRONMENT

Rock Types Regionally metamorphosed carbonaceous pelites, psammites, carbonate rocks. Youngerunmetamorphosed quartz arenites.

Textures Metamorphic foliation and later brecciation.

Age Range In rocks of Early and Middle Proterozoic age (1,800-1,200 m.y.), affected byProterozoic regional metamorphism.

Depositional Environment Host rocks are sedimentary shelf deposits and overlying continentalsandstone. Deposits result from complex processes including regional metamorphism, weathering andsupergene enrichment related to Proterozoic unconformity, and later remobilization and enrichmentbeneath cover of younger strata.

Tectonic Setting(s) Intracratonic sedimentary basins on the flanks of Archean domes. Tectonicallystable since Middle Proterozoic.

Associated Deposit Types Gold- and nickel-rich uranium deposits may occur but are poorlyunderstood and no models are available.

DEPOSIT DESCRIPTION

Mineralogy Pitchblende + uraninite i coffinite * pyrite * chalcopyrite * galena t sphalerite *

arsenopyrite * niccolite. Chlorite + quartz + calcite + dolomite + hematite + siderite +sericite. Locally late quartz-chlorite veins contain native gold or silver, uraninite, galena, andtellurides of Bi, Ni, Pb and Pd. Latest quartz-calcite veins contain pyrite, chalcopyrite, andbituminous matter.

Texture/Structure Breccia filling, veins, and disseminations. Coarse euhedral uraninite and finecolloform pitchblende. Latest quartz-calcite veins show open-space fillings, colloform texture.

Alteration Multistage chloritization is dominant. Local sericitization, dolomitization,hematitization, kaolinitization. Incipient and vuggy vein-type silicification occur throughout thealteration envelope. Alteration envelope is variably enriched in Mg, P, REE, and a variety ofmetals. Alkali elements are depleted.

Ore Controls Fracture porosity controlled ore distribution in the metamorphites and to a limitedextent in the overlying quartz arenite. The unconformity acted as a major disruption in the flowof ore-forming fluids but did not necessarily act as a locus of ore formation.

Weathering Secondary U minerals uranyl-phosphate, metatorbernite, autunite, uranophane, gummite,sklodowskite.

Geochemical and Geophysical Signature Increase in U, Mg, P and locally in Ni, Cu, Pb, Zn, Co, As;decrease in SiO2. Locally Au, associated with Ag, Te, Ni, Pd, Re, Mo, Hg, REE, Y and Rb.Anomalous radioactivity. Graphitic schists in some deposits are strong electromagnetic conductors.

EXAMPLESRabbit Lake, CNSK (Hoeve and Sibbald, 1978)Cluff Lake, CNSK (Laine, 1985)

248

Page 263: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 37a--Con.

Key Lake, CNSKJabiluka, AUNTRanger, AUNT

(Dahikamp, 1978)(Binns and others, 1980, Grauch, 1984)(Eupene, 1979)

GRADE AND TONNAGE MODEL OF UNCONFORMITY U-Au

By Dan L. Mosier

COMMENTS Deposits are defined by a separation of 100 m stratigraphically and along strike.Sufficient number of Au grades were not available to construct a plot. See rigs. 187, 188.

DEPOSITS

Name

Cluff Lake-ClaudeCluff Lake DCluff Lake NCluff Lake OPCluff Lake RCluff Bay ACluff Bay BDawn LakeDyson's (Rum Jungle)El SheranaEl Sherana WestFond-du-LacJabiluka IJabiluka 1IKey Lake (Deilmann)Key Lake (Gaertner)Koolpin CreekKoongarra

Country

CNSKCNSKCNSKCNSKCNSKCNSKCNSKCNSKAUNTAUNTAUNTCNONAUNTAUNTCNSKCNSKAUNTAUNT

Name

McClean LakeMaurice BayMidwest LakeMount Burton (Rum Jungle)Mount Finch (Rum Jungle)NabarlekPaletteRabbit LakeRanger No. 1Ranger No. 3Rockhole-TeagesRum Jungle Creek SouthScinto 5SkullSleisbeckStewart IslandWest BearWhite's (Rum Jungle)

CNSKCNSKCNSKAUNTAUNTAUNTAUNTCNSKAUNTAUNTAUNTAUNTAUNTAUNTAUNTCNSKCNSKAUNT

Country

249

Page 264: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 3Ta--Con.

UNCONFORMITY URANIUM-GOLD

0

z

tI-

0a.

Figure 187. Tonnages of unconformity U-Audeposits. MILLION TONNES

UNCONFORMITY URANIUM-GOLD

1.0

oE

oi

0.7EOs

LU

0 0.5

o

2 0.4

g

0

0.3

0.2

0.1

0.0

Figure 188. Uranium grades of unconformityU-Au deposits.

250

URANIUM GRADE IN PERCENT U308

Page 265: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 37b

DESCRIPTIVE MODEL OF COLD ON FLAT FAULTS

By Bruce A. Bouleyt

DESCRIPTION Disseminated gold in breccia along low-angle faults

GENERAL REFERENCE Wilkins (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Breccia derived from granitic rocks, gneiss, schist, mylonite and unmetamorphosedsedimentary and volcanic rocks. Rhyolitic dikes and plugs.

Textures Chaotic jumble of rock and vein material.

Age Range Unknown. Examples in southern California and southwestern Arizona are mainly Mesozoicand Tertiary.

Depositional Environment Permeable zones: source of heat and fluids unknown.

Tectonic Setting(s) Low-angle faults in crystalline and volcanic terrane. Including detachmentfaults related to some metamorphic core complexes and thrust faults related to earlier compressivesregimes.

Associated Deposit Types Epithermal quartz adularia veins in hanging-wall rocks of some districts.

DEPOSIT DESCRIPTION

Mineralogy Gold, hematite, chalcopyrite, minor bornite, barite, and fluorite.

Texture/Structure Micrometer-size gold and specular hematite in stockwork veining and brecciatedrock.

Alteration Hematite, quartz, and chlorite. Silicification. Carbonate minerals.

Ore Controls Intensely brecciated zones along low-angle faults. Steep normal faults in hangingwall. Sheeted veins.

Weathering Most ore is in oxidized zone because of lower cost of recovery. Mn oxides.

Geochemical Signature Au, Cu, Fe, F, Ba. Very low level anomalies in Ag, As, Hg, and W.

EXAMPLES:Picacho, USCA (Van Nort and Harris, 1984)Copper Penny and Swansea, USAZ (Wilkins and Heidrick, 1982)

* Present address: Callahan Mining Corp., 6245 North 24thStreet, Phoenix, AZ 85016.

251

Page 266: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38a

DESCRIPTIVE MODEL OF LATERITIC Hi

By Donald A. Singer

DESCRIPTION Nickel-rich, in situ lateritic weathering products developed from dunites andperidotites. Ni-rich iron oxides are most common. Some deposits are predominantly Ni silicates.

GENERAL REFERENCE Evans and others (1979).

GEOLOGICAL ENVIRONMENT

Rock Types Ultramafic rocks, particularity peridotite, dunite, and serpentinized peridotite.

Age Range Precambrian to Tertiary source rocks, typically Cenozoic weathering.

Depositional Environment Relatively high rates of chemical weathering (warm-humid climates) andrelatively low rates of physical erosion.

Tectonic Setting(s) Convergent margins where ophiolites have been emplaced. Uplift is required toexpose ultramafics to weathering.

Associated Deposit Types Podiform chromite, PGE placers, serpentine-hosted asbestos.

DEPOSIT DESCRIPTION

Mineralogy Garnierite, poorly defined hydrous silicates, quartz, and goethite. Goethite commonlycontains much Ni.

Texture/Structure Red-brown pisolitic soils, silica-rich boxworks.

Alteration Zoned--from top: (1) Red, yellow, and brown limonitic soils; (2) saprolites--continuous transition from soft saprolite below limonite zone, hard saprolite and saprolitizedperidotite, to fresh peridotite. Boxwork of chalcedony and garnierite occurs near bedrock-weathered rock.

Ore Controls Upper limonite zone containing 0.5-2 percent Ni in iron-oxides; lower saprolite andboxwork zone typically contains 2-4 percent Ni in hydrous silicates. The oxide and silicate oresare end members and most mineralization contains some of both.

Weathering The profile from red-brown pisolitic soil down to saprolite represents the products ofchemically weathered ultramafic rocks.

Geochemical Signature Enriched in Ni, Co, Cr; depleted in MgO relative to fresh peridotite (lessthan 40 percent MgO).

EXAMPLESPoro, NCAL (Troly and others, 1979)Cerro Matoso, CLBA (Gomez and others, 1979)Nickel Mountain, USOR (Chace and others, 1969)Greenvale, AUQL (Burger, 1979)

GRADE AND TONNAGE MODEL OF LATERITIC Ni

By Donald A. Singer

COMMENTS Higher grades are typically associated with the silicate type. Numerous low-grade (lessthan 1 percent Ni) and low-tonnage deposits are not included. Nickel grade is correlated withtonnage (r = -0.31). See figs. 189, 190.

252

Page 267: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38a--Con.

DEPOSITS

J.11 Name Country

AmbatoryAnalumayBarro AltoBerongBhimatangarBlue RidgeBr. Solomon Is.Buka

Cabo RojoCerro MatosoClaude HillsCyclopsDinagat Is.EuboeaExmibalFalconbridgeGag Is.Golesh Mt.GolosGoroGreenvaleHagios IoannisHalmaheraIpanemeJacupuengaKaliapaniKansaKauadarciLaguneyLake JoaninaLeviso R.Loma de HierroLong PointMarlboroughMasinlocMayari

MDGSMDGSBRZLPLPNINDAPLPNSLMNPLPNPTRCCLBAAUSAINDSPLPNGRECGUATDMRPINDSYUGOYUGONCALAUQLGRECINDSBRZLBRZLINDAINDAYUGOPLPNGRECCUBAVNZLPLPNAUQLPLPNCUBA

Name

Moa BayMoorsomMoramangaMorro de EngenhoMwaytungNepouiNew FrontierNiquelandiaNonocObiOra BandaOrskPujada Pen.PomaleaPoroPoumPratapolisPronyRamona-LomaRiddleRio TubaSablayonSao Joaodo PiauiSanta CruzSaruabiS.E. KalimantanSidamoSimlipalSoroakoSukindaSuriagaoTaco BayThioTiebaghiWingelinna-Daisy

Country

CUBAPLPNMDGSBRZLBRMANCALPLPNBRZLPLPNINDSAUWAURRSPLPNINDSNCALNCALBRZLNCALCUBAUSORPLPNPLPNBRZLPLPNINDAINDSETHPINDAINDSINDAPLPNCUBANCALNCALAUWA

-i253

Page 268: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

LATERIC NICKEL

Model 38a--Con.

f2

0U.0zQIC.

00.

Figure 189. Tonnages of lateritic Nideposits. MILLION TONNES

LATERITIC NICKEL

I-

0~

U.0

z0

00.0L

A. NICKEL GRADE IN PERCENT

0.2

0.1

Figure 190. Metal grades of lateriticNi deposits. A, Nickel. B, Cobalt. 0.0

N'

254 B. COBALT GRADE IN PERCENT

Page 269: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38b

DESCRIPTIVE mODEL OF LITERITE TYPE BAUXITE DEPOSITS

By Sam H. Patterson

APPROXIMATE SYNONYM Aluminum ore (Patterson, 1967).

DESCRIPTION Weathered residualmaterial in subsoil formed on any rock containing aluminum.

GENERAL REFERENCE Patterson (1984).

GEOLOGICAL ENVIRONMENT

Rock Types Weathered rock formed on aluminous silicate rocks.

Textures Pisolitic, massive, nodular, earthy.

Age Range Mainly Cenozoic, one Cretaceous deposit known.

Depositional Environment Surficial weathering on well-drained plateaus in region with warm to hotand wet climates. Locally deposits in poorly drained areas low in Fe due to its removal by organiccomplexing.

Tectonic Setting(s) Typically occurs on plateaus in tectonically stable areas.

Associated Deposit Types Overlain by thin "A" horizon soil, underlain by saprolite (parent rock inintermediate stages of weathering).

DEPOSIT DESCRIPTION

Mineralogy Mainly gibbsite and mixture of-gibbsite and boehmite; gangue minerals hematite,goethite, anatase, locally quartz.

Texture/Structure Pisolitic, massive, earthy, nodular.

Alteration Aluminous rocks are altered by weathering to bauxite.

Ore Controls Thoroughly weathered rock, commonly erosional boundaries of old plateau remnants.

Weathering Intensive weathering required to form bauxite. Bauxite continues to form in presentweathering environment in most deposits.

Geochemical Signature: Al, Ga.

EXAMPLESAustralia, Brazil, Guinea

examples are reviewed in Patterson (1967)

GRADE AND TONNAGE MODEL OF LATERITE TYPE BAUXITE DEPOSITS

By Dan L. Mosier

REFERENCES Patterson (1967) and numerous other papers.

COMMENTS A district has been defined as a deposit or a group of deposits in whicheach deposit is not separated by more than 20 km from an adjacent deposit. Usingthis rule, most district names in the published literature have been retained;however, some previously regarded districts have been divided into two or moredistricts, which therefore are named after the largest deposit in that district or alocal place name. See figs. 191, 192.

255

Page 270: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38b--Con.

DEPOSITS

Name

AffohAlmeirimAlumenAnalavoryAnantagiriAsafoAurukumAwasoAyekoyeBiharBakhuis MountainsBalea-SitaoumaBamboutosBangamBarao de Cocais-CaeteBarra do PiraiBhavnagarBilaspurBintan IslandBlue Mountains-

Oko MountainsBoeBom Repouso-CambuiBoolarraCaldasCape BougainvilleCaroline IslandsCataguasesChampagne (Oakwood)Chintapalli-GurteduChitteringCroker IslandD'AnalamaitsoD'AnkazobeDabolaDebele (Kindia)Del Park-HuntlyDescobertoDivinolandia de MinasEast MauiEmmavilleFenoarivoFongo TongoFria-KimboGambeGoveHamptonIles de LosIntendencia de AraucaIrituiaItanhandu-ResendeJamirapat-KhuriaJamnagar (Saurashtra)JarrahdaleKalahandi-KoraputKauaiKaw MountainsKerikeriKheda (Kaira)

Country

GHNABRZLMZMBMDGSINDAGHNAAUQLGHNAGNEAINDASRNMMALICMRNCMRNBRZLBRZLINDAINDAINDS

GUYNGNBSBRZLAUVTBRZLAUWACARLBRZLAUNSINDAAUWAAUNTMDGSMDGSGNEAGNEAAUWABRZLBRZLUSHIAUNSMDGSCMRNGNEABRZLAUNTAUQLGNEACLBABRZLBRZLINDAINDAAUWAINDAUSHIFRGNNZLDINDA

Name

Khushab (Sargohda)KibiKolaba-RatnagiriKolhapurKoro PlateauKutchLos PijiguaosMaikala RangeMainpatMananteninaManus IslandMarangakaMarchinbar IslandMarianaMazagaoMimoso do SulMinim-MartapMitchell PlateauMlanje MountainMoengoMogi das CruzesMokanji HillsMonghyrMoss ValeMount Ejuanema-NsisresoMount SaddlebackMyallaNassau MountainsNhamundaNilgiri HillsNorth WeipaNorthern IrelandNuriaNW GroupNyinahinOuremOusePalni HillsParagominasParanamParishPocos de Caldas-Aguas

de PrataRamunia-Telok RamuniaRanchi-PalamauSt. LeonardsSalem HillsSaline-PulaskiSambalpurSangarediSanta BarbaraSao Domingos do CapimSao PauloShevaroy HillsSouth WeipaTamborine MountainTougueTrombetasTurtle Head

Country

PKTNGHNAINDAINDACHADINDAVNZLINDAINDAMDGSPPNGMDGSAUNTBRZLBRZLBRZLCMRNAUWAMLWISRNMBRZLSRLNINDAAUNSAUNSAUWAAUNTSRNMBRZLINDAAUQLIRLDVNZLGUYNGHNABRZLAUTSINDABRZLSRNMAUNS

BRZLMLYSINDAAUTSUSORUSARINDAGNEABRZLBRZLBRZLINDAAUQLAUQLGNEABRZLAUQL

256

Page 271: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38b--Con.

UpataValle del GeneralWeipa-Andoom-Pera Head

VNZLCORIAUQL

BAUXITE, LATERITE TYPE

Wenlock RiverWest MauiWeza

AUQLUSHISAFR

1.0

z

0

a.

MILLION TONNES

BAUXITE, LATERITE TYPE

tO

0.9

0.8

0.7

rD

IL-0z0

0Ca

a.

0s

0s

es

0.3

Figure 191. Tonnages of laterite-typebauxite deposits. Individual digitsrepresent number of deposits.

Figure 192. Alumina grades of laterite-type bauxite deposits. Individual digitsrepresent number of deposits.

257

02

0.I

0.0

ALUMINA GRADE IN PERCENT AlJP3

Page 272: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 380

DESCRIPTIVE MODEL OF KARST TIPE BAUXITE DEPOSITS

By Sam H. Patterson

APPROXIMATE SYNONYM Aluminum ore (Bardossy, 1982).

DESCRIPTION Weathered residual and transported materials.

GENERAL REFERENCE Bardossy (1982).

GEOLOGICAL ENVIRONMENT

Rock Types Residual and transported material on carbonate rocks. Transported material may befelsic volcanic ash from a distant source or any aluminous sediments washed into the basin ofdeposition.

Textures Pisolitic, nodular, massive, earthy.

Age Range Paleozoic to Cenozoic.

Depositional Environment Surficial weathering mainly in wet tropical area.

Tectonic Setting(s) Stable land areas allowing time for weathering and protected from erosion.

Associated Deposit Types Limestone, dolomite, and shale; some are associated with minor coal andare low in Fe due to organic complexing and removal of Fe during formation.

DEPOSIT DESCRIPTION

Mineralogy Mainly gibbsite in Quaternary deposits in tropical areas. Gibbsite and boehmite mixedin older Cenozoic deposits, boehmite in Mesozoic deposits and in Paleozoic deposits; gangueminerals hematite, goethite, anatase, kaolin minerals, minor quartz.

Texture/Structure Pisolitic, massive, nodular.

Alteration Formation of bauxite is itself a form of alteration of aluminous sediments.

Ore Controls Deposits tend to be concentrated in depressions on karst surfaces.

Weathering Intense weathering required to form bauxite. Bauxite continues to form in the presentweathering environment in most deposits.

Geochemical Signature Al, Ga.

EXAMPLE European and Jamaican examples are reviewed in Bardossy (1982).

GRADE AND TONNAGE MODEL OF KARST TYPE BAUXITE DEPOSITS

By Dan L. Mosier

COMMENTS See figs. 193, 194.

DEPOSITS

Name Country Name Country

Abruzzi ITLY Camarasa-Oliana SPANAceitillar DMRP Campania ITLYAdana-Saimbeyli TRKY Clarendon Plateau JMCAAkeski TRKY Drnis-Obrovac YUGOBeceite- Fenyoto HUNG

Fuendesplada SPAN Gant HUNGBulbula IRAN Halimba HUNG

258

Page 273: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38c--Con.

Imotski-MostarIslahiyeIszkaszentgyorgyJajceLangSenMaggottyManchester Plat.Megara-EleusisMuzaffarabadNagyegyhazaN.C. Puerto RicoN.E. AlabamaNiksicka ZupaN.W. GeorgiaNyirad

YUGOTRKYHUNGYUGOVTNMJMCAJMCAGRECPKTNHUNGPTRCUSALYUGOUSGAHUNG

Padurea CraiuluiParnassus-HelikonPayasPunchRochelois Plat.San Giovanni

RotondoSeydisehrSohodol-CimpeniSpinazzolaSt. Ann PlateauUnterlaussaVlasenicaZonguldak

RMNAGRECTRKYINDAHATI

ITLYTRKYRMNAITLYJMCAASTRYUGOTRKY

259

Page 274: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 38c--Con.

BAUXITE, KARST TYPE

CO)

0

z

20cc

MILLION TONNES

Figure 193. Tonnages of karst-type bauxite deposits.

BAUXITE. KARST TYPE

1.0

,)

I-

0.w0

0

a.

0.9

0.8

0.7

0.6

OS

Oa^

I V I 0H I I0 n .41

0

0a00000

0000

00

0

I I 1 39 421 I00.2 _-

0.1

0.0 , , . __, _., _ . . .

D 10 20 30 40 50 s0 70

ALUMINA GRADE IN PERCENT TAI12 3

An AA . _

80 90 100

Figure 194. Alumina grades of karst-type

260

bauxite deposits.

Page 275: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39a

DESCRIPTIVE MODEL OF PLACER Au-PGE

By Warren E. Yeend

DESCRIPTION Elemental gold and platinum-group alloys in grains and (rarely) nuggets in gravel,sand, silt, and clay, and their consolidated equivalents, in alluvial, beach, eolian, and (rarely)glacial deposits (see fig. 195).

GENERAL REFERENCES Boyle (1979), Wells (1973), Lindgren (1911).

GEOLOGICAL ENVIRONMENT

Rock Types Alluvial gravel and conglomerate with white quartz clasts. Sand and sandstone ofsecondary importance.

Textures Coarse elastic.

Age Range Cenozoic. Older deposits may have been formed but their preservation is unlikely.

Depositional Environment High-energy alluvial where gradients flatten and river velocities lessen,as at the inside of meanders, below rapids and falls, beneath boulders, and in vegetation mats.Winnowing action of surf caused Au concentrations in raised, present, and submerged beaches.

Tectonic Setting(s) Tertiary conglomerates along major fault zones, shield areas where erosion hasproceeded for a long time producing multicycle sediments; high-level terrace gravels.

Associated Deposit Types Black sands (magnetite, ilmenite, chromite); yellow sands (zircon,monazite). Au placers commonly derive from various Au vein-type deposits as well as porphyrycopper, Cu skarn, and polymetallic replacement deposits.

DEPOSIT DESCRIPTION

Mineralogy Au, platinum-iron alloys, osmium-iridium alloys; gold commonly with attached quartz,magnetite, or ilmenite.

Texture/Structure Flattened, rounded edges, flaky, flour gold extremely fine grained flakes; veryrarely equidimensional nuggets.

Ore Controls Highest Au values at base of gravel deposits in various gold "traps" such as naturalriffles in floor of river or stream, fractured bedrock, slate, schist, phyllite, dikes, beddingplanes, all structures trending transverse to direction of water flow. Au concentrations alsooccur within gravel deposits above clay-layers that constrain the downward migration of Auparticles.

Geochemical Signature Anomalous high amounts of Ag, As, Hg, Sb, Cu, Fe, S, and heavy mineralsmagnetite, chromite, ilmenite, hematite, pyrite, zircon, garnet, rutile. Au nuggets havedecreasing Ag content with distance from source.

EXAMPLESSierra Nevada, USCA (Lindgren, 1911; Yeend, 1974)Victoria, AUVT (Knight, 1975)

GRADE AND TONNAGE MODEL OF PLACER Au-PGE

By Greta J. Orris and James D. Bliss

REFERENCE Orris and Bliss (1985).

COMMENTS Placers used for this model are predominantly Quaternary in age and alluvial in nature.Many of the placer deposits contain a mix of depositional environments and energy level--depositsalong minor tributaries have been worked with deposits downstream on a higher order stream, bench(or terrace) gravels have been mined with more recent deposits on valley floor. Some of theplacers included in this model were formed by complex glacial-fluvial processes. Deposits not

261

Page 276: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39a--Con.

included in this model are those primarily cataloged as desert placers, pre-Tertiary or Tertiaryage placers, beach placers, eolian placers, residual placers, eluvial placers, and gravel-plaindeposits. These types, however, may be minor components of those deposits selected to beincluded. In most cases, the grade and tonnage figures are for districts or for placer operationswithin one mile (1.6 km) of one another. For some placers, early production figures were missingdue to poor records of early gold rush work. In most cases, reserve figures (if a reserve isknown) are not available. Some tonnage figures were estimated from approximate size of workings.Some grades were based on very limited information and in some cases extrapolated from informationon manpower figures, type of equipment used, and estimates of the total contained gold produced.

Cutoff grades are dependent on the mining methods used to exploit placers. Methods of placermining included in this model are as diverse as the depositional environment. These methodsinclude panning, sluicing, hydraulic mining, and dredging. Draglines were used to mine someplacers. Cut-off grades are also dependent on the value of gold during the period, or periods, ofoperation.

Some placer deposits were excluded due to grade or tonnage figures not compatible with themajority of placers found in the model. Placers exploited through drift mining exhibit grades thatare too large and tonnages that are too small to be included in this model. Similarly, the largeregional placers formed at the junction of mountainous areas and an adjacent plain or valley wereexcluded because they can be mined with large-volume dredges which are economic at grades notviable under other conditions. Both grades and tonnages of these placers are incompatible withthis model.

Placer sizes were initially recorded in terms of cubic meters and the grades recorded as gramsper cubic meter. In order to conform to other deposit models herein, deposit volume and gradeshave been converted to metric tons and grams per metric ton using 2.0 metric tons per cubic meter--the average density of wet sand and gravel. Gold grade is correlated with tonnage (r = -0.35) andwith silver grade (r = 0.66, n = 16). See figs. 196, 197.

DEPOSITS

Name

Adelong CreekAlma (Mills) PlacerAraluen ValleyBannackBig Badja RiverBlue RiverBoulder RiverBullrun PlacerBuxton CreekCamancheCobweb DiggingsCopper BasinCorduroy CreekCrooked CreekCullengoralDeep GravelDixie PlacerEl DoradoElkhorn CreekEllistonFall CreekFoots CreekForest CreekFrench GulchGeorge PrezelGeorgia GulchGold Run (Summit Co.)Gold Run (Boulder Co.)Golden RuleGreen RiverHorse Praire

Country

AUNSUSCOAUNSUSMTAUNSUSCOUSMTUSORCNBCUSCAAUNSUSAZUSIDUSIDAUNSUSORUSORUSHrUSMTUSMTUSIDUSORUSORUSCOUSIDUSCOUSCOUSCOUSIDUSUTUSMT

Name

Humbug CreekHundred Dollar GulchIowa GulchJembaicumbene CreekJordan CreekLamb CreekLlano de OroLowe PlacerLower Beaver CreekLowland CreekLynx CreekMissouri CreekMitchell CreekNugget Creek (South Fork)OphirPactolusPicurisPioneerPrickly Pear CreekRio ChallanaRio ChimateRio Tuichi (upper reach)Rio YolosanoRio YuyoSand CreekSchissler CreekSnowstorm areaSterling CreekSumpter BarSwan RiverT93-R77W Placer

Country

USORUSIDUSCOAUNSUSIDUSIDUSORUSCOUSCOUSMrUSAZUSCOUSMTUSIDUSMTUSCOUSNMUSMTUSMTBLVABLVABLVABLVABLVAUSIDUSIDUSCOUSORUSORUSCOUSCO

262

Page 277: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39a-Con.

Vermilion RiverWellington

USMTAUKS

Wombat Creek AUNS

Figure 195. Cartoon cross section showing three stages of heavy mineralconcentrations typical of placer Au-POE deposits.

PLACER GOLD--PGE

2to

a

cL0

MILLION TONNES

Figure 196. Tonnages of placerrepresent number of deposits.

Au-PGE deposits. Individual digits

263

Page 278: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39a--Con.

PLACER GOLD--PGE

1.0

0.9

0.o

0.7

OU,

0IL0z

a.

0.6

0.5

0.4

0.3

0.2

0.1

0.0

A. GOLD GRADE IN GRAMS PER TONNE0.3 1 1 1

0.F

0.0> ° 0 I I . 1 0 10.004 0.01 0.025 0.063 0.16 0.4 1.0 25 6.3 is 40

B. SILVER GRADE IN GRAMS PER TONNE

Figure 197. Precious-metal grades of placer Au-PGE deposits. A,Gold. B, Silver.

264

Page 279: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39b

DESCRIPTIVE MODEL OF PLACER PGE-Au

By Warren E. Yeend and Norman J Page

DESCRIPTION. Platinum-group alloys and elemental gold in grains and (rarely) nuggets in gravel,sand, silt, and clay, and their consolidated equivalents, in alluvial, beach, eolian, and (rarely)glacial deposits derived from ultramafic sources.

GENERAL REFERENCES Boyle (1979), Wells (1973), Lindgren (1911), Mertie (1969).

GEOLOGICAL ENVIRONMENT

Rock Types Alluvial gravel and conglomerate and heavy minerals indicative of ultramafic sourcesand low-grade metamorphic terrane. Sand and sandstone of secondary importance.

Textures Coarse to fine elastic.

Age Range Tertiary to Holocene. Older deposits may have been formed but their preservation isunlikely.

Depositional Environment Marine (near shore), rivers and streams (medium to low gradient), desert(eolian) sand dunes, in-situ weathering.

Tectonic Setting(s) Paleozoic to Mesozoic secreted terranes, Tertiary conglomerates along majorfault zones; low terrace deposits; high-level terrace gravels.

Associated Deposit Types Alaskan PGE deposits.

DEPOSIT DESCRIPTION

Mineralogy Platinum-iron alloys (isoferroplatinum with rarer ferroanplatinum, tetraterroplatinum,and tulameenite), platinum-iridium, gold, osmium-iridium alloys; magnetite, chromite, or ilmenite.

Texture/Structure Flattened, rounded edges, flaky, flour-sized alloys and gold; very rarelyequidimensional nuggets.

Ore Controls Highest Au values at base of gravel deposits or on argillaceous to clayey beds withingravel sequence; metal alloys concentrated in "traps" such as natural riffles in floor of river orstream, fractured bedrock, slate, schist, phyllite, dikes, bedding planes, and in structurestrending transverse to direction of water flow. For PGE, predominantly zoned "Alaskan" typeultramafic complexes and minor ophiolites as source rocks; streams or rivers usually head inregions of ultramafic rocks.

Geochemical Signature Anomalously high amounts of Ag, As, Hg, Sb, Cu, Fe, S, Cr.

EXAMPLESUrals, USSR (Duparc and Tikonovitch, 1920;

Mertie, 1969)Goodnews Bay District, USAK (Mertie, 1969)Choco, CLBA (Mertie, 1969)Tulameen District, CNBC (O'Neill and Gunning, 1934)

GRADE AND TONNAGE MODEL OF PLACER PGE-Au

By Donald A. Singer and Norman J Page

DATA REFERENCE Calkins and others, 1978.

COMMENTS All deposits used for the model are from the Urals of USSR. The platinum grade plotsuggests three populations. Many of the deposits with grades less then 1,000 ppb Pt were probablymined by dredges, whereas the majority of deposits were mined by conventional placering methods.Some of the very high grades may represent reporting errors such as grades for a high-grade portionof a deposit being reported as representative of the total deposit. Probably because of the

265

Page 280: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39b--Con.

effects of combining deposits mined by two technologies, tonnage is correlated with platinum grade(r = -0.42) and with gold grade (r = -0.54, n = 23). Platinum grade is correlated with gold grade(r = 0.58, n = 23), with osmium grade (r = 0.89, n = 21), with iridium grade (r = 0.98, n = 10),and with palladium grade (r = 0.99, n = 13). Osmium grade is correlated with iridium grade(r=0.97, n=9) and with palladium grade (r = 0.89, n = 12). Iridium grade is correlated withpalladium grade (r = 0.97, n = 9). Other correlations were not significant with the availablenumber of samples. See figs. 198-200.

DEPOSITS

Name

Aleksandrovskii LogAlexii-Olginsky LogAnianowsky LojokArkhangelskii LogBesimianni LogBielgorsky LogBobrowka RiverBolshaya Choumika R.Bolshaya KamenouchkaBolshaya Ossokina B.Bolshaya ProstokischenkaBolshaya SosnovkaBolshoi Pokap R.Bolshoi SakciamBoyandinskaiaEjowkaGloubokia 1Gloubokia 2Illinsky LogIvov R.Jerusalimsky-PriiskJourawlik R.Judinsky-LojokKamenkaKamenka R.Kisslaia-PeruonatchainikKitlim, Severniy B.Korobowsky LojokKossia R.Kossoi-LogKossorgskii LogKrutoi LogLobwa R.Log No. l-PropretschnoiLog No. 2-Suftlii BorLog No. 3-Suftlii BorLog No. 6-Suftlii BorLog No. 7-Suftlii BorLogwinskaLojok at BisserskayaLojok No. 1&2 OmoutnaiaMain Valley of KisslaiaMalaia Koswa R.

Country

URRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRS

Name

Malaia ProstokischenkaMalaia SosnowkaMalomalsky-PriiskMalot PokapMartian R.MelnitschnaiaMolitchowkaMorphine-LogNiasman R.Nikolai-TschoudotworskyNovoi-LogObodranny-LojokPanowkaPatchekPestchanka R.Phedinan R.-TriokPodbornaiaPodmoskowoi-LogPopowsky-LojokPopretschne-LogRoublewik R.Sirkov LogSmall unnamed-WeressowySolovyevskii LogSoukhoi LogSrednia-ProstokischenkaStepanoff-LogSyssim R.Tilai R.Toura R.Trudny-LogTsauch R.TschachewitaiaTschch R.Unnamed creek-B. SosnowkaVerkho-TourieWyssim N.Yermakof-LogZaetzeff, R.Zemlianoi-Mostik Log

Country

URRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSUSSRURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRSURRS

266

Page 281: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39b--Con.

PLACER PLATINUM--GOLD

U0

L-

a.

MILLION TONNES

Figure 198. Tonnages of placer PCE-Au deposits.

267

Page 282: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39b--Con.

PLACER PLATINUM--GOLD1.0

09

0.7

Co

of

(L0U-a0zQcc-

0

C.

0.6

os

0.4

02

0.1

0.0

A. PLATINUM GRADE IN PARTS PER BILLION

. . . . . . .

0.2 _-

U I 0 1 1 0 1 1 1 1 1 1

0 % 01 1 1 . .1 I I 0 1 0

0.1 I-

l

U.00U25 0.00063 0.001e 0.004 0.01 0.025 0.063 0.16 0.4 1.0 2.5

B. GOLD GRADE IN GRAMS PER TONNE

Figure 199. Precious-metal grades of placer PGE-Au deposits. A,Platinum. B, Gold.

268

Page 283: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39b--Con.

PLACER PLATINUM-GOLD

02

0.1

0.0

C0oV2 02

CM

0.12Eg 0.0

00.

rL% I I I I I I I I%o n . 3 -

0 0~~~~~~~~~

I 1 1 1 * . P in

1 2 4 * *0 32 e3 130 2s0 s00 1000

A. OSMIUM GRADE IN PARTS PER BILLION

I I II I I I I0 I0 10

Oo~~o 0 0 0B. 7 1IDIUM GRADE N1 1 1P P o I BIUO* 2 4 a is 32 e3 130 250 soo 1000

B. IRIDIUM GRADE IN PARTS PER BILUION

02

0.1

0.0

C. PALLADIUM GRADE IN PARTS PER BILLION

F1gure 200. Other PGE grades of placer PCE-Au deposits. A,Osmium. B, Iridium. C, Palladium.

269

Page 284: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39c

DESCRIPTIVE MODEL OF SHORELINE PLACER Ti

By Eric R. Force

DESCRIPTION Ilmenite and other heavy minerals concentrated by beach processes and enriched byweathering.

GENERAL REFERENCE Force (1976).

GEOLOGICAL ENVIRONMENT

Rock Types Well-sorted medium- to fine-grained sand in dune, beach, and inlet deposits commonlyoverlying shallow marine deposits.

Age Range Commonly Miocene to Holocene, but may be any age.

Depositional Environment Stable coastal region receiving sediment from deeply weatheredmetamorphic terranes of sillimanite or higher grade.

Tectonic Setting(s) Margin of craton. Crustal stablity during deposition and preservation ofdeposits.

DEPOSIT DESCRIPTION

Mineralogy Altered (low Fe) ilmenite * rutile * zircon. Trace of monazite, magnetite, andpyroxene; amphibole rare or absent. Quartz greatly exceeds feldspar.

Texture/Structure Elongate "shoestring" ore bodies parallel to coastal dunes and beaches.

Ore Controls High-grade metamorphic source; stable coastline with efficient sorting and winnowing;weathering of beach deposits.

Weathering Leaching of Fe from ilmenite and destruction of labile heavy minerals results inresidual enrichment of deposits.

Geochemical and Geophysical Signature High Ti, Zr, REE, Th and U. Gamma radiometric anomaliesresulting from monazite content. Induced-polarization anomalies from ilmenite.

K

EXAMPLESGreen Cove Springs, USFLTrail Ridge, USFLLakehurst, USNJEneabba, AUWA

(Pirkle and others, 1974)(Pirkle and Yoho, 1970)(Markiewicz, 1969)(Lissiman and Oxenford, 1973)

GRADE AND TONNAGE MODEL OF SHORELINE PLACER Ti

By Emil D. Attanasi and John H. DeYoung, Jr.

COMMENTS Grade and tonnage estimates represent mining units rather than individual lenses. Gradesare represented as percent TiO2 from rutile, ilmenite, leucoxene, percent ZrO2 from zircon, andpercent rare-earth oxides from monazite. Zircon is correlated with rutile (r = 0.49, n = 50),ilmenite (r = 0.58, n = 52), leucoxene (r 0.55, n 24), and monazite (r = 0.55, n = 29).Ilmenite is correlated with leucoxene (r 0.66, n = 24) and with monazite (r = 0.66, n = 29). Seefigs. 201-205.

DEPOSITS

Name Country Name Country

Agnes WatersBarrytownBirchfieldBothaville-Wolmaransstad270

AUQLNZLDNZLD

SAFR

Boulougne-FolkstonBridge Hill RidgeBrunswick-AltamahaCamaratubaCapel Shoreline

USFLAUNSUSGABRZLAUWA

Page 285: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39c--Con.

CarolinaCharleston-BCharleston-CCharleston-ICharleston-KCharleston-LCharleston-NCumberland IslandCurtis IslandEast RosettaEneabba ShorelineEvans Head-Wooli areaFraser IslandGingin ShorelineGladstone MainlandGreen Cove SpringsHighland-Trail RidgeHilton Head IslandHokitika NorthHokitika SouthInskip Point (Cooloola

area)Jacksonville AreaKarameaLakehurst (Glidden)ManavalakurichiManchester (Asarco)Moreton Island

SAFRUSSCUSSCUSSCUSSCUSSCUSSCUSGAAUQLEGPTAUWAAUNSAUQLAUWAAUQLUSFLUSFLUSSCNZLDNZLD

Munbinea ShorelandMunmorahMuriwaiN.L. Industries(Aurora)

N. Stradbroke IslandNatchez Trace StateParkNorth Camden (Keer-

McGee)Oak Grove (Ethyl)Orissa (Chatrapur)Poerua RiverPulmoddaiQuilon (Chavara)Richards BayRossScott RiverShip IslandSilica MineStockton BightTuncurry-Tomago areaWaiho RiverWaroona ShorelineWestportYoganup ShorelineYulee

AUWAAUNSNZLD

USNCAUQL

USTN

USTNUSTNINDANZLDSRILINDASAFRNZLDAUWAUSMSUSTNAUNSAUNSNZLDAUWANZLDAUWAUSFL

AUQLUSFLNZLDUSNJINDAUSuJAUQL

SHORELINE PLACER TITANIUM

0

0

0.

MILLION TONNES

Figure 201. Tonnages of shoreline placer Ti deposits.

271

Page 286: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39c--Con.

SHORELINE PLACER TITANIUM

Cl)

ib00Ew0cc02

Figure 202. ZrO2 grades from zircon inshoreline placer Ti deposits. Z,02GRADE FROM ZIRCON IN PERCENT

SHORELINE PLACER TITANIUM

0a.waU-020

cc00~

FIgure 203. TiO2 grades from ilmenite inshoreline placer Ti deposits.

272

TO2 GRADE FROM ILMENITE IN PERCENT

Page 287: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

SHORELINE PLACER TMANIUM Model 39o-Con.

1.0

0.5

o.8

0.7

P2 asLu

Q

a.

02

0.1

0.0

Figure 204. TiO2 grades from rutile inshoreline placer Ti deposits.7102 GRADE FROM RUTILE IN PERCENT

SHORELINE PLACER TITANIUM

o

11 0

R

200.

0.5

0.4

03

02

I I I I I I I I I

00 n . 61

00

000

_~ ~~ o00

I I 1 0.C1 ° I 0 I004 0.01 0.25 0.063 0.16 0A 1.0 2.5 63 16 40

0.1

000. I

A. RARE-EARTH-OXIDE GRADE FROM MONAZITE IN PERCENT

B. T°2 GRADE FROM LEUCOXENE IN PERCENT

Figure 205. Other metal grades ofshoreline placer Ti deposits. A, REE oxidefrom monazite. B, TiO2 from leucoxene.

273

Page 288: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39d

DESCRIPTIVE MODEL OF DIAMOND PLACERS

By Dennis P. Cox

DESCRIPTION Diamonds in alluvial and beach sediments and in sandstone and conglomerate.

GENERAL REFERENCES Orlov (1973), Lampietti and Sutherland (1978).

GEOLOGICAL ENVIRONMENT

Rock Types Sand and gravel alluvial and beach deposits. Conglomerate beds may containpaleoplacers.

Textures Coarse elastic.

Age Range Tertiary and Quaternary.

Depositional Environment Streams draining areas of kimberlite pipes or diamond concentrations insedimentary or metamorphic rocks. Alluvial diamond deposits may be 1,000 km from source. It ispossible that some diamonds may have been derived from Archean greenstone belts.

Tectonic Setting(s) Stable craton.

Associated Deposit Types Diamond pipes.

DEPOSIT DESCRIPTION

Mineralogy Diamond, bort or carbonado (polycrystalline, generally dark colored), ballas(spherulitic, polyorystalline and amorphous carbonado).

Texture/Structure Diamonds derived from ancient placers in sedimentary rock commonly retain sandgrains cemented to grooves or indentations in the crystal.

Ore Controls Diamonds are concentrated in low-energy parts of stream systems with other heavyminerals. Diamonds decrease in size and increase in quality (fewer polycrystalline types) withdistance from their source.

Geochemical Signature Cr, Ti, Mn, Ni, Co, PGE, Ba. Anomalous Ni and Nb together with the heavyminerals pyrope, Mg-ilmenite, and phlogopite indicate nearby kimberlite pipes.

EXAMPLESAfrican deposits (Sutherland, 1982)Venezuelan deposits (Fairbairn, 1971; Reid and

Bisque, 1975)

274

Page 289: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Model 39e

DESCRIPTIVE MODEL OF ALLUVIAL PLACER Sn

By Bruce L. Reed

DESCRIPTION Cassiterite and associated heavy minerals in silt- to cobble-size nuggets concentratedby the hydraulics of running water in modern and fossil streambeds.

GENERAL REFERENCES Hosking (1974), Taylor (1979), Sainsbury and Reed (1973).

GEOLOGICAL ENVIRONMENT

Rock Types Alluvial sand, gravel, and conglomerate indicative of rock types that host lode tindeposits.

Textures Fine to very coarse elastic.

Age Range Commonly late Tertiary to Holocene, but may be any age.

Depositional Environment Generally moderate to high-level alluvial, where stream gradients liewithin the critical range for deposition of cassiterite (for instance, where stream velocity issufficient to result in good gravity separation but not enough so the channel is swept clean).Stream placers may occur as offshore placers where they occupy submerged valleys or strandlines.

Tectonic Setting(s) Alluvial deposits derived from Paleozoic to Cenozoic secreted terranes orstable cratonic foldbelts that contain highly evolved granitoid plutons or their extrusiveequivalents (see Model 14b, geochemical signature). Tectonic stability during deposition andpreservation of alluvial deposits.

Associated Deposit Types Alluvial gravels may contain by-product ilmenite, zircon, monazite, and,where derived from cassiterite-bearing pegmatites, columbite-tantalite. Economic placers aregenerally within a few (<B) kilometers of the primary sources. Any type of cassiterite-bearing tindeposit may be a source. The size and grade of the exposed source frequently has little relationto that of the adjacent alluvial deposit.

DEPOSIT DESCRIPTION

Mineralogy Cassiterite; varying amounts of magnetite, ilmenite, zircon, monazite, allanite,xenotime, tourmaline, columbite, garnet, rutile, and topaz may be common heavy resistates.

Texture/Structure Cassiterite becomes progressively coarser as the source is approached; euhedralcrystals indicate close proximity to primary source. Where a marine shoreline intersects ortransgresses a stream valley containing alluvial cassiterite the shoreline placers normally have alarge length-to-width ratio.

Ore Controls Cassiterite tends to concentrate at the base of stream gravels and in traps such asnatural riffles, potholes, and bedrock structures transverse to the direction of water flow. Therichest placers lie virtually over the primary source. Streams that flow parallel to the margin ofa tin-bearing granite are particularly favorable for placer tin accumulation.

Geochemical Signature Anomalously high amounts of Sn, As, B, F, W, Be, W, Cu, Pb, Zn. Pannedconcentrate samples are the most reliable method for detection of alluvial cassiterite.

EXAMPLESSoutheast Asian tin fields (Hosking, 1974)

(Newell, 1971)(Simatupang and others, 1974)(Westerveld, 1937

275

Page 290: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

REFERENCES

Abbott, J. T., and Williams, S. A., 1981, The PineGrove molybdenum system, southern Wah WahMountains, Beaver County, Utah [abs.]:American Institute of Mining, Metallurgical andPetroleum Engineers, 101st Meeting, February22-26, 1981 Program, p. 21.

Adamides, N. G., 1980, The form and environment offormation of the Kalavos ore deposits, Cyprus, inPanayiotou, A., ed., Ophiolites, ProceedingsInternational Ophiolite Symposium, Nicosia,Cyprus, 1979: Cyprus Geological SurveyDepartment, p. 117-128.

Allcock, J. B., 1982, Skarn and porphyry mineralizationat Mines Gaspe, Murdochville, Quebec:Economic Geology, v. 77, p. 971-999.

Armstrong, C. H., and Lawrence, W. F., 1983, Geologyof U.S. Steel zinc mine, in Tennessee zincdeposits fieldtrip guidebook: Virginia TechnicalInstitute, Department of Geological SciencesGuidebook, no. 9, p. 63-72.

Arndt, N. T., and Nisbet, E. G., 1982, Komatiites:London, George Allen and Unwin, 526 p.

Ashley, P. M., 1980, Geology of the Ban Ban Zincdeposit, a sulfide bearing skarn deposit,southeast Queensland, Australia: EconomicGeology, v. 75, p. 15-29.

Ashley, R. P. 1982, Occurrence model for enargite-gold deposits, in Erickson, R. L., ed.,Characteristics of mineral deposit occurrences:U.S. Geological Survey Open-File Report 82-795,p. 126-129.

Atkinson, W. J., Hughes, F. B., and Smith, C. B., 1984,A review of kimberlitic rocks of WesternAustralia, in Kornprobst, J., ed., Kimberlites andrelated rocks (Developments in Petrology Vol.11A): Amsterdam, Elsevier, p. 195-224.

Atkinson, W. W., Jr., and Einaudi, M. T., 1978, Skarnformation and mineralization in the contactaureole at Carr Fork, Bingham, Utah: EconomicGeology, v. 73, p. 1326-1365.

Atkinson, W. W., Jr., Kaczmarowski, J. H. andErickson, A. J., Jr., 1982, Geology of the skarnbreccia orebody Victoria Mine, Elko CountyNevada: Economic Geology, v. 77, p. 899-918.

Averitt, P., 1945, Quicksilver deposits of the Knoxvilledistrict, Napa, Yolo, and Lake Counties,California: California Journal of Mines andGeology, v. 41, no. 2, p. 65-89.

Bailey, E. H., and Phoenix, D. A., 1944, Quicksilverdeposits of Nevada: University of NevadaBulletin, v. 38, no. 5, 206 p.

Bailey, Edgar, 1964, Geology and quicksilver depositsof the New Almaden district, California: U.S.Geological Survey Professional Paper 360, 206 p.

Baragwanath, W., 1953, Ballarat Goldfield, in Edwards,A. B., ed., Geology of Australian ore deposits:Empire Mining and Metallurgical Congress, 5th,Melbourne, Australia, Australasian Institute ofMining and Metallurgy, v. 1, p. 986-1002.

Bardossy, Gyorgy, 1982, Karst bauxites, bauxitedeposits on carbonate rocks, in Developments ineconomic geology 14: Amsterdam, Elsevier, 441P.

Barnett, E. S. Hutchinson, R. W., Adamcik, Anton, andBarnett, R., 1982, Geology of the Agnico-Eaglegold deposit, Quebec, in Hutchinson, R. W.,Spence, C. D., and Franklin, J. M., eds.,Precambrian sulfide deposits, H.S. Robinsonmemorial volume: Geological Association ofCanada Special Paper 25, p. 403-426.

Bartholome, P., Evrard, P., Katekesha, F., Lopez-Ruiz,J. and Ngongo, M. 1976, Diagenetic ore-formingprocesses at Kamoto, Katanga, Republic ofCongo, in Amstutz G. C., and Bernard, A. J.,eds., Ores in sediments: New York, Springer-Verlag, p. 21-42.

Barton, P. B., Jr., Bethke, P. M., and Roedder, E.,1977, Environment of ore deposition in theCreede mining district, San Juan Mountains,Colorado, Part III. Progress toward theinterpretation of the chemistry of the ore-forming fluid for the OH vein: EconomicGeology, v. 71, p. 1-24.

Bateman A. M., and McLaughlin D. H., 1920, Geologyand ore deposits of Kennecott, Alaska:Economic Geology, v. 15, p. 1-80.

Becker, G., 1888, Quicksilver deposits of the Pacificslope: U.S. Geological Survey Monograph 13.

----1882, Geology of the Comstock Lode and theWashoe District: U.S. Geological SurveyMonograph 3, 422 p.

Bennett, E. H., 1977, Reconnaissance geology andgeochemistry of the Blackbird Mountain-PantherCreek region, Lemhi County, Idaho: IdahoBureau of Mines and Geology Pamphlet 167, 108P.

Berger, B. R., 1985, Geologic-geochemical features ofhot-spring precious metal deposits, in Tooker, E.W. ed., Geologic characteristics of sediment- andvolcanic-hosted disseminated gold deposits-Search for an occurrence model: U.S. GeologicalSurvey Bulletin 1646, p. 47-54.

Bernstein, Lawrence R., 1986, Geology and mineralogyof the Apex germanium-gallium mine,Washington County, Utah: U.S. GeologicalSurvey Bulletin 1577, 9 p.

Berry, E. W., and Singewald, J. T., 1922, The geologyand paleontology of the Huancavelica mercurydistrict: Baltimore, Johns Hopkins UniversityStudies in Geology, no. 2, 101 p.

Bichan, R., 1969, Chromite seams in the HantleyComplex of the Great Dike of Rhodesia, inWilson, H. D. B., Magmatic ore deposits:Economic Geology Monograph 4, p. 95-113.

Binns, R. A., Ayers, D. E., Wilmshurst, J. R., andRamsden, A. R., 1980, Petrology andgeochemistry of alteration associated withuranium mineralization at Jabiluka, NorthernTerritory, Australia, in Ferguson, John, andGoleby, A. B., eds., Uranium in the Pine Creekgeosyncline: Vienna, International AtomicEnergy Agency, p. 417-438.

Bjerlykke, A., and Sangster, D. F., 1981, An overviewof sandstone lead deposits and their relationshipto red-bed copper and carbonate-hosted lead-zinc deposits, in Skinner, B. 3., ed., EconomicGeology Seventy-fifth Anniversary Volume:Economic Geology Publishing Company, p. 179-213.

276

Page 291: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Blake, D. H., 1972, Regional and economic geology ofthe Herberton-Mount Garnet area, HerbertonTinfield, North Queensland: Australia Bureau ofMineral Resources Bulletin 124, 265 p.

Blake, D. W., Theodore, T. G., Batchelder, J. N., andKretschmer, E. L., 1979, Structural relations ofigneous rocks and mineralization in the BattleMountain mining district, Lander County,Nevada, in Ridge, 3. D., ed., Papers on mineraldeposits of western North America: NevadaBureau of Mines Geological Report 33, p 87-99.

Blixt, J. E., 1933, Geology and gold deposits of theNorth Moccasin Mountains, Fergus County,Montana: Montana Bureau of Mines and GeologyMemoir 8, 25 p.

Bonnichsen, B., 1972, Sulfide minerals in the DuluthComplex, in Sims, P. K., and Morey, G. B., eds.,Geology of Minnesota: A centennial volume: St.Paul, Minn., Minnesota Geological Survey, p.388-393.

Bookstrom, A. A., 1977, The magnetite deposits of ElRomeral, Chile: Economic Geology, v. 72, p.1101-1130.

Boyce, A. J., Anderson, R., and Russell, M. J., 1983,Rapid subsidence and early Carboniferous base-metal mineralization in Ireland: Institution ofMining and Metallurgy Transactions, Section B,v. 92, p. B55-B66.

Boyd, R., and Mathiesen, C. O., 1979, The nickelmineralization of the Rana Mafic Intrusion,Nordland, Norway: The Canadian Mineralogist,v. 17, p. 287-298.

Boyle, R. W., 1979, The geochemistry of gold and itsdeposits: Geological Survey Canada Bulletin 280,584 p.

Bracho, F. V., 1960, Yacimientos de estano en la Sierrade Chapultepec, Zac., la Ochoa, Dgo. y Cosio,Ags.: Mexico Consejo de Recursos Naturales noRenovables, Bull. 48, 116 p.

--- 1961, Yacimientos de estano en la Ochoa, Dgo. yJuan Aldama, Zac.: Mexico Consejo de RecursosNaturales no Renovables, Bull. 60, 87 p.

Briskey, J. A., 1982, Summary of the general geologiccharacteristics of sandstone-hosted lead-zincdeposits, in Erickson, R. L., ed., Characteristicsof mineral deposit occurrences: U.S. GeologicalSurvey Open-File Report 82-795, p. 183-185.

British Sulphur Corporation Ltd., 1980, World survey ofphosphate deposits: London, 4th edition, 1980,238 p.

Brown, A. C., 1971, Zoning in the White Pine copperdeposit, Ontonagan County, Michigan: EconomicGeology, v. 66, p. 543-573.

Buchanan, L. J., 1980, Ore controls of verticallystacked deposits, Guanajuato, Mexico: AmericanInstitute of Mining Engineers, Preprint 80-82, 26p.

Burckhardt, C. E., and Falini, Filippo, 1956, Memoriasuigiacimenti Italiani di Manganese, in Reyna, 3.G., ed., Symposium sobre yacimientos deManganese: International Geology Congress20th, v. 5, p. 221-272.

Burger, P. A., 1979, The Greenvale nickel lateriteorebody, in Evans and others, eds., InternationalLaterites Symposium, New Orleans, 1979:Society of Mining Engineers, AIME, p. 24-37.

Burt, D. R. L., and Sheppy, N. R., 1975, Mount Keithnickel sulfide deposit, in Knight, C. L., ed.,Economic geology of Australia and Papua NewGuinea, I. Metals: Melbourne, AustralasianInstitute of Mining Metallurgy Monograph 5,p. 159-168.

Cabri, L. J., and Naldrett, A. J., 1984, The nature anddistribution and concentration of platinum-groupelements in various geological environments:Proceedings of the 27th International GeologicalCongress, v. 10, p. 17-46.

Caia, J., 1976, Paleogeographical and sedimentologicalcontrols of copper lead and zinc mineralizationsin the Lower Cretaceous sandstones of Africa:Economic Geology, v. 71, p. 409-422.

Cairnes, C. E., 1934, Slocan Mining Camp, BritishColumbia: Geological Survey of Canada Memoir173, 137 p.

Calkins, 3. L., Keefer, E. K., Ofsharick, R. A., Mason,G. T., Tracy, Patricia, and Alkins, Mary, 1978,Description of CRIB, the GIPSY retrievalmechanism and the interface to the GeneralElectric Mark III Service: U.S. Geological SurveyCircular 755-AK, 49 p.

Cameron, E. N., and Desborough, G. A., 1969,Occurrence and characteristics of chromitedeposits--Eastern Bushveld Complex, in Wilson,H. D. B., ed., Magmatic ore deposits: EconomicGeology Monograph 4, p. 95-113.

Canada Department of Energy, Mines and Resources,1980, Canadian mineral deposits not being minedin 1980: Mineral Policy Sector Internal ReportMRI 80/7, 294 p.

Cannon, W. F., and Force, E. R., 1983, Potential forhigh-grade shallow-marine manganese deposits inNorth America: New York, American Instituteof Mining Engineers, Cameron Volume onUnconventional Mineral Deposits, p. 175-190.

Carlson, C. A., Wilson, S. A., Carlson, R. R., Bradley,L., Cornell, J., Gent, C., Gass, W., Groeneboer,H., Haffty, J., Haubert, A., Love, A., McDade, 3.M., Moore, R., Riley, L., Moring, B. C., Singer,D. A., and Page, N. 3, 1985, Analyses forplatinum-group elements in samples frompodiform chromite deposits, California andOregon: U.S. Geological Survey Open-FileReport 85442, 15 p.

Cathcart, 3. B., and Gulbrandsen, R. A., 1973,Phosphate deposits, in Brobst, D. A., and Pratt,W. P., eds., United States mineral resources:U.S. Geological Survey Professional Paper 820, p.515-525.

Chace, F. M., Cumberlidge, 3. T., Cameron, W. L., andVon Nort, S. D., 1969, Applied geology at theNickel Mountain mine, Riddle Canyon: EconomicGeology, v. 64, no. 1, p. 1-16.

Chrisofferson, H. C., Wallin, B., Selkman, S., andRichard, D. T., 1979, Mineralization controls inthe sandstone lead-zinc deposits of Vassbo,Sweden: Economic Geology, v. 74, p 1239-1249.

Colley, Howard, 1976, Mineral deposits of Fiji(metallic deposits): Fiji Mineral ResourcesDivision Memoir 1, 123 p.

Collins, P. L. F., 1981, The geology and genesis of theCleveland tin deposit, western Tasmania:Economic Geology, v. 72, no. 2, p. 365-392.

277

Page 292: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Colvine, A. C., Andres, A. J., Cherry, M. E., Durocher,M. E., Fyon, A. J., Lavigue, M. J., Jr.,MacDonald, A. J., Soussan, Marmont, Poulsen, K.H., and Troup, D. G., 1984, An integrated modelfor the origin of Archean lode gold deposits:Ontario Geological Survey Open File Report5524, 85 p.

Constantinou.G., 1980, Metallogenesis associated withTroodos ophiolite, in Panayiotou, A., ed.,Ophiolites, Proceedings International OphioliteSymposium, Nicosia, Cyprus, 1979: CyprusGeological Survey Department, p. 663-674.

Constantinou, George, and Govett, G. J. S., 1973,Geology, geochemistry, and genesis of Cyprussulfide deposits: Economic Geology, v. 68, no. 6,p. 843-858.

Corbett, K. D., 1981, Stratigraphy and mineralizationin the Mt. Read volcanics, Western Tasmania:Economic Geology, v. 76, p. 209-230.

Corry, A. V., 1933, Some gold deposits of Broadwater,Beaverhead, Phillips and Fergus Counties,Montana: Montana Bureau of Mines and GeologyMemoir 10, 45 p.

Cox, D. P., 1967, Regional environment oz theJacobina auriferous conglomerate, Brazil:Economic Geology, v. 62, p. 773-780.

---- 1985, Geology of the Tanama and Helechoporphyry copper deposits and their vicinity,Puerto Rico: U.S. Geological SurveyProfessional Paper 1327, 59 p.

Cox, D. P., ed., 1983a, U.S. Geological Survey-INGEOMINAS mineral resource assessment ofColombia; Ore deposit models: U.S. GeologicalSurvey Open-File Report 83-423, 64 p.

--- 1983b, U.S. Geological Survey-INGEOMINASmineral resource assessment of Colombia;Additional ore deposit models: U.S. GeologicalSurvey Open-file Report 83-901, 37 p.

Cox, D. P., and Singer, D. A., in press, Distribution ofgold in porphyry copper deposits, in Shawe, D.R., ed., Gold in the United States: U.S.Geological Survey Professional Paper.

Crawford, Johnson, and Hoagland, A. D., 1968, TheMascott-Jefferson City zinc district, Tennessee,in Ridge, J. D., ed., Ore deposits of the UnitedStates 1933-1967: New York, American Instituteof Mining Engineers, p. 242-256.

Creasey, S. C., 1950, Geology of the St. Anthony(Mammoth) area, Pinal County, Arizona, ChapterVI in Arizona zinc and lead deposits: ArizonaBureau of Mines Bulletin 156, p. 63-84.

Crerar, D. A., Namson, Jay, Chyi, M. S., Williams,Loretta, and Feigenson, M. D., 1982,Manganiferous cherts of the FranciscanAssemblage: 1. General Geology, ancient andmodern analogues, and implications forhydrothermal convection at oceanic spreadingcenters: Economic Geology, v. 77, p. 519-540.

Cyr, J. B., Pease, R. P., and Schroeter, T. G., 1984,Geology and mineralization at Equity Silvermine: Economic Geology, v. 79, p. 947-968.

Dahlkamp, Franz J., 1978, Geologic appraisal of theKey Lake U-Ni deposits, northernSaskatchewan: Economic Geology, v. 73, p.1430-1449.

Dahlkamp, F. J., and Adams, S. S., 1981, Geology andrecognition criteria for veinlike uranium depositsof the Lower to Middle Proterozoic unconformityand strata-related types: U.S. Department ofEnergy, National Resource Evaluation GJBX-5(81), 253 p.

Dawson, J. B., 1980, Kimberlites and their xenoliths:New York, Springer-Verlag, 252 p.

Dawson, K. R., 1974, Niobium (Columbium) andTantalium in Canada: Geological Survey ofCanada, Economic Geology Report No. 29, 157 p.

Derkman, K., and Klemm, D. D., 1977, Strata-boundkies-ore deposits in ophiolitic rocks of the"Tauernfenster" (eastern Alps, Austria/Italy), inKlemm, D. D., and Schneider, H. J., eds., Timeand stratabound ore deposits: New York,Springer-Verlag, p. 305-313.

DeYoung, J. H., Jr., Sutphin, D. W., and Cannon, W. F.,1984, International strategic mineralsinventory; Summary report-Manganese: U.S.Geological Survey Circular 930-A, 22 p.

Dick, L. A., and Hodgson, C. T., 1982, The MacTungW-Cu (Zn) contact metasomatic and relateddeposits of the northeastern CanadianCordillera: Economic Geology, v. 77, p. 845-867.

Dickey, J. S., Jr., 1975, A hypothesis of origin forpodiform chromite deposits: Geochimica etCosmochimica Acta, v. 39, p. 1061-1074.

Dobson, D. C., 1982, Geology and alteration of theLost River tin-tungsten-fluorine deposit,Alaska: Economic Geology, v. 77, p. 1033-1052.

Duke, M. A., and Hutchinson, R. W., 1974, Geologicalrelationships between massive sulfide bodies andophiolitic volcanic rocks near York Harbour,Newfoundland: Canadian Journal of EarthScience, v. 11, p. 53-69.

Duparc, L., and Tikonovitch, M., 1920, Le platine etles gites platiniferes de l'Oural et du monde:Geneva, Sonor, 542 p.

Eargle, D. H., Dickinson, K. A., and Davis, B. O., 1975,South Texas uranium deposits: Bulletin of theAmerican Association of Petroleum Geologists,v. 59, p. 766-779.

Eberle, M. C., and Atkinson, W. W., 1983, Results ofmapping at Iron Mountain, Laramie anorthositecomplex, Wyoming: Geological Society ofAmerica Abstract with Program, v. 15, no. 6, p.565.

Eckel, E. B., 1949, Geology and ore deposits of the LaPlata district, Colorado: U.S. Geological SurveyProfessional Paper 219, 179 p.

Eckstrand, 0. R., ed., 1984, Canadian mineral deposittypes, a geological synopsis: Geological Surveyof Canada, Economic Geology Report 36, 86 p.

Economic Geology, 1977, An issue devoted to theViburnum trend, southeast Missouri: EconomicGeology, v. 72, p. 337-490.

Einaudi, M. T., 1981, Skarns associated with porphyryplutons. I. Description of deposits, southwesternNorth America, I. General features and origin,in Titley, S. R., ed., Advances in geology of theporphyry copper deposits of southwestern NorthAmerica: Tucson, University of Arizona Press,p. 139-183.

Einaudi, M. T., and Burt, D. M., 1982, Introduction--terminology, classification, and composition of

¼1I

278

Page 293: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

skarn deposits: Economic Geology, v. 77, p. 745-754.

Einaudi, M. T., Meinert, L. D., and Newberry, R. S.,1981, Skam deposits: in Skinner, B. J., ed.,Economic Geology, Seventy-fifth AnniversaryVolume: Economic Geology Publishing Company,p. 317-391.

Ensign, C. O., Jr., White, W. S., Wright, J. C., Patrick,3. L., Leone, J. L., Hathaway D. J., Trammell, 3.W., Fritts, 3. J., and Wright, T. L., 1968, Copperdeposits in the Nonesuch Shale, White Pine,Michigan, in Ore deposits of the United States(Graton Sales Volume), v. 1: American Instituteof Mining, Metallurgical and PetroleumEngineers, p. 460-488.

Erickson, R. L., compiler, 1982, Characteristics ofmineral deposit occurrences: U.S. GeologicalSurvey Open-File Report 82-795, 248 p.

Escovar, Ricardo, 1979, Geologia y geoquimica de lasminas de esmeraldas de Gachala, Cundimarca:Ingeominas, Boletin Geologia, v. 22, p. 119-153.

Eupene, G. S., 1980, Stratigraphic, structural andtemporal control of mineralization in theAlligator Rivers uranium province, NorthernTerritory, in Ridge, 3. D., ed., Proceedings of theFifth Quadrennial IAGOD Symposium: Stuttgart,E. Schweizerbartsche Verlagsbuchhandlung, p.348-376.

Evans, D. J. 1., Shoemaker, R. S., and Veltman, H.,eds., 1979, International Laterite Symposium,New Orleans, 1979: Society of Mining Engineers,AIME, 688 p.

Evans, L. L., 1977, Geology of the Brushy Creek mine,Viburnum trend, southeast Missouri: EconomicGeology, v. 77, p. 381-390.

Fahrni, K. C., McCauley, T. N., and Preto, V. A., 1976,Copper Mountain and Ingerbelle, In SutherlandBrown, A., ed., Porphyry deposits of theCanadian Cordillera: Canadian Institute Miningand Metallurgy Special Paper 15, p. 368-375.

Fairbairn, W. C., 1971, Diamonds in Venezuela: MiningMagazine, v. 125, p. 349-353.

Farnham, L. L., 1961, Manganese deposits of NewMexico: U.S. Bureau of Mines InformationCircular 8030, 176 p.

Feather, C. E., 1976, Mineralogy of platinum-groupminerals in the Witwatersrand, South Africa:Economic Geology, v. 71, p. 1399-1428.

Ferguson, H. G., 1921, The Round Mountain district,Nevada: U.S. Geological Survey Bulletin 725, p.383-406.

Fischer, R. P., 1974, Exploration guides to newuranium districts and belts: Economic Geology,v. 69, p. 362-376.

Fisher, N. H., 1952, The Coimadai antimony mine, inEdwards, A. B., ed., Geology of Autralian oredeposits: Melbourne, Australian Institute ofMining and Metallurgy, p. 1101-1103.

Fleischer, Ronald, and Routhier, Pierre, 1973, The"consanguineous" origin of a tourmaline-bearinggold deposit: Passagem de Mariana (Brazil):Economic Geology, v. 68, p. 11-22.

Foose, M. P., Slack, J. F., and Casadevall, Tom, 1980,Textural and structural evidence for apredeformation hydrothermal origin of theTungsten Queen deposit, Hamme district, North

Carolina: Economic Geology, v. 75, p. 515-522.Force, E. R., 1976, Metamorphic source rocks of

titanium placer deposits--A geochemical cycle:U.S. Geological Survey Professional Paper 959B,16 p.

Foshag, W., and Fries, C., 1942, Tin deposits of theRepublic of Mexico: U.S. Geological SurveyBulletin 935-C, p. 99-176.

Fox, J. S., 1984, Besshi-type volcanogenic sulfidedeposits-A review: Canadian Institute Miningand Metallurgy Bulletin, v. 77, no. 864, p. 57-68.

Frakes, L. A., and Bolton, B. R., 1984, Origin ofmanganese giants: Sea level change and anoxic-oxic history: Geology, v. 12, p. 83-86.

Franklin, J. M., Sangster, D. M., and Lydon, J. W.,1981, Volcanic-associated massive sulfidedeposits, in Skinner, B. J., ed., Economic GeologySeventy-fifth Anniversary Volume: EconomicGeology Publishing Company, p. 485-627.

Fries, C., 1940, Tin deposits of the Black Range,Catron and Sierra Counties, New Mexico-Apreliminary report: U.S. Geological SurveyBulletin 931-L, p. 279-294.

Frietsch, Rudyard, 1978, On the magmatic origin ofiron ores of the Kiruna type: Economic Geology,v. 73, p. 478-485.

----1982, On the chemical composition of the orebreccia at Luossavaara, Northern Sweden:Mineralium Deposita, v. 17, p. 239-243.

Fripp, R. E. P., 1976, Stratabound gold deposits inArchean banded iron-formation, Rhodesia:Economic Geology, v. 71, p. 58-75.

Fryer, B. J., Kerrich, R., Hutchinson, R. W., Pierce, M.G., and Rogers, D. S., 1979: Archean precious-metal hydrothermal systems, Dome Mine, Abitibigreenstone belt. 1. Patterns of alteration andmetal distribution: Canadian Journal of EarthScience, v. 16, p. 421-439.

Fulweiler, R. E., and McDougal, S. E., 1971, Bedded-ore structures, Jefferson City mine, JeffersonCity, Tennessee: Economic Geology, v. 66,p. 763-769.

Gardner, L. S., 1967, Antimony deposits of Thailand:Thailand Department of Mineral ResourcesReport of Investigation No. 14, 46 p.

Geyne, A. R., Fries, C., Jr., Segerstrom, K., Black, R.F., and Wilson, I. F., 1963, Geology and mineraldeposits of the Pachuca-Real del Monte district,state of Hidalgo, Mexico: Consejo de RecursosNaturales No Renovables Pubicacion 5E, 203 p.

Gilluly, J., 1932, Geology and ore deposits of theStockton and Fairfield quadrangles, Utah: U.S.Geological Survey Professional Paper 173, 171 p.

Gold, D. P., 1984, A diamond exploration philosophyfor the 1980's: Earth and Mineral Science, v. 53,p. 37-42.

Gold, D. P., Valee, M., and Charetti, J. P., 1966,Economic geology and geophysics of the Okaalkaline complex, Quebec: Canadian InstituteMining and Metallurgy Transactions, v. 70, p.245-258.

Gomez, R., Ogryzlo, C. T., and Dor, A. A., 1979, TheCerro Matosa Nickel Project, in Evans andothers, eds., International Laterite Symposium:New Orleans, 1979: Society of Mining Engineers,AIME, p. 412-458.

279

Page 294: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Gonzales, A., 1956, Geology of the Lepanto Coppermine, Mankayan, Mountain Province, in Kinkel,A. R., Jr., and others, eds., Copper deposits ofthe Philippines: Philippines Bureau of MinesSpecial Projects Series, Publication 16, p. 17-50.

Goodwin, A. M., 1973, Archean iron-formations andtectonic basins in the Canadian Shield:Economic Geology, v. 68, p. 915-933.

Granger, H. C., and Warren, C. G., 1969, Unstablesulfur compounds and the origin of roll-typeuranium deposits: Economic Geology, v. 64, p.160-171.

Grant, J. N., Halls, C., Avila, W., and Avila, G., 1977,Igneous systems and the evolution ofhydrothermal systems in some sub-volcanic tindeposits of Bolivia, in Volcanic process inorogenesis: Geological Society of London,Special Paper Publication 7, p. 117-126.

Grant, J. N., Halls, C., Sheppard, F. M. S., and Avila,W., 1980, Evaluation of the porphyry tin depositsof Bolivia, in Ishihara, S., and Takenouchi, S.,eds., Granitic magmatism and relatedmineralization: Mining Geology Special Issue,no. 8, The Society of Mining Geologists of Japan,247 p.

Grauch, R. 1., 1984, Mineralogy and petrology of goldoccurrences within the Jabiluka deposit,Northern Territory, Australia: 27th InternationalGeological Congress, Abstracts v. 9, pt. 1, p. 27-28.

Gray, F., and Page, N. 3, 1985, Geologic map of theLower Coon Mountain Pluton, Del Norte County,California: U.S. Geological Survey Open-FileReport 83-148.

Graybeal, F. T., 1982, Geology of the El Tiro area,Silver Bell mining district, Pima County,Arizona, in Titley, S. R., ed., Advances ingeology of the porphyry copper deposits,southwestern North America: Tucson, Universityof Arizona Press, p. 487-506.

Green, A. H., and Naldrett, A. J., 1981, The Langmuirvolcanic peridotite-associated nickel deposits:Canadian equivalents of the western Australiaoccurrences: Economic Geology, v. 76, p. 1503-1523.

Gresham, J. J., and Loftus-Hills, G. D., 1981, TheGeology of the Rambalda Nickel Field, WesternAustralia: Economic Geology, v. 76, p. 1373-1417.

Gross, S. O., 1968, Titaniferous ores of the SanfordLake district, New York, in Ore deposits of theUnited States v. 1: New York, AmericanInstitute of Mining Engineers, p. 140-153.

Gross, W., 1968, Evidence for a modified placer originfor auriferous conglomerate, Canavieras mine,Jacobina, Brazil: Economic Geology, v. 63, p.271-276.

Groves, D. I., Martin, E. L., Murchie, H., andWellington, H. K., 1972, A century of tin miningat Mount Bischoff, 1871-1971: TasmaniaGeological Survey Bulletin 54, 310 p.

Groves, D. I., and Taylor, R. G., 1973, Greisenizationand mineralization at Anchor tin mine, northeastTasmania: Institute of Mining and MetallurgyTransactions, v. 82, sec. B, p. B135-146.

Giuliani, G., 1985, Le gisement de tungstene deXihuashan (Sud Jiangxi, Chine): Relationsgranites, alterations deuteriques-hydrothermales,mineralisations Mineralium Deposita, v. 20, p.107-115.

Gulbrandsen, R. A., and Krier, D. J., 1980, Large andrich phosphorus resources in the PhosphoriaFormation in the Soda Springs area, southeasternIdaho: U.S. Geological Survey Bulletin 1496, 25P.

Gustafson, L. B., and Hunt, J. P., 1975, The porphyrycopper deposit at El Salvador, Chile: EconomicGeology, v. 70, p. 857-912.

Gustafson, L. B., and Williams, Neil, 1981, Sediment-hosted stratiform deposits of copper, lead andzinc, in Skinner, B. J., ed., Economic GeologySeventy-fifth Anniversary Volume: EconomicGeology Publishing Company, p. 139-178.

Hamilton, J. M., Bishop, D. T., Morris, H. C., andOwens, 0. E., 1982, Geology of the Sullivanorebody, Kimberly, B. C., Canada, in Hutchinson,R. W., Spence, C. D., and Franklin, J. M., eds.,Precambrian sulfide deposits, H. S. RobinsonMemorial Volume: Geological Association ofCanada Special Paper 25, p. 597-666.

Harper, G., 1977, Geology of the Sustut copper depositin B. C.: Canadian Institute of Mining andMetallurgy Bulletin, v. 97, no. 777, p. 97-104.

Harris, N. B., and Einaudi, M. T., 1982, Skarn depositsin the Yerington district, Nevada: Metasomaticskarn evolution near Ludwig: Economic Geology,v. 77, p. 877-898.

Harrison, J. E., 1972, Precambrian Belt basin ofnorthwestern United States: Its geometry,sedimentation, and copper occurrences:Geological Society of America Bulletin, v. 83, p.1215-1240.

-- 1982, Belt stratabound copper, in Erickson, R. L.,ed. Characteristics of mineral depositoccurrences: U.S. Geological Survey Open-FileReport 82-795, p. 102-103.

Hernon, R. M., and Jones, W. R., 1968, Ore deposits ofthe central mining district, New Mexico, inRidge, J. D., ed., Ore deposits of the UnitedStates, 1933-1967 (Graton-Sales volume): NewYork, American Institute of Mining, Metallurgyand Petroleum Engineering, p. 1212-1237.

Herz, N., and Force, E. R., 1984, Rock suites inGrenvillian terrane of the Roseland district,Virginia: Geological Society of America SpecialPaper 194, p. 187-214.

Heyl, A. V., 1982, Mineral deposit occurrence modelfor the Viburnum trend subregion of thesoutheast Missouri base metal and barite district,in Erickson, R. L., ed., Characteristics ofmineral deposit occurrences: U.S. GeologicalSurvey Open-File Report 82-795, p. 158-171.

Hill, W. T., Morris, R. G., and Hagegeorge, C. G.,1971, Ore controls and related sedimentaryfeatures at the Flat Gap mine, Treadway,Tennessee: Economic Geology, v. 66, p. 748-757.

Hilpert, L. S., 1969, Uranium resources ofnorthwestern New Mexico: U.S. GeologicalSurvey Professional Paper 603, 166 p.

Hoagland, A. D., 1976, Appalachian zinc-lead deposits,in Wolf, K. H., ed., Handbook of stratabound and

280

Page 295: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

stratiform ore deposits, vol. 6: Amsterdam,Elsevier, p. 495-534.

Hodges, C. A., Cox, D. P., Singer, D. A., Case, 3. E.,Berger, B. R., and Albers, 3. P., 1984, U.S.Geological Survey-Ingeominas mineral resourceassessment of Colombia: U.S. Geological SurveyOpen-File Report 84-345, 193 p.

Hoeve, Jan, and Sibbald, Thomas I. 1., 1978, On thegenesis of the Rabbit Lake and otherunconformity-type uranium deposits in northernSaskatchewan, Canada: Economic Geology, v.73, p. 1450-1473.

Hornbrook, E. H. W., 1967, A pilot project at theSilvermine lead deposit, Cape Breton Island,Nova Scotia, in Progress report onbiogeochemical research at the GeologicalSurvey of Canada, 1963-1966: Geological Surveyof Canada Paper 67-73, pt. 1, p. 65-94.

Hosking, K. F. G., 1969, The nature of primary tin oresof the south-west of England, in A SecondTechnical Conference on Tin: Bangkok,International Tin Council, v. 3, p. 1157-1243.

----1974, The search for deposits from which tin canbe profitably recovered now and in theforeseeable future: Fourth World TinConference, Kuala Lumpur; London,International Tin Council, v. I, p. 21-83.

Hughes, G. J., Jr., 1983, Basinal setting of theBlackbird district cobalt deposits, Lemhi County,Idaho, in The genesis of Rocky Mountain oredeposits: Changes with time and tectonics:Denver Region Exploration Geologists SocietyProceedings, p. 21-28.

Huspeni, J. R., Kesler, S. E., Ruiz, Joaquin, Zane,Tuta, Sutter, J. F., and Jones, L. M., 1984,Petrology and geochemistry of rhyolitesassociated with tin mineralization in northernMexico: Economic Geology, v. 79, p. 87-105.

Hutchinson, R. W., 1976, Lode gold deposits: The casefor volcanogenic derivation, in Pacific NorthwestMinerals and Metals Conference, Portland,Oregon, 1975, Proceedings: Salem, OregonDepartment of Geology and Mineral Industries, p.64-105.

-- 1979, Evidence of exhalative origin for Tasmaniantin deposits: Canadian Institute of MiningMetallurgy Bulletin, v. 72, no. 808, p. 90-104.

-1982, Geologic setting and genesis of cassiterite-sulphide mineralization at Renison Bell, westernTasmania--A discussion: Economic Geology, v.77, p. 199-206.

Hutchinson, R. W., Spence, C. D., and Franklin, 3. M.,eds., 1982, Precambrian sulfide deposits, H.S.Robinson Memorial Volume: GeologicalAssociation of Canada Special Paper 25, 791 p.

Hsu, K. C., 1943, Tungsten deposits of southernKiangsi, China: Economic Geology, v. 38, p. 431-474.

Imal, Hideki, Lee, M. S., Takenouchi, S., Fujiki, Y.,lida, K., Sakimoto, T., and Tsukagoshi, S., 1978,Geologic structure and mineralization ofpolymetallic xenothermal vein-type deposits inJapan, in Imal, Hideki, ed., Geological studies ofminerafldeposits in Japan and East Asia: TokyoUniversity Press, p. 86-122.

Intiomale, M. M., and Oosterbosch, R., 1974, Geologieet geochimie du gisement de Kipushi, Zaire, inBartholome, Paul, ed., Gisements stratiformes etprovinces cupriferes: Liege, Societe Geologiquede Belgique, p. 123-164.

Isachsen, Y. W., and Evensen, C. G., 1956, Geology ofuranium deposits of the Shinarump and ChinleFormations on the Colorado Plateau: U.S.Geological Survey Professional Paper 300, p.263-280.

Ishihara, S., ed., 1974, Geology of the kurokodeposits: Society of Mining Geologists of Japan,Special Issue 6, 473 p.

Irvine, T. N., 1974, Petrology of the Duke Islandultramafic complex, southeastern Alaska:Geological Society of America Memoir 138, 240P.

Jackson, E. D., 1969, Chemical variation in coexistingchromite and olivine in chromite zones of theStillwater Complex, in Wilson, H. D. B., ed.,Magmatic ore deposits Economic GeologyMonograph 4, p. 41-71.

James, H. L., 1954, Sedimentary facies of ironformation: Economic Geology, v. 49, p. 235-293.

-1983, Distribution of banded Iron-formation inspace and time, in Trendall, A. F., and Morris, R.C., eds., Iron formation; Facts and problems:Amsterdam, Elsevier, p. 471-490.

Janecka, J., and Stemprok, M., 1967, Endogenous tinmineralization in the Bohemian massif, in Atechnical conference on tin: London,International Tin Council, v. 1, p. 245-266.

Jensen, M. L., and Bateman, A. M., 1981, Economicmineral deposits, 3rd ed.: New York, John Wiley& Sons, 593 p.

Joralemon, P., 1951, The occurrence of gold at theGetchell mine, Nevada: Economic Geology, v.46, p. 267-310.

Joubin, F., and James, D. G., 1956, Rexspar uraniumdeposits: Canadian Mining Journal, v. 77, p. 50-60.

Kanehira, K., and Tatsumi, T., 1970, Beddedcupriferous iron sulfide deposits in Japan, Areview, in Tatsumi T., ed., Volcanism and oregenesis: Tokyo, University of Tokyo Press, p. 51-76.

Karup-Moller, S., and Brummer, J. J., 1970, TheGeorge Lake zinc deposits, Wollaston Lake area,northeastern Saskatchewan: Economic Geology,v. 65, p. 862-874.

Kelly, W. C., and Goddard, E. N., 1969, Telluride oresof Boulder County, Colorado: Geological Societyof America Memoir 109, 237 p.

Kelly, W. C., and Rye, R. O., 1979, Geologic, fluidinclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal:Economic Geology, v. 74, p. 1721-1822.

Kerr, P. F., Brophy, G. P., Dahl, H. M., Green, J., andWoolard, L. E., 1957, Marysvale, Utah, uraniumarea; geology, volcanic relations, andhydrothermal alteration: Geological Society ofAmerica Special Paper 64, 212 p.

Kirkham, R. V., 1984, Volcanic redbed copper, inEckstrand, 0. R., ed., Canadian mineral deposittypes: A geological synopsis: Geological Surveyof Canada Report 36, p. 37.

281

Page 296: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Klau, W., and Large, D. E., 1980, Submarine exhalativeCu-Pb-Zn deposits: A discussion of theirclassification and metallogenesis: GeologischesJahrbuch, sec. D, no. 40, p. 13-58.

Knight, C. L., ed., 1975, Economic geology ofAustralia and Papua New Guinea: TheAustralasian Institute of Mining and Metallurgy,1126 p.

Knopf, Adolf, 1913, Ore deposits of the Helena miningregion, Montana, U.S. Geological Survey Bulletin527, 143 p.

-1929, The Mother Lode system of California: U.S.Geological Survey Professional Paper 73, 226 p.

Koski, R. A., and Cook, D. S., 1982, Geology of theChristmas porphyry copper deposit, in Titley, S.R., ed. Advances in geology of the porphyrycopper deposits, southwestern North America:Tucson, University of Arizona Press, p. 353-374.

Koski, R. A., and Derkey, R. E., 1981, Massive sulfidedeposits in ocean-crust and island-arc terranes insouthwestern Oregon: Oregon Geology, v. 43, no.9, p. 119-125.

Krauss, V., and Schmidt, H., 1979,Rohstoffwirtshaftliche Landerberichte XXII.UdSSR. Nickel Kobalt Platin Metalle: Hannover,Bundesanstalt fur Geowissenschaf ten undRohstoff, 184 p.

Krauss, U. H., Saam, H. G., and Schmidt, H. W., 1984,International strategic minerals inventory:Summary report-Phosphate: U.S. GeologicalSurvey Circular 930-C, 41 p.

Krebs, Wolfgang, 1981, The geology of the Meggen oredeposit, in Wolf, K. H., ed., Handbook of strata-bound and stratiform ore deposits, Part III:Amsterdam , Elsevier, 509-549.

Kwak, T. A. P., and Askins, P. W., 1981, Geology andgenesis of the F-Sn-W-(Be-Zn) skarn (wrigglite)at Moina, Tasmania: Economic Geology, v. 76, p.439-467.

Kuypers, E. P., and Denyer, P., 1979, Volcanicexhalative manganese deposits of the Nicoyaophiolite complex, Costa Rica: EconomicGeology, v. 74, p. 672-678.

Laine, R., ed., 1985, Carswell structure uraniumdeposits: Geologic Society of Canada SpecialPaper 29.

Lampietti, F. M. J., and Sutherland, D. G., 1978,Prospecting for diamonds, some currentaspects: Mining Magazine, v. 132, p. 117-123.

Landis, Gary P., and Rye, R. O., 1974, Geologic fluidinclusion and stable isotope studies of the PastoBueno tungsten-base metal ore deposit, northernPeru: Economic Geology, v. 69, p. 1025-1059.

Langton, J. M., and Williams, S. A., 1982, Structural,petrological, and mineralogical controls for theDos Pobres ore body, in Titley, S. R., ed.,Advances in geology of the porphyry copperdeposits, southwestern North America: Tucson,University of Arizona Press, p. 335-352.

Lanier, George, John, E. C., Swensen, A. J., Reid,Julia, Bard, C. E., Caddy, S. W., and Wilson J. C.,1978, General geology of the Bingham mine,Bingham Canyon, Utah: Economic Geology, v.73, p. 1228-1241.

Lapham, D. M., 1968, Triassic magnetite and diabaseof Cornwall, Pennsylvania, in Ridge, J. D., ed.,

Ore deposits of the United States, 1933-1967(Graton-Sales volume): New York, AmericanInstitute of Mining, Metallurgical and PetroleumEngineers, p. 1212-1237.

Large, D. E., 1980, Geologic parameters associatedwith sediment-hosted, submarine exhalative Pb-Zn deposits: An empirical model for mineralexploration, in Stratiform Cu-Pb-Zn deposits:Geologisches Jahrbuch, series D, vol. 40, p. 59-129.

1981, Sediment-hosted submarine exhalativelead-zinc deposits-A review of their geologicalcharacteristics and genesis, in Wolf, K. H., ed.,Handbook of strata-bound and stratiform oredeposits: Amsterdam, Elsevier, v. 9, p. 469-508.

- 1983, Sediment-hosted massive sulfide lead-zincdeposits: An empirical model, in Sangster, D. F.,ed., Sediment-hosted stratiform lead-zincdeposits: Mineralogical Association of CanadaShort Course Handbook, v. 8, p. 1-30.

Laughlin, W. H., 1984, Canadian reserves as of January1, 1983: Gold, silver, lead, zinc, copper, nickel,molybdenum: Energy, Mines and ResourcesCanada, Mineral Bulletin MR201, 33 p.

Lawrence, E. F., 1963, Antimony deposits of Nevada:Nevada Bureau of Mines and Geology Bulletin 61,248 p.

Leblanc, M., 1981, Ophiolites Precambriennes et gitesarsenides de cobalt (Bou Azzer, Maroc): Noteset Memoires, v. 280, 306 pp.

Leblanc, M., and Bilaud, P., 1982, Cobalt arsenide orebodies related to an Upper Proterozoicophiolite: Bou Azzer (Morocco): EconomicGeology, v. 77, p 162-175.

Leblanc, Marc, and Violette, J. F., 1983, Distributionof aluminum-rich chromite pods in ophioliteperidotites: Economic Geology, v. 78, p. 293-301.

Lechner, K., and Plochinger, B., 1956, Diemanganerzlagerstatten Osterreichs, in Reyna, J.G., ed., Symposium sobre yacimiento demanganeso: International Geological Congress,20th, Mexico, v. 5, p. 299-313.

Lee-Moreno, J. L., 1980, The metallogenic tin provincein Mexico, in Metallogenesis in Latin America:International Union of Geological SciencesPublication No. 5, p. 37-54.

Liang Zhenting, Chen Shanyou, and Liu Youxi, eds.,1984, Excursion guide: Geology of the Dachangtin field: Nanning, China, Organizing Committeeof the International Symposium on Geology ofTin Deposits, 26 p.

Lincoln, 3. B., 1983, Schaffer-Aultman kimberlitecomplexes, Albany County, Wyoming, in Genesisof Rocky Mountain ore deposits: Changes withtime and tectonics Denver Region ExplorationGeologists Society Proceedings p. 71-78.

Lindgren, W., 1896, The gold-quartz veins of NevadaCity and Grass Valley districts, California: U.S.Geological Survey 17th Annual Report, pt. 2, p.1-262.

-1900, The gold and silver veins of Silver City,DeLamar and other mining districts in Idaho:U.S. Geological Survey 20th Annual Report, pt.3, p. 67-255.

282

Page 297: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

-- 1911, The Tertiary gravels of the Sierra Nevada ofCalifornia: U.S. Geological Survey ProfessionalPaper 73, 226 p.

Lindgren, W., and Ransome, F. L., 1906, Geology andgold deposits of the Cripple Creek district,Colorado, U.S. Geological Survey ProfessionalPaper 54, 516 p.

Lindgren, W., and Ross, C. P., 1916, The iron depositsof Daiquiri Cuba: American Institute of MiningEngineers Transactions, v. 53, p. 40-46.

Lindsey, D. A., 1982, Copper shales, in Erickson, R. L.,ed., Characteristics of mineral depositoccurrences: U.S. Geological Survey Open FileReport 82-795, p. 196-199.

Lissiman, J. C., and Oxenford, R. J., 1973, The AlliedMinerals, N. L., heavy mineral sand deposit atEneabba, Western Australia: Australasian Tnst.Mining and Metallurgy Conference Proceedings,p. 153-161.

Loughlin, G. F., and Koschman, A. H., 1935, Geologyand ore deposits of the Cripple Creek district,Colorado: Colorado Scientific SocietyProceedings, v. 13, no. 6, 435 p.

Lowell, J. D., and Guilbert, J. M., 1970, Lateral andvertical alteration-mineralization zoning inporphyry copper deposits: Economic Geology, v.65, p. 373-408.

Lozano, H., Perez, H., and Vesga, C. J., 1977,Prospeccion geoquimica y genesis del mercurioen el flanco occidental de la Cordillera CentralMunicipios de Aranzazu, Salamina y PacoraDepartamento de Caldas (Colombia):INGEOMINAS unpublished report.

Lufkin, J. L., 1972, Tin mineralization within rhyoliteflow-domes, Black Range, New Mexico:Stanford, Calif., Stanford University, Ph.D.thesis, 148 p.

McCormick, J. E., Evans, L. L., Palmer, R. A., andRasnick, F. D., 1971, Environment of the zincdeposits of the Mascot-Jefferson City district,Tennessee: Economic Geology, v. 66, p. 757-762.

Mackin, J. H., 1968, Iron ore deposits of the IronSprings deposit, southwestern Utah, in Ridge, J.D., ed., Ore deposits of the United States 1933-1967 (Graton-Sales volume), New York,American Institute of Mining, Metallurgical andPetroleum Engineers, v. 2, p. 992-1019.

Malcolm, W., 1929, Goldfields of Nova Scotia:Canadian Geological Survey Memoir 156, 253 p.

Markiewicz, F. E., 1969, Ilmenlte deposits of the NewJersey coastal plain, in Geology of selected areasin New Jersey and eastern Pennsylvania: NewBrunswick, N.J., Rutgers University Press, p.363-382.

Marston, R. J., Groves, D. I., Hudson, D. R., and Ross,J. R., 1981, Nickel sulfide deposits in westernAustralia: A review: Economic Geology, v. 76,p. 1330-1336.

Martin, J. E., and Allchurch, P. D., 1975, Perseverancenickel deposit, Agnew, in Knights, C. L., ed.,Economic geology of Australia and Papua NewGuinea, 1. Metals: Melbourne, The AustralasianInstitute of Mining and Metallurgy ProceedingsMonograph 5, p. 149-155.

Menzie, W. D., and Mosier, D. L., 1985, Grade, tonnageand lithologic data for sediment-hosted

submarine exhalative Zn-Pb and sandstone-hosted Pb-Zn deposits; U.S. Geological SurveyOpen-File Report 85-206, 17 p.

Mertie, J. B., Jr., 1969, Economic geology of theplatinum metals: U.S. Geological SurveyProfessional Paper 630, 120 p.

Meyer, A., 1941, In the Choco Colombia: Engineeringand Mining Journal, v. 142, p. 35-39.

Michaud, J. G., 1980, Les Malines and Largentierelead-zinc deposits in the Mesozoic carbonate anddetrital formations on the southern edge of theFrench Central Massif: Chronique de laRecherche Miniere 454, p. 36-64 (in French).

Miller, M. H., 1973, Antimony, in Brobst, D. A., andPratt, W. P., eds., United States mineralresources U.S. Geological Survey ProfessionalPaper 820, p. 45-50.

Minter, W. E. L., 1982, The golden Proterozoic, inTankard and others, eds., Crustal evolution ofsouthern Africa: New York, Springer-Verlag, p.801-829.

Molyneux, T. G., 1969, The geology of the area in thevicinity of Magnet Heights, Eastern Transvaal,with special reference to magnetic iron ore,Symposium ore, Bushveld igneous complex andother intrusions: Geological Society of SouthAfrica Special Publication no. 1, p. 228-241.

Morris, H. T., 1968, The main Tintic mining district,Utah, in Ridge, J. D., Ore deposits of the UnitedStates, 1933-1967 (Graton-Sales Volume): NewYork, American Institute of Mining andMetallurgical Engineers, p. 1043-1073.

Morris, H. T., and Lovering, T. S., 1979, Generalgeology and mines of the East Tintic miningdistrict, Utah and Juab Counties, Utah: U.S.Geological Survey Professional Paper 1024, 203P.

Mosier, D. L., Menzie, W. D., and Kleinhampl, F. J.,1986, Geologic and grade-tonnage information onTertiary epithermal precious- and base-metalvein districts associated with volcanic rocks:U.S. Geological Survey Bulletin 1666, 39 p.

Mosier, D. L., Singer, D. A., and Salem, B. B., 1983,Geologic and grade-tonnage information onvolcanic-hosted copper-zinc-lead massive sulfidedeposits: U.S. Geological Survey Open-FileReport 83-89, 78 p.

Mutschler, F. E., Wright, E. G., Ludington, Steve, andAbbott, J. T., 1981, Granitic molybdenitesystems: Economic Geology, v. 76, p. 874-897.

Nakamura, T., 1970, Mineral zoning and characteristicminerals in the polymetallic veins of the Ashiocopper mine, in Tatsumi, T., ed., Volcanism andore genesis: Tokyo, University of Tokyo Press, p.231-246.

Nakamura, T., and Hunahashi, M., 1970, Ore veins ofNeogene volcanic affinity in Japan, in Tatsumi,T. ed., Volcanism and ore genesis: Tokyo,University of Tokyo Press, p. 215-230.

Nash, J. T., 1981, Geology and genesis of major worldhardrock uranium deposits-An overview: U.S.Geological Survey Open-File Report 81-166, 123P.

Nash, J. T., Granger, H. C., and Adams, S. S., 1981,Geology and concepts of genesis of importanttypes of uranium deposits, in Skinner, B. J., ed.,

283

Page 298: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Economic Geology, Seventy-fifth AnniversaryVolume: Economic Geology Publishing Company,p. 63-116.

Newberry, R. J., 1982, Tungsten-bearing skarns in theSierra Nevada. I. The Pine Creek mine,California: Economic Geology, v. 77, p. 823-844.

Newell, R. A., 1971, Characteristics of thestanniferous alluvium in the Southern Kint4Valley, West Malaysia: Geological Society o0Malaysia Bulletin 4, p. 15-37.

Nokleberg, W. J., 1981, Geologic setting, petrology,and geochemistry of zoned tungsten-bearingskarns at the Strawberry mine, central SierraNevada, California: Economic Geology, v. 26, p.111-133.

Nolan, T. B., 1962, The Eureka mining districtNevada: U.S. Geological Survey ProfessionalPaper 406, 78 p.

Ohmoto, H., and Skinner, B. J., eds., 1983, The Kurokoand related volcanogenic massive sulfidedeposits: Economic Geology, Monograph 5, 604P.

Olsen, 3. C., Shawe, D. R., Prey, L. C., Sharp, W. N.,and Hewlett, D. F., 1954, Rare earth mineraldeposits of the Mountain Pass district, SanBernardino County, California: U.S. GeologicalSurvey Professional Paper 261.

O'Neill, J. J., and Gunning, H. C., 1934, Platinum andallied metal deposits of Canada: CanadaGeological Survey, Economic Geology Series no.13, 165 p.

Orlov, Y. L., 1973, The mineralogy of the diamond:New York, John Wiley & Sons, [translation fromIzdatel'stva Nauka], 235 p.

Orris, G. J., and Bliss, J. D., 1985, Geologic and grade-volume data on 330 gold placer deposits: U.S.Geological Survey Open-File Report 85-213, 172P.

Page, L. R., and McAllister, J. F., 1944, Tungstendeposits, Isla de Pinos, Cuba: U.S. GeologicalSurvey Bulletin 935-D, 246 p.

Page, N. 3, 1977, Stillwater complex, Montana: Rocksuccession, metamorphism and structure of thecomplex and adjacent rocks: U.S. GeologicalSurvey Professional Paper 999, 79 p.

Page, N. J, Carlson, R. R., Miller, Michael, Carlson, C.A., and Gray, Floyd, 1982a, Map showinggeochemical characteristics of platinum-groupelements and gold in rock samples from theKalmiopsis Wilderness, southwestern Oregon:U.S. Geological Survey Miscellaneous FieldStudies Map MF-1240-F, scale 1:62,500.

Page, N. J, Cassard, Daniel, and Hafity, Joseph,1982b, Palladium, platinum, rhodium, ruthenium,and iridium in chromitites from the Massif duSud and Tiebaghi Massif, New Caledonia,Economic Geology, v. 77, p. 1571-1577.

Page, N. J, Engin, Tandogan, and Haffty, Joseph, 1979,Palladium, platinum, and rhodium concentrationsin mafic and ultramafic rocks from the Kizildagand Guleman areas, Turkey, and the Faryab andEsfandagheh-Abdasht areas, Iran: U.S.Geological Survey Open-File Report 79-340, 15P.

Page, N. 3, Engin, Tandogan, and Singer, D. A., andHaffty, Joseph, 1984, Distribution of platinum-

group elements in the Bati Kef chromite deposit,Guleman-Elagig area, eastern Turkey: EconomicGeology, v. 79, p. 177-184.

Page, N. 3, Foose, M. P., and Lipin, B. R., 1982C,Characteristics of metallic deposits associatedwith ultramafic and mafic rocks, in Erickson, R.L., ed., Characterists of mineral depositoccurrences U.S. Geological Survey Open-FileReport 82-795, p. 1-12.

Pan, Yuh-Shyi, 1974, The genesis of the Mexican typetin deposits in acid volcanics: New York,Columbia University, Ph.D. thesis, 286 p.

Panayiotou, A., 1980, Cu-Ni-Co-Fe sulfidemineralization, Limmasol Forest, Cyprus, inPanayiotou, A., ed., Ophiolites, ProceedingsInternational Ophiolite Symposium, Nicosia,Cyprus 1979: Cyprus Geological SurveyDepartment, p. 102-116.

Park, C. F., 1942, Manganese resources of the OlympicPeninsula, Washington: U.S. Geological SurveyBulletin 931-R, p. 435-457.

-1946, The spilite and manganese problems of theOlympic Peninsula, Washington: AmericanJournal of Science, v. 244, no. 5, p. 305-323.

Parker, R. L., and Sharp, W. N., 1970, Mafic-ultramafic igneous rocks and associatedcarbonatites of the Gem Park complex, Custerand Fremont Counties, Colorado: U.S.Geological Survey Professional Paper 649, 24 p.

Patterson, D. J., Ohmoato, H., and Solomon, M., 1981,Geologic setting and genesis of cassiterite-sulfide mineralization at Renison Bell, westernTasmania: Economic Geology, v. 76, p. 393-438.

Patterson, S. H., 1967, Bauxite reserves and potentialaluminum resources of the world: U.S.Geological Survey Bulletin 1228, 176 p.

----1984, Bauxite and nonbauxite aluminum resourcesand production-An update, in Jacob, Leonard,Jr., ed., Bauxite-Proceedings of the 1984Bauxite Symposium, Los Angeles, California:New York, American Institute of Mining,Metallurgical, and Petroleum Engineers, p. 3-30.

Paulson, E. G., 1964, Mineralogy and origin of thetitaniferous deposit at Pluma Hidalgo, Oaxaca,Mexico: Economic Geology, v. 59, p. 753-767.

Pavlova, 1. G., and Rundquist, D. V., 1980, Zoning ofores and hydrothermal rocks of molybdenum-copper-porphyry deposits under differentconditions of formation, in Ridge, J. D., ed.,Proceedings of the Fifth Quadrennial IAGODSymposium, Stuttgart, E. Schweizer bart'sche, p.113-124.

Payne, 3. G., Bratt, 3. A., and Stone, B. G., 1980,Deformed Mesozoic Cu-Zn sulfide deposits in theBritannia district, British Columbia: EconomicGeology, v. 75, p. 700-721.

Peredery, W. V., 1979, Relationship of ultramaficamphibolites to metavolcanic rocks andserpentinites in the Thompson belt, Manitoba:Canadian Mineralogist, v. 17, p. 187-200.

Perkins, Mike, and Nieman, Bill, 1983, Epithermal goldmineralization in the South Mountain volcanicdome, Summitville, Colorado, in Genesis ofRocky Mountain ore deposits: Changes with timeand tectonics: Denver Region ExplorationGeologists Society Proceedings, p. 71-78.

284

Page 299: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Perkle, E. C., Perkle, W. A., and Yoho, W. H., 1974,The Green Cove Springs and Boulougne heavy-mineral sand deposits of Florida: EconomicGeology, v. 69, p. 1129-1137.

Perkle, E. C., and Yoho, W. H., 1970, The heavymineral body of Trail Ridge, Florida: EconomicGeology, v. 65, p. 17-30.

Peterson, E. U., and Zantop, Half, 1980, The Oxecdeposit, Guatemala: An ophiolite copperoccurrence: Economic Geology, v. 75, p. 1053-1065.

Philips, G. N., Groves, D. I., and Martyn, J. E., 1984,An epigenetic origin for Archean banded iron-formation-hosted gold deposits: EconomicGeology, v. 79, p. 162-171.

Plimer, 1. R., 1980, Exhalative Sn and W depositsassociated with mafic volcanism as precursors toSn and W deposits associated with granites:Mineralium Deposita, v. 15, p. 275-289.

Prescott, Basil, 1926, The underlying principles of thelimestone replacement deposits of the Mexicanprovince: Engineering and Mining Journal, v.122, p. 246-253, 289-296.

Pretorius, D. A., 1981, Gold and uranium in quartz-pebble conglomerate: in Skinner, B. J., ed.,Economic Geology Seventy-fifth AnniversaryVolume: Economic Geology Publishing Company,p. 117-138.

Prinz, W. C., 1963, Manganese, in Mineral and waterresources of Montana: Washington, U.S.Government Printing Office, p. 83-86.

Radtke, A. S., Rye, R. O., and Dickson, F. W., 1980,Geology and stable isotope studies of the Carlingold deposit, Nevada: Economic Geology, v. 75,p. 641-672.

Ransome, F. L., 1909, Geology and ore deposits ofGoldfield, Nevada: U.S. Geological SurveyProfessional Paper 66, 258 p.

Razin, L. V., 1976, Geologic and genetic features offorsterite dunites and their platinum-groupmineralization: Economic Geology, v. 71, p.1371-1376.

Reed, B. L., 1982, Tin greisen model, In Erickson, R.L., ed., Characteristics of mineral depositoccurrences: U.S. Geological Survey Open-FileReport 82-795, p. 55-61.

Reid, A. R., and Bisque, R. E., 1975, Stratigraphy ofthe diamond-bearing Roraima Group, EstadoBolivar, Venezuela: Quarterly of the ColoradoSchool of Mines, v. 70, no. 1, p. 61-82.

Research Group of Porphyrite Iron Ore of the Middle-Lower Yangtze Valley, 1977, Porphyrite iron ore--A genetic model of a group of Iron ore depositsin andesitic volcanic area: Acta GeologicaSinica, v. 51, no. 1, p. 1-18.

Reynolds, R. L., and Goldhaber, M. B., 1983, Irondisulfide minerals and the genesis of roll-typeuranium deposits: Economic Geology, v. 78, p.105-120.

Rickard, D. T., Wiliden, M. Y., Marinder, N. E., andDonnelly, T. H., 1979, Studies on the genesis ofthe Laisvall sandstone lead-zinc deposits,Sweden: Economic Geology, v. 74, p. 1255-1285.

Ridler, R. H., 1970, Relationship of mineralization tovolcanic stratigraphy in the Kirkland-LarderLakes Area, Ontario: Geological Association of

Canada Proceedings, v. 21, p. 33-42.Riordan, P. H., 1957, The structural environment of

the Thetford-Black Lake asbestos deposit:Geological Association of Canada Proceedings, v.9, p. 83-93.

Ripley, E. M., 1981, Sulfur isotopic studies of DunkaRoad Cu-Ni deposit, Duluth Complex,Minnesota: Economic Geology, v. 76, p. 610-620.

Ripley, E. M., and Ohmoto, Hiroshi, 1977, Mineralogic,sulfuric isotope and fluid inclusion studies of thestratabound copper deposits at the Raul mine,Peru: Economic Geology, v. 72, p. 1017-1041.

Roberts, D. E., and Hudson, G. R. T., 1983, TheOlympic Dam copper-uranium-gold deposit,Roxby Downs, South Australia: EconomicGeology, v. 78, p. 799-822.

Rocha, V. S., and Wilson, I. F., 1948, Los yacimientosde manganeso de Talamantes, Municipio deAllende, estado de Chihuahua: Mexico ComiteDirectivo Para la Investigacion de Los RecursosMinerales de Mexico, Bulletin 18, 39 p.

Roper, M. W., and Wallace, A. B., 1981, Geology of theAurora uranium prospect, Malheur County,Oregon, in Goodell, P. C., and Waters, A. C.,eds., Uranium in volcanic and volcaniclasticrocks: American Association of PetroleumGeologists Studies in Geology no. 13, p. 81-88.

Roscoe, S. M., 1969, Huronian rocks and uraniferousconglomerates in the Canadian Shield:Geological Survey of Canada Paper 68-90, 205 p.

Ross, J. R., and Travis, G. L., 1981, The nickel sulfidedeposits of Western Australia in globalperspective: Economic Geology, v. 76, p. 1291-1329.

Roy, Supriya, 1981, Manganese deposits: New York,Academic Press, 458 p.

Ruelle, J. C. L., 1982, Depositional environments andgenesis of stratiform copper deposits of theRedstone copper belt, MacKenzie Mountains, N.W. T., in Hutchinson, R. W., Spence, C. D., andFranklin J. M., eds. Precambrian sulfide deposits,H. S. Robinson Memorial Volume: GeologicalAssociation of Canada Special Paper 25, p. 701-738.

Ruiz F., Carlos, 1965, Geologia y yacimientosmetaliferos de Chile: Santiago, Chile, Institutode Investigaciones Geologicas, 305 p.

Runnels, D. D., 1969, The mineralogy and sulfurisotopes of the Ruby Creek copper prospect,Bornite, Alaska: Economic Geology v. 64, p. 75-90.

Rye, D. M., and Rye, R. O., 1974, Homestake goldmine, South Dakota: 1. Stable Isotope studies:Economic Geology, v. 69, p. 293-317.

Sainsbury, C. L., 1964, Geology of the Lost River Minearea, Alaska: U.S. Geological Survey Bulletin1287, 101 p.

Sainsbury, C. L., and Reed, B. L., 1973, Tin, in Brobst,D. B., and Pratt, W. P., eds., United Statesmineral resources: U.S. Geological SurveyProfessional Paper 820, p. 637-651.

Salto, Massao, and Sato, Eltaro, 1978, On the recentexploration at the Iwato gold mine: MiningGeology, v. 28, p. 191-202.

Samama, J. C., 1976, Comparative review of thegenesis of the copper-lead sandstone-type

285

Page 300: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

deposits, in Wolf, H. K., ed., Handbook ofstratabound and stratiform ore deposits:Amsterdam, Elsevier, v. 6, p. 1-20.

Sangster, D. F., 1984, Felsic intrusion-associatedsilver-lead-zinc veins, in Eckstrand, R. O., ed.,Canadian mineral deposit types, a geologicalsynopsis: Geological Survey of Canada Reportno. 36, p. 66.

Sangster, D. F., and Kirkham, R. V., 1974,Disseminated base metal mineralization alongthe Wollaston Lake fold belt, Saskatchewan:Geological Survey of Canada Paper 74-1, pt. A, p.143-144.

Sapozhnikov, P. G., 1970, Manganese deposits of theSoviet Union: Jerusalem, Israel Program forScientific Translations, 522 p.

Saupe, Francis, 1973, La Geologie du gisements demercure d'Almaden: Science de la Terre,Memoir 29, p. 7-341.

Scherba, G. N., 1970, Greisens: International GeologyReview, v. 12, p. 114-150, 230-255.

Schmitt, J. M., and Thiry, M., 1977, Mineralisation enplomb par evolution pedogenetiques d'une seriearkosique des trais (Zeida, Haute Moulouya,Maroc): Bureau Recherches Geologie et MinieresBulletin, 2nd ser., sec. 2, no. 2, p. 113-133.

Scott, Philip, 1980a, Salmon River lead deposit, inMcMillian, K. A., ed., Mineral Resources Divisionreport of activities 1979: Nova ScotiaDepartment of Mines and Energy Report 80-1, p.91-94.

---1980b, Geochemistry and petrography of theSalmon River lead deposit, Cape Breton Island,Nova Scotia: Wolfville, Nova Scotia, AcadiaUniversity M.S. thesis, Ill p.

Scratch, R. B., Watson, G. P., Kerrich, R., andHutchinson, R. W., 1984, Fracture-controlledantimony-quartz mineralization, Lake Georgedeposit, New Brunswick: Mineralogy,geochemistry, alteration, and hydrothermalregimes: Economic Geology, v. 79, no. 5, p.1159-1186.

Scull, B. J., 1958, Origin and occurrence of barite inArkansas. Arkansas Geological and ConservationCommission Information Circular 18, 101 p.

Seraphim, R. H., 1975, Denali--A nonmetamorphosedstratiform sulfide deposit: Economic Geology, v.70, p. 949-959.

Sestini, G., 1973, Sedimentology of a paleoplacer: Thegold-bearing Tarkwaian of Ghana, in Amstutz, G.C., and Bernard, A. J., eds., Ores in sediments:Heidelberg, Springer-Verlag, p. 275-305.

Shawe, D. R., Foord, E. E., and Conklin, N. M., 1984,Huebnerite veins near Round Mountain, NyeCounty, Nevada: U.S. Geological SurveyProfessional Paper 1287, 42 p.

Shawe, D. R., Poole, F. G., and Brobst, D. A., 1969,Newly discovered bedded barite deposits in EastNorthumberland Canyon, Nye County, Nevada:Economic Geology, v. 64, p. 245-254.

Sheldon, R. P., 1964, Paleolatitudinal andpaleogeographic distribution of phosphorite: U.S.Geological Survey Professional Paper 501-C,p. C106-C113.

Shride, A. F., 1969, Asbestos, in Mineral and waterresources of Arizona: Arizona Bureau of Mines

Bulletin 180, p. 303-311.--- 1973, Asbestos, in Brobst, D. A., and Pratt, W. P.,

eds., United States mineral resources: U.S.Geological Survey Professional Paper 820, p. 63-73.

Sillitoe, R. H., 1979, Some thoughts on gold-richporphyry copper deposits: Mineralium Deposita,v. 14, p. 161-174.

--- 1983, Enargite-bearing massive sulfide deposits,high in porphyry copper systems: EconomicGeology, v. 78, p. 348-352.

Sillitoe, R. H., Halls, C., and Grant, J. N., 1975,Porphyry tin deposits in Bolivia: EconomicGeology, v. 70, p. 913-927.

Simatupang, M., Rubini, S., Sutedjo, M., and Noerdin,A., 1974, Indonesian tin resources and potential:Fourth World Tin Conference, Kuala Lumpur;London, International Tin Council, v. 1, p. 101-120.

Sinclair, W. E., 1955, Asbestos, its origin, production,and utilization: London, Mining Publications, 365P.

Singer, D. A., Menzie, W. D., DeYoung, 3. H., Jr.,Sander, M., and Lott, A., 1980, Grade andtonnage data used to construct models for theregional Alaskan Mineral Resource AssessmentProgram: U.S. Geological Survey Open-FileReport 80-799, 58 p.

Singer, D. A., and DeYoung, J. H., Jr., 1980, What cangrade-tonnage relations really tell us?:International Geological Congress, 26th,Colloquia Cl, Mineral Resources, Paris, France,p. 91-101.

Singer, D. A., and Mosier, D. L., eds., 1983a, Mineraldeposit grade-tonnage models: U.S. GeologicalSurvey Open-File Report 83-623, 100 p.

--- 1983b, Mineral deposit grade-tonnage models II:U.S. Geological Survey Open-File Report 83-902,101 p.

Sinkankas, John, 1981, Emeralds and other beryls:Radnor, Penn., Nelson, 665 p.

Slansky, Maurice, 1980, Ancient upwelling models--Upper Cretaceous and Eocene phosphoritedeposits around west Africa, in Sheldon, R. P.,and Burnett, W. C., eds., Fertilizer mineralpotential in Asia and the Pacific: Honolulu,East-West Resource Systems Institute,Proceedings of the Fertilizer Raw MaterialsResources Workshop, August 20-24, 1979, p. 145-158.

Smirnov, V. I., Ginzburg, A. I., Grigoriev, V. M., andYakovlev, G. F., 1983, Studies of mineraldeposits: Moscow, Miv, 288 p.

Smith, W. C., Segerstrom, K., and Guiza, R., 1950, Tindeposits of Durango, Mexico: U.S. GeologicalSurvey Bulletin 962-D, p. 155-203.

Snyder, F. G., and Gerdemann, P. E., 1968, Geology ofthe southeast Missouri lead district, in Ridge, J.D., ed., Ore deposits of the United States, 1933-1967: New York, American Institute of MiningEngineers, p. 326-358.

Snyder, W. S., 1978, Manganese deposited by submarinehot springs in chert-greenstone complexes,western United States: Geology, v. 6, p. 741-744.

286

Page 301: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Soeda, Akira, and Watanabe, Makoto, 1981, Electrum-silver telluride ores of the Takeno mine, HyogoPrefecture, SW Japan, and their geneticsignificance: Mining Geology Special Issue 10, p.43-52.

-' Sohnge, P. G., 1964, The geology of the Tsumeb Mine:Proceedings of the Geological Society of SouthAfrica, v. 65, no. 2, p. 367-382.

Soregaroli, A. E., and Whitford, D. F., 1976, Brenda, inSutherland Brown, A., ed., Porphyry deposits ofthe Canadian Cordillera: Canadian Institute ofMining and Metallurgy Special volume 15, p. 186-194.

Sorem, R. K., and Gunn, D. W., 1967, Mineralogy ofmanganese deposits, Olympic Peninsula,Washington: Economic Geology, v. 62, p. 22-56.

Steven, T. A., and Eaton, G. P., 1975, Environment ofore deposition in the Creede Mining District, SanJuan Mountains, Colorado: Part I. Geologichydrologic, and geophysical setting: EconomicGeology, v. 70, p. 1023-1037.

Sutherland, D. G., 1982, The transport and sorting ofdiamonds by fluvial and marine processes:Economic Geology, v. 77, p. 1613-1620.

Swanson, S. A., Strong, D. F., and Thurlow, J. G., eds.,1981, The Buchans orebodies: Fifty years ofgeology and mining: Geological Association ofCanada Special Paper no. 22, 350 p.

Taliaferro, N. L., and Hudson, F. S., 1943, Genesis ofthe manganese deposits of the Coast Ranges ofCalifornia, in Manganese in California:California Division of Mines Bulletin 125, p. 217-275.

Taneda, S., and Mukaiyama, H., 1970, Gold depositsand Quaternary volcanoes in the southernKyushu: Guidebook 11, Excursion B8,International Association on the Genesis of OreDeposits, Tokyo-Kyoto Meeting, 1970.

Tavera, I. E., and Alexandri, Rafael, 1972, Molangomanganese deposits, Hidalgo, Mexico [abs. ]:Acta Mineralogica Petrographica, v. 20, p. 387-388.

Taylor, H. P., Jr., 1967, The zoned ultramaficcomplexes of southeastern Alaska, in Wyllie, P.J., ed., Ultramafic and related rocks: New York,John Wiley & Sons, p. 96-118.

Taylor, R. G., 1979, Geology of tin deposits:Amsterdam, Elsevier, 543 p.

Taylor, Stewart, 1984, Structural and paleotopographiccontrols of lead-zinc mineralization in theSilvermines orebodies, Republic of Ireland:Economic Geology, v. 79, 529-548.

Temple, A. K., and Grogan, R. M., 1965, Carbonatiteand related alkalic rocks at Powderhorn,Colorado: Economic Geology, v. 60, p. 672-692.

Thacker, J. L., and Anderson, K. H., 1977, Thegeologic setting of the Southeast Missouri leaddistrict-Regional geologic history, structure,and stratigraphy: Economic Geology, v. 72, p.339-348.

Thayer, T. P., 1964, Principal features and origin ofpodiform chromite deposits and someobservations on the Guliman-Soridag district,Turkey: Economic Geology, v. 59, p. 1497-1524.

Theodore, T. G., and Menzie, W. D., 1983, Fluorine-deficient porphyry molybdenum deposits in the

western North American Cordillera: Proceedingsof IAGOD Symposium, Tbikis, USSR, September1982.

Thomas, B. E., 1949, Ore deposits of the WallapaiDistrict, Arizona: Economic Geology, v. 44, p.663-705.

Thompson, J. F. H., and Naldrett, A. J., 1984, Sulfide-silicate reactions as a guide to Ni-Cu-Comineralization in central Maine, USA, inBuchanon, D. L., and Jones, M. J., eds., Sulfidedeposits in mafic and ultramafic rocks: London,Institution of Mining and Metallurgy, p. 103-113.

Thornett, J. R., 1981, The Sally Malay deposit:Gabbroid associated nickel copper sulfidemineralization in the Halls Creek mobile zone,Western Australia: Economic Geology, v. 76, p.1565-1580.

Tingley, J. V., and Berger, B. R., 1985, Lode golddeposits of Round Mountain, Nevada: NevadaBureau of Mines and Geology, Bulletin 100, 62 p.

Tischendorf, G., 1977, Geochemical and petrographiccharacteristics of silicic magmatic rocksassociated with rare element mineralization, inStemprok, M., Burnol, L., and Tischendorf, G.,eds., Symposium, Metallization Associated withAcid Magmatism (MAWAM): Prague GeologicalSurvey, v. 2, p. 41-96.

Titley, S. R., 1982, The style and progress ofmineralization and alteration in porphyry coppersystems, in Titley, S. R., ed., Advances ingeology of the porphyry copper deposits: Tucson,University of Arizona Press, p. 93-116.

Todd, S. G., Keith, D. W., Lekoy, L. W., Schissel, D. J.,Maun, E. L., and Irvine, T. N., 1982, The JMplatinum-palladium reef of the StillwaterComplex, Montana: Stratigraphy and petrology:Economic Geology, v. 77, p. 1454-1480.

Tooker, E. W., 1985, Discussion of the disseminated-gold-ore occurrence model, in Tooker, E. W., ed.,Geologic characteristics of sediment-andvolcanic-hosted disseminated gold deposits--Search for an occurrence model: U.S. GeologicalSurvey Bulletin 1646, p. 107-150.

Tourtelot, E. B., and Vine, J. D., 1976, Copper depositsin sedimentary and volcanogenic rocks: U.S.Geological Survey Professional Paper 907-C,34 p.

Troly, G., Esterle, M., Pelletier, B. G., and Reibell, W.,1979, Nickel deposits in New Caledonia-Somefactors Influencing their formation, in Evans, D.J., Shoemaker, R. J., and Veltman, H., eds.,International Laterite Symposium, New Orleans,1979: New York, Society of Mining Engineers,AIME, p. 85-120.

Turneaure, F. S., 1971, The Bolivian tin-silverprovince: Economic Geology, v. 66, p. 215-225.

Turner-Peterson, C. E., and Fishman, N. S., 1986,Geologic synthesis and genetic models foruranium mineralization, Grants uranium region,New Mexico, in Turner-Peterson, C. E., andSantos, E. S., eds., A basin analysis case study-The Morrison Formation, Grants uranium region,New Mexico: American Association ofPetroleum Geologists Studies in Geology no. 22.

Tuttle, 0. F.j and Gittins, J., eds., 1966, Carbon-atites: New York, John Wiley & Sons, 591 p.

287

Page 302: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Uchida, Etsuo, and liyana, 3. T., 1982, Physicochemicalstudy of skarn formation at the Shinyama iron-copper ore deposits of the Kamaishi mine,northeastern Japan: Economic Geology, v. 77, p.809-822.

Van Nort, S. D., and Harris, Michael, 1984, Geologyand mineralization of the Picacho gold prospect,Imperial County, California, in Wilkins, Joe, Jr.,ed., Gold and silver deposits of the Basin andRange Province, Western U.S.A.: ArizonaGeological Society Digest, v. 15, p. 1-27.

Vermaak, C. F., and Hendriks, L. P., 1976, A review ofthe mineralogy of the Merensky Reef, withspecific reference to new data on the preciousmetal mineralogy: Economic Geology, v. 71, p.1244-1269.

Walker, R. R., Matulich, A., Amos, A. C., Watkins, J.3., and Mannard, G. W., 1975, The geology of theKidd Creek mine: Economic Geology, v. 70, p.80-89.

Walthier, T. N., Araneda G., Ramon, and Crawford, 3.W., 1982, The El Indio gold, silver, and copperdeposit region of Coquimbo, Chile, in Watson, S.T., ed., Transactions of the Third Circum-PacificEnergy and Mineral Resources Conference:Honolulu, The Circum-Pacific Council for Energyand Mineral Resources, p. 349-355.

Wandke, A., and Martinez, J., 1928, The Guanajuatomining district, Guanajuato, Mexico: EconomicGeology, v. 23, p. 1-44.

Wedepohl, K. H., 1971, "Kupferschiefer" as a prototypeof syngenetic sedimentary ore deposits:International Association on Genesis of OreDeposits, Tokyo-Kyoto, 1970, Proceedings,Special Issue 3, p. 268-273.

Weiblen, P. W., and Morey, G. B., 1980, A summary ofthe stratigraphy, petrology and structure of theDuluth Complex: American Journal of Science,v. 280-A, p. 88-133.

Wells, F. G., Cater, F. W., Jr., and Rynearson, G. A.,1946, Chromite deposits of Del Norte County,California: California Division of Mines andGeology Bulletin 134, p. 1-76.

Wells, J. H., 1973, Placer examination-Principles andpractice: U.S. Department of Interior, Bureau ofLand Management Bulletin 4, 204 p.

West, R. J., and Aiken, D. M., 1982, Geology of theSierrita-Esperanza deposit, in Titley, S. R., ed.,Advances in the geology of the porphyry copperdeposits, southwestern North America: Tucson,University of Arizona Press, p. 433-466.

Westerveld, J., 1937, The tin ores of Banca, Billeton,and Singkep, Malay Archipelago-A discussion:Economic Geology, v. 32, p. 1019-1041.

Westra, Gerhard, 1982a, Alteration and mineralizationin the Ruth porphyry copper deposit near Ely,Nevada: Economic Geology, v. 77, p. 950-970.

-- 1982b, The Mount Hope stockwork molydenumdeposit: Geological Society of AmericaAbstracts with Programs, v. 14, p. 646.

Westra, Gerhard, and Keith, S. B., 1981, Classificationand genesis of stockwork molybdenum deposits:Economic Geology, v. 76, p. 844-873.

White, D. E., 1962, Antimony in the United States:U.S. Geological Survey Mineral InvestigationResource Map MR-20, scale 1:3,168,000.

288

-- 1981, Active geothermal systems andhydrothermal ore deposits, in Skinner, B. J., ed.,Economic Geology, Seventy-fifth AnniversaryVolume: Economic Geology Publishing Company,p. 392-423.

White, D. E., and Roberson, C. E., 1962, Sulfur Bank,California, a major hot spring quicksilverdeposit: Geological Society of America,Buddington volume, p. 397-428.

White, W. H., Bookstrom, A. A., Kamilli, R. J.,Ganster, M. W., Smith,. R. P., Ranta, D. E., andSteininger, R. C., 1981, Character and origin ofClimax type molybdenum deposits, in Skinner, B.J., ed., Economic Geology, 75th AnniversaryVolume: Economic Geology Publishing Company,p. 270-316.

White, W. S., 1968, The native copper deposits ofnorthern Michigan, in Ridge, J., ed., Ore depositsof the United States (Graton-Sales Volume), v.1: New York, American Institute of Mining,Metallurgical and Petroleum Engineers, p. 303-325.

Wilkins, Joe, Jr., 1984, The distribution of gold- andsilver-bearing deposits in the Basin and Rangeprovince, Western United States, in Wilkins, Joe,Jr., ed., Gold and silver deposits of the Basin andRange Province, Western U.S.A.: ArizonaGeological Society Digest, v. 15, p. 1-27.

Wilkins, Joe, Jr., and Heidrick, T. L., 1982; Base andprecious metal mineralization related to low-angle tectonic features in the WhippleMountains, California, and Buckskin Mountains,Arizona, in Mesozoic-Cenozoic tectonicevolution of the Colorado River region,California, Arizona and Nevada, Anderson-Hamilton Volume: San Diego State University, p.182-204.

Williams, D. A. C., 1979, The association of somenickel sulfide deposits with komatiitic volcanismin Rhodesia: Canadian Mineralogist, v. 17,p. 337-349.

Williams, J., 1969, The vanadiferous magnetic iron oreof the Bushveld igneous complex, in Wilson, H. D.B., ed., Magmatic ore deposits: EconomicGeology Monograph 4, p. 187-208.

Williamson, Anthony, and Rogerson, R. J., 1983,Geology and mineralization of Misima Island:Geological Survey of Papua New Guinea Report83/12, 137 p.

Wilson, 1. F., 1955, Geology and mineral deposits of theBoleo copper district, Baja California, Mexico:U.S. Geological Survey Professional Paper 273,134 p.

Wilson, W. E., ed., 1977, Tsumeb! The world's greatestmineral locality: The Mineralogical Record, v. 8,no. 3, 111 p.

Witkind, 1. J., 1973, Igneous rocks and related mineraldeposits of the Barker quadrangle, Little BeltMountains, Montana: U.S. Geological SurveyProfessional Paper 752, 58 p.

Yajima, Junkichi, and Ohta, E., 1979, Two-stagemineralization and formation process of theToyoha deposits, Hokkaido, Japan: MiningGeology, v. 29, p 291-306.

Yamada, K., Sudo, S., Sato, T., Fujii, N., Sawa, T.,Hatori, H., Satoh, H., and Aikawa, T., 1980,

Page 303: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Mineral resources inventory and evaluationsystem (MINES): Geological Survey of JapanReport no. 260, 35 p. and two appendixes.

Yeend, W. E., 1974, Gold-bearing gravels of theancestral Yuba River, Sierra Nevada,California: U.S. Geological Survey ProfessionalPaper 772, 44 p.

Ypma, P. J. M., and Simons, J. H., 1969, Geneticaspects of tin mineralization in Durango,Mexico: Proceedings of the Second TechnicalConference on Tin, Bangkok; London,International Tin Council, v. 1, p. 177-192.

Yui, Shunzo, 1983, Textures of some Japanese Besshi-type ores and their implications for kurokogenesis, in Ohmoto, Hiroshi, and Skinner, B. 3.,eds., The kuroko and related volcanogenicmassive sulfide deposits: Economic GeologyMonograph 5, p. 231-240.

Zellars-Williams, Inc., 1978, Evaluation of thephosphate deposits of Florida using the mineralsavailability system-Final report: Prepared forthe Department of the Interior, Bureau of MinesContract No. J0377000, 196 p.

289

Page 304: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix A. Locality Abbreviations

AGTNALGRANGLASTRAUNSAUNTAUQLAUSAAUTSAUVTAUWABLVABOTSBRMABRZLBULGCARLCHADCILECINACLBACMRNCNALCNBCCNGOCNMNCNNBCNNFCNNSCNNTCNONCNQUCNSKCNYTCORICUBACYPSCZCLDMRPECDREGPTELSAETHPFIJIFNLDFRNCGHNAGNBSGNEAGRBRGRECGRLDGRMEGRMYGUATGUYNHATIHNDRHONGHUNGINDAINDSIRANIRAQ

ArgentinaAlgeriaAngolaAustriaAustralia, New South WalesAustralia, N. TerritoryAustralia, QueenslandAustralia, South AustraliaAustralia, TasmaniaAustralia, VictoriaAustralia, Western AustraliaBoliviaBotswanaBurmaBrazilBulgariaCaroline IslandsChadChileChinaColombiaCameroonCanada, AlbertaCanada, British ColumbiaCongoCanada, ManitobaCanada, New BrunswickCanada, NewfoundlandCanada, Nova ScotiaCanada, Northwest TerritoriesCanada, OntarioCanada, QuebecCanada, SaskatchewanCanada, Yukon TerritoryCosta RicaCubaCyprusCzechoslovakiaDominican RepublicEcuadorEgyptEl SalvadorEthiopiaFijiFinlandFranceGhanaGuinea-BissauGuineaGreat BritainGreeceGreenlandEast GermanyWest GermanyGuatemalaGuyanaHaitiHondurasHong KongHungaryIndiaIndonesiaIranIraq

IRLDISRLITLYIVCOJAPNJMCAJRDNKNYAMALIMAURMDGSMLWIMLYSMNGLMRCOMXCOMZMBNAMBNCALNCRGNKORNRWYNZLDOMANPANAPERUPKTNPLNDPLPNPORTPPNGPTRCRMNASAARSAFRSKORSLMNSNGLSPANSRILSRLNSRNMSUDNSWAFSWAZSWDNSYRATHLDTIWNTNZNTOGOTRKYTUNSUGNDUVOLURAMURKZURRSURTDURUZUSAKUSARUSAZUSCA

IrelandIsraelItalyIvory CoastJapanJamaicaJordanKenyaMaliMauritaniaMadagascar (Malagasy Rep.)MalawiMalaysiaMongoliaMoroccoMexicoMozambiqueNamibiaNew CaledoniaNicaraguaNorth KoreaNorwayNew ZealandOmanPanamaPeruPakistanPolandPhilippinesPortugalPapua New GuineaPuerto RicoRomaniaSaudi ArabiaSouth AfricaSouth KoreaSolomon IslandsSenegalSpainSri LankaSierra LeonSurinamSudanSW AfricaSwazilandSwedenSyriaThailandTaiwanTanzaniaTogoTurkeyTunisiaUgandaUpper Volta (Burkina Fasso)USSR, ArmeniaUSSR, KazakhstanUSSR, Russian Rep.USSR, TadzhikistanUSSR, UzbekistanUS, AlaskaUS, ArkansasUS, ArizonaUS, California

291

Page 305: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix A. Locality Abbreviations--Continued

USCO US, ColoradoUSFL US, FloridaUSGA US, GeorgiaUSHI US, HawaiiUSID US, IdahoUSKY US, KentuckyUSMA US, MassachusettsUSME US, MaineUSMI US, MichiganUSMN US, MinnesotaUSMO US, MissouriUSHT US, MontanaUSNC US, North CarolinaUSND US, North DakotaUSNJ US, New JerseyUSNM US, New MexicoUSNV US, NevadaUSNY US, New York

USOKUSORUSPAUSTNUSTXUSUTUSVAUSVTUSWAUSWIUSWYVNZLVTNMYUGOZIMBZIREZMBA

US, OklahomaUS, OregonUS, PennsylvaniaUS, TennesseeUS, TexasUS, UtahUS, VirginiaUS, VermontUS, WashingtonUS, WisconsinUS, WyomingVenezuelaVietnamYugoslaviaZimbabweZaireZambia

292

Page 306: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models by Donald A. Singer[Logarithms (base 10) except A12 03 , Fe, Cr2 03 , fiber, Mn, and P2 05 , which are percent.S. D., standard deviation]

Komatlitic Ni-Cu Dunitic Ni-Cu Synorogenic-synvolcanic Ni-Cu

Number Number Numbeiof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 6.235 0.7266 31 7.451 0.7664 22 6.300 0.6996 32RE2 0c (pet) .......... __ _ _ _ _ _ _Monazite (pet REO) ... -- -- -- -- -- -- -- -- --U 08 (Pet) ........ :::: __ __ __zircon (pet ZrO2) .......... -_--_________Nb2Oc (pet).-- -- -- -- -- -- -- --

arite (pet).-- -- -- -- -- -- -- -- --

AlO pt ..::::::::..... -- -- -- -- -- -- -- -- --

Baete(pet).

P (p ot)1 682 . 63............. -- 3PNi (pet) ....... 00 31 ._ .3 22 .1 .5 32Cu(pnite (p)-8T5iO2) .... 25..8 21 -1 .8 12 -. .1 29Rutile (pet T )-- -- -- -- -- -- --Leucocite (pet i-- -- -- -- -- -- -- -- --Cr0d (pet) .-. 11703..2898 11 -.856_ ._1__67_5_-1__0_ __ 3Mn (pp). ...-- -- 5 -- -- -- -1 .- 2Fe (pb).-- -- -- -- -- -- -- -- --Co (pet) ......... ..... -1.250 .3608 8 -1.592 .4286 3 -1-333 3506 3Ni (pet) ................. .1790 .2600 31 _.0o48 .2337 22 -.1175 .2580 32Cu (pet) ......... ..... -.8450 .2548 21 -1.415 .4886 12 -.3170 .3101 29MO (pet).-- -- -- -- -- -- -- -- --WA3 (pet).-- -- -- -- -- -- -- -- --Pd (ppb) ....... ....... -.4703 .2898 11 -.8564 .4467 5 -1.005 .2799 3Pt (ppb) ......... ..... -.6967 .2213 5 -- -- -- 2 .Rh (ppb).-- -- -- -- -- -- -- -- --Ir (ppb) ................. -1.145 .4086 9 -1.822 .7000 5 - --Ru (ppb).-- -- -- -- -- -- -- -- --Os (ppb) ................. - -- -- - - --Ag (g/t) ................. - -- -- - - --Au tg/t) ................. -1.443 .5335 1 0 -1.722 .1830 5 _.9408 .4151 3Zn (pet) ................. - -- _- _ _ __Hg (pet).-- -- -- -- -- -- -- -- --Sn (pet).-- -- -- -- -- -- -- -- --Pb (Pat) ................. _ - - _ __ _ _ __Sb (pet) ................. _ -_ __ _ _ __

Minor podiform Cr Major podiform Cr Serpentine-hosted asbestos

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ......RE205 (pet) ...........Monazite (pet RED)U 08 (pet) ............Zircon (pet ZrO2) .....Nb 0 5 (pet) ...........Flber (pet) ...........Barite (pet) ..........Al0 (pet) ...........P pt) ...............P2O (pet) ............lmenite (pet TiO2)..Rutile (pet T710)Leucocite (pet iO;) ..Cr2D, (pet).Mn (pot).Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pet) ..............Mo (pet) ..............WO, (pet) .............Pd 3(ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............Hg (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

2.112

112.13

.67231.4189.9088

1.8 152.278

0.9292

7.775

.1167 1

.41564.39110.3 126.22 17

1135

4 35

3133693829

4.321 0.7598 174

44103

.54111.1561.1161.8942.344

7.291

.3694

.1948.1683.3003.0763

174

161211497

7.1419

.6618

0.5874

.1859

50

50

293

Page 307: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models--Continued

Carbonatite W skarn Sn skarn

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 7.777 0.4414 20 6.016 1.025 28 6.774 0.6178 4RE205 (pet) .... ....... -1.013 1.207 5 -- -- -- -- -- --Monazite (pet REO) .. -- ..-- -- -- -- -- -- -- --U 08 (Pet) ................._ ..__________Zircon (pet ZrO2) ..... -- -- -- -- -- -- --Nb05 (pet) . . -.1951 .3562 20 -- -- -- -- -- --Fiber (pet) . ...... -- . -- -- -- -- -- --Barite (pet) . ..... -- . -- -- -- --.AlO0 (pet) . ...... -- . -- -- -- -- -P pht) . ......... -- -- -- __ _ _P 0 (pet) . ....... -- _- __ __ __ __Ismenite (pet TiO2) ... -- -_- __ __ __Rutile (pet TiO2) ... -- ..-- -- -- -- -- -- -- --Leucocite (pet TiO 2) -- -- -- -- -- -- --Cr2Ow (pet) ...............-_.. _______Mn (t) ............ -- -- -- -- -- -- -- --Fe (pet) .............. -- -- -- -- -- -- --Co (pet) .............. -- -- -- -Ni (pet) .....-- -- -- -- -- -- --Cu (pet) ..... -- _- __ __ __ __ _Mo (pet) .............. -- -- -- -- -- -- -- -- --WO3 (pet) ...... -.1826 .2430 28 -- -- --Pd (ppb) ..... -- -- -- -- -- -- -- --Pt (ppb).-- -- -- -- -- --Rh (ppb).-- -- -- -- -- -- -- --Ir (ppb) .............. -- -- -- -Ru (ppb).-- -- -- -- -- -- -- --Os (ppb) .............. --Ag (g/t) .............. -- -Au (g/t) .............. -- -- -- -- -- -- -- -- --Zn (pet) .............. -- --Hg (pet) .............. _ _ _ _ _Sn (pet) .............. -- -- -- -- -- -.5031 .3014 4Pb (pet) .............. -- -- -- -Sb (pet) .............. -- -- -- -- --

Replacement Sn W vein Sn vein

Number Number - Nubeiof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ......RE 2 05 (pet) ...........Monazite (pet REO) ....U 08 (pet) ............Zircon (pet ZrO2) .....Nb,05 (pet) ...........Fiber (pet) ...........Barite (pet) ..........Al O, (pet) ...........P ?p t) ...............P205 (pet) ............Ilmenite (pet TiO2)Rutile (pet TiO ) .....Leucocite (pet TiO2)Cr2O (pet) .Mn (p3t) .........Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pet) ..............Mo (pet) ..............WO3 (pet) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............Hg (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

6.720_ _

_ _

_ _

_ _

_ _

_ _

_ _

0.5493_ _

_ _

_ _

_ _

_ _

_ _

6 5.748_ _

_ _

_ _

_ _

_ _

_ _

0.8574

-.0400 .1408

16 5.374_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

16

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

_ _ _ _

-- .1038_ _ _ _

_ _ _ _

1.000

.2028

4 3

43-.0965 .1265 6

294

Page 308: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models--Continued

Sn greisen Climax Mo Porphyry copper

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 6.8572 0.7449 10 8.305 0.5020 9 8.159 o.6864 208RE2 0 (pet).-- -- -- -- -- --Monahite (pet REO) .... -- -- -- -- -- -- -- -- --

U °8 (pet) .......Zircon (pet ZrO2)Nb O (pat) ........... -- -- -- -- -- -- -- -- --Fiber(p et) ...........Barite) . -- -- -- -- -- -- -- -- --Al (pet) ........... __ __ _ _ _ _P (pct) ............... __ __ __ __ __ -_ 9PMo (pet).-- -- -- -. 1 .3 __ -0 _3 1Om3 nite (pet TiO2)-- -- -- -- -- -- --

Rutile (p-- -- -- -- -- -- -- -- --Leuocite -- -- -- -_ __ __ __ __Cr2 (pt) ......... -- -- -- -- -- -- -- --Mn (pb).-- -- -- -- -- -- -- -- --Fe (pet).-- -- -- -- -- -- -- -- -.Co (pet).-- -- -- -- -- -- -- --Ni (pet) ...............-- -- -- -- -- --Cu (pet) ....... ....... -- -- -- -- -- -- -.2690 .1900 208Mo (pet) ................... - -- -.7171 .1363 9 -1.907 .4343 103W03 ((pet) ................... ---- -________Pd (ppb) .............. -- -- -- -- -- -- -- -- --Pt (ppb) .............. -- -- -- -- -- -- -- -- --Rh (ppb) ....... 5....... -- -- -- -- -- --Ir (ppb) .............. -- -- -- -- -- -- -- -- --Ru (ppb) .............. -- -- -- -- -- -- -- -- --Os (ppb) ................... ---- ---------AB tg/t) ................... ---- _____ .2180 .3646 76Au (g/t) ................... --------- -.9077 .7012 81Zn (pet) ................... ---- -_-_-____Ng (pet) .................... ---- -_-______Sn (pet) ................... -.5491 .1707 tO - --- - __Pb (pet) ................... ---- -_-______Sb (pet) ................... ---- -_-_-____

Porphyry Cu, skarn-related Cu skarn Zn-Pb skarn

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric)RE20(pot) .Monarite (pct) .EO

08 (Petn .pot ......ZIrconi (pot Ti )2NbuO (pet)FrIG (pet)earte (pet) oAl 0 (pet)P (pot) .PCu (pat) .IMonnitte).petO).Rutile((pot T ) . ...LeuPodite (pet (ipp2)Cr2t (pet) .......... .Mn Rh ..............Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pet) ..............Mo (pet) ..............Wg (pet) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............Ng (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

7.901

-.008 1-1.657

.6798- .4829

0.4726

.2211.259 1

.14185

.5 020

18

184

96

5.747 0.9505 64__ _ _ __

__ _ _ __

__ _ _ _ _

_ _ _ _ _ _

_ _ __ _ _

__ __ __

_ _ _ _ _ _

__ _ _ __

_ _ _ _ _ _

.2266

1. 33 1.21496

.2880

.6955

.6107

64

1516

6.151 0.7302 34

-3377 .14585 17

2.059 .3908 22-.3489 .51314 7.7719 .2709 314

.5076 .3053 30

295

Page 309: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. .Q -- - - .#-#tatfsAios t rv zeade-tnnna&a mnodepl -CnntlniAd

Fe skarn Polymetallic replacement Replacement Mn

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 6.858 1.041 168 6.261 0.6884 52 4.348 1.073 37RE25Ie tREO) ....( ) -- -- -- -- -- -- -- -- --U 08 (pet) ............ -- -Zircon (pet ZrO2) ..... -- -- -- -- -- --Nb O (pet).-- -- -- _- -- __ __ _FibeF (pet).-- -- -- -- -- -- __ __ __Barite (pet) ......... -- -- -- - -- --

p 0 (pt) .-- - _ _ _ -1.4S1 *4493 3P (pet) (t ....... -- -_ _Hemcnite (pet iO2).. -- -- -- -- -- -- -- TRutile (pet TiO ) ........... - -- -- - -- -- --LeucociPte .......2)........... ----- ---- -- -- --Mn R w .....- -- __ __ _ 32.54 11.28 37Fe (pet) ..... 49.61 10.28 168 -- -- --Co (pet) ........-... -_ _ _Ni (pet) ....... -- ... -- -- --Cu (pot) .......-- ...-- -- -.6327 .5121 35 -.0546 .2839 4Mo (pet) ........ . -- -- -- -- -- -- --Wa3 (pot) ....... -- .. -- -- - --Pd (ppb) ........ -_... -_ _ _ _ _Pt (ppb) .......... - -- -- -- -- -- -- --Rh (ppb) ........ -- ...-- -Ir (ppb).-- -- -- -- -- -- -- --Ru (ppb) ....... -- ... -- -_ _ _Os (ppb) ....... -- ... -- -_Ag (g/t) .......-- ...-- -- 2.286 .4599 45 -- -- --Au (g/t) .......-- ...-- -- -.1462 .7319 35 -- -- --Zn (pet) .......-- ...-- -- .5937 .5361 51 __ _ _ __Hg (pet) ........-- -- -- -- _ _ __Sn (pet) ....... -- ...-- -- -- -- -Pb (pot) ........ . -- - .7041 .4749 52 -- _ _ __Sb (pet) ....... -- -- -- __ _ _ _

Porphyry Cu-Au Porphyry Cu-Mo Porphyry Mo, low-F

Number Number Numberof f olt

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ......RE20c (pet) ...........Monalite (pet R90)V °8 (pet) ............Zircon (pet ZrO2) .....Nb 0 (pot) ...........FibeF (pet) ...........Barite (pet) ..........Al20 (pet) ...........P fpgt) ...............P 05 (pet) ............Itm nite (pet TiO2).Rutile (pet T10 ) .....Leucocite (pet ) i.2).Cr2o (pet)Mn (pot) ...Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pbt) ..............Mo (pet) ..............W03 (pet) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............HB (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

8.005

-.2968-2.5 1 6

.2012-. 4 178

0.4746

1205.:368 1

.3720.:2138

40

4020

2740

8.706 0. 483 1 16 7.974_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_1.070

_ _

_ _

0.6053

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

.1459

_ _

__

-.3777-1.802

.0852-1.908

. 1679

.2683

.4162

.4189

1616

1 616

33

33

296

Page 310: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models-Continued

Polymetallic vein Cyprus massive sulfide Beashi massive sulfide

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 3.880 1.109 75 6.105 0.8765 49 5.339 0.9701 44RE

205 (pot)... ....

Monazite (pet REO)U 08 (pet)... ....ZIrcon tpet ZrO2)NbFOe (pet)FCoe (pet) ...........Barite tpet) ..........AlMo (pet) ) ..........P fpt) ........W03 (pet)... ......PIId p)nite (pet T102Rutile (pet TiO--

Leucocite (pb t ?102)

Cr20 (pet) b ..........Mn (ppet) ............Fe (pet) ..............Co (pet).2.938 5351.5 .3

Au (get) .-. 08..16.4..017 .89.1.-.50.4971

Cu (pct). -.7169 .8378 33 .2040 .3068 19 -.1633 .2798 44Mo (pet).... ...... -...- -

WS3 (pet)... ..........Pd tppb) .... ...Pt (ppb) .. 5.27..35....Rh (ppb) ..............Ir (ppb) .......... mrbuRu (ppb) ... ....Os (ppb) ... ....Ag (g/t) ................... 2.938 .5935 74 1.109 .6457 15 .8956 .3838 14Au (g/t) ................... -.2088 1.166 54 -.0417 .6893 15 _.4650 .4697 14Zn (pet) ................... .4439 .3718 60 -.1021 .7085 16 -.2506 .2755 6Mg (pet) ... ....Sn (pet) ... ....Pb (pet) ................... .9529 .4426 75 -1.333 .5774 3 - __Sb (pet) ... ....

Volcanogenic Mn Creede epithermal vein Comstock epithermal vein

t~ ~~~ ~Num-ber Number NuGmbe-rof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) .....RE205 (pet) ..........Monazite (pet REO) ....U °8 (pet) ............Zircon (pet ZrO2) .....Nbj0e (pet) ...........Fi (pet) ...........Barite (pet) ..........Al 0, (pet) ...........P fpht) ...............P O(pet) ............Hanite (pet T102).Rutile (pet TiO ) .....Leucocite (pet io2)Cr20o (pot) ...........Mn ( 0t ..............Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pet) ..............Mo (pet) ..............W03 (pet) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (gSt) ..............Zn (pet) ..............Hg (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ............

4 674

__

_

_ _

_ _

__

_1.055_ _

_ _

__

38.80__

_ _

__

__

__

_ _

__

__

__

_ _

__

__

__

__

0 9607

__

_ _

_ _

_ _

__

.5115_ _

_ _

_ _

9.723__

__

_ _

_ _

__

__

__

__

__

__

__

__

__

93

93

6.151

.5254

2.099.3265.274 4

.4057

0.9382

.4843

.4766

.5874

.5545

.2740

27

19

272326

24

5.884

-1.8 16

2.060.8726

-1.594

-1.870

0.8379

.7955

.8 156

.44 101.702

.98 17

41

18

4 14 13

19

297

Page 311: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models--Continued

Sado epithermal vein Epithermal quartz-alunite Au Volcanogenic U

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 5.472 0.7876 20 6.199 0.6663 8 5.535 0.9451 21RE20< (pet) .................- .... -- -- -- --Monazhte (pet REO) ....U? °8 (pet) ....... -- -- -- -- -- -- -.9353 .2656 21Zircon (pet ZrO2 ) -- -- -- -- -- -- -- -- --Nb 0 (pet) ........... -- -- -- -- -- -- -- -- --Fiber (pet) ........... -- -- -- -- --Barite (pet) .......... -- -- -- -- -- -- -- -- --Al p et) ........... -- -- -- -- -- -- --P p ) ............... -- -- -- -- -

P2 0 t Pat) ...............- .... -_ __ __ __Ilm (nite (pet TiO2) ... -- -- -- -- -- -- -- -- --Rutile (pet TiO)..... -- -- -- --

Cr20 (pet). --Mn (pet) ..-- .-- -- -- -- -- -- -- --Fe (pet) ..................- ....--_______Co (pet) .............. -- --Ni (pet).-- -- -- - -- -- -- -- --Cu (pet) .............. -.7200 1.153 9 -.6255 1.045 5 __ _ _ __Mo (pet).-- -- -- -- -- -- -- --WO 3 (pet) ............. . -- --Pd (ppb) .............. -- -- -- -- -- -- -- -- --Pt (ppb) .............. -- --Rh (ppb) .............. -- --Ir (ppb) .............. -- -- -- -- -- -- -- -- --Ru (ppb) .............. -- -- -- -- -- -- -- -- --Os (ppb) .............. -- --Ag (glt) .............. 1.579 .6647 20 1.251 .6788 8 -- -- --Au (g/t) .............. .8363 .4007 18 .8927 .2341 8 -- _ _ __Zn (pet) .............. -.602 -- 1 -- -- -- -- -- --Hg (pet) .............. _ _ _ _ _Sn (pet) .............. -- -- -Pb (pet) .............. -2.372 .2129 2 -- -- _- __ __ __Sb (pet) .............. -- -- -- -

Epithermal Mn Rhyolite-hosted Sn Volcanic-hosted magnetite

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ......RE204 (pet) ...........Monazite (pet REO)U °8 (pet) ............Z3rcon (pet ZrO2) .....Nb 0 (pet).Fiber (pet).Barite (pet) ..........Al20 t~pct) ...........P tpd) ...............P 05 (pet) ............IN mnite (pet TiO2)Rutile (pet TiOLeucocite ( petCr2o (pet) ...........Mn (pet) ..............Fe (pet) ..............Co (pet) ..............mO (pet) ..............Cu (pet) ..............No tpet) ..............W0 3 (pet) .............Pd tppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag tg/t) ..............Au (g/t) ..............Zn (pet) ..............Mg (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

4.372_ _

_ _

,_

__

_ _

_ _

_ _

_ _

_ _

_ _

3°.59__

__

_ _

__

_ _

_ _

_ _

__

__

_ _

_ _

_ _

0.8246_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

8.538_ _

_ _

_ _

_ _

_ _

59

59

2.992 0. 4937 132 7.602 0.8222 39

-0.3979 .2874 36

53.72_ _

_ _

_ _

_ _

_ _

_ _

_ _

11.08_ _

_ _

__

_ _

_ _

_ _

39

-.4 130 .33 52 132

298

Page 312: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models--Continued

Deposit type

Tonnage (metric) ......RE20 (pet) ...........Monazte (pet REO).Uar8 (pet) ............ZIrcon (pet TrO2) .....Nb205 (pet) ...........Fie r (pet) ...........Barit (pet) ..........Al (pet) ...........P (pot) ...............PW05 (pat) ............

pmenite (pet TiO2)Rutile (pet TIOb)LeucRcite (pet ?iOppb.Cr2O (pet) ...........Mn R et) ..............Fe (pet) ..............Co (pet) ..............NI (pet) ..............Cu (pet) ..............No (pet) ..............WO (pet) .............Pd b ppb ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............Ng (pet) ............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

Carbonate-hosted Au-Ag

NumberOr

Mean S.D. deposits

6.706 0.5202 35

Hot-spring Hg

Numberof

Mean S.D. deposits

3.978 1.312 20

Silica-carbonate Hg

Numberof

Mean S.D. deposits

4.448 1.038 28

1. 340.4106

.714 8

.391 4634

-.4622 .2002 20 - 4070 .1738 28

Deposit type

Tonnage (metric) ......RE205 (pet) ...........Monazite (pet REO)U °8 (pet) ............ZIrcon (pet ZrO2) .....Nb O (pet) ...........Fige; (pet) ...........Barite (pet) ..........Al 0 (pet) ...........P ?pet) ...............P O (pet) ............Ilmenite (pet TiO2)Rutile (pet TiOLeucocite (pet ?i) ..Cr2O (pet) ...........Mn (pet) ..............Fe (pet) ..............Co (pet) .............NI (pet) ..............Cu (pet) ..............Mo (pet) ..............WO3 (pot) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............Ir (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (g/t) ..............Zn (pet) ..............Ng (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

Sb veins Disseminated Sb Kuroko massive sulfide

Number Number Numberof of of

Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

2.256

1.56 1.7111

1.540

1.117

.285 1

.6 872

.2200

81

89

81

4.9413

.07 92-.5278

.5505

0.8211

*1 172

.2308

23

2

23

6.175

.0999

1.459-. 1080.144482

-. 1269

0.8495

.31493

.5 133

.528 1

.14626

.5506

432

_12

238330

1814

299

Page 313: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Stimmarv sqtatistiocs of 2rade-tonnate models--Continued, -_U] _

Algoma Fe and Superior Fe Sandstone-hosted Pb-Zn Sediment-hosted Cu

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 8.218 0.9105 66 6.729 0.8268 20 7.341 0.9186 57RE205 (pet) .......-- __ _ _ _ _ _Monazite (pet REO) .... -- -- -- -- -- -- -- -- --U 08 (pet) ......... -- -- -- -_ _Zircon (pet ZrO2) ..... -- -- __ __ __ _ _ _Nb 0 (pct) ....... __ __ __ __ __ __FigeP (pet) ................... - __ __ __ __Barite (pet) .......... -- -- -- -- -- -- -- - -Al t (pet).-- -- -- -- -- -- -- -- --P -p1) .... -1.256 .4853 47 -- -- __ __ __ __Pi0m (pet) ......... -- -- _- _ _ _Iu nite (pet TiO2) ... -- -- -- -- -- -- -- -- --

Leucocite (pet i02).. -- -- _- -- -_ __Cr2o;,(pct) ................. _ __ __ __ __Mn (pt) ...::.. ::::. -- -- -- -- -- -- -- --

Fe (pet) ..... 50 .83 13.65 66 __Co (pet) ...... ........ -- -- -- -- -- -- -.6226 .1919 10Ni (pet) .............. -- _ _ _Cu (pet) ........- -- -- - - .3317 .2540 57Mo (pet) .............. -- -- -- -- -- -- -- -- --1103 (pet) ...... __ __ __ __ __ __ _Pd (ppb) .....-- -- -_ -_ __ _ _ _Pt (ppb) ..... ....... -- -- -- -- -- -- -- -- --Rh (ppb).-- -- -- -- -- -- -- --Ir (ppb) ..............-- -- -- -- -- --Ru (ppb) .............. -- _ _Os (ppb) .............. -- -- -- - -Ag (g/t) ...... ........ - 1.050 .5824 9 1.208 .7646 12Au (g/t) . ............. -- -- -- -- -- -- -- -- --Zn (pet) ...... ........ -.2320 .6769 14 __ __ _Hg (pet).-- -- -- -- -- -- -- --Sn (pet).-- -- -- -- _- __ __ __Pb (pet) ...... ........ - -- .3332 .3011 20 -- -- --Sb (pet).-- -- -- -- -- __ __ __ __

Southeast Missouri Pb-Zn

Sedimentary exhalative Zn-Pb Bedded barite and Appalachian Zn

Number - Numbir 7umSerof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) .RE20r (pet) .Monalite (pet REO)U °8 (pet) . .....Zircon (pet ZrO2) .Nb0 (pet) .Fiber (pet) .Barite (pet) .Al 0 (pet) .......P fpt) ... . .. ..P (pet) ........Ilienite (pet TiO2)Rutile (pet TiOLeueocite (pet iiO) ;-:Cr2o (pet)Mn (pet) .Fe (pet) .Co (pet) .Ni (pet) .Cu (pet) .Mo (pet) .W0 3 (pet) .......Pd (ppb) ... ....Pt (ppb) ... ....Rh (ppb) .Ir (ppb) .Ru (ppb) .Os (ppb) .Ag (g/t) .Au tg/t) .Zn (pet) .Hg (pet) .Sn (pet) .Pb (pet) .Sb (pet) .

7.167

- .7273

1.63 67

.75 19

.4443

0.7315 45 6.259

83.02

0.9271

13.00

25 7.542 0.9299 20

25 __ __

.4797

.4TO5

.2908

.3443

I 1

37

45

45

.669 3

.6079

.0893

.6917

.3623

.4068

10

20

16

300

Page 314: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models-Continued

Sedimentary Mn Phosphate, upwelling Phosphate, warm current

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 6.862 1.240 39 8.520 0.8611 60 8.603 0.7360 18RE205 (pet) ........ -- -- _ _ _ _Monazite (pet RED) -- -- -- -- -- -- -- -- --U°. -- -- -- -- --........ZIrcon (pet) . -- -- -- -- -- -- -- -- --N (pet) ........... -- -- -- -- -- -- -- -- --Fie (pet) ........... -- -- -- -- --Barite (pet) ................. ---- ---------Al Ogt(pet) ................. - -- -- - - --P ?p t) .................. _: .9034 .3273 13 _-_______P 05 (Pet) ....................... -- -- -- 23.96 6.604 60 24.16 3.402 18IHmenite (pet TiO2)............ - -- -- - - --Rutile (pet TiO) 2..... -- -- --- --Leucocite (pet Ti02) .. -- -- -- -- -- -- -- -- --

Mn (pet) ..... 31.38 13.05 39 -- -- -- -- -- --Fe ......... -- -- -- -- -- -- -- -- --Co (pet).-- -- -- -- -- -- -- -- --Ni (pet) .............. -- -- -- -- -- -- -- -- --Cu (pet) ......-..-......... - - - -Mo (pet).-- -- -- -- -- -- -- . . ..W03 (pet) . ............. -- -- -- -- -- -- -- -- --Pd (ppb).-- -- -- -- -- -- -- -- --Pt (ppb) ........-- -- -- _ _ _ _Rh (ppb) .............. -- -- -- -- -- -- --Ir (ppb) .............. -- -- -- -- -- -- -- -- --Ru (ppb) .............. -- -- -- -- -- -- --Os (ppb) .............. -- -- -- -- -- -- -- -- --Ag (gt) .............. -- -- -- -- -- -- -- -- --Au (g/t) .............. -- -- -- -- -- -- -- -- --Zn (pot).-- -- -- -- -- --Hg (pet) .............. -- -- -- -- -- -- --Sn (pet) .............. -- -- -- -- -- -- -- -- --Pb (pet).-- -- -- -- -- -- -- --Sb (pet) .............. -- -- -- -- -- -- -- -- --

Low-sulfide Au-quartz veins Homestake Au Unconformity U-Au

Number Number Numbero f of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ......RE20 (pet)-...........Monazite (pet REO)U 08 (pet) ............ZIrcon (pet ZrO2) .....Nbg05 (pet) ...........FNber (pet) ...........Barite (pet) ..........Al 0, (pet) ...........P GMdt ...............P 0; ( pet) ............IImenite (pet TiO2)Rutile (pet TiO7)2Leucocite (pet TiO2) ..Cr2O0 (pct) ...........Mn (p t) ..............Fe (pet) ..............Co (pet) ..............Ni (pet) ..............Cu (pet) ..............Mo (pet) ..............W03 (pet) .............Pd (ppb) ..............Pt (ppb) ..............Rh (ppb) ..............lr (ppb) ..............Ru (ppb) ..............Os (ppb) ..............Ag (g/t) ..............Au (gft) ..............Zn (pet) ..............Hg (pet) ..............Sn (pet) ..............Pb (pet) ..............Sb (pet) ..............

4.470_ _

_ _

_ _

__

__

_ _

__

__

__

__

__

__

__

_ _

__

__

_ _

__

.69611.203__

_ _

__

__

1.163 313 5.974 0.8592 116 5.356__

-.2816__

__

__

__

__

__

__

__

__

__

__

_ _

_ _

1.274

.4167

36_ _

36_ _

__

__

_ _

__

_ _

__

_ _

_ _

_ _

_ _

_ _

.3563

.332739313

.2093

.9647.5234.2518

52116

301

Page 315: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix B. Summary statistics of grade-tonnage models--Continued

Lateritic Ni Laterite bauxite Karst bauxite

Number Number Numberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 7.645 0.5864 7t1 7.401 1.142 122 7.366 0.6811 41RE205 (pet) .......-- __ _ _ _ _ _Monazite (pet REO) -- -- -- -- -- -- -- -- --U°z8 (pet) 2r02 -- -- -- -- -- -- -- -- --Z rcon (pet ZrO2) ............ ----- -___ ___NbgD5 (pet) . . -- -- __ -_ __ __ __ __ __Fiber (pet) . . -- -- -- -- -- -- -- -- --Barite (pet) .......... -- -- -- -- -- -- -- -- --Al 0 (pet) ........... -- -- -- 44.97 7.747 122 49.18 7.930 41P fpht).. .............PD0 (pet) ............ -- -_ _ _Ilmenite (pet Ti 2) ... -- -- -- -- -- -- -- -- --Rutile (pet TioD).-- -- -- -- -- -- -- --Leucocite (pet ?iO2) .. -- -- -- -- -- _- __ __Cr2 0 (pet) ......... -- -_ _ _ _ _ _Mn (t) .....-- -- -- -- _- __ __ _Fe (pet) .....-- -- -- -- -- -- -- -- --Co (pet) ..... ......... -1.159 .1665 12 -- -- -- -- -- --Ni (pet) ..... ......... .1346 .1043 71 -- __ __ __ __ __Cu (pet) ........... -- -- -- -- -Mo (pet) .............. -- -- -- -- -- -- -- -- --WO3 (pet) .......-- -- _- _ _ _ _ _Pd (ppb).-- -- -- -- -- --.........Pt (ppb) .....-- -- -- -- _- _ _ _Rh (ppb).-- -- -- -- _- __Ir (ppb) .............. -- -- -- -- -- -- -- -- --Ru (ppb) .............. -- -- -- -- -- -- -- -- --0D (ppb) ........-- -- -- _ _ _ _Ag (g/t) ........... -- -- -- -- -Au (g/t) .............. -- -- -- -- -- -- -- -- --Zn (pet) .- _ -_ -- .. _- __Hg (pet) .....-- -- -- -- -- -- -- -- --Sn (pet) ........... -- -- -- -- -Pb (pet) .....-- -- -- -- _- __ __Sb (pet).-- -- -- -. _- __

Placer Au-PGE Placer PGE-Au Shoreline placer Ti

Number Nuaber .Iumberof of of

Deposit type Mean S.D. deposits Mean S.D. deposits Mean S.D. deposits

Tonnage (metric) ...... 6.030 1.312 65 5.112 0.8548 83 7.942 0.7014 61RE205 (pet) . -- -- -........ -- -- __Monazite (pet RED) -- -- -- -- -- -- -1.5262 .8190 29U 08 (pet) ................ --- _ _ - _ _ __ZNrco (pe ZrO2) -- -- -- -_ __ __ -.5703 .4221 52Nb 0 (pet) ......... -- -- _ _ _ _ _Fi eP (pet).-- -- -- -- -- -- -- -- __Barite (pet).-- -- -- -- -- -- -- -- --Al O, (pet).-- -- -- -- -- -- -- __ __P tpt). .............. -- _ _ _PDOS (pet) ............ -- -- -- -- -- -- --Itmenite (pet TiO2) -- -- -- -- -- -- .1026 .5755 61Rutile (pet TiO ) ..... -- -- -- -- -- -- -.6723 .4220 50Leucocite (pet TiD2) -- -- -- -- -- -- -. 6469 .5439 24Cr2 OD (pet).-- -- -- -- -- -- -- -- __Mn (t) ............ -- -- -- -- -- -- -- -- --Fe (pet).-- -- -- -- -- -- -- -- --Co (pet).-- -- -- -- -- -- -- -- --Ni (pet).-- -- -- -- -- -- -- _- __Cu (pet) .............. -- -- -- -- -- -- -- -- --Mo (pet).-- -- -- -- -- -- -- __ _.WO3 (pet).-- -- -- -- _- __ __ __ __Pd (ppb).-- -- -- -2.825 .9818 13 __ __ __Pt (ppb) ..... ..... -- -- -- .2010 .5701 83 -- __ __Rh (ppb) . ............ -- -- -- -- -- -Ir (ppb) ............. -- -- -- -2.077 1.193 10 -- __ __Ru (ppb).-- -- -- -- -- -- -- -- __Os (ppb) . .............. -- -- -- -1.805 1.068 21 -- -- -_

Ag (g/t) ..... ......... -1.571 .3954 16 -- -- _- __ __ __Au (g/t) ..... ......... -. 6983 .2928 65 -1.531 .8495 23 -- -- --Zn (pet).-- -- -- -- -- -- -- __ __Hg (pet).-- -- -- -- -- -- -- __ __Sn (pet).-- -- -- -- -- -- -- -- __Pb (pet) .............. -- -- -- -- -- -- --Sb (pet).-- -- -- -- -- -- _- __ __

302

Page 316: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index by Paul B. Barton

This file shows economic (or potentially economic) commodities as primaryproducts or by-products; it also indicates geochemical anomalies. Theserepresent the elements present anywhere in the deposit, not solely in haloesdistinct from ore. The listing covers only those deposits for which modelsare present elsewhere in this compilation. Figure 206 is a graphicalpresentation of some of the information in the following table. It providesan overview of the distribution of the elements among deposit types.

In an effort to represent the commonness or rarity of features, numbers areassigned. Universally present products/anomalies rate a +5 (shown simply as"5") grading down through 0 to -5 (shown as "(-5)") in a system similar toPROSPECTOR. The "O" value will seldom, if ever, be shown as it is the "don'tknow" (or "don't care") default. Note that negative numbers for "Primary" or"By-product" are not used, although they might be applied to indicate seriousdeleterious elements, such as phosphorus in iron ores. In almost allinstances at present, these values will be guesses based on experience, nothard data; however, we do urge the compilation of data to make suchassignments possible eventually. It is our intent to have the "1", "2", "3","4", and "5" scores correspond respectively to the 0-10, 10-30, 30-70, 70-90,and 90-100 percent frequency relationship between the element and the deposittype. Obviously such statistical approaches are meaningless for deposit typeshaving few representatives, such as emerald veins (31c), but the value canstill be useful as an estimate of the compiler's opinion regarding theprobable generality of the observation. The abbreviated suffixes "(prox.)"and "(dist.)" indicate respectively proximal (or nearer source) and distal(or farther from the source). For more complex relations please refer back tothe models.

Figure 206 shows only the presence of an element at some unspecifiedanomalous level, either proximally or distally with respect to the deposit.The elements are grouped in such a way that the distinction between those ofgranitic and mafic associations can be easily made. The elements of highmobility in hydrothermal environments form a distinct grouping on the rightside of the matrix.

It should be obvious from examination of the table and figure below thatthe presence of a given element seldom, if ever, "proves" the existence of anore deposit. Anomalous amounts of some elements such as copper, gold, iron,and zinc are so common in so many settings that their presence tells verylittle about the possible character of the host deposit. Their presence isencouraging, however, and indicates that additional studies may be warranted.

Element Primary By-product Geochemical Deposit type and model numberanomaly

Ag 3 Sn skarn (14b)3 4(dist.) porphyry Cu (17)3 5 porphyry Cu, skarn-related Ci8a)4 5 Cu skarn (18b)4 5 Zn-Pb skarn (18c)5(dist.) 4 polymetallic replacement (19a)

4 replacement Mn (19b)4(dist.) porphyry Sn (20a)

3 3 5 Sn-polymetallic veins (20b)4 5(prox.) porphyry Cu-Au (20c)4 5(dist.) porphyry Cu-Mo (21a)

5(dist.) porphyry Mo, low-F (21b)3 5 5 volcanic-hosted Cu-As-Sb (22a)2 5 5 Au-Ag-Te veins (22b)4 2 5 polymetallic veins (22c)

3 4 basaltic Cu (23)3 4 Cyprus massive sulfide (24a)3 5 Besshi massive sulfide (24b)2 3 Blackbird Co-Cu (24d)

3 4 5(prox.) hot-spring Au-Ag (25a)

303

Page 317: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Figure 206. Matrix diagram showing deposit models and their geochemical signature. Closed and open circlesindicate that the element is anomalous proximally or distally to the deposit respectively.

304

Page 318: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Figure 206. Continued.

305

Page 319: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Ag (cont.) 443

1

2

2342

214235443533

Al

55

As

2

54453443(dist.)2(dist.)434(dist.)45(dist.)5454(dist.)44544(prox.)35545443555

Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)epithermal Mn (25g)carbonate-hosted Au-Ag (26a)simple Sb (27d)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sandstone-hosted Pb-Zn (30a)sediment-hosted Cu (30b)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)placer Au-PGE (39a)placer PGE-Au (39b)unconformity U-Au (37a)gold on flat faults (37b)

volcanic-hosted Cu-As-Sb (22a)epithermal quartz-alunite Au (25e)bauxite, laterite type (38b)bauxite, karst type (38c)unconformity U-Au (37a)

Limassol Forest Co-Ni (8c)Alaskan PGE (9)W skarn (14a)replacement Sn (14c)W veins (15a)Sn veins (15b)Sn greisen (15c)porphyry Cu (17)Cu skarn (18b)Zn-Pb skarn (18c)polymetallic replacement (19a)porphyry Sn (20a)Sn-polymetallic veins (20b)porphyry Cu-Mo (21a)volcanic-hosted Cu-As-Sb (22a)polymetallic veins (22c)Blackbird Co-Cu (24d)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)epithermal quartz-alunite Au (25e)Sado epithermal vein (25d)volcanogenic U (25f)rhyolite-hosted Sn (25h)carbonate-hosted Au (26a)hot-spring Hg (27a)Almaden Hg (27b)simple Sb (27d)kuroko massive sulfide (28a)Homestake Au (28c)sedimentary exhalative Zn-Pb (31a)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)

306

Page 320: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

As (cont.) 4 unconformity U-Au (37a)1 gold on flat faults (37b)4 placer Au-PGE (39a)4 placer PGE-Au (39b)

Au 2 3 komatiitic Ni-Cu (6a)4 5 porphyry Cu (17)3 4 porphyry Cu, skarn-related (18a)4 4 Cu skarn (18b)4 4 Zn-Pb skarn (18c)

1 5 5(prox.) porphyry Cu-Au (20c)3 5(dist.) porphyry Cu-Mo (21a)3 4 Fe skarn (18d)

1 3 4 polymetallic replacement (19a)4 replacement Mn (19b)

3 4 Sn-polymetallic veins (20b)4(dist.) porphyry Mo, low-F (21b)

4 4 volcanic-hosted Cu-As-Sb (22a)5 5 Au-Ag-Te veins (22b)2 4 5(prox.) polymetallic veins (22c)

(-3) basaltic Cu (23)2 4 5 Cyprus massive sulfide (24a)1 3 4 Besshi massive sulfide (24b)

2 3 Blackbird Co-Cu (24d)4 2 5 hot-spring Au-Ag (25a)2 4 4 Creede epithermal vein (25b)4 3 5 Comstock epithermal vein (25c)4 3 5 Sado epithermal vein (25d)5 5 epithermal quartz-alunite Au (25e)

3 epithermal Mn (25g)5 5 carbonate-hosted Au (26a)

1 3 hot-spring Hg (27a)1 3 simple Sb (27d)3 5 kuroko massive sulfide (28a)

5 5 Homestake Au (28c)4 2 5 quartz pebble conglomerate Au-U (29a)

3 5 Olympic Dam Cu-U-Au (29b)5 5 low-sulfide Au-quartz veins (36a)5 5 Homestake Au (36b)

3 5 unconformity U-Au (37a)5 gold on flat faults (37b)

5 1 5 placer Au-PGE (39a)1 4 placer PGE-Au (39b)

B 1 carbonatite (10)5 Sn skarn (14b)4 replacement Sn (14c)2 W veins (15a)4 Sn veins (15b)4 Sn greisen (15c)3 porphyry copper (17)4(prox.) porphyry Sn (20a)3 Blackbird Co-Cu (24d)3 kuroko massive sulfide (28a)3 sedimentary exhalative Zn-Pb (31a)4 Homestake Au (36b)

Ba 1 4 carbonatite (10)3 diamond pipes (12)3 polymetallic replacement (19a)4(dist.) porphyry Sn (20a)

307

Page 321: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Ba (cont.) 3 Au-Ag-Te veins (22b)4(dist.) polymetallic veins (22c)3 volcanogenic Mn (24c)4 Creede epithermal vein (25b)3 volcanic-hosted magnetite (25i)3 carbonate-hosted Au (26a)-Ag

1 3 kuroko massive sulfide (28a)3 Olympic Dam Cu-U-Au (29b)3 sandstone-hosted Pb-Zn (30a)4(dist.) sedimentary exhalative Zn-Pb (31a)

5 5 bedded barite (31b)3(dist.) southeast Missouri Pb-Zn (32a)3 Appalachian Zn (32b)3 gold on flat faults (37b)3 diamond placers (39d)

Be 1 carbonatite (10)5 W skarn (14a)

1 4 Sn skarn (14b)3 W veins (15a)3 Sn greisen (15c)2 Zn-Pb skarn (18c)4 rhyolite-hosted Sn (25h)

5 5 emerald veins (31c)

Bi 4 W skarn (14a)1 5 W veins (15a)

3 Sn greisen (50c)2 porphyry Cu (17)2 Cu skarn (18b)3 Zn-Pb skarn (18c)3 polymetallic replacement (19a)

2 4 Sn-polymetallic veins (20b)2 Creede epithermal vein (25b)3 rhyolite-hosted Sn (25h)3 volcanic-hosted magnetite (25i)2 kuroko massive sulfide (28a)3 Kipushi Cu-Pb-Zn (32c)3 Homestake Au (36b)3 unconformity U-Au (37a)

Br 2 5 marine potash3 southeast Missouri Pb-Zn (32a)

C (diamond)5 diamond pipes (12)5 diamond placers (39d)

C (organic)5 carbonate-hosted Au (26a)5 sandstone U (30c)4 sedimentary exhalative Zn-Pb (31a)4 quartz pebble conglomerate Au-U (29a)3 southeast Missouri Pb-Zn (32a)4 phosphate, upwelling type (34c)3 phosphate, warm-current type (34d)3 unconformity U-Au (37a)

C a (-4) kuroko massive sulfide (28a)(-4) Cyprus massive sulfide (24a)(-5) southeast Missouri Pb-Zn (32a)

308

Page 322: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Ca (cont.) (-5) Appalachian Zn (32b)(-3) Blackbird Co-Cu (24d)3 unconformity U (37a)

Cd 4 southeast Missouri Pb-Zn (32a)4 Appalachian Zn (32b)

Co 3 5 Stillwater Ni-Cu (1)4 Duluth Cu-Ni-POE (5a)

3 5 Noril'sk Cu-Ni-PCE (5b)2 3 komatiitic Ni-Cu (6a)2 5 dunitic Ni (6b)1 5 synorogenic-synvolcanic Ni-Cu (7a)

5 5 Limassol Forest Co-Ni (8c)4 diamond pipes (12)2 Cu skarn (18b)3 Zn-Pb skarn (18c)

1 2 Fe skarn (18d)1 basaltic Cu (23)3 Cyprus massive sulfide (24a)4 Besshi massive sulfide (24b)

5 5 Blackbird Co-Cu (24d)3 Olympic Dam Cu-U-Au (29b)

1 1 2 sediment-hosted Cu (30b)2 sedimentary exhalative Zn-Pb (31a)

2 4 southeast Missouri Pb-Zn (32a)4 3 Kipushi Cu-Pb-Zn (32c)3 5 lateritic Ni (38a)

3 Homestake Au (36b)4 unconformity U (37a)3 diamond placers (39d)

Cr 5 5 Bushveld Cr (2a)5 Merensky Reef PGE (2b)5 dunitic Ni (6b)

5 5 podiform Cr (8a)2 1 5 Alaskan PGE (9)

5 diamond pipes (12)3 Besshi massive sulfide (24b)

1 5 lateritic Ni (38a)5 placer PCE-Au (39b)3 diamond placers (39d)

Cs 4 Sn skarn (14b)4 Climax Mo (16)

Cu 1 4 5 Stillwater Ni-Cu (1)1 5 Merensky Reef PGE (2b)3 5 Duluth Cu-Ni-PCE (5a)

1 4 5 Noril'sk Cu-Ni-PGE (5b)3 5 komatiitic Ni-Cu (6a)

4 dunitic Ni (6b)3 5 synorogenic-synvolcanic Ni-Cu (7a)1 5 Alaskan PGE (9)

1 3 carbonatite (10)1 4 W skarn (14a)1 4 Sn skarn (14b)2 5 replacement Sn (14c)

3 W veins (15a)4(prox.) Climax Mo (16)

5 5(prox.) porphyry Cu (17)

309

Page 323: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Cu (cont.) 5

3

355

4

4

2

5

2555

33333

555

4

1122

55(prox.)545(prox.)44(dist.)55(prox.)5(prox.)5(prox.)545(prox.)555355555333555

4C (prox.)554144533

22454553355(prox.)4323323(dist.)554

porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)Fe skarn (18d)polymetallic replacement (19a)replacement Mn (19b)porphyry Sn (20a)Sn-polymetallic veins (20b)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)volcanic-hosted Cu-As-Sb (22a)Au-Ag-Te veins (22b)polymetallic veins (22c)basaltic Cu (23)Cyprus massive sulfide (24a)Besshi massive sulfide (24b)volcanogenic Mn (24c)Blackbird Co-Cu (24d)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)epithermal Mn (25g)volcanic-hosted magnetite (25i)silica-carbonate Hg (27c)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sediment-hosted Cu (30b)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)unconformity U (37a)gold on flat faults (37b)placer Au-PGE (39a)placer PGE-Au (39b)

carbonatite (10)W skarn (14a)Sn skarn (14b)replacement Sn (14c)W veins (15a)Sn greisen (15c)Climax Mo (16)Zn-Pb skarn (18c)porphyry Mo, low-F (21b)Au-Ag-Te veins (22b)volcanogenic U (25f)rhyolite-hosted Sn (25h)volcanic-hosted magnetite (25i)carbonate-hosted Au (26a)Olympic Dam Cu-U-Au (29b)sandstone-hosted Pb-Zn (30a)southeast Missouri Pb-Zn (32a)Appalachian Zn (32b)phosphate, upwelling type (34c)phosphate, warm current type (34d)gold on flat faults 37b

F

I

33

310

Page 324: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Fe 5 many, including:3 5 Bushveld Fe-Ti-V (3)

5 anorthosite Ti (Tb)1 carbonatite (10)

5 5 Fe skarn (18d)1 5 Cyprus massive sulfide (24a)

5 5 volcanic-hosted magnetite (25i)1 1 5 kuroko massive sulfide (28a)

5 Olympic Dam Cu-U-Au (29b)5 5 Algoma Fe (28b)

3 sedimentary exhalative Zn-Pb (31a)5 5 Superior Fe (34a)

4 gold on flat faults (37b)4 placer Au-PGE (39a)4 placer PGE-Au (39b)4 shoreline placer Ti (39c)

Ga 3 3 Kipushi Cu-Pb-Zn (32c)3 5 bauxite, laterite type (38b)3 5 bauxite, karst type (38c)

Ge 2 4 sediment-hosted Cu (30b)2 3 Kipushi Cu-Pb-Zn (32c)

Hg 1 5 carbonate-hosted Au-Ag (26a)4 Au-Ag-Te veins (22b)

1 4(dist.) hot-spring Au-Ag (25a)2 Creede epithermal vein (25b)3 Comstock epithermal vein (25c)4(dist.) volcanogenic U (25f)4 carbonate-hosted Au (26a)

5 5 hot-spring Hg (27a)5 5 Almaden Hg (27b)5 5 silica-carbonate Hg (27c)

4 simple Sb (27d)3 Homestake Au (36b)3 placer Au-PGE (39a)3 placer PCE-Au (39b)

Ir (see PGE)

K (-4) Stillwater Ni-Cu (1)(-5) Bushveld Cr (2a)(-5) Merensky Reef PGE (2b)4 diamond pipes (12)(-3) emerald veins (31c)4 unconformity U (37a)

Li 2 carbonatite (10)4 Sn skarn (14b)5 replacement Sn (14c)4(dist.) volcanogenic U (25f)4 rhyolite-hosted Sn (25h)(-3) emerald veins (31c)

Mg 5 Stillwater Ni-Cu (1)5 Bushveld Cr (2a)5 Merensky Reef PGE (2b)5 komatiitic Ni-Cu-(6b)5 dunitic Ni (6b)3 kuroko massive sulfide (28a)

311

Page 325: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Mg (cont.)

Mn

5

3554

344(dist.)54(dist.)54(dist.)4 (dist.)5(dist.)4(dist.)54354(dist.)544

dolomitic Cu-Cosoutheast Missouri Pb-Zn (32a)Appalachian Zn (32b)emerald veins (31c)

carbonatite (10)diamond pipes (12)porphyry Cu (17)Zn-Pb skarn (18c)polymetallic replacement (19a)replacement Mn (t9b)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)polymetallic veins (22c)Cyprus massive sulfide (24a)volcanogenic Mn (24c)Blackbird Co-Cu (24d)Creede epithermal vein (25b)epithermal Mn (25g)sedimentary exhalative Zn-Pb (31a)sedimentary Mn (34b)unconformity U (37a)diamond placers (39d)

5

5

5

Mo22

532

45

45555(prox.)5 (prox. )545(dist.)5(prox.)5(prox.)5(prox.)2342(-3)4322

carbonatite (10)W skarn (14a)W veins (15a)Sn greisen (15c)Climax Mo (16)porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)volcanogenic U (25f)carbonate-hosted Au (26a)sediment-hosted Cu (30b)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)emerald veins (31c)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)Homestake Au (36b)unconformity U-Au (37a)

carbonate-hosted Au (26a)sedimentary exhalative Zn-Pb (31a)phosphate, upwelling type (34c)phosphate, warm-current type (34d)

Stillwater Ni-Cu (1)Bushveld Cr (2a)Merensky Reef PGE (2b)Blackbird Co-Cu (24d)

kuroko massive sulfide (28a)Cyprus massive sulfide (24a)emerald veins (31c)carbonatite (10)diamond pipes (12)

N (as NH4+) 3333

(-4)(-5)(-5)(-3)

Na

Nb (-4)(-5)544

4 1

312

Page 326: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Nb (cont.) 3 Climax Mo (16)4 diamond placers (39d)

Ni 4 1 5 Stillwater Ni-Cu (1)2 5 Merensky Reef PGE (2b)

4 1 5 Duluth Cu-Ni-PGE (5a)4 1 5 Noril'sk Cu-Ni-PGE (5b)5 5 komatiitic Ni-Cu-(6a)5 5 dunitic Ni (6b)5 5 synorogenic-synvolcanic Ni-Cu (7a)1 3 5 Limassol Forest Co-Ni (Bc)1 3 5 Alaskan POE (9)

5 diamond pipes (12)3 Besshi massive sulfide (24b)

1 4 southeast Missouri Pb-Zn (32a)5 unconformity U (37a)

5 5 lateritic Ni (38a)4 diamond placers (39d)

Os (see PGE)

P 1 1 5 carbonatite (10)(-4) Stillwater Ni-Cu (1)(-5) Bushveld Cr (2a)(-5) Merensky Reef POE (2b)5 anorthosite-Ti (7b)4 replacement Mn (19b)4 epithermal Mn (25g)

2 5 volcanic-hosted magnetite (25i)5 5 phosphate, upwelling type (34c)5 5 phosphate, warm-current type (34d)

Pb 3 carbonatite (10)3 Sn skarn (14b)4 replacement Sn (14c)3 W veins (15a)4(dist.) Climax Mo (16)4(dist.) porphyry Cu (17)3 porphyry Cu, skarn-related (18a)

1 4(dist.) Cu skarn (18b)2 4 5 Zn-Pb skarn (18c)4 2 5(dist.) polymetallic replacement (19a)

4 replacement Mn (19b)4(dist.) porphyry Sn (20a)

2 4 Sn-polymetallic veins (20b)4(dist.) porphyry Cu-Au (20c)4(dist.) porphyry Cu-Mo (21a)4(dist.) porphyry Ho, low-F (21b)4 Au-Ag-Te veins (22b)

3 2 5 polymetallic veins (22c)4 5 Creede epithermal vein (25b)4 5 Comstock epithermal vein (25c)3 3(prox.) epithermal quartz-alunite Au.(25e)

4 epithermal Mn (25g)3 rhyolite-hosted Sn (25h)3 simple Sb (27d)

1 3 5 kuroko massive sulfide (28a)5 5 sandstone-hosted Pb-Zn (30a)

3 sediment-hosted Cu (30b)4 5 sedimentary exhalative Zn-Pb (31a)

(-3) emerald veins (31c)

313

Page 327: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Pb (cont.) 5 5 southeast Missouri Pb-Zn (32a)2 3 Appalachian Zn (32b)

3 3 5 Kipushi Cu-Pb-Zn (32c)4 low-sulfide Au-quartz veins (36a)4 Homestake Au (36b)4 unconformity U-Au (37a)

Pd (see PGE)

Pt (ncl. all PGE)4 5 Stillwater Ni-Cu (1)4 5 Bushveld Cr (2a)5 5 Merensky Reef PGE (2b)4 5 Duluth Cu-Ni-PGE (5a)4 5 Noril'sk Cu-Ni-PGE (Sb)3 5 komatiitic Ni-Cu(6a)2 5 dunitic Ni (6b)1 4 synorogenic-synvolcanic Ni-Cu (7a)

5 podiform Cr (8a)1 3 5 Alaskan PGE (9)

5 diamond pipes (12)1 2 Au-Ag-Te veins (22b)

2 Homestake Au (28c)2 4 quartz pebble conglomerate Au-U (29a)

1 1 3 placer Au-PGE (39a)5 5 placer PGE-Au (39b)

4 diamond placers (39d)

Rare Earths2 2 5 carbonatite (10)

1 3 W veins (15a)3 volcanogenic U (25f)2 rhyolite-hosted Sn (25h)3 Olympic Dam Cu-U-Au (29b)5 emerald veins (31c)

1 4 phosphate, upwelling type (34c)1 4 phosphate, warm-current type (34d)

3 unconformity U-Au (37a)2 5 shoreline placer Ti (39c)

Rb 5 Sn skarn (14b)5 replacement Sn (14c)4 Climax Mo (16)3(dist.) porphyry Cu (17)4(dist.) porphyry Cu-Mo (21a)3 unconformity U-Au (37a)

Re 4 Sn skarn (14b)5 Climax Mo (16)5 Porphyry Mo, low-F (21b)3 Unconformity U-Au (37a)

Rh (see PGE)

Ru (see PGE)

S 1 2 5 kuroko massive sulfide (28a)1 2 5 Cyprus massive sulfide (24a)

Sb 3(dist.) porphyry Cu (17)3 polymetallic replacement (19a)

314

Page 328: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemioal Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Sb (cont.) 4(dist.) porphyry Sn (20a)4(dist.) porphyry Cu-Mo (21a)

3 3 volcanic-hosted Cu-As-Sb (22a)4 Au-Ag-Te veins (22b)4(dist.) hot-spring Au-Ag (25a)4 Creede epithermal vein (25b)4 Comstock epithermal vein (25c)4 volcanogenic U (25f)3 rhyolite-hosted Sn (25h)4 carbonate-hosted Au (26a)

1 5 hot spring Hg (27a)4 Almaden Hg (27b)4 silica-carbonate Hg (27c)

5 5 simple Sb (27d)4 kuroko massive sulfide (28a)2 sedimentary exhalative Zn-Pb (31a)4 Homestake Au (36a)2 placer Au-PGE (39a)2 placer PGE-Au (39b)

Se 3 porphyry Cu (17)2 kuroko massive sulfide (28a)5 sandstone U (30c)

Si 5 almost all epigenetic deposits

Sn 1 carbonatite (10)5 W skarn (14a)

3 3 5 Sn skarn (14b)5 5 replacement Sn (14c)

2 5 W veins (15a)5 5 Sn veins (15b)5 5 Sn greisen (15c)

2 5(prox.) Climax Mo (16)3(dist.) porphyry Cu (17)3 Zn-Pb skarn (18c)1 Fe skarn (18d)

5 5 porphyry Sn (20a)5 5 Sn-polymetallic veins (20b)

2 volcanic-hosted Cu-As-Sb (22a)5 5 rhyolite-hosted Sn (25h)

4 kuroko massive sulfide (28a)1 2 sedimentary exhalative Zn-Pb (31a)

3 Kipushi Cu-Pb-Zn (32c)

Sr 3 carbonatite (10)3 Au-Ag-Te veins (22b)

Ta 1 carbonatite (10)3 Climax Mo (16)

Te 4(dist.) porphyry Cu (17)4(dist.) porphyry Cu-Mo (21a)3 polymetallic replacement (19a)5 Au-Ag-Te veins (22b)3 Comstock epithermal vein (25c)

Te (cont.) 3 Sado epithermal vein (25d)3 epithermal quartz-alunite Au (25e)3 unconformity U-Au (37a)

Th 5 carbonatite (10)

315

Page 329: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Th (cont.) 2 5 shoreline placer Ti (39c)

Ti 4 Merensky Reef PGE (2b)5 Bushveld Fe-Ti-V (3)4 Duluth Cu-Ni-PGE (5a)

5 5 anorthosite-Ti (7b)4 Alaskan PGE (9)4 carbonatite (10)5 diamond pipes (12)

5 5 shoreline placer Ti (39c)5 diamond placers (39d)

Tl 4(dist.) hot-spring Au-Ag (25a)4 carbonate-hosted Au (26a)

U 1 5 carbonatite (10)3(dist.) Climax Mo (16)

1 4 4 quartz pebble conglomerate Au-U (29a)3 4 Olympic Dam Cu-U-Au (29b)

2 sediment-hosted Cu (30b)5 5 sandstone U (30c)

2 Kipushi Cu-Pb-Zn (32c)2 5 phosphate, upwelling type (34c)2 5 phosphate, warm-current type (34d)

5 5 unconformity U (37a)1 5 shoreline placer Ti (39c)

V 3 5 Bushveld Fe-Ti-V (3)1 5 anorthosite-Ti (7b)

4 Alaskan PGE (9)1 4 volcanic-hosted magnetite (25i)

2 sediment-hosted Cu (30b)1 4 5 sandstone U (30c)

3 Kipushi Cu-Pb-Zn (32c)

W 1 carbonatite (10)5 5 W skarn (14a)5 5 Sn skarn (14b)

1 4 replacement Sn (14c)5 5 W veins (15a)

2 5 Sn veins (15b)1 5(prox.) Climax Mo (16)

3(prox.) porphyry Cu (17)2 porphyry Cu, skarn-related (1Ba)

1 3 Zn-Pb skarn (18c)2 4 Sn-polymetallic veins (20b)

4(prox.) porphyry Cu-Mo (21a)1 5(prox.) porphyry Mo, low-F (21b)

2 Creede epithermal vein (25b)2 Comstock epithermal vein (25c)1 epithermal quartz-alunite Au (25e)2 volcanogenic U (25f)

1 3 epithermal Mn (25g)4 carbonate-hosted Au (26a)4 simple Sb (27d)3 Kipushi Cu-Pb-Zn (32c)

Zn 1 4 W skarn (14a)1 4 Sn skarn (14b)

4 replacement Sn (14c)1 3 W veins (15a)

316

Page 330: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix C. Commodity/Geochemical Index--Continued

Element Primary By-product Geochemical Deposit type and model numberanomaly

Zn (cont.) 3(dist.) Climax Mo (16)4(dist.) porphyry Cu (17)3 porphyry Cu, skarn-related (18a)

2 4(dist.) Cu skarn (18b)5 5 Zn-Pb skarn (18c)4 1 5(dist.) polymetallic replacement (19a)

4 replacement Mn (19b)4(dist.) porphyry Sn (20a)

2 3 5 Sn-polymetallic veins (20b)4(dist.) porphyry Cu-Au (20c)4(dist.) porphyry Cu-Mo (21a)3(dist.) porphyry Mo, low-F (21b)4 volcanic-hosted Cu-As-Sb (22a)3 Au-Ag-Te veins (22b)

2 2 4(dist.) polymetallic veins (22c)3 basaltic Cu (23)

3 5 Cyprus massive sulfide (24a)2 5 Besshi massive sulfide (24b)

3 volcanogenic Mn (24c)3 5 Creede epithermal vein (25b)2 4(prox.) epithermal quartz-alunite Au (25e)

3 rhyolite-hosted Sn (25h)3 silica-carbonate Hg (27c)3 simple Sb (27d)

5 5 kuroko massive sulfide (28a)1 3 5 sandstone-hosted Pb-Zn (30a)

3 sediment-hosted Cu (30b)5 5 sedimentary exhalative Zn-Pb (31a)5 5 southeast Missouri Pb-Zn (32a)5 5 Appalachian Zn (32b)4 1 5 Kipushi Cu-Pb-Zn (32c)

3 low-sulfide Au-quartz veins (36a)4 Homestake Au (36b)3 unconformity U (37a)

Zr 4 anorthosite-Ti (7b)1 1 4 carbonatite (10)

3 5 shoreline placer Ti (39c)

317

Page 331: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index by Paul B. Barton

The mineralogy of the deposits is indicated in six categories describingthe mode of occurrence of the mineral. Each category, which constitutes acolumn, is labeled as follows: "Ore mineral" (the mineral is commonly thesource of the metal or other valuable product of the deposit), "Ganguemineral" (the mineral has no value but is closely associated in time and spacewith the ore minerals), "Host rock mineral" and "Associated rock mineral" (themineral is characteristic of the rocks in which the deposit is found or withwhich it is genetically associated), "Alteration mineral" (the mineral isproduced in rocks near the deposit by hydrothermal processes related to oredeposition or transport), and "Weathering mineral" (the mineral is produced byweathering or supergene enrichment).

An "ore" mineral is so designated if it is a mineral which underreasonable circumstances might be used to provide a concentrate of a valuablesubstance. Thus traces of bismuthinite are "ores", as are pyrite orarsenopyrite crystals that carry gold, and so is pyrite in sufficientabundance that it might be used as a source of sulfur. But accessory pyritewithout economic values is "gangue" because neither iron nor sulfur wouldnormally be produced from it; multiple entries for some minerals areexpected. The "host" category is necessarily incomplete inasmuch asvariations in host lithology are not necessarily critical parts of the model;for example a vein could cut a pegmatite containing minerals such as beryl orspodumene, neither of which would be very informative if added to the "host"minerals list.

Numerical values are given as a measure of the degree to which a mineralis present in the deposit of the type considered; the numbers are NOT theamount of mineral, but its universality anywhere in the deposit among alldeposits of that class. The values "1", "2", "3", "4", and "5" correspondrespectively to 0-10, 10-30, 30-70, 70-90, and 90-100 percent and, untildefinitive documentation for a given model type is available, will usually beno better than guesses based on experience. The numbers are modified by aletter suffix to give a qualitative estimate of the abundance of the mineral:"m" indicates a major component, which we define as 10 volume percent; "t"indicates traces, which we define as 1 volume percent; intermediate valuesare given no designation. Detail on the spatial distribution of mineralsresides in the models themselves.

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Adularia 4 Au-Ag-Te veins C22b)(also see 3 polymetallic veins (22c)feldspar) 4 hot-spring Au-Ag (25a)

3 3 Creede epithermal vein (25b)3 3 Comstock epithermal vein (25c)3 Sado epithermal vein (25d)3 4 volcanogenic U (25f)4 rhyolite-hosted Sn (25h)

4 hot-spring Hg (27a)2t southeast Missouri Pb-Zn (32a)

Albite 4m W veins (15a)(also see 3 porphyry Cu (17)feldspar) 4 Besshi massive sulfide (24b)

4 volcanic-hosted magnetite (25i)3 kuroko massive sulfide (28a)3 sedimentary exhalative Zn-Pb (31a)

4 emerald veins (31c)4 low-sulfide Au-quartz veins (36a)

318

Page 332: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Alleghenyite2 volcanogenic Mn (24c)

Al oxidesand hydroxides

5m5m

5m5m

Alunite

32

3

34

354

bauxite, laterite type (38b)bauxite, karst type (38c)

Alunite is a common result ofthe oxidation of sulfides inAl-bearing carbonate-poor rocks.

porphyry Cu (17)volcanic-hosted Cu-As-Sb (22a)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)volcanogenic U (25f)hot-spring Hg (27a)

Amphibole is a common late-stagealteration in skarns of all types.

Zn-Pb skarn (18c)

4

Amphibole

Mn-rich

actinolite(includestremolite)

4

333

14

3434

porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)

4 porphyry Cu-Au (20c)Besshi massive sulfide (24b)volcanic-hosted magnetite (25i)serpentine-hosted asbestos (8d)

kuroko massive sulfide (28a)

44

3

anthophyllite 3 3

cummingtonite 3m 3m

Anatase 44

Homestake Au (28c)

4 bauxite, laterite type (38b)4 bauxite, karst type (38c)

2 porphyry Cu (17)porphyry Cu-Mo (21a)volcanic-hosted Cu-As-Sb (22a)epithermal quartz-alunite Au (25e)

Andalusite2143

Anhydrite 3m3m

33322m22

343

Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PCE (5b)porphyry Cu (17)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)Cyprus massive sulfide (24a)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)Appalachian Zn (32b)

1m 2m 2

319

Page 333: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Apatiteapatite,(includes fluor-francolite,collophane)

3 anorthosite-Ti (7b)1m 4 carbonatite (10)

5 volcanic-hosted magnetite (25i)55 phosphate, upwelling type (34c)5m phosphate, warm-current type (34d)

Antimony 2t simple Sb (27d)(nativeH

Argentite5 Argentite is a common product or the

supergene enrichment of silver ores.3t polymetallic replacement (19a)3t Sn-polymetallic veins (20b)3t polymetallic veins (22c)3t Creede epithermal vein (25b)5t Comstock epithermal vein (25c)4t Sado epithermal vein (25d)2t simple Sb (27d)

Arsenates3 rhyolite-hosted Sn (25h)

Arsenides4t 2 Merensky Reef PGE (2b)3 3 Noril'sk Cu-Ni-PGE (5b)it 3t dunitic Ni (6b)4 4 Limassol Forest Co-Ni (8c)3t Alaskan PGE (9)

2 Cu skarn (18b)

Arsenopyrite4t W skarn (14a)3 Sn skarn (14b)4 replacement Sn (14c)5 W veins (15a)4 Sn veins (15b)5 Sn greisen (15c)3 Cu skarn (18b)3t Zn-Pb skarn (18c)3 porphyry Sn (20a)4 Sn-polymetallic veins (20b)2 volcanic-hosted Cu-As-Sb (22a)3 polymetallic veins (22c)5 Blackbird Co-Cu (24d)3 hot-spring Au-Ag (25a)2 Creede epithermal vein (25b)2 Comstock epithermal vein (25c)3t carbonate-hosted Au (26a)3t simple Sb (27d)3t sedimentary exhalative Zn-Pb (31a)it southeast Missouri Pb-Zn (32a)

320

Page 334: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Arsenopyrite(cont.) 2 Kipushi Cu-Pb-Zn (32c)

4 low-sulfide Au-quartz veins (36a)4 Homestake Au (36b)3 unconformity U (37a)

Asbestos(see chrysotile)

Ba-silicates 4 sedimentary exhalative Zn-Pb (31a)

Barite 4 carbonatite (10)4 polymetallic replacement (19a)3 replacement Mn (19b)3 volcanic-hosted Cu-As-Sb (22a)3 Au-Ag-Te veins (22b)3 polymetallic veins (22c)4m Creede epithermal vein (25b)4 Comstock epithermal vein (25c)3 Sado epithermal vein (25d)3 volcanogenic U (25f)5 epithermal Mn (25g)3 volcanic-hosted magnetite (25i)3 carbonate-hosted Au (26a)2 simple Sb (27d)

Im 3m Im kuroko massive sulfide (28a)4 4 Olympic Dam Cu-U-Au (29b)3 sandstone-hosted Pb-Zn (30a)

1m 3 3m sedimentary exhalative Zn-Pb (31a)5m bedded barite (31b)

3 southeast Missouri Pb-Zn (32a)3 Appalachian Zn (32b)2 gold on flat faults (37b)

Berthierite2t simple Sb (27d)

Beryl 3 W veins (15a)3t Sn veins (15b).4 Sn greisen (15c)

5t emerald veins (31c)

BiotiteBiotite is a common mineral in igneousand metamorphic rocks.

4 carbonatite (10)4 low-sulfide Au-quartz veins (15d)

3 4 porphyry Cu (17)3 porphyry Cu, skarn-related (18a)

3 5 porphyry Cu-Au (20c)4 4 porphyry Cu-Mo (21a)4 4 porphyry Mo, low-F (21b)

4 volcanic-hosted magnetite (25i)

321

Page 335: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Bismuth3t4t2t3t

W skarn (14a)Sn-polymetallic veins (20b)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)

Bismuthinite

3t4t3t3t2t4t2t

Boehmite4m

Bornite

33t3t3t2333

332233t353t42t252t

W veins (15a)Sn veins (15b)Sn greisen (15c)Cu skarn (18b)Zn-Pb skarn (18c)polymetallic replacement (19a)Sn-polymetallic veins (20b)sedimentary exhalative Zn-Pb (31a)

bauxite, karst type (38c)

Bornite may be a supergene, as wellas hypogene, copper mineral.

Noril'sk Cu-Ni-PGE (5b)Alaskan PGE (9)W skarn (14a)W veins (15a)porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)porphyry Cu-Au (20c)volcanic-hosted Cu-As-Sb (22a)basaltic Cu (23)Besshi massive sulfide (24b)Creede epithermal vein (25b)epithermal quartz-alunite Au (25e)silica-carbonate Hg (27c)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sandstone-hosted Pb-Zn (30a)sediment-hosted Cu (30b)sandstone U (30c)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)gold on flat faults (37b)

Brannerite4t4t4t

volcanogenic U (25f)quartz pebble conglomerate Au-U (29a)Olympic Dam Cu-U-Au (29b)

Bravoite2t2t

sandstone-hosted Pb-Zn (30a)southeast Missouri Pb-Zn (32a)

Brucite3 serpentine-hosted asbestos (8d)

322

Page 336: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Buddingtonite3 3 hot-spring Au-Ag (25a)

Calaverite(see tellurides)

Carbonates(see specificcarbonatesbelow)

5m5m

5m5m

5m 5m5m5m5m5m5m

5m 5m544

34

4m43

5 45

Carbonates are very common gangue andhost-rock minerals in a wide varietyof ores.

Limassol Forest Co-Ni (8c)carbonatite (10)W skarn (14a)Sn Skarn (14b)replacement Sn (l4c)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)Fe skarn (18d)polymetallic replacement (19a)replacement Mn (19b)Au-Ag-Te veins (22b)polymetallic veins (22c)basaltic Cu (23)Besshi massive sulfide (24b)volcanogenic Mn (24c)Creede epithermal vein (25b)Comstock epithermal vein (25e)Sado epithermal vein (25d)epithermal Mn (25g)carbonate-hosted Au (26a)volcanic-hosted magnetite (25i)silica-carbonate Hg (27c)Olympic Dam Cu-U-Au (29b)Kipushi Cu-Pb-Zn (32c)

333

3

3m

5m

3m3

4

ankerite333

3m 3m

calcite4m3m

14

34

24

carbonatite (10)polymetallic veins (22c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)

carbonatite (10)Sn greisen (15i)porphyry Cu (17)replacement Mn (19b)Au-Ag-Te veins (22b)polymetallic veins (22c)basaltic Cu (23)Cyprus massive sulfide (24a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)epithermal Mn (25g)Almaden Hg (27b)simple Sb (27d)

332

343 3

2444

323

Page 337: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

calcite 3 emerald veins (31c)(cont.) 4 sandstone-hosted Pb-Zn (30a)

4m phosphate, upwelling type (34c)4 phosphate, warm-current type (34d)4 unconformity U (38d)

dolomite4m carbonatite (10)4 3 4m polymetallic replacement (19a)

3m replacement Mn (19b)4 4 Au-Ag-Te veins (22b)2 polymetallic veins (22c)

5 silica-carbonate Hg (27c)3 sedimentary exhalative Zn-Pb (31a)

5 5 emerald veins (31c)5 5m southeast Missouri Pb-Zn (32a)5m 5w 5m Appalachian Zn (32b)4 4m Kipushi Cu-Pb-Zn (32c)

5 Superior Fe (34a)4m phosphate, upwelling type (34c)4m phosphate, warm-current type (34d)4 4 unconformity U (37b)

rhodochrosite2 carbonatite (10)3 3 Climax Mo (16)3 Zn-Pb skarn (18c)3 polymetallic replacement (19a)

5m replacement Mn (19b)3 polymetallic veins (22c)

4m volcanogenic Mn (24c)4 Creede epithermal vein (25b)3 Comstock epithermal vein (25c)3 Sado epithermal vein (25d)

5m epithermal Mn (25g)3m sedimentary Mn (34b)

siderite4m replacement Sn (14c)3 Sn-polymetallic veins (20b)

3 carbonatite (10)3 polymetallic veins (22c)3 Creede epithermal vein (25b)2t simple Sb (27d)

3m Algoma Fe (28b)3 3 Kipushi Cu-Pb-Zn (32c)

3m Superior Fe (34a)3 phosphate, upwelling type (34c)3 low-sulfide Au-quartz veins (36a)

3m 3m Homestake Au (36b)3 unconformity U (37a)

Carnotite5 sandstone U (30c)3t phosphate, upwelling type (34c)

324

Page 338: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Carrollite3t3t3t4t

Cassiterite3t554t553tit555it

Celestite

ChalcedonY(includes opal)

Limassol Forest Co-Ni (Bc)Olympic Dam Cu-U-Au (29b)sediment-hosted Cu (30b)Kipushi Cu-Pb-Zn (320)

W skarn (14a)Sn skarn (14b)replacement Sn (140)W veins (15a)Sn veins (15b)Sn greisen (15c)Climax Mo (16)Fe skarn (18d)porphyry Sn (20a)Sn-polymetallic veins (20b)rhyolite-hosted Sn (25h)sedimentary exhalative Zn-Pb (31a)

Au-Ag-Te veins (22b)3

5535SmSm4m4m34m55S

5replacement Mn (19b)volcanic-hosted Cu-As-Sb (22a)polymetallic veins (22c)Cyprus massive sulfide (24a)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)volcanogenic U (25f)epithermal Mn (25g)rhyolite-hosted Sn (25h)hot-spring Hg (27a)silica-carbonate Hg (27c)simple Sb (27d)

42

Chalcociteand relatedCuXSphases

3

2tit5

5 Chalcocite and related CuXS mineralsare extremely common as supergenealterations of copper-bearing sulfidesand as supergene replacements ofchalcopyrite and, to a lesser extent,other primary sulfides.

volcanic-hosted Cu-As-Sb (22a)basaltic Cu (23)volcanic-hosted magnetite (25i)simple Sb (27d)Olympic Dam Cu-U-Au (29b)

325

Page 339: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Chalcociteand relatedCuXSphases (cont.)

2t424

sandstone-hosted Pb-Zn (30a)4 sediment-hosted Cu (30b)

southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)

Chalcopyrite55t5t5555t54t3t5t4t3t4t5t4t4t55544t4t3t4t5553t4445553t54t5t434t3t554t43t

326

Stillwater Ni-Cu (1)Bushveld Cr (2a)Merensky Reef PGE (2b)Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PGE (5b)komatiitic Ni-Cu (6a)dunitic Ni (6b)synorogenic-synvolcanic Ni-Cu (7a)Limassol Forest Co-Ni (8c)Alaskan PGE (9)carbonatite (10)W skarn (14a)Sn skarn (14b)replacement Sn (14c)W veins (15a)Sn veins (15b)Sn greisen (15c)porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)Fe skarn (18d)polymetallic replacement (19a)replacement Mn (19b)porphyry Sn (20a)Sn-polymetallic veins (20b)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)volcanic-hosted Cu-As-Sb (22a)polymetallic veins (22c)basaltic Cu (23)Cyprus massive sulfide (24a)Besshi massive sulfide (24b)Blackbird Co-Cu (24d)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)volcanic-hosted magnetite (25i)silica-carbonate Hg (27c)simple Sb (27d)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sandstone-hosted Pb-Zn (30a)sediment-hosted Cu (30b)sandstone U (30c)

Page 340: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral minm- eral eraleral

Chalcopyrite (cont.)4t4t44t3t4t4t

sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)unconformity U (37a)gold on flat faults (37b)

Chert

5m4m5m

4Im5m14m5m5m

Jim451m5m

Cyprus massive sulfide (24a)volcanogenic Mn (24c)kuroko massive sulfide (28a)Algoma Fe (28b)sedimentary exhalative Zn-Pb (31a)Superior Fe (34a)Homestake Au (36b)5m

Chlorite3

2

4

34m4m3m43

342344445m

4

43

433

3

55m3444343

3 45543

4 45m5m

Sn skarn (14b)W veins (15a)Sn veins (15b)Sn greisen (15c)porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18o)Fe skarn (18d)polymetallic replacement (19a)porphyry Sn (20a)Sn-polymetallic veins (20b)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)polymetallic veins (22c)Cyprus massive sulfide (24a)Besshi massive sulfide (24b)Blackbird Co-Cu (24d)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)hot-spring Hg (27a)simple Sb (27d)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sediment-hosted Cu (30b)sedimentary exhalative Zn-Pb (31a)low-sulfide Au-quartz veins (36a)Homestake Au (36b)unconformity U (37a)gold on flat faults (37b)

345

Chromite5m3

3t3t55

Bushveld Cr (2a)Merensky Reef PGE (2b)dunitic Ni (6b)podiform Cr (8a)

45m

327

Page 341: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Chromite(cont.) 5m

3 35

414

Chrysotile55

Cinnabar3t555

Clays(see specificclays below)

34333354454555553514

Limassol Forest Co-Ni (8c)Alaskan PGE (9)diamond pipes (12)placer PGE-Au (39b)

serpentine-hosted asbestos (8d)carbonate-hosted asbestos (18e)

carbonate-hosted Au (26a)hot-spring Hg (27a)Almaden Hg (27b)silica-carbonate Hg (27c)

Clays are very common minerals in soilsand sedimentary rocks as well as inaltered rocks associated with ores.

porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)polymetallic replacement (19a)porphyry Sn (20a)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)Mo porphyry, low-F (21b)volcanic-hosted Cu-As-Sb (22a)polymetallic veins (22c)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)volcanogenic U (25f)rhyolite-hosted Sn (25h)carbonate-hosted Au (26a)simple Sb (27d)phosphate, upwelling type (34c)phosphate, warm-current type (34d)

epithermal quartz-alunite Au (25e)carbonate-hosted Au (26a)sedimentary exhalative Zn-Pb (31a)

Cyprus massive sulfide (24a)Creede epithermal vein (25b)Comstock epithermal vein (25c)carbonate-hosted Au (26a)

33

5m5m

ammonium-bearing 3

33

illite4454

kaoliniteand dickite

5m Kaolinite is commonly formed throughthe reaction of sulfuric acidderived from oxidizing sulfideswith felsic rocks.

328

Page 342: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rpok iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

kaoliniteand dickite (cont.)

4 4 porphyry Cu (17)5 porphyry Cu-Au (20c)5 porphyry Cu-Mo (21a)5 volcanic-hosted Cu-As-Sb (22a)3 Comstock epithermal vein (25c)

3 4 Sado epithermal vein (25d)5 epithermal quartz-alunite Au (25e)5 volcanogenic U (25f)5 epithermal Mn (25g)3 rhyolite-hosted Sn (25h)2 volcanic-hosted magnetite (25i)4 carbonate-hosted Au (32a)

5 hot-spring Hg (27a)4t southeast Missouri Pb-Zn (32a)

3 unconformity U (37a)

montmorillonite(smectite)

4 Creede epithermal vein (25b)4 Comstock epithermal vein (25c)4 Sado epithermal vein (25d)3 epithermal quartz-alunite Au (25e)4 volcanogenic U (25f)3 rhyolite-hosted Sn (25h)3 carbonate-hosted Au (26a)2 kuroko massive sulfide (28a)

sericite4 porphyry Sn (20a)4 Sn-polymetallic veins (20b)4 porphyry Cu-Mo (21a)4 Au-Ag-Te veins (22b)5 polymetallic veins (22c)4 Besshi massive sulfide (24b)4 Creede epithermal vein (25b)4 Comstock epithermal vein (25c)4 Sado epithermal vein (25d)3 volcanic-hosted magnetite (25i)4 simple Sb (27d)3 kuroko massive sulfide (28a)5 Olympic Dam Cu-U-Au (29b)3t sandstone-hosted Pb-Zn (30a)-4 unconformity U (38d)

Co-bearingarsenides,sulfidesand sulf-arsenides

3t Stillwater Ni-Cu (1)2t dunitic Ni (6b)4t Limassol Forest Co-Ni (8c)2 Cu skarn (18b)2 Fe skarn (18d)2t Besshi massive sulfide (24b)

329

Page 343: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Co-bearingarsenides,sulfidesand sulf-arsenides (cont.)

54t32t2t4t

Blackbird Co-Cu (24d)Olympic Dam Cu-U-Au (29b)sediment-hosted Cu (30b)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)

Cof finite5t4t5t4t

volcanogenic U (25f)Olympic Dam Cu-U-Au (29b)sandstone U (30c)unconformity U (38d)

Copper (native)3 Native copper is a common mineral in

oxidized copper ores; it also occursas a trace deuteric mineral in somemafic rocks.

basaltic Cu (23)sediment-hosted Cu (30b)

43t

Cordierite2 2

Corundum

kuroko massive sulfide (28a)

porphyry Cu (17)epithermal quartz-alunite Au (25e)

it2t

Covellite

3422t

Covellite is a very common supergenemineral in oxidized copper ores.

volcanic-hosted Cu-As-Sb (22a)epithermal quartz-alunite Au (25e)volcanic-hosted magnetite (25i)southeast Missouri Pb-Zn (32a)

Cubanite4423t3t

Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PGE (5b)dunitic Ni (6b)Cyprus massive sulfide (24a)Besshi massive sulfide (24b)

Diamond

Diaspore

5tt5tt

diamond pipes (12)diamond placers (39d)

2 233

porphyry Cu (17)volcanic-hosted Cu-As-Sb (22a)epithermal quartz-alunite Au (25e)

Diopside (see pyroxenes)

330

Page 344: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Dumortierite3 volcanic-hosted Cu-As-Sb (22a)

Enargite-luzonite

2t W veins (15a)2t Cu skarn (18b)3 polymetallic replacement (19a)5 volcanic-hosted Cu-As-Sb (22a)5 epithermal quartz-alunite Au (25e)it sedimentary exhalative Zn-Pb (31a)it southeast Missouri Pb-Zn (32a)2 Kipushi Cu-Pb-Zn (32c)

Epidote3t 3 porphyry Cu (17)

3 Cu skarn (18b)4 4 Fe skarn (18d)4 basaltic Cu (23)

4 volcanic-hosted magnetite (25i)

Ferrimolybdite4t Ferrimolybdite is a common oxidation

product in Mo-bearing ores.

Fletcherite (see sulfospinels)

Fluorite4 carbonatite (10)4t W skarn (14a)4 Sn skarn (14b)5 replacement Sn (14c)4 W veins (15a)4 3 Sn greisen (15c)5 3 Climax Mo (16)2 Zn-Pb skarn (18c)3 replacement Mn (19b)3 3 Sn-polymetallic veins (20b)4 Au-Ag-Te veins (22b)4 polymetallic veins (22c)3 hot-spring Au-Ag (25a)3 Creede epithermal vein (25b)4 Comstock epithermal vein (25c)4 volcanogenic U (25f)3 3 rhyolite-hosted Sn (25h)

2 volcanic-hosted magnetite (25i)3 carbonate-hosted Au (26a)2 simple Sb (27d)4t 4t Olympic Dam Cu-U-Au (29b)3t sandstone-hosted Pb-Zn (30a)5 emerald veins (31c)2t Appalachian Zn (32b)3t low-sulfide Au-quartz veins (36a)2t Homestake Au (36b)3t gold on flat faults (37b)

331

Page 345: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Ga minerals

2t Kipushi Cu-Pb-Zn (32c)

Gahnite3 kuroko massive sulfide (28a)

Galena3t carbonatite (10)2 replacement Sn (14c)2t W veins (15a)3t Sn veins (15b)3t Sn greisen (15c)2t porphyry Cu, skarn-related (18a)3t Cu skarn (18b)5 Zn-Pb skarn (18c)4 polymetallic replacement (19a)2t replacement Mn (19b)4t Sn-polymetallic veins (20b)2 porphyry Cu-Mo (21a)4 Au-Ag-Te veins (22b)4 polymetallic veins (22c)3t Besshi massive sulfide (24b)5 Creede epithermal vein (25b)4 Comstock epithermal vein (25c)4t Sado epithermal vein (25d)4t epithermal quartz-alunite Au (25e)4t silica-carbonate Hg (27c)2t simple Sb (27d)4 kuroko massive sulfide (28a)5 sandstone-hosted Pb-Zn (30a)2t sediment-hosted Cu (30b)2t sandstone U (30c)5 sedimentary exhalative Zn-Pb (31a)3t bedded barite (31b)5 southeast Missouri Pb-Zn (32a)2t Appalachian Zn (32b)3 Kipushi Cu-Pb-Zn (32c)4t low-sulfide Au-quartz veins (36a)4t unconformity U-Au (37a)

GarnetGarnet is a common mineral in mostskarns, in some regionallymetamorphosed rocks, and in someigneous rocks.

almandine3 3 W skarn (14a)

andradite3m 4m W skarn (14a)

4m Cu skarn (18b)4 volcanic-hosted magnetite (25i)

(Sn-bearing)3 Sn skarn (14b)

and.-gros.-spess. 4 Zn-Pb skarn (18c)

332

Page 346: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Garnet (cont.)grossular- 3m 5m W skarn (14a)andradite 3 porphyry Cu, skarn-related (18a)

4 Zn-Pb skarn (18c)5 Fe skarn (18d)

pyrope5 diamond pipes (12)4 diamond placers (39d)

spessartine3 Climax Mo (16)4 Zn-Pb skarn (180)3 W skarn (14a)

3 volcanogenic Mn (24c)

uvarovite3 podiform Cr (8a)

Garnierite5 5 lateritic Ni (38a)

Ge minerals2t sediment-hosted Cu (30b)5t Kipushi Cu-Pb-Zn (32c)

Gold3t Alaskan PGE (9)4t porphyry Cu (17)2t polymetallic replacement (19a)4t Sn-polymetallic veins (20b)5t porphyry Cu-Au (20c)4t porphyry Cu-Mo (21a)4t volcanic-hosted Cu-As-Sb (22a)5t polymetallic veins (22c)4t Cyprus massive sulfide (24a)5t hot-spring Au-Ag (25a)4t Creede epithermal vein (25b)5t Comstock epithermal vein (25c)5t Sado epithermal vein (25d)5t epithermal quartz-alunite Au (25e)3t volcanogenic U (25f)5t carbonate-hosted Au (26a)3t simple Sb (27d)4t kuroko massive sulfide (28a)5t quartz pebble conglomerate Au-U (29a)4t Olympic Dam Cu-U-Au (29b)5t low-sulfide Au-quartz veins (36a)5t Homestake Au (36b)3t unconformity U-Au (37a)5t gold on flat faults (37b)5t placer Au-PGE (39a)4t placer PGE-Au (39b)

Graphite3t 3t Merensky reef PGE (2b)3 3 Duluth Cu-Ni-PGE (5a)

333

Page 347: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbersin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Graphite (cont.)3 3 synorogenic-synvolcanic Ni-Cu (7a)2 simple Sb (27d)

4 kuroko massive sulfide (28a)

Greenockite4t Greenockite is a common trace mineral

developed in the early stages ofoxidation of cadmium-bearing sphaler-ite. Greenockite is rare as aprimary mineral.

2t sediment-hosted Cu (30b)

Gypsum2t Appalachian Zn (32b)3 phosphate, upwelling type (34c)

2 2 kuroko massive sulfide (28a)

Halite3 Halite occurs as a daughter mineral in

fluid inclusions from many porphyrycopper and molybdenum deposits andfrom a few other deposits.

Hematite5 Hematite is a common weathering product

of iron minerals.3 Carbonatite (10)4 3 Sn veins (15b)3 porphyry Cu, skarn-related C18a)3 Cu skarn (18b)3 polymetallic veins (22c)

3 basaltic Cu (23)3 volcanogenic Mn (240)

3 Creede epithermal vein (25b)4 2 Comstock epithermal vein (25c)5 rhyolite-hosted Sn (25h)it 3 kuroko massive sulfide (28a)

4m 5m Algoma Fe (28b)5 5 Olympic Dam Cu-U-Au (29b)

4 sediment-hosted Cu (30b)4 sandstone U (30c)

5m 5m Superior Fe (34a)3 3 unconformity U (37a)5 gold on flat faults (37b)

Hematite/Goethite4 Hematite and goethite are common

weathering products of iron-bearingsulfides. They are often groupedunder the blanket term "limonite."

4 carbonate-hosted Au (26a)5 hot-spring Hg (27a)

4 phosphate, upwelling type (34c)

in ochre 4 4 Cyprus massive sulfide (24a)

334

Page 348: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rook min- min-

eral min- eral eraleral

Idocrase 32

Illite (see clays)

Ilmenite

314

451

5m5

Sn skarn (14b)porphyry Cu, skarn-related (18a)

Ilmenite is a common accessory mineralin igneous and metamorphic rocks.

Bushveld Cr (2a)Bushveld Fe-Ti-V (3)anorthosite-Ti (7b)diamond pipes (12)replacement Sn (14c)placer Au-PGE (39a)placer PGE-Au (39b)shoreline placer Ti (39c)diamond placers (39d)

Zn-Pb skarn (18c)Fe skarn (18d)

4 Jarosite is a common product of thesupergene oxidation of iron sulfides.

carbonate-hosted Au (26a)

31414

145

Ilvaite 33

Jarosite

4

Jasperoid(Includessilicification incarbonate rocks)

535m5m5m3m3m4m3m

Jasperoid here refers to massive silicareplacement or pre-existing (usuallycarbonate) rock.

polymetallic replacement (19a)polymetallic veins (22c)hot-spring Au-Ag (25a)silica-carbonate Hg (27c)carbonate-hosted Au (26a)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Appalachian Zn (32b)Kipushi Cu-Pb-Zn (32c)

Kaolinite (see clays)

K-feldspar(also seeadularia)

34m323443

11m5m143141414

14

Potassium feldspar is a common mineralin most types of felsic igneous,metamorphic and sedimentary rocks.Several lower temperature hydrothermaldeposits contain the adularia variety(separate listing).

W veins (15a)Climax Mo (16)porphyry Cu (17)porphyry Cu, skarn-related (18a)porphyry Cu-Au (20c)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)basaltic Cu (23)volcanic-hosted magnetite (25i)

335

Page 349: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Leucoxene 3 volcanogenic U (25f)

Linneaite(also see

sulfospinels)2t dunitic Ni (6b)3t sandstone-hosted Pb-Zn (30a)3t Kipushi Cu-Pb-Zn (32c)

Luzonite (see enargite-luzonite)

MagnetiteMagnetite is a common accessory mineralin many types of rocks.

4 4 Bushveld Cr (2a)5m 5 Bushveld Fe-Ti-V (3)

4 5 dunitic Ni (6b)3 4 synorogenic-synvolcanic Ni-Cu (7a)

5 anorthosite-Ti (Tb)3 3 podiform Cr (8a)3 4 Limassol Forest Co-Ni (Bc)4 serpentine-hosted asbestos (8d)

3m 3 4 Alaskan PGE (9)4m carbonatite (10)

3 3 W skarn (14a)3 Sn skarn (14b)3 replacement Sn (14c)3 2 porphyry Cu (17)3 3 porphyry Cu, skarn-related (18a)4 Cu skarn (18b)3 Zn-Pb skarn (18c)

5m Fe skarn (18d)3 Sn-polymetallic veins (20b)4 4 porphyry Cu-Au (20c)4 Besshi massive sulfide (24b)5 Blackbird Co-Cu (24d)

5m volcanic-hosted magnetite (25i)3 2 kuroko massive sulfide (28a)

5m Algoma Fe (28b)2 Olympic Dam Cu-U-Au (29b)

2t southeast Missouri Pb-Zn (32a)5m Superior Fe (34a)

4 4 4 Homestake Au (36b)5 placer Au-PCE (39a)5 placer PGE-Au (39b)

Ti-rich5m Bushveld Fe-Ti-V (3)5m anorthosite Ti (7b)4m Alaskan PGE (9)

V-rich5m Bushveld Fe-Ti-V (3)4m Alaskan PGE (9)

Malayaite2t 2 Sn skarn (14b)

336

Page 350: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Marcasite

4i252t3t324t'4'St2

4 Marcasite is common as an incipientstage in the oxidation of pyrrhotite.

polymetallic replacement (19a)Cyprus massive sulfide (24a)hot-spring Hg (27a)simple Sb (27d)sandstone-hosted Pb-Zn (30a)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Appalachian Zn (32b)Kipushi Cu-Pb-Zn (32c)

Melnikovite2t sedimentary exhalative Zn-Pb (31a)

Mercury(~natlve)

4t4t4t

hot-spring Hg (27a)Almaden Hg (27b)silica-carbonate Hg (27c)

Millerite3t2t2t2t

Noril'sk Cu-Ni-PCE (5b)sandstone-hosted Pb-Zn (30a)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)

Mn oxidesand silicates

35m4m

Molybdenite4t4t5t4t5t543t3t3t5t5t4t2t2t2t2t3t

These are common oxidation productsof manganese-bearing ores.

5m replacement Mn (19b)Cyprus massive sulfide (24a)volcanogenic Mn (24c)

5m sedimentary Mn (34b)

carbonatite (10)W skarn (14a)W veins (15a)Sn veins (15b)Sn greisen (15c)Climax mo (16)porphyry Cu (17)porphyry Cu, skarn-related (18a)Cu skarn (18b)Sn-polymetallic veins (20b)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)volcanogenic U (25f)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)Kipushi Cu-Pb-Zn (32c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)

337

Page 351: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- win- rock iated ation eringeral eral min- rock min- min-

eral win- eral eraleral

Muscovite

4m434m2

2m

5 5m4 4

5m5m5m4m3m43

Muscovite is a common mineral inigneous and metamorphic rocks. Italso occurs as in some felsic skarns,in veins, and as the fine-grained,wallrock alteration known as sericite(see clays).

Sn skarn (14b)replacement Sn (14c)W veins (15a)Sn veins (15b)Sn greisen (15c)Climax Mo (16)porphyry Cu (17)porphyry Cu, skarn-related (18a)southeast Missouri Pb-Zn (32a)

Cr-rich33

low-sulfide Au-quartz veins (36a)Homestake Au (36b)

Au-Ag-Te veins (22b)sandstone U (30c)

V-rich3

4

Ni silicates5 5 lateritic Ni (38a)

Ni sulfides,arsenides, andsulfarsenides(see alsopentlandite)

553tit3t

dunitic Ni (6b)Limassol Forest Co-Ni (8c)sandstone-hosted Pb-Zn (30a)southeast Missouri Pb-Zn (32a)unconformity U (37a)

Niobiumminerals

4 carbonatite (10)

OlivineOlivine is a common mineral in maficigneous rocks (including those associatedwith models 1 through 12).

Organic matterOrganic matter is found in manysedimentary and a few metamorphicrocks. The ore types noted here arethose for which some relationship isprobable.carbonate-hosted Au (26a)silica-carbonate Hg (27c)kuroko massive sulfide (28a)quartz pebble conglomerate Au-U (29a)

55

5

34

338

Page 352: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Organic matter4t 4t

454

3 24t 42t

4

sandstone-hosted Pb-Zn (30a)sediment-hosted Cu (30b)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)unconformity U-Au (37a)

Orpiment35

volcanogenic U (25f)carbonate-hosted Au (26a)

Pentlandite54t5t5555532t

Stillwater Ni-Cu (1)Bushveld Cr (2a)Merensky Reef PGE (2b)Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PGE (5b)komatiitic Ni-Cu (6a)dunitic Ni (6b)synorogenic-synvolcanic Ni-Cu (7a)Limassol Forest Co-Ni (8c)Alaskan PGE (9)

PGE minerals5t4t5t5t5t4t3t5t4t2t5t

Phlogopite

Stillwater Ni-Cu (1)Bushveld Cr (2a)Merensky Reef PGE (2b)Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PGE (5b)komatiitic Ni-Cu (6a)podiform Cr (8a)Alaskan PGE (9)quartz pebble conglomerate Au-U (29a)placer Au-PGE (39a)placer PGE-Au (39b)

45

4

carbonatite (10)diamond pipes (12)diamond placers (39d)

carbonatite (10)5m phosphate, upwelling type (34c)5m phosphate, warm-current type (34d)

Phosphateslm5m5m

5

Plagioclase(also seealbite)

1

S

Plagioclase feldspar is a commonmineral in igneous and metamorphic rocksassociated with deposit types 1through 10.

emerald veins (310)5

339

Page 353: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

¼,

PyritePyrite is a very common and abundantmineral in many ore deposits and asthe product of sulfidic alteration ofFe-bearing wallrocks.

4 Duluth Cu-Ni-PGE (5a)3 4 Noril'sk Cu-Ni-PGE (5b)4 komatiitic Ni-Cu (6a)4 dunitic Ni (6b)3 synorogenic-synvolcanic Ni-Cu (7a)4 Limassol Forest Co-Ni (8¢)4 carbonatite (10)3 4 W skarn (14a)4 3 Sn skarn (14b)3 replacement Sn (14c)4 4 W veins (15a)5 Sn veins (15b)4 Sn greisen (15c)4 Climax Mo (16)5 4 porphyry Cu (17)4 2 porphyry Cu, skarn-related (18a)5 Cu skarn (18b)4 Zn-Pb skarn (18c)4 Fe skarn (18d)5 3 polymetallic replacement (19a)4 replacement Mn (19b)5 porphyry Sn (20a)5 Sn-polymetallic veins (20b)

3 porphyry Cu-Au (20c)5 5 porphyry Cu-Mo (21a)5 5 porphyry Mo, low-F (21b)5 5 volcanic-hosted Cu-As-Sb (22a)5 5 Au-Ag-Te veins (22b)5 5 polymetallic veins (22c)

3 basaltic Cu (23)lm 5m Cyprus. massive sulfide (24a)

5m Besshi massive sulfide (24b)5 Blackbird Co-Cu (24d)5 hot-spring Au-Ag (25a)5 5 Creede epithermal vein (25b)5 5 Comstock epithermal vein (25c)4 Sado epithermal vein (25d)5 5 epithermal quartz-alunite Au (25e)5 volcanogenic U (25f)2 volcanic-hosted magnetite (25i)5 carbonate-hosted Au (26a)5 hot-spring Hg (27a)5 silica-carbonate Hg (27c)4 simple Sb (27d)5m 5 kuroko massive sulfide (28a)

4 quartz pebble conglomerate Au-U (29a)4t sandstone-hosted Pb-Zn (30a)4 sediment-hosted Cu (30b)5 sandstone U (30c)4m sedimentary exhalative Zn-Pb (31a)3t bedded barite (31b)5 emerald veins (31c)5 southeast Missouri Pb-Zn (32a)

340

Page 354: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Pyrite (cont.)454t553

Pyrophyllite22324

Pyroxene

Appalachian Zn (32b)Kipushi Cu-Pb-Zn (32c)phosphate, upwelling type (34c)low-sulfide Au-quartz veins (36a)Homestake Au (36b)unconformity U (37a)

porphyry Cu (17)porphyry Cu-Mo (21a)volcanic-hosted Cu-As-Sb (22a)hot-spring Au-Ag (25a)epithermal quartz-alunite Au (25e)

Pyroxene Is a common rock-formingmineral in mafic igneous rocks and inmetamorphic rocks associated withsome deposit types 1 through 10.

carbonatite (10)Cu skarn (18b)Zn-Pb skarn (18c)Fe skarn (18d)shoreline placer Ti (39c)

diamond pipes (12)W skarn (14a)porphyry Cu, skarn-related (18a)Cu skarn (18b)Fe skarn (18d)volcanic-hosted magnetite (25i)

W skarn (14a)Fe skarn (18d)Zn-Pb skarn (18c)

4i555m

2

diopside4

4m 5m34m5m4

hedenbergite5m5m5

Hn-rich2 Zn-Pb skarn (18c) .

Pyrrhotite5m5t53t5m5m5m5m5534444m

33

Stillwater Ni-Cu (1)Bushveld Cr (2a)Merensky Reef PGE (2b)Bushveld Fe-Ti-V (3)Duluth Cu-Ni-PGE (5a)Noril'sk Cu-Ni-PGE (5b)komatiitic Ni-Cu (6a)dunitic Ni (6b)synorogenic-synvolcanic Ni-Cu (7a)Limassol Forest Co-Ni (8c)Alaskan PGE (9)carbonatite (10)W skarn (14a)Sn skarn (14b)replacement Sn (14c)

341

Page 355: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Pyrrhotite (cont.)333.441353m

lm 4m53m2t3mit34

W veins (15a)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)Fe skarn (18d)polymetallic replacement (19a)porphyry Sn (20a)Sn-polymetallic veins (20b)Cyprus massive sulfide (24a)Besshi massive sulfide (24b)Blackbird Co-Cu (24d)kuroko massive sulfide (28a)sandstone-hosted Pb-Zn (30a)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)low-sulfide Au-quartz veins (36a)Homestake Au (36b)

Quartz4m 4m 4m 3m 3m Quartz is almost universal in

hydrothermal ores and a commonand abundant constituent of mostrocks.

Rare earth-bearingminerals

43t

2t

carbonatite (10)W veins (15a)volcanogenic U (25f)Olympic Dam Cu-U-Au (29b)emerald veins (310)shoreline placer Ti (39c)

5t

35t

Realgar43t5it

hot-spring Au-Ag (25a)volcanogenic U (25f)carbonate-hosted Au (26a)Homestake Au (36b)

Rhodonite

33

34

Rutile2

24t4t4t

Climax Mo (16)replacement Mn (19b)Zn-Pb skarn (18c)volcanogenic Mn (24c)

anorthosite Ti (7b)carbonatite (10)porphyry Cu (17)porphyry Cu-Mo (21a)Olympic Dam Cu-U-Au (29b)emerald veins (31c)shoreline placer Ti (39c)

volcanic-hosted magnetite (25i)

5t

Scapolite3

342

Page 356: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Scheelite54t4t3t2t2t3t4t3t3t3t

W skarn (14a)Sn skarn (14b)W veins (15a)Sn veins (15b)porphyry Cu, skarn-related (18a)Zn-Pb skarn (18c)Sn-polymetallic veins (20b)porphyry Mo, low-F (21b)simple Sb (27d)low-sulfide Au-quartz veins (36a)Homestake Au (36b)

Selenides2t3t2t

Serpentine4m 4m

hot-spring Au-Ag (25a)Comstock epithermal vein (25c)sandstone U (30c)

Serpentine minerals are the commonproducts of the low-temperaturemetamorphism of ultramafic andmafic rocks.serpentine-hosted asbestos (8d)carbonatite (10)diamond pipes (12)carbonate-hosted asbestos (18e)silica-carbonate Hg (27c)simple Sb (27d)

5m3

5m

5m5m

2

Silver (native)

4t2t4t4t

Silver sulfidesand sulfosalts

4t

Native silver is a common weatheringproduct of silver-bearing sulfideores.

basaltic Cu (23)3t Creede epithermal vein (25b)

Olympic Dam Cu-U-Au (29b)sediment-hosted Cu (30b)

4t Argentite and a wide variety ofsilver sulfosalts are common productsof the oxidation and supergeneenrichment of silver-bearing sulfideores.

porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)polymetallic veins (22c)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)simple Sb (27d)kuroko massive sulfide (28a)sandstone-hosted Pb-Zn (30a)sedimentary exhalative Zn-Pb (31a)

it4t4t5t4t5tSt2t4t2t3t

343

Page 357: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Spessartitesee Garnet

Sphalerite4t4t4t3t4t3t3t34553t

533353t454t544t4t4t3t553t2t5m3t55433t

carbonatite (10)W skarn (14a)Sn skarn (14b)replacement Sn (14c)W veins (15a)Sn veins (15b)Sn greisen (15c)porphyry Cu, skarn-related (18a)Cu skarn (18b)Zn-Pb skarn (18c)polymetallic replacement (19a)replacement Mn (19b)porphyry Sn (20a)Sn-polymetallic veins (20b)porphyry Cu-Mo (21a)volcanic-hosted Cu-As-Sb (22a)Au-Ag-Te veins (22b)polymetallic veins (22c)basaltic Cu (23)Cyprus massive sulfide (24a)Besshi massive sulride (24b)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)silica-carbonate Hg (27c)simple Sb (27d)kuroko massive sulfide (28a)sandstone-hosted Pb-Zn (30a)sediment-hosted Cu (30b)sandstone U (30c)sedimentary exhalative Zn-Pb (31a)bedded barite (31b)southeast Missouri Pb-Zn (32a)Appalachian Zn (32b)Kipushi Cu-Pb-Zn (32c)Homestake Au (36b)unconformity U-Au (37a)

Sphene3

2t5t

carbonatite (10)porphyry Cu (17)volcanic-hosted magnetite (25i)

carbonatite (10)Spinel

Stannite

4

3t4t2t4t4t

replacement Sn (14c)Sn veins (15b)Zn-Pb skarn (18c)porphyry Sn (20a)Sn polymetallic veins (20b)

344

Page 358: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Stibnite3 Au-Ag-Te veins (22b)3t hot-spring Au-Ag (25a)2t Creede epithermal vein (25b)3t carbonate-hosted Au (26a)4t silica-carbonate Hg (27c)5 simple Sb (27d)2t Homestake Au (36b)

Strontianite

3 carbonatite (10)

SulfosaltsThe term "sulfosalts" is here used torepresent all of the minerals thatcombine silver or base metal sulfideswith As- Sb- or Bi-sulrides;enargite-luzonite and tetrahedrite-tennantite fall within this broadusage, but the Fe, Co and Nisultarsenides and sulfantimonides donot.

*4t replacement Sn (14c)4t W veins (15a)3t Sn greisen (15c)3t porphyry Cu, skarn-related (18a)4t Cu skarn (18b)5t polymetallic replacement (19a)4t Sn-polymetallic veins (20b)3t porphyry Cu-Mo (21a)3t porphyry Mo, low-F (21b)5 volcanic-hosted Cu-As-Sb (22a)4t Au-Ag-Te veins (22b)4t polymetallic veins (22c)3t Besshi massive sulfide (24b)5t Creede epithermal vein (25b)5t Comstock epithermal vein (25c)5t Sado epithermal vein (25d)5t epithermal quartz-alunite Au (25e)4t simple Sb (27d)5t kuroko massive sulfide (28a)4t sandstone-hosted Pb-Zn (30a)4t sedimentary exhalative Zn-Pb (31a)it southeast Missouri Pb-Zn (32a)5 Kipushi Cu-Pb-Zn (32c)3t Homestake Au (36b)3t unconformity U (37a)

Sulfospinels(also see carrollite,linneaite)

2t dunitic Ni (6b)3t Olympic Dam Cu-U-Au (29b)3t sandstone-hosted Pb-Zn (30a)3t sediment-hosted Cu (30b)2t southeast Missouri Pb-Zn (32a)3t Kipushi Cu-Pb-Zn (32c)

345

Page 359: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Sulfur (native)2t Native sulfur is sometimes found as

an intermediate stage in the oxida-tion of sulfide ores.

epithermal quartz-alunite Au (25e)hot-spring Hg (27a)

2 3'4

2

Sylvanite (see tellurides)

Talc3 serpentine-hosted asbestos (8d)

Tantalumminerals

3t carbonatite (10)

Tellurides5t3t3t3t4t2t3t2t2t2t5t4t3t4t3t2t

Au-Ag-Te veins (22b)hot-spring Au-Ag (25a)Creede epithermal vein (25b)Comstock epithermal vein (25c)Sado epithermal vein (25d)simple Sb (27d)low-sulfide Au-quartz veins (36a)unconformity U-Au (37a)polymetallic replacement (19a)porphyry Cu-Au (20c)Au-Ag-Te veins (22b)hot-spring Au-Ag (25a)Comstock epithermal vein (25c)Sado epithermal vein (25d)epithermal quartz-alunite Au (25e)simple Sb (27d)

Tennantite-tetrahedrite

3t3t3t4t43t4t4443t5t4t3t4t3t3t2t53t

replacement Sn (14c)W veins (15a)porphyry Cu, skarn-related (18a)Cu skarn (18b)polymetallic replacement (19a)porphyry Cu-Mo (21a)porphyry Mo, low-F (21b)volcanic-hosted Cu-As-Sb (22a)Au-Ag-Te veins (22b)polymetallic veins (22c)Besshi massive sulfide (24b)Creede epithermal vein (25b)Sado epithermal vein (25d)simple Sb (27d)kuroko massive sulfide (28a)sandstone-hosted Pb-Zn (30a)sedimentary exhalative Zn-Pb (31a)southeast Missouri Pb-Zn (32a)Kipushi Cu-Pb-Zn (32c)Homestake Au (36b)

346

Page 360: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Topaz14.32

3

3314

Sn skarn (14b)replacement Sn (14c)Sn veins (15b)Sn greisen (15c)Climax Mo (16)

Tourmaline4334m

4m2

143

5

3344m23

Sn skarn (14b)replacement Sn (14c)W veins (15a)Sn veins (15b)Sn greisen (15c)porphyry Cu (17)porphyry Sn (20a)Sn-polymetallic veins (20b)volcanic-hosted Cu-As-Sb (22a)Besshi massive sulfide (24b)Blackbird Co-Cu (24d)volcanic-hosted magnetite (25i)kuroko massive sulfide (28a)Olympic Dam Cu-U-Au (29b)sedimentary exhalative Zn-Pb (31a)Homestake Au (36b)

33

3

33 3 3

3

2

Tungstenite2t Kipushi Cu-Pb-Zn (32c)

Ulvospinel3 anorthosite-Ti (7b)

Uraninitecrystalline

4t5t

quartz pebble conglomerate Au-U (29a)unconformity U (37a)

pitchblende5t5t5t

volcanogenic U (2Sf)sandstone U (30c)unconformity U (37a)

V-oxides4t 4t sandstone U (30c)

Valleriite3t2t2t

Noril'sk Cu-Ni-PGE (5b)Besshi massive sulfide (24b)sedimentary exhalative Zn-Pb (31a)

Vanadates

Witherite

4 sandstone U (30c)

3t bedded barite (31b)

347

Page 361: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix D. Mineralogical Index--Continued

Mineral Ore Gangue Host Assoc- Alter- Weath- Deposit type and model numbermin- min- rock iated ation eringeral eral min- rock min- min-

eral min- eral eraleral

Wolframite3t W skarn (14a)5 W veins (15a)4 Sn veins (15b)3 Sn greisen (15c)3t Climax Mo (16)4 Sn-polymetallic veins (20b)3t epithermal quartz-alunite Au (25e)2t simple Sb (27d)2t Homestake Au (36b)

Wollastonite4m W skarn (14a)4 porphyry Cu, skarn-related (18a)4 Cu skarn (18b)

Zeolites4 4 basaltic Cu (23)5 epithermal Mn (25g)4 rhyolite-hosted Sn (25h)

4 hot-spring Hg (27a)2 kuroko massive sulfide (28a)

3 phosphate, warm-current type (34d)

Zinnwaldite2t 2 W veins (15a)

Zircon3t anorthosite Ti (7b)3t carbonatite (10)

4t shoreline placer Ti (39c)

Zunyite3 epithermal quartz-alunite Au (25e)

348

Page 362: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Appendix E. Index of Deposits

Name Country

AarjaAbbottAbdashtAberfoyleAbeshiro (Sakura)AbitibiAbra NegraAbruzziAbu TarturAbuhemsin (Abiulya)AbundanciaAce of SpadesAceitillarAchillesAdaevkaAdak-LindskoldAdana-SaimbeyliAdanac (Ruby Creek)Adelong CreekAdobe CanyonAdventure CreekAdvocateAetnaAffohAfterthoughtAftonAgaltecaAgassizAgnes WatersAgnew (Perseverance)Agnico EagleAgordo-BrossoAgrokipiaAguilarAijalaAin MokraAin OudrerAjax (Monte Carlo)AjaxAjax (Dak River)AjoAkarcaAkarsenAkashatAkataniAkoabukAkeakilise TopkirazlarAkenobeAkeskiAkinokawa (Onishi)AkkoyAkkoyaAkoluukAkseki GokeeovacikAktyubinskAkulla VastraAkviranAlAl-Hasa/OatranaAlabama bauxiteAlabama ShootAlagada

OMANUSCAIRANAUTSJAPNCNQUMXCOITLYEGPTTRKYTRKYUSCADMRPNZLDURRSSWDNTRKYCNBCAUNSUSCAAUQLCNNFUSCAGHNAUSCACNBCHNDRCNMNAUQLAUWACNQUITLYCYPSAGTNFNLDALGRALGRCNBCUSORCNBCUSAZTRKYTRKYIRAQJAPNTRKYTRKYJAPNTRKYJAPNTRKYTRKYTRKYTRKYURRSSWDNTRKYAUWTJRDNUSALAUWTPORT

Model No

24a27c8a15b28a8d25g38c34c24c24c8a38c36a18d28a38c21b39a8a15b8d27c38b28a20c18d36b39c6b36b18b24a18c28a18d18d178a21b178a28a34c18d8a24cZOb38c24 b28a8a24c24c34o28a34b36a34c38c36a18d

Name

AlaskaAlbertAlbert Lea GroupAlbinoAldermacAleksandrovskii LogAleshinkaAlex Hill-Mad KissAlexii-Olginsky LogAliceAlice LouiseAlice MineAllan (Johnson)Allard RiverAlleghanyAlligator RidgeAlma (Mills) PlacerAlmadenAlmagrera-LapillaAlmeirimAlphaAlpine-Lafatsch

Alta HillAltamira-FronteraAltenbergAlthouseAltindagAltoAltoona-Elkhor-NercuryAlumenAlyce and Blue JayAmAmacanAmador CityAmapaAmaxAmazonAmbatoryAmbelikouAmerican AsbestosAmerican BarAmerican ForkAmigosAmmebergAmoresAmphoe Phra SaeongAmpleAmuletAn-shanAna Yatak-ErganiAnalavoryAnalumayAnantagiriAnayatak-CakmakkayaAnchorAndacollaAnderson LakeAndhra PradeshAndizlikAndurambaAngelo

Country Model No

ZIMBCNQUUSAZCNONCNQUURRSURRSGUYNURRSUSCANCALUSCAUSCACNQUUSCAUSNYUSCOSPANSPANBRZLNCALASTR-ITLY-YUGOUSCAVNZLGRMEUSORTRKYUSCACNBCMZMBUSCACNBCPLPNUSCABRZLCNHNUSMTMDGSCYPSUSCAUSCAUSUTMXCOSWDNCUBATHLDCNBCCNQUCINATRKYMDGSMDGSINDATRKYAUTSCILECNMNINDATRKYAUQLAUWA

30b28a22c36b28a39b18d36a39b36a8a8aBa28a36a26a39a27b28a38b8a

32a,32b8a34a,28b15c8aBa36a22c38b8a171736a34a,28b6b22c38a24a8a36a19a25h18c8a27d36a28a34a,28b24a38b38a38b28a15c1728a34bBa21b28a

349

Page 363: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Angels-CarsonAnianowsky LojokAnimasAnkerite-Aunor-DelniteAnnAnn MasonAnna MadeleineAnneAnsongoAnti AxisAntimonialAntimony CanyonAntimony KingAntimony LodeAntimony MinesAntimony RidgeAntlerAntoineAntonioApex (Del Norte Co.)Apex (El Dorado Co.)Apex AntimonyApex MinesAplikiApplegateAradAraluen ValleyAravaipaAraxaArcherArcticArctic ChiefArgoArgonautArguilillasArgus HillArieArinteiroArkhangelskii LogArlingtonArmour GroupArmstrong (A)Arnold HillArrierosArrowheadArroyo DurangoAs SafraAsafoAsagi ZorkumAsakawaAsbestos HillAsbestos IslandAsenAsh ShizmAshioAshlandAshleyAssociated ChromiteAsvanAtacochaAtenguilloAtlantaAtlasAtlas

350

USCAURRSUSCOCNONCNBCUSNVNCALNRWYMALIUSCAUSNVUSUTUSNVUSNVUSMTUSIDUSAZCNBCCUBAUSCAUSCAUSNVUSUTCYPSUSORISRLAUNSUSAZBRZLAUTSUSAKCNYTUSCACNBCMXCOAUVTPPNGSPANURRSCNBCUSAZCNNBUSNYMXCOCNQUMXCOSAARGHNATRKYJAPNCNQUCNQUSWDNSAARJAPNUSORCNONUSORTRKYPERUMXCOUSNVPLPNUSAZ

36a39b25b36b1717Ba28a34b8a27d27d27d27d27d27d28a22c24c8a8a27d32c24a8a34c39a18c1015c28a18b36a18d25h36a1724a39b22c25g28a25i25h36b25h28a38bBa24b8d8d28a28a20b36a36b8a18d19a25g26a20c19b

AtlasAuerbachAugusto Luis & othersAuroraAuroraAurukumAustin BrookAustinvilleAventuraAvispaAvocaAvsarAwasoAxeAya AyaAyazmantAyekoyeAznacollarAzul-CarajasB and BB. C.B. C. HolyBabcockBabyfootBadgerBagacayBagbyBagby ValleyBagdadBaghainBaginBagirsakdireBailadilaBailadoresBaileyBaisoaraBajoBakervilleBakhuis MountainsBalaklalaBalcicakiriBald MountainBaldwinBalea-SitaoumaBallaratBallynoeBalmatBaltic and RevenueBaltimoreBalubaBamaBambleBamboutosBan BanBandganBangamBankfield-TombillBannackBarao de Cocais-CaeteBarbara-SurpriseBarber-LarderBarbertonBarite (Mouse)Barite Mtn.

USCAURURCUBAUSNVUSORAUQLCNNBUSVACUBACUBAIRLDTRKYGHNACNBCPLPNTRKYGNEASPANBRZLUSNVCNBCCNBCUSORUSORUSAZPLPNUSCAUSCAUSAZIRANTRKYTRKYINDAVNZLCNYTRMNAJAPNAUQLSRNMUSCATRKYUSMEUSNVMALIAUVTIRLDUSNYUSCOUSMTZMBASPANNRWYCMRNAUQUPKTNCMRNCNONUSMTBRZLAUWACNONSAFRCNYTCNYT

36a18d24c25c25f38b28a32a,32b8a24c28aBa38b171718d38b28 a34b27a18b21b8a8a22c28a36a36a1718d8a8a34a,28b28a14a18d25d15b38b28aBa28a27a38b36a31b31a22c22c30b24a7a38b18c28a38b36b39a38b36b36b36b31b31b

\.

Page 364: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Barite ValleyBarloBaroiBarra do PiraiBarrandumBarrettBarrington LakeBarro AltoBarry HollingerBarrytownBarvallee-MogadorBasayBaskoyBassetBathurst-NorseminesBatiBati-TabanBatikefBaw Hin KhaoBawdinBaydaBearBear MountainBear ValleyBeatBeatsonBeaver DamBeceite-FuendespladaBeckBedford HillBeershevaBeldenBellBellBell AllardBell Boy-Niles-TowsleyBell ChannelBell CopperBell MolybdenumBell and CaliforniaBella OakBellacosciaBellaryBellevueBellevueBelokany-LauraBelvidereBen LomondBendigoBendigoBeni DoualaBenkalaBensonBenson LakeBentenBereketBergBerongBerry CreekBesimianni LogBessemerBesshiBest ChanceBethanga

SAFRPLPNINDABRZLUSCAUSMECNMNBRZLCNONNZLDCNQUPLPNTRKYGRBRCNNTTRKYTRKYTRKYTHLDBRMAOMANUSNVUSNMUSCAUSCAUSAKCNNSSPANUSCACNQUISRLUSCACNBCUSNVCNQUUSMTCNQUCNBCCNBCUSCOUSCANCALINDAAUWANCALURRSUSVTAUQLAUVTNZLDALGRURRSUSNYCNBCJAPNTRKYCNBCPLPNUSCAURRSCNONJAPNCNYTAUWT

3.b24a

31a38b36a28a28a38a36b39c28a1728a15b28a8aBaBa31b28a24a1719b36a8a28a36a38c18d28a34c36a22c19a28a22c28a20c21b22c27cBa34a,28b36bBa30a8d25f36a36a18d18d25i18b25d8a21a38a36a39b18d24b18b36a

Bethlehem CNBCBetts Cove CNNFBezkere-Bulurlii TRKYBhavnagar INDABhimatangar INDABicholim INDABicir-Cakir TRKYBicir-Gul TRKYBidgood-Modfatt-Hall CNONBidJovagge NRWYBielgorsky Log URRSBig Badja River AUNSBig Bear USORBig Bell AUWABig Ben USMTBig Bend USCABig Bend USCABig Chief USORBig Cottonwood USUTBig Dipper USCABig Four USFLBig Four USMTBig Four USORBig Hill USMEBig Horn (Yarrow Ck) CNALBig Mike USNVBig Oak Flat USCABig Onion CNBCBig Pine Claim USCABig Syncline SAFRBig Yank No. 1 USORBihar INDABilaspur INDABinder No. 1 USCABingham USUTBinghampton USAZBingo ZIREBintan Island INDSBirch Lake CNSKBirch Tree CNMNBirchfield NZLDBirchfield USNMBirthday-William Fancy AUVTBisbee USAZBizmisen-Akusagi TRKYBjorkasen NRWYBjurfors SWDNBjurliden SWDNBjurtrask SWDNBlack Bart (Great Western) USCABlack Bart Claim (Avery) USCABlack Bart Group USCABlack Bear USCABlack Bear USCABlack Beauty USORBlack Boy USCABlack Boy USORBlack Chrome USCABlack Crow-San Juan USNMBlack Cub CNYTBlack Diablo USNYBlack Diamond USORBlack Diamond (Grey Eagle Gp.) USCABlack Hawk USNM

21a24a8a38b38a34a,28b8a8a36b28a39b39a8a36b1628a8a8a19aBa34d22cBa28a30b24a36a178a31aBa38b38b8a1728a1038b28a6b39c19b36a1718d28a28a28a28a8aBa8a36a8a8a36a8a8a25g18b24c8aBa18c

351

Page 365: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Black HawkBlack LakeBlack Mtn.Black OtterBlack RangeBlack Range-OroyaBlack Rock ChromeBlack StreakBlack SwanBlack WarriorBlack WarriorBlackbirdBlackstoneBlairtonBlind RiverBlinmanBlockhouseBloodwood CreekBloody CanyonBlue BellBlue BrushBlue Creek TunnelBlue DickBlue GrouseBlue JayBlue JayBlue LeadBlue LedgeBlue MoonBlue MountainBlue Mountains-Oko MountainsBlue NoseBlue RibbonBlue RidgeBlue RiverBlue Sky (Lucky Strike)Blue StarBluebirdBluestoneBobBobrowka RiverBodennecBodieBoeBoiler PitBoleoBolidenBolkardagBolshaya Choumika R.Bolshaya KamenouchkaBolshaya Ossokina R.Bolshaya ProstokischenkaBolshaya SosnovkaBolsherechenskBolshoi Pokap R.Bolshoi SakciamBolske-TokmakBom Repouso-CambuiBonanzaBonanzaBonanzaBonanzaBond CreekBondurant

352

USORCNQUSAFRUSORUSNMAUWAUSCAUSORAUWAUSNYUSORUSIDUSCACNONCNONAUSACNNSAUQLUSNVCNBCUSCAUSCAUSNVCNBCUSCAUSORUSAKUSCAUSCAUSCAGUYNUSNVUSNVPLPNUSCOUSCAUSNYUSAZUSNVZIMBURRSFRNCUSCAGNBSUSCAMXCOSWDNTRKYURRSURRSURRSURRSURRSURRSURRSURRSURRSBRZLNZLDUSCAUSCOCNBCUSAKUSCA

8a8d31aBa25h36b8a8a6b27d8a24d36a18d29a19b36a15b27d19a8a8a27d18b24c27d36a28a28a36a38b27d27d38a39a8a26a1718b36b39b28a25c38b8a2328a19a39b39b39b39b39b18d39b39b34b38b36a8a25b24a1736a

Boneng LoboBongbonganBonnievaleBonny LakeBonsecoursBooker LeaseBoolarraBorBoss MountainBossmoBoston GroupBosumBoswell RiverBothaville-WolmaransstadBou AzzerBou MiaBou SellamBoulder RiverBoulougne-FolkstonBouscadillac and othersBovardBowden LakeBowden ProspectBowie EstateBowserBoyandinskaiaBoylenBozkonusBozotluk-No. 551BozshchakuBr. Solomon Is.BrachyBradenBradleyBragdorBralorne-PioneerBray-BeulahBrejuiBrendaBrenmacBretzBretzBridge Hill RidgeBriggs CreekBriseida Group & othersBristol (Jack Rabbit)BritanniaBritish CanadianBroken HillBroken HillBroken HillsBrookfieldBrookfieldBroulan and othersBrown ScratchBrownsvilleBruceBrunerBrunswichBrunswick-AltamahaBrynorBu CraaBuchansBuckeye

PLPNPLPNAUWAUSFLNCALUSCAAUVTYUGOCNBCNRWYCUBACNBCCNYTSAFRMRCOMRCOMRCOUSMTUSFLCNONUSNVCNMNUSCAUSCAUSORURRSCNQUTRKYTRKYURRSSLMNFRNCUSORUSNVUSCACNBCUSNVBRZLCNBCUSWAUSORUSORAUNSUSORCUBAUSNVCNBCCNQUAUNTSAFRUSCACNNSCNNSCNONUSORAUQLUSAZUSNVCNNBUSGACNBCMRCOCNNFUSCA

20o24 a36b34d8a8a38b22a21b28a24c22c21b39c8c30a30a39a39c36b25c6bBa8a8a39b30a8a8a1738a19b36a27d8a36a27d14a21a1725f27a39cBa24c19a28a8d31a31a36a31b36a36b8a15b28a25d28a39c18d34c28a24o

Page 366: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

BuckhornBuckinghamBuckoBuena EsperanzaBueycitoBuffalo Red LakeBuguganBukaBulacanBulbulaBuller-MokihinuiBullionBullrun PlacerBully HillBunkerBurbanksBuritiramaBurned CabinBurns BasinBurnt Hill-Knob LakeBurraBursiBushveldButiladButler ClaimsButler, Estate ChromeButteButteButtercup ChromeBuxton CreekBuyiik GurleyenBuyiik KaramanliBuyuk YeniceBwana MkubwaC.O.D.CCCabCabo RojoCadizCalabogieCaldasCalder-BousquetCaledoniaCaledoniaCaledoniaCaleyCalicoCalifornia GroupCalifornia-Hartney-MarionCalistogaCalumetCalvert (Red Button)CamagueyCamancheCamarasa-OlianaCamaratubaCamden MineCamigliaCamlica KoyeeCampanamahCampanarioCampaniaCampbellCampbell Red Lake-Dickenson

USNYUSNVCNMNCILECUBACNONTRKYPLPNPLPNIRANNZLDUSCOUSORUSCAUSCAAUWABRZLUSORUSNVCNQUAUSANRWYSAFRPLPNUSCAUSCAUSMTUSNYUSCACNBCTRKYTRKYTRKYZMBAUSAZCNBCCNYTPTRCCUBACNONBRZLCNQUAUVTCNBCCUBACNYTUSCAUSAZCNBCUSCAUSMIUSMTCUBAUSCASPANBRZLUSCAITLYTRKYAGTNSPANITLYUSORCNON

25f21b6b2324c36b8a38a18d38c36a22c39a28a8a36b24 cBa27d34a,28b30b28a2a,2b,3178aBa1727a8a39a8a8a27d30b22c28a14a38a24c18d38b36b36a18bBa8d25c25g22c25c2314a8a39a38c39c8a18d27d1728a38cBa36b

Camptonville areaCana BravaCanadian JamiesonCananeaCananea (Capote)CanariacoCannivan GulchCanoe LandingCantungCanyon Creek-East ForkCapacmarcaCape BougainvilleCapel ShorelineCapitanCaptainCaptains FlatCaracotaCarawisonCarey/East BroughtonCariboo BellCaribouCaribouCaribou-AurumCarletonCarlinCarmelCarmenCarmiCarn Brea-TincroftCarnation-Jennie LindCarnilya E.Carnilya HillCarocolesCarolinCarolinaCaroline IslandsCarpenterCarpioCarr BoydCarr ForkCarrock FellCarshaw-Tommy BurnsCasa de JanosCasapalcaCasas GrandesCashCasinoCassiar MineCassilisCassiusCastillo BuitronCastillode PalancoCastingCastle DomeCastle IslandCastritaCastro MineCastro VerdeCataguasesCatakCatak-KoraalanCatalaoCatas de las VacasCatas el Durango

USCABRZLCNONMXCOMXCOPERUUSMTCNNBCNNTUSCAPERUAUWAAUWAUSNMCNNBAUNSBLVAPLPNCNQUCNBCCNNBCNNSCNBCCNNSUSNVPLPNCILECNBCGRBRCNBCAUWAAUWABLVACNBCSAFRCARLUSAZSPANAUWAUSUTGRBRCNONMXCOPERUMXCOCNYTCNYTCNBCAUVTHATISPANSPANUSNVUSAZUSAKMXCOUSCAPORTBRZLTRKYTRKYBRZLMXCOMXCO

Ba8d28a1718a1721b28a14a36a18d38b39c18d28a28a27d24a8d20c28a36a36a36a26a24 a18d21b15b22c6a6a15b36a39c38b1728a7a18b15a36b25g25b25g17178d36a18b28a24c18b1731b25h8a28a38b8a8a1025h25h

353

Page 367: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

CataviCatfaceCatheartCathroy LarderCathy (Walt)CatolsinirCattle GridCattle SpringsCavdarli-KomurlukCave CanyonCavyell Horse MountainCayirli KoyCedar CreekCeheginCelebrationCengerCenger-AdatepeCenger-DemirkCenger-DomuzaCentennialCentralCentral Cerbat DistrictCentral ManitobaCentral PatriciaCentral RawdonCentral TennesseeCerro BlancoCerro BolivarCerro ColoradoCerro ColoradoCerro GordoCerro GrandeCerro MatosoCerro PrietoCerro VerdeCerro de CobreCerro de MercadoCervantiteCezniChacarillaChador-MaluChagrinChahehgazChalchihuitesChalcobambaChallange areaChambersChambiashiChampagne (Oakwood)Champion-New LondonChang Po-TongkengCharcasCharco Redondo-CasualidadChaileston placersChauchaChavarriaChavinCheminis-Fernland-OmegaChestateeChesterChestervilleChewtonChiaturaChibuluma

354

BLVACNBCUSMNCNONCNYTTRKYAUSAUSCATRKYUSCAUSORTRKYUSORSPANUSORTRKYTRKYTRKYTRKYCNMNUSCAUSAZCNMNCNONCNNSUSTNMXCOVNZLCILEPANAUSCAMXCOCLBAMXCOPERUCLBAMXCOUSNVTRKYBLVAIRANNCALIRANMXCOPERUUSCAUSORZMBAUNSUSAZCINAMXCOCUBAUSSCECDRMXCOPERUCNONUSGACNNBCNONAUVTURRSZMBA

20a171736b31b8a30b8a24c18d8a24c8a18dBaBaBa8a8a28a36a22c36b36b36a32a,32b25h34a,28b171719a25h38a25h1718b25i27d8a30b25i8a25i19a18bBa8a30b38b22c14c19a24c39c1725h25b36b28a28a36b36a34b30b

Chibuluma WestChicagoChicagoChichagofChichibuChicote GrandeChild HaroldChilds MineChilisaiChingola-NchangaChinkuashihChintapalli-GurteduChisel LakeChitoseChitteringChityal and othersChiwefweChloride FlatChloride DistrictChoatesChoghartChojaChongweChorolqueChristain PlaceChristmasChrome CampChrome GulchChrome HillChrome King (Josephine Co.)Chrome King (Jackson Co.)Chrome No. 3Chrome RidgeChuquicamataChushiroCia Minera NorcroCinovecCirqueCirque BariteCistaCiudad ObregonClara HClarendon PlateauClary and LangfordClaude HillsClear SpringsCleary HillCleopatraClevelandCliff RoyClimaxClintonClinton CreekClover LeafCluff LakeClunes GoldfieldCoal CreekCoalstounCoarsegoldCoasanoCoast CopperCobolCobrizaCobweb Diggings

ZMBAUSCAUSCAUSAKJAPNBLVANCALCNONURRSZMBATIWNINDACNMNJAPNAUWAINDAZIMBUSNMUSAZUSNYIRANJAPNZMBABLVAUSCAUSAZUSCAUSCAUSCAUSORUSORUSORUSORCILEJAPNHNDRCZCLCNBCCNBCCZCLMXCOUSCAJMCAUSCAAUSAUSFLUSAKUSORAUTSUSNMUSCOCNQUCNYTUSCACNSKAUVTUSAKAUQLUSCAUSAKCNBCUSAKPERUAUNS

30b27c8a36a18d15a8a18d34c30b25e38b28a25d38b34a,28b34 b19b22c27d25i24b30b20a8a18a8a8a8a8a8a8a8a1724b27d15c31a31b15c25g8a38c8a38a34d36a8a14c25g1628a8dBa38d36a15c1736a27d18b36a18b39a

Page 368: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Cochrane HillCoco MinaCodd ProspectCoeur d'AleneCogginsCoimadaiColchesterColemanColfaxCollard MineColomboColquemarcaColquiCometCommanderComstockComstockConcepcion Del OroConceptionConfidenceConigoConnemaraConrad LodesConsolationContactContinentalContinentalConyarigiCoolgardieCoolgarra Dist.Coon Mt. Nos. 1-3Copper BasinCopper BasinCopper CanyonCopper CitiesCopper CreekCopper Creek (Low Divide)Copper CrownCopper FlatCopper GeorgeCopper HillCopper MountainCopper ltountainCopper PennyCopper QueenCopper RidgeCopperheadCorbetCorderoCordonCordon EstanerosCorduroy CreekCork-ProvinceCornellCornwallCornwall SnCorocoroCoronaCoronationCortezCortezCosanCosmopolitanCosterfield

Country Model No Name Country Model No

CNNSNCGAUSCAUSIDUSCAAUVTCNNFUSNVUSCAUSORUSCAPERUPERUUSAKUSCACNBCUSNVMXCOSPANUSCACNQUZIMBAUNWNCALUSCACNQUUSNMTRKYAUWAAUQLUSCAUSAZUSNVUSNVUSAZUSAZUSCACNBCUSNMAUWAUSCACNBCCNBCUSAZCNBCUSTNAUWACNQUUSNVPLPNMXCOUSIDCNBCCNBCUSPAGRBRBLVAUSCACNSKUSNYUSNVTRKYAUWAAUVT

36a25b8a27d8a27d24 a27a36a8a36a18d25b36a8a22c25c1Sb28a36a28a36b15b8a27c8d18a27d36b15b8a1718a18b17178a28a18d28a28a1720c37b18b32b36b28a27a1725h39a22c18b18d15b30b27c28a19a26a8a36b27d

CotejeCotoCottonwoodCoultervilleCountry HarbourCourtwrightCourtwright (Daggett)Courvan MineCove DistrictCow BayCow Creek Gp.Cowley CreekCox, Bolyan & LobergCraigmontCranberry HillCranbourneCrandonCreedeCrescentCrestonCretaCripple CreekCroker IslandCromitaCroninCrooked CreekCrouchCrowell AreaCrownCrown KingCuajoneCubenasCubuaganCubuaganCubuklu KoyuCuchillo-NegroCueva de la MoraCullaton LakeCullengoralCulver BearCumberland IslandCummingsCupra D'EstrieCuprusCuriol-Playa Real-PavonesCurtis IslandCuyunaCyclone GapCyclopsCynthiaCynthiaD'AnalamaitsoD'AnkazobeD-TreeDabolaDaffodilDagardiDagardiDagkupluDaiquiriDaisy (Aldelabron)DalesfordDamascusDamba

BLVAPLPNUSNVUSCACNNSUSCAUSCACNQUUSCACNNSUSCACNYTUSAKCNBCCNNSCNQUUSWIUSCOUSWAMXCOUSOKUSCOAUNTCUBACNBCUSIDUSORUSTXUSORUSAZPERUCUBAPLPNPLPNTRKYUSNMSPANCNNTAUNSUSCAUSGAUSCACNQUCNMNCORIAUQLUSMNUSCAINDSGRECUSORMDGSMDGSAUQLGNEACNONTRKYTRKYTRKYCUBAUSCAAUVTUSCAZIMB

25f8a27d36a36a8a8aBd36a36aBa18b36a18a36a8d28a25b24c21b30b22b38b8a28a39a8a30b8a19b1724c1720c24c18d28a36b39a27c39c24c28a28a24c39c34a,28b8a38a19b8a38b38b34c38b8d27d8a8a18d8a36a36a6a

355

Page 369: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Dammer NissarDanacikDanismentDannemoraDanville-HanchetteDardanellesDargo Range Dist.Dark StarDarringtonDarwinDarwinDassoumbleDavidsonDavisDawn LakeDay Dawn-Main LineDaytonDcev 7De SantisDebele (Kindia)DeeDeep Gorge ChromeDeep GravelDeer IsleDefenderDefianceDel Park-HuntlyDelamarDelare ProspectDelbridgeDeltaDeltaDemarestDemirkapiDemirliDenali CopperDerekoyDescobertoDesertDespinaDetertDetourDetroitDevils ElbowDewey'sDexingDhalli-RajharaDiamondDickersonDickey and DrisbachDickstoneDikulume-MashambaDinagatDinagat Is.DinamitaDineroDirty FaceDiscoveryDivideDivinolandia de MinasDivrigiDixie PlacerDizonDjebel El Aziza

356

Country Model No Name Country Model No

PKTNTRKYTRKYSWDNUSAZCNBCAUQLUSORUSCAUSCAUSNVIVCOCNONUSMACNSKAUWAUSNYNCALCNONGNEAUSNVUSORUSORUSMEUSCAUSAZAUWAUSIDUSORCNQUCUBAUSCAUSCAUSNVTRKYUSAKTRKYBRZLUSCACNQUUSCACNQUUSUTCNNBUSCACINAINDAUSCAUSCAUSCACNMNZIREPLPNPLPNMXCOUSCAUSORCNMNUSNVBRZLTRKYUSORPLPNTUNS

18d8a24o18d19b22c15bBa8a19a27d24c36b28a38d36b18d8a36b38b26a8a39a28a36a22c38b25a8a28a8a36a36a27d8a2327d38b27d28aBa28a19b28a27c1734a,28b8a8a8a28a30b8a38a19b36a8a6b25o38b18d39a20c19b

DJebel GuettaraDjebel OnkDoe FlatDogu EzanDogu KefDoi Pha KhanDoloresDoloresDome-Paymaster-PrestonDominion ConsolidatedDominion GulfDomuzburnu IIDon JonDon PedroDon TeodoroDonatelliDorotheaDorothyDorrissDos PobresDouble EdDouglas HillDovisDozierDrinaDrnis-ObrovacDrummDry CanyonDry CreekDublin Gulch (GSZ)DuchessDudasDugald RiverDuke IslandDulcoathDuluth ComplexDumagamiDumontDumont BourlamqueDuncan LakeDungunDunraineDurnovskoeDuthieDyDyce SidingDyson's (Rum Jungle)DzamaDzhezhkazgan (Magakyan)E. KempvilleE. ScotiaEagleEagleEagle Bluff-River BendEagle MountainEagle ShawmutEarl SmithEarly BirdEarly SunriseEarly-SweetwaterEast Florida (Deseret Ranch)East MauiEast Ore BodyEast Rawdon

ALGRALGRUSCATRKYTRKYTHLDMXCOMXCOCNONNZLDCNONTRKYCNMNUSCAMXCOUSNYUSORCNBCUSCAUSAZCNBCUSNVIRANUSCAYUGOYUGOUSNVUSNVUSORCNYTAUQLUSNVAUQLUSAKGRBRUSMNCNQUCNQUCNQUCNBCMDGSCNQUURRSCNBCCNYTCNMNAUNTURRSURRSCNNSAUWACNBCUSAKUSCAUSCAUSCAUSCAUSCAUSORUSCAUSFLUSHIPLPNCNNS

24o34c8a8a8a27d18c25c36b36a108a28a8a25h27d36a178a20c28a18b8a8a19a38o27d27d8a14a34c27d31a915b5a28a6b28a31a18d28a24c28a31a28a38d18d30b15c6a178d36a18d36aBa28a8a36a34d38b8a36a

Page 370: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

I

Name Country Model No Name Country Model No

East RosettaEast SullivanEast TennesseeEast TinticEastern A&BEatonEclipse No. 1Ecum SecumEdelineEdenEdna MayEggling and WilliamsEgoEhimeEjowkaEkstrombergEl AbraEl AbraEl AlgarroboEl ArcoEl AtascaderoEl BaluarteEl BarrosoEl Borrego g1El Borrego 12El CalabroteEl CapulinEl CidEl ColoradilloEl CorralEl CristalEl CuervoEl DoradoEl DoradoEl DoradoEl DoradoEl DuraznilloEl DuraznoEl Encino (La Ochoa)El Encino (Jalisco)El GoteraEl HamraweinEl HuacalEl IndioEl Indio, Tadeo,

San AntonioEl LadrilloEl MameyEl MezquiteEl MochitoEl Naranjo, Buena SuerteEl NoladeroEl Nopal (Juan Aldama)El Nopal (La Ochoa)El Nopal (Nopal I and III)El PachonEl PaoEl PedrosoEl PenascoEl PerdidoEl PicachoEl PleitoEl PolvilloEl Portal

EGPTCNQUUSTNUSUTSYRAUSNVUSCACNNSUSCAUSCAAUWAUSCACNONJAPNURRSSWDNCILEMXCOCILEMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOCUBAMXCOMXCOMXCOSPANCILEMXCOUSCAUSMTMXCOMXCOMXCOMXCOMXCOEGPTMXCOCILE

MXCOMXCOMXCOMXCOHNDRMXCOMXCOMXCOMXCOMXCOAGTNVNZLSPANMXCOMXCOMXCOMHXCOMXCOUSCA

39c28a32a,32b19a34c27d36a36a8a8a36b8a28a24b39b25i1725h25i1725h25h25h25h25h25h25h8a25h25h25h24c25i25h36a39a25h25h25h25i25h34c25h25e

25h25h25h25f18c25h25h25h25h25r1734a,28b18d25h25h25h25h25h36a

El Porvenir (Milpo)El PrimeroEl ProfesorEl RinconEl RomadizoEl RomeralEl SalvadorEl Santo NinoEl SheranaEl Sherana WestEl SocavonEl Sol y La LunaEl SoldadoEl TarangoEl TenienteEl TigreEl VenadoEl Volcan-Piedra ImanEl ZanzonElalmisElatsiteElder ClaimElder CreekEldirekElectricEliza-SchroederElk Creek ClaimElkhorn ChromiteElkhorn CreekEllingwoodElliot LakeEllisEllistonEltayElyEmbury LakeEmerald-DodgerEmersonEmigrant SpringsEmirliEmmavilleEmpire Le TaoEmpire-Lone StarEmporer MineEmpressEmu CreekEmu Dist.Emu-Great EasternEndakoEneabba ShorelineEnterpriseEnterpriseEpochEquity SilverErmenisErringtonErzegebirgeEscondidaEskdaleEsmeraldaEsperancitaEsperanzaEsperanzaEspiritu Santo

PERUUSCAMXCOMXCOMXCOCILECILEMXCOAUNTAUNTMXCOMXCOCILEMXCOCILEMXCOMXCOMXCOMXCOTRKYBULCUSCAUSCATRKYUSNYUSCAUSCAUSORUSMTUSCACNONUSCAUSMTURRSUSNVCNMNCNBCUSMEUSNVTRKYAUNSCNQUUSCAFIJIZIMBAUQLAUQLAUWACNBCAUWAUSCAUSNVZIMBCNBCTRKYCNONCZCLCILEAUQLUSCACUBACILEUSCABLVA

19a8a25h25c25h25i1725h38d38d25h18d1725h1725b25h18d25h27d178a8a8a27d36a8a8a39a8a29a8a39a18d18a28a14a28a26a27d38b28a36a22b7a15b15b36b21b39c36a27d6a22a8a28a15c1727d36a24c1727c27d

357

Page 371: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Essex and SteptoeEstacaoEstacion LlanosEster Dome SEEsterly ChromeEsther and PhyllisEstrella-SopresaEstyuninEuboeaEulaminnaEurekaEurekaEustisEva MayEvans Head-Wooli areaExmibalExoticaExperimentalF GroupF and L MineFL & DHFabianFairviewFairviewFalconbridgeFall CreekFalunFanroucheFarewell LakeFaroFaucogneyFeliciannaFenoarivoFenyotoFiddler's GreenFields and StokerFierroFierro-HannoverFifteen-mile BrookFifteen-mile StreamFifty-fiveFilon Sur-EsperanzaFinanFindikliFine GoldFinneyFish LakeFisher Maiden GroupFiskefjordFive PinesFjeldgruveFlaatFlambeauFlexarFlin FlonFlint-MartinFlorenceFlorida CanyonFond-du-LacFongo TongoFonnfjellFoots CreekForbestownFord

358

USNVCNONMXCOUSAKUSORUSCACUBAURRSGRECAUWAUSCOUSNVCNQUUSMTAUNSGUATCILEUSCACNONUSNVCNMNUSCAUSCAUSNVDMRPUSIDSWDNNCALCNMNCNYTFRNCUSCAMDGSHUNGUSCAUSCAUSNMUSNMCNNSCNNSUSCASPANUSCATRKYUSCAUSCACNBCCNBCNRWYUSCANRWYNRWYUSWICNSKCNMNCNBCUSAZUSNVCNONCMRNNRWYUSORUSCAUSCA

19b28a25g36a8a8a24c18d38a28a25b19a28a22c39c38a1736a28a27a28a24c8a25c38a39a18c8a28a31a24c36a38b38c8a8a18c18d36a36a36a28a8a8a36a36a20c22c34a,28b36a28a7a28a28a28a22c1726a38d38b28a39a36a36a

Forest CreekForest HillForest QueenFornasForrestania GroupFort ApacheFort GourandFort GreenFosterFoster MountainFour Hells MineFour PointFour-of-JulyFourth CrossingFourth of JulyFoxFrancis OrmandFranklinFraser IslandFraser'sFreddie WellsFrenchFrench GulchFrench GulchFrench HillFretaisFria-KimboFridayFrieda RiverFriedensvilleFrotet LakeFryer's CreekFujinokawaFukazawaFukeFuller-TisdaleFunter BayFuruhaugenFurutobe-AinaiFxGabrettaGabriels GullyGabrinusGachalaGag Is.GalaxyGalena Farm and vicinityGalice NorthGallagherGallinasGalore CreekGalvanGambeGambier IslandGamle FolldalGanntourGantGapGardner MineGaron LakeGarpenberg NorraGarpenberg OdalGas CanyonGaspe

USORCNNSUSCASPANAUWAUSAZMAURUSFLUSORUSCAUSCAUSORUSIDUSCAUSCACNMNAUVTUSCAAUQLAUWAAUNSUSCAUSCAUSCOUSCAPORTGNEAUSORPPNGUSPACNQUAUVTJAPNJAPNJAPNCNONUSAKNRWYJAPNCNBCUSCANZLDUSCACLBAINDSCNBCCNBCUSORUSORUSNMCNBCMXCOBRZLCNBCNEWYMRCOHUNGUSPAUSORCNQUSWDNSWDNUSCACNQU

39a36a8a24a6b34a,28b34a,28b34 d8a24c36a8a27d36a8a28a36a36a39c36b28a36a36a39a8a28a38b8a20c32a,32b28a36a27d28a25e36b7a28a28a31a36a36a36a31c38a1722¢36a8a18d20c25h38b21a28a34c38c7a8a28a18c18c8a21a

Page 372: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Gaspe (Needle Mountain)GaviaoGavilancillosGayna R.-Godlin L.GeachGeevorGeitaGelvenakkoGemGemGemGem OliveGem ParkGeneral GallieniGeol. Reser. No. 34George CopperGeorge LakeGeorge PrezelGeorgia bauxiteGerdagGerman BarGetchellGhost LakeGiant KingGiant MascotGibraltarGibralterGibsonvilleGiken-CharlottaGill (Gill Ranch)GillanGilliamGillis Prospect

J GilmontGiltedgeGimlet-SlipperyGingin ShorelineGiresunGirilamboneGjersvikGlacier GulchGlacier PeakGladstome-Sand QueenGladstoneGladstone MainlandGlass ButteGlencoe-WoodhouseGleneindale Dist.Glib en NamGlobe-RalstonGloria-Elvira-PolarisGlory HoGloryanaGloubokiaGocek KoyuGod's LakeGogebicGolalanGolconda FractionGold AcresGold BarGold BugGold Bug ClaimGold Chariot

Country Model No Name Country Model No

CNQUPORTMXCOCNNTUSCACRBRTNZNSWDNCNYTUSCACNBCUSCAUSCONCALCNMNCNBCCNSKUSIDUSCOTRKYUSCAUSNVCNMNUSCACNBCCNBCUSCAUSCANRWYUSCAUSCAAUQLUSCACNQUUSMTAUWAAUWATRKYAUNSNRWYCNBCUSWAAUWAUSCAAUQLUSORUSCAAUQLMRCOUSCACUBAUSORUSNMURRSTRKYCNMNUSMNTRKYUSCAUSNVUSNVUSCAUSCAUSCA

18a28a25h32a,32bBa15b36b28a18b36a21b36a108a6b28a30a39a8c8a36a26a28a36a7a21a36aBa28a8a8a14b8a8d26a36b39c18d28a28a21b1736b36a39c27a36a15b24c36a24c8a25g39b24c36b34a,28b8a8a26a26a36a8a36a

Gold CoastGold Eagle-McKenzieGold HawkGold HillGold HillGold MountainGold PointGold QuarryGold ReefGold RiverGold Run (Boulder Co.)Gold Run (Summit Co.)GoldbanksGolden AgeGolden EagleGolden GateGolden GroveGolden JubileeGolden RidgeGolden RuleGolden-El DoradoGoldenvilleGoldfieldGolesh Mt.GolosGoncoldaGongo SoccoGoodenoughGoodnews BayGora MagnitnayaGora VysokayaGoroGorumahisani and othersGorunurGoulaisGoveGovernorGovniikbelenGoynukGr2hGran PiedraGrand VictoryGrangesbergGranisleGranite HillGranite KingGrantGrantsGrass ValleyGray BoyGray Buck Gp.Gray EagleGray EagleGreat DykeGreat Eastern-Mt. JacksonGreen (Americus)Green AntimonyGreen CoastGreen Cove SpringsGreen ExcelsiorGreen MineGreen RidgeGreen RiverGreen's Capco Leases

PPNGCNONCNONCNONUSCOUSUTUSCAUSNVUSCAUSCAUSCOUSCOUSNVCNQUUSCAUSAZAUWAUSCAAUWAUSIDUSCACNNSUSNVYUGOYUGOUSORBRZLCNMNUSAKURRSURRSNCALINDATRKYCNONAUNTUSNVTRKYTRKYNCALCUBAUSCASWDNCNBCUSORUSCAUSAKUSNMUSCAUSORUSORUSCAUSMTZIMBUSCAUSCAUSNVCNONUSFLUSCAUSCAUSCAUSUTUSCA

18a36b36b36b22b25c36a26a36a36a39a39a27aBd36a19b28a36a36b39a36a36a25e38a38a8a36b28a39b18d18d38a34a,28bBa34a,28b38b27a8a27d8a24 c36a2511736a36a36a30c36a8a8a28a22c2a27c8a27d28a39c36a8a8a39a8a

359

Page 373: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

GreenbackGreens CreekGreenvaleGrenvilleGrey EagleGrey RiverGreystoneGribbleGriffin ChromiteGriffithGroote EylandtGroundhogGrumGruvbergetGuadalupeGuadalupe & CalvoGuadalupe & SolisGuanaba GroupGuanaceviGuanajuatoGuillerminaGujaratGullbridgeGunbasi (Akoakese)GundieGunlet-UckopurGunliik BasiGunn ClaimsGunturGurneyGurrandaGurrumba Dist.Guseva GoraGuttusJonGwai RiverGwynneHBHWHacanHagios IoannisHahotoeHaikouHale-MayaboHales SidingHalf ChromeHalf Mile Lake (SG)HalimbaHallHall CreekHalliwellHalmaheraHam & BirneyHamboneHamme DistrictHamptonHanaoka (Doy.-Tsut.)Hanaoka (Mats.-Sha.)Hanawa (Aket.-Osak.)Hand CampHanoverHanscumHanson LakeHappy Go LuckyHappy Return

360

USORUSAKAUQLGRBRUSORCNNFUSNYUSNVUSORUSNMAUNTUSNMCHYTSWDNMXCOMXCOMXCOCUBAMXCOMXCOCUBAINDACNNFTRKYAUNWTRKYTRKYUSCAINDACNMNAUNSAUQLUSSRSWDNZIMBUSCACNBCCNBCTRKYGRECTOGOCINAPLPNAUQLUSCACNMNHUNGUSNYCNBCCNQUINDSUSCACNMNUSNCAUQLJAPNJAPHJAPHCNNFUSNMUSORCNSKUSCAUSNV

36a28a38a15b27d15a31b27d8a25g34b18c31a25i25h25d25i24c25c25c8a34b28a24c15b8a8a8a34a,28b36b31b15b930a30b36a31a28a28a38a34o34c1715b8a28a38e21b36a28a38a36a6b15a38b28a28a28a24a18c8a28a8a27d

Hard LuckHard RookHard Rock-MeLeod-CoekshuttHarkoyHarp and Sons RanchHarrietHarrigan CoveHarrisonHasaga-HoweyHaskin MountainHathawayHatilloHattonHavelock MineHawks Rest ViewHayden HillHayden and HiltHaynsworthHazelHeath SteeleHeddlestonHedley CampHelemarHelenHelvetiaHendersonHendricks No. 2Hendricks-TwilightHenry FordHenry districtHerbertonHerculesHerculesHermadaHermanHerpit YaylaHerreriasHersJoHi-YuHierbanizHierro IndloHigashiyameHigh DomeHigh GradeHigh LakeHigh PlateauHighland-Trail RidgeHighmontHill-Top ChromeHillgroveHiltonHilton Head IslandHinobaanHirabayaHiraganeHirotaHir3t-ChichagofHitachiHituraHixbarHodge RanchHoffHoidalHokitika North

USNVUSFLCNONTRKYUSCACNBCCNNSUSCACNONCNBCUSCADMRPUSAZSWAZUSORUSCAUSCAUSFLUSCACNNBUSMTCNBCUSCAUSCAUSAZUSCOUSCAUSAZUSAKUSUTAUQLAUTNMXCOUSIDUSCATRKYSPANNRWYUSAKMICOAGTNJAPNUSCAUSCACNNTUSCAUSFLCNBCUSCAAUNSAUQLUSSCPLPNJAPNJAPNJAPNUSAXJAPNFNLDPLPNUSCAUSCANRWYNZLD

27d34d36b28a8a36a36a27c36b21b36a18d25g8d8a25d8a34d36a28a1736a8a27c17168a19b36a25f15b28a25i27d36a8a28a28a36a25h18d24b8a25d28a8a39c21aBa36a3ta39e20e24b18b24b36a24b6a28a8a8a28a39c

Page 374: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

fl

Name Country Model No Name Country Model No

Hokitika SouthHolbrook and McauireHollinger and othersHollywoodHolseman (and others)Holston (Vaughn)HomestakeHomestakeHomestake-McCartyHoneymoon WellHood RiverHopeHorne-QuemontHornitosHorse CanyonHorse PraireHorseshoeHorseshoeHorseshoe ChromeHorseshoe IHosangerHosokuraHostotipaquillaHouser & BurgesHowards PassHoytHsiangtanHuacravilcaHuai Rai Khao.HualpaiHuancabambaHubHubsugulHuckleberryHudson (Fuller Claims)HullHumbug CreekHundred Dollar GulchHunnanHunterHunter ValleyHunters RoadHuntingdonHuttiHyatt No. 1Hyers IslandI-WonderI.H.X.IchinokawaIconoclastIda H.IdahoIdaho AlmadenIdaho-Alamo GroupIdaho-Alamo-Silver BellIdaho phosphateIdfu-QenaIdikelIdkerbergetIideIkisulu-GercekIlaveIles de LosIllinois River

NZLDUSCACNONUSNVUSCAUSCACNBCUSSDUSAKAUWACNNTCNBCCNQUUSCAUSNVUSMTAUWAUSCAUSORUSCANRWYJAPNMXCOUSORCNYTUSNVCINAPERUTHLDCNBCPERUCZCLHNGLCNBCUSCACNQUUSORUSIDCINACNQUUSCAZIMBCNQUINDAPANACNMNUSCAUSNVJAPNUSCAAUWAUSIDUSIDCNBCCNBCUSIDEGPTMRCOSWDNJAPNTRKYCUBAGNEAUSOR

39c8a36b27dBa8a31a36b36a6b28a18b28a36a26a39a34b

Ba8a36a7a25b25c8a31a27d34b18d27d18d18d15c34o21aBa18d39a39a19a28a36a6a24a36b24c28aBa27d27d36a36b27d27a22c22o34c34 c24c25ilBb8a24o38bBa

Illinsky LogImade & OuchiImanceasaIminiImoriImotski-MostarIndependenceIndian ChiefIndian Path MineInfiernilloIngerbelleInguaranInnaiInoIno-CapayaInskip PointInspirationIntendencia de AraucaInvincible LodeIowa GulchIpanemeIrene ChromiteIrituiaIron DukeIron DykeIron HatIron HillIron KingIron KingIron MaskIron MikeIron Monarch-Iron KnobIron MountainIron MountainIron MountainIron MountainIron SpringsIrsahanIrvine BankIsaac's HarbourIsla de PinosIslahiyeIsland CopperIsland LakeIso-Magusi-New InscoIsrailIstrancaIsuaIszkaszentgyorgyItanhandu-ResendeIthaca PeakIvanhoe-CanadianIvov R.IwamiIwatoIyoIzok LakeIzushiJ.M. Meadows GroupJVB ClaimJabal GuyanJabal SayidJabilukaJack Forth

URRSJAPNPERUMRCOJAPNYUGOUSORCNBCCNNSCILECNBCMICOJAPNJAPNPLPNAUQLUSAZCLBANZLDUSCOBRZLUSORBRZLCNBCUSORUSCAUSCOUSAZUSORCNBCCNBCAUSAUSCAUSNMUSORUSNMUSUTTRKYAUQLCNNSCUBATRKYCNBCCNMNCNQUTRKYTRKYGRLDHUNGBRZLUSAZCNBCURRSJAPNJAPNJAPNCNNTJAPNUSAZUSNMSAARSAARAUNTUSCA

39b24 b18d34b24b38cBa18b36a25i20c1725d18d1739c21a38b36a39a38a8a38b18d28a18d1028a8a1718d34 a,28b28a14a8a18d18d28a15b36a15a38c1736b28a28a34b34a,28b38c38b1722c39b28a25e24b28a24b25g25g36a28a38dBa

361

Page 375: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Jack Sprat Gp.JacksonJacksonville AreaJacobinaJacupuengaJajceJakobsbakkenJamelandJames BayJamestownJamirapat-KhuriaJamnagar (Saurashtra)JarrahdaleJasonJay BirdJedwayJefferson CityJefferson LakeJeffrey LakeJembaicumbene CreekJerez de los CaballerosJeromeJeromeJerritt CanyonJersey EmeraldJerusalimsky-PriiskJibJicarillaJim BusJo7JoanneJoe WalkerJohnsJohnson-HeizerJoinvilleJolietJones CampJordan CreekJoseJosefinaJosephineJosephine No. 4JosselinJourawlik R.JoutelJubileeJubilee-New JubileeJudinsky-LojokJudy (Hicks)JulianJulian-BannerJuncosJuneJussaariJutinicuK.C.KacharKadzharanKagit OctuKahal de BrezinaKalaa KhasbaKalahandi-KoraputKalahariKalamaton

362

Country Model No Name Country Model No

USCAUSORUSFLBRZLBRZLYUGONRWYCNONCNONUSCAINDAINDAAUWACNONUSORCNBCUSTNUSCACNQUAUNSSPANCNONUSAZUSNVCNBCURRSCNBCUSNMUSORNCALCNMNUSCAUSORUSNYBRZLCNQUUSNMUSIDCUBAAGTNUSCAUSORCNQUURRSCNQUNZLDAUVTURRSUSCAUSCAUSCACNBCCNBCFNLDCUBAUSCAURRSURAMTRKYALGRTUNSINDASAFRPLPN

8aBa39c29a38a38c28a28a1036a38b38b38b36b27d18d32b8d8d39a18d36b28a26a,27d31a39b18d18d8a24c28a36a8a27d25i28a18d39a8a15a8a8a28a39b28a36a36a39b8aBa36a18d1734a,28b24c36a18d178a19b34c38b34b17

Kalamazoo-San ManuelKalengwaKaliapaniKalimantan NiKalkanKalkanliKalmakyrKalushi (Kalulushi)KalvbackenKam KotiaKamaishiKambaikhin centralKambaikhin eastKambaikhin northKambaldaKamegamoriKamenkaKamenka R.KamenskoeKamiKamitkita (Kominosawa)KamotoKansanshiKanayamaKandiraKangaroo Court MineKanjamalaiKankbergKanmantooKansaKanyeKaochiaoKapedhesKapinKapundaKara TauKaraculhaKaragebanKaramadaziKarameaKarangnunggalKaraniKaraninarKarasivriKaratasKaratas-KumocakKarenKartalkoyuKasugaKataKatherineKauaiKaunisvaara-MasugnsbynKavadarciKavakoaliKavakdereKaw MountainsKawasakiKazadere-KandilKedbeg CopperKedtraskKeewenawKefdag-EastKelapa Kampit

USAZZMBAINDAINDSTRKYTRKYURUZZMBASWDNCNONJAPNURRSURRSURRSAUWAJAPHURRSURRSURRSBLVAJAPNZIREZMBAJAPNTRKYUSCAINDASWDNAUSAINDABOTSCINACYPSTRKYAUSAURRSTRKYTRKYTRKYNZLDINDSTRKYTRKYTRKYTRKYTRKYCNBCTRKYJAPNPERUUSAZUSHISWDNYUGOTRKYTRKYFRCNJAPNTRKYURRSSWDNCNYTTRKYINDO

1730b38a38a18d28a1730b18c28a18b18d18d18d6a24b39b39b34b15a28a30b30b24b8a8a34a,28b28a30b38a18e34b24a8a30b34o8a8a18d39c25g8a8a8a25g8a21b8a25e25b25c38b18d38a8aBa38b25dBa18b28a18b8a15b

Page 376: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Kelly-DesmondKelseyKelsey NorthKemikli InbasiKemmangundi and othersKempfieldKemptvilleKenbridgeKennecottKennonKeno Hill-Galena HillKentucky-IllinoisKerikeriKerr AddisonKesikkopruKetstone-UnionKeweenawKey AnaconKey Lake (Deilmann, Gaertner)KeystoneKeystoneKhans CreekKheda (Kaira)KhnaiguiyahKhneifissKhushab (Sargohda)KhuzdarKiabakariKibiKidd CreekKieslagerKiirunavaaraKilembeKilic-Kafasi 1Kilic-Kafasi 2KillagKillifrethKillingdalKilo-MotoKimhedenKing FissureKing IslandKing SolomonKing-KingKingsfordKingsleyKingstonKinlockKinsleyKinsley NorthKipushiKiranocakKirwinKishuKisslaia-PeruonatchainikKitlim, Severniy R.KittelgruvanKizilkayaKleinsorge Gp.KliripanKnoxvilleKocaKodiak CubKoff Zone

CNQUUSCAUSCATRKYINDAAUNSCNNSCNONUSNMPLPNCNYTUSKNNZLDCNONTRKYUSCAUSMICNNBCNSKUSCAUSCAAUNSINDASAARSYRAPKTNPKTNTNZNGHNACNONASTRSWDNUGNDTRKYTRKYCNNSGRBRNRWYCNGOSWDNCNBCAUTSUSMTPLPNUSFLUSORUSNMSAFRUSCAUSCAZIRETRKYUSWYJAPNURRSURRSSWDNTRKYUSCAINDSUSCATRKYCNYTCNMN

28a36a36a8a34a,28b31b36a7a18c20c22c32a,32b38b36b18d28a2328a38d27c28a28a38b28a34c38b31b36b38b28a24b25i30b8a8a36a15b28a36b28a31a14a22c1734 dBa19b8d36a36a32c8a1720b39b39b28a28a8a25g27c8a18b28a

KokkinopezoulaKokkinoyiaKolaba-RatnagiriKolarKolhapurKolubara-AzbestKomekKomurluk KoyununKondonakasiKonkola (Bancroft)Koolpin CreekKoolyanobbingKoongarraKoprubasiKoro PlateauKorobowsky LojokKorucularKosaka (Motoyama)Kosaka (Uch.-Uwa.)Kossia R.Kossoi-LogKossorgskii LogKostereKotalahtiKotchkar MinesKotsuKounradKoyamaKoycegiz-CurukouKoycegiz-KurardiKoycegiz-OrtaKozyrevkaKrainKremmel and FroelichKristinebergKrivoi-RogKroumovoKruglogorskKrupkaKrutoi LogKucuk YeniceKudremukh and othersKudu Asbestos MineKuldodenKun MingKundikan-KeluskdereKundikan-KelusktepeKuneKung-changlingKunitomiKupfersehieferKure (Asikoy, Bakibaba)KurosawaKurudereKurzhunkulKusalpurKushikino-ArakawaKutchKutcho CreekKutlularKuvarshanKuyuluk IsletmesiKuzkavakKwanika

CYPSCYPSINDAINDAINDAYUGOTRKYTRKYANGLZMBAAUNTAUWAAUNTTRKYCHADURRSTRKYJAPNJAPNURRSURRSURRSTRKYFNLDUSSRJAPNURKZJAPHTRKYTRKYTRKYURRSCNBCUSCASWDNURRSURRSURRSCZCLURRSTRKYINDAZIMBTRKYCINATRKYTRKYJAPNCINAJAPNGRMYTRKYJAPNTRKYURRSINDAJAPNINDACNBCTRKYTRKYTRKYTRKYCNBC

24 a24 a38b36b38b8dBa24c34c30b38d34a,28b38d28a38b39b24c28a28a39b39b39b28a6a36a24b1725d8a8a8a18d178a28a34a,28b18d18d15b39b27d34a,28b8d8a34c8a8a24b34a,28b28a30b24a28a8a18d34a,28b25c38b28a28a28a8a8a17

363

Page 377: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

KylmakoskiKynousaLa AlumbreraLa BajadaLa CalanesaLa CaridadLa CaridadLa CarmenLa ChapeteadaLa ChilillaLa ChincheLa ChorreraLa Cinta CorridaLa CoconaLa ColocionLa CruzLa DesparramadaLa EncantadaLa EscondidaLa EsperanzaLa EstrellaLa FloridaLa GrullaLa GueraLa HormigaLa HuacalonaLa JoyaLa JoyaLa LagunaLa LeonaLa Leona (Sonora)La LibertadLa LibertadLa LiendreLa LobaLa MulaLa NoriaLa PalomaLa Perla-La NegraLa Piedra ImanLa Plata DistrictLa PolvosaLa PuntillaLa QuemadaLa ReformaLa TorreraLa TristeLa UnicaLa VenaditaLa VerdeLa ViboraLa VictoriaLa VictoriaLa VieJa-El AguaLa ZarzaLaceyLackner LakeLaddLady AnnieLady LorettaLafayetteLagnokahaLagonoyLaguerre

364

FNLDCYPSAGTNUSNMSPANMXCOCUBAMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOSPANUSCADMRPMXCOMCOMXCOUSCAMXCOMXCOMXCOMXCOMXCOMXCOMXCOUSCOMXCOMXCOMXCOMXCOSPANMXCOCUBAMXCOMXCOMXCOCUBAMXCOMXCOSPANUSCACNONUSCAAUQLAUQLCNQUUVOLPLPNCNON

7a24a20c25f24 c178a18d25h25h25h25h25h25h25h27d25h19a25h25h25h1725i25h25h25h28a27c18d25h25g25d27c25h25h25h25g18d25i18d22b25h25h25h19a28a25h24c25h1725h8a25h25h28a8a1024c34c31a8d24c8a36b

Laguna ColoradoLaguna del CuervoLagunazoLaguneyLahanosLainijaurLaisvallLajasLake AsbestosLake CatchaLake CityLake DufaultLake GeorgeLake JoaninaLake ValleyLakehurst (Glidden)LakeshoreLamb CreekLambertLammereckLampazosLamphearLancefieldLanchaLangSenLangbanLangdalLangley ChromeLangmuir 2Langmuir 1LangseleLapa CadillacLappuattnetLaramie RangeLarap-CalambayunganLargentiereLas AguilasLas AmarillasLas AmbollasLas Animas Cerro PrietoLas BrisasLas CabessesLas CalaverasLas FloresLas FundicionesLas MariasLas PegazonesLas PerlitasLas TablasLas TruchasLas Varas-La VacaLasailLasbelaLassie PeakLast BuckLast ChanceLast ChanceLatonLaukunkawgesLauriumLava BedLaverton-Mt. LuckyLawrencetownLe Kouif

AGTNMXCOSPANPLPNSPANSWDNSWDNMXCOCNQUCNNSUSCOCNQUCNNBGRECUSNMUSNJUSAZUSIDUSCAASTRMXCOUSCAAUWASPANVTNMSWDNSWDNUSORCNONCNONSWDNCNQUSWDNUSWrPLPNFRNCMXCOMXCOFRNCMXCOCLBAFRNCMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOMXCOOMANPKTNUSCAUSORUSNVUSORUSCAFNLDGRECUSCAAUWACNNSALGR

25?25f28a38a28a7a30a25g8d36a25b28a27d38a19b39c18a39a8a19b19a36a36b28a38c18c28a8a6a6a28a36b7a7b18d30a25h25h19b18d8d19b25h25h25h25h25h25h25h18d25g24 a24c8a8a27d8a8a7a19a18d24c36a34 c

Page 378: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

LeadsmithLebyazhkaLee CreekLegal TenderLeipsigateLeitch-Sand RiverLenaLenora-Twin JLeoncitosLepantoLettyLevantLeveaniemiLeviLeviathanLeviso R.LiaoningLiberty (Stanislaw Co.)Liberty (Siskyou Co.)Liberty (Calaveras Co.)Liberty Bond ClaimLights CreekLiliLily (Ikeno)Lily CreekLimasol ForestLimniLinda MarieLingmanLingwickLion DenLithiaLittle BayLittle BoyLittle Castle CreekLittle ChiefLittle HopeLittle Long LaoLittle NellLittle Rock MineLittle SiberiaLittle SquawLiverpoolLivitaca-VelilleLlallaguaLlano de OroLobwa R.LocarnoLoch FyneLoei-ChiengkarnLofthouseLogwinskaLohara and othersLojok No. 1&2 OmoutnaiaLojok at BisserskayaLokkenLolitaLoma de HierroLomero PoyatosLomonosovLone GravelLone MaryLone MountainLone Mountain

CNBCURRSUSNCUSMTCNNSCNONURRSCNBCMXCOPLPNUSCAGRBRSWDNSWDNAUVTCUBACINAUSCAUSCAUSCAUSCAUSCACNQUCNBCAUQLCYPSCYPSUSORCNONCNQUUSCAUSNVCNNFUSORUSCACNYTUSCACNONUSMTUSCAUSORUSAKUSMTPERUBLVAUSORURRSUSCAAUVTTHLDUSNVURRSINDAURRSURRSNRWYCUBAVNZLSPANURRSUSCAUSCAUSNMUSNV

22c18d34c22c36a36b30b28a25h22a8a15b25i28a36a38a19a24c36a8a8a178d18b34c8c24a8a36b28a27c27d24a8a8a18b8a36b22c8a8a36a22c18d20a39a39b36a36a18b27d39b34a,28b39b39b24a8a38a28a18dBa36a19b19a

LonesomeLong Ledge Gp.Long PointLong TunnelLord NelsonLoretoLornexLorraineLorraineLorraineLos AngelesLos ArrierosLos BorregosLos BroncesLos CaballosLos CampamentosLos CastillosLos CondoresLos CuatillosLos GarciaLos LobosLos MantialesLos PelambresLos PijiguaosLos PilaresLos PinacatesLos PuertosLos VasitosLos VolcanesLos VolcanesLost CreekLost LakeLost LeeLost RiverLottyLousalLouvemLovstrandLowe PlacerLower Beaver CreekLowland CreekLowryLubin (Legnica-Glogow)Lucia (Generosa)LuciferLucky BartLucky BoyLucky FourLucky FridayLucky GirlLucky HunchLucky KnockLucky L. & R.Lucky LassLucky MikeLucky Nine Gp.Lucky ShipLucky Shot-War BabyLucky StarLucky StrikeLucky StrikeLuesheLumbayLumwana

USFLUSCAPLPNAUVTAUVTMXCOCNBCCNBCCNQUPLPNMXCOMXCOMXCOCILEMXCOMXCOVNZLAGTNMXCOMXCOMXCOAGTNCILEVNZLMXCOMXCOMXCOMXCOMXCOMXCOUSMTCNMNUSORUSAKUSCAPORTCNQUSWDNUSCOUSCOUSMTUSNVPLNDCUBAMXCOUSORUSCACNBCUSORUSCAUSORUSWAUSORUSORCNBCUSORCNBCUSAKUSORUSCAUSORZIREPLPNZNBA

34d8a38a36a36a25h21a20c7a24a25h25h25g1725h25h34a,28b15a25h25h25h25b1738b1725h25f25i19b25g14a28a8a14b, 15c8a28a28a30a39a39a39a27d30b24c24c36a8a18bBa8a8a27d8a25f14a8a21b36aBa8a8a1020c30b

365

Page 379: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Luna-BashLuossauaaraLyell GoldfieldLyndhurstLynn LakeLynxLynx CreekLyonLyon LakeM and H GroupMaanshanMabelMacMacArthurMacBride LakeMacMillanMachimiMachkaticaMackayMackeyMactungMacusaniMadeiraMadeniMadenkoyMadhya PradeshMadridMadrigalMadsenMadziwaMagdalenaMagdalenaMaggieMaggie CreekMaggottyMagnet Cons.Magnet CoveMaikala RangeMain Valley of KisslaiaMainpatMaivaMajdanpekMajestic-SapphireMakhteshMakimine, HibiraMakolaMalaia Koswa R.Malaia ProstokischenkaMalaia SosnowkaMalaibaMalden NorthMalko TrnovaMalmbergetMalmbjergMalomalsky-PriiskMalot PokapMamieMammothMammoth (Kern Co.)Mammoth (Shasta Co.)Mammoth (Gunpowder)Mammoth-St. AnthonyMamuroMamut

366

Country Model No Name Country Model No

PLPNSWDNNZLDCNQUCNMNCNQUUSAZUSNVCNONUSNMHONGUSAKCNBCUSNVCNMNCNYTJAPNYUGOUSCAUSIDCNNTPERUUSCATRKYTRKYINDAUSCAPERUCNONZIMBCUBAUSNMCNBCUSNVJMCACNONUSARINDAURRSINDASWDNYUGOCNBCUSRLJAPNFNLDURERSURRSURRSPLPNAUVTBULGSWDNGRLDURRSURRSCNBCUSAZUSCAUSCAAUQLUSAZJAPNMDGS

1725i36a28a7a28a39a18a28a25g18d36a18d1728a31a24b21b8a18b14a25f8a27d28a34b8a25b36b7a24c19a1726a38c36b31b38b39b38b30a1722c34c24b7a39b39b39b28a36a18b25i1639b39b28a19b28a36a30b22c25d20c

Manacas GroupMananteninaManavalakurichiManchesterManchester (Asarco)Manchester Plat.MandyManga de LopezMangampetta N.Mangampetta S.Manganese ChiefManganese DevelopmentMangula (Miriam)MangumManhattanManibridgeManitou IslandMankayanMansfeldMantos BlancosManuelManuel KilligrewsManus IslandManzanillasMapulaMarais KikiMaralls Capro LeasesMaranboyMarangakaMarbellaMarble BarMarble BayMarbridgeMarchinbar IslandMarcopperMarcosMargaretMaria ChristinaMaria LuisaMarianMarianaMariettaMarinersMariposaMarks & TompsonMarlboroughMarmoratonMarquetteMartian B.Martin-BirdMartinovoMartison LakeMary JaneMary WalkerMarysvaleMarysville DistrictMascotMasinlocMaslovoMason Valley-MalachiteMasonicMatachewan Cons. & othersMatamorosMatchless

CUBAMDGSINDAUSCAUSNJJMCACNMNMXCOINDAINDAUSNMUSAZZIMBUSOKUSCACNMNCNONPLPNGRMYCILECUBACNNFPPNGMXCOPLPNNCALUSCAAUNTMDGSSPANAUWACNBCCNQUAUNTPLPNPLPNUSWACILEVNZLPLPNBRZLUSMTAUVTUSCAUSORAUQLCNONUSMNURRSCNONBULGCNONUSCAUSORUSUTUSMTUSTNPLPNURRSUSNVUSCACNONMXCONAMB

24c38b39cBa39c38e28a25h3lb31b25g25g30b30b27a6b1028a30b1724o34b38b25h20c8aBa15b38b18d36b18b6a38b20o28a1719a34a,28b20c38b22c36a36a8a38a18d34a,28b39b36b18d108a8a2sf22c32b38a18d18b25e36b2 5g30b

Page 380: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

Matchless WestMatese-CiociariaMathiati NorthMatiMatona-StairsMatt BerryMattabiMattagami LakeMaubachMaude & Yellow GirlMaurice BayMavrovouniMawohiMaxwellMayariMayflowerMaykhuraMazagaoMazamaMazapilMazidagiMbeyaMcAdamMcArthurMcCaleb's SourdoughMcCartyMcClean LakeMcConnellMcCormickMcDame BelleMcDermittMcFinleyMcGlaughlinMcGuffy Creek Gp.McMarmacMcMasterMcMurtyMcWattersMeWattersMdillaMeat CoveMechernichMeeker (Sonoma Chrome)Megara-EleusisMeggenMeggen BariteMel BariteMelnitschnaiaMemeMenomineeMenziesMercedesMercurMerrifieldMerrimacMesabiMeskalaMetal NegroMetallineMetcalfMetlaouiMetsamonttuMeululterMezeala

Country Model No Name Country Model No

NAMBITLYCYPSPLPNCNONCNYTCNONCNQUGRMYAUWTCNSKCYPSBRMAUSCACUBAUSCAURTDBRZLUSWAMXCOTRKYTNZNCNQUAUNTUSORUSCACNSKCNBCUSCACNBCUSNVCNONUSCAUSCACNONCNNBUSCACNONCNQUTUNSCNNSGRMYUSCAGRECGRMYGRMYCNYTURRSHATIUSMNAUWACUBAUSUTUSCAUSNVUSMNMRCOMXCOUSWAUSAZTUNSFNLDTRKYMXCO

30b34b24a18d36b31a28a28a30a36a38d24a15b8a38aBa14a38b1719a34c108d31aBa8a38d18bBa18c27a36b25a8a36b28a8a6a36b34c18c30a8a38c31a31b31b39b18b34a,28b36b19b26a8a27d34a,28b34c25h32a,32b1734c28a8a25g

Mic MacMichiquillayMidasMiddle ForkMiddle Ore BodyMidlothianMidwest LakeMighty JoeMikadoMilanMilford areaMillenbachMiller LakeMiltonMilton CanyonMimoso do SulMina DuraMina El SapoMina ViejaMina del AireMinaretsMinas GeraisMinawaMineral ButteMineral KingMineral ParkMineville-Port HenryMinim-MartapMinniehahaMintoMinto-TyraniteMirabelMirandag KoruMirandag MevkiMiriamMisima IslandMissouri CreekMistryMitateMitchell CreekMitchell PlateauMitchell RiverMiyawaMizobeMizpahMizpahMjodvattnetMlanje MountainMoa BayMoakMobrunMochaMochikoshiMockingbirdMocoaModarelliMoengoMoffett Creek Gp.MofjellMogi das CruzesMogollonMogpogMohaveMohawk Claim

CNQUPERUUSCAUSWAPLPNCNONCNSKUSORUSAKUSNHUSUTCNQUCNNSUSCAUSNVBRZLMXCOCLBACLBAMXCOUSCABRZLJAPNUSAZCNBCUSAZUSNYCMRNCNBCCNBCCNONUSCATRKYTRKYAUWAPPNGUSCOCNBCJAPNUSMTAUWAAUQLJAPNJAPNUSAKUSNVSWDNMLWICUBACNHNCNQUCILEJAPNUSORCLBAUSNVSBNMUSCANRWYBRZLUSNMPLWPNUSCAUSOR

28a1736a178a8d38dBa36a28a14a28a36a8a27d38b25h18b18b25h25i34a,28b24b1731a22c25i38b22c36a36b27c8a8a6a22c39a1719a39a38b27d24b25d36a27d7a38b38a6b28a1725c8a1725i38b8a28a38b25c18d25eBa

367

Page 381: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Mohawk-Dome ViewMoinaMoinhoMokamboMokanji HillsMokelumneMokoman LakeMoladezhnoyeMolangoMolegaMoleon LakeMolitchowkaMolly GibsonMonarch-Kicking HorseMonghyrMonitorMoniwaMonpasMons CupriMontanaMontaqueMontcalmMonte CarmeloMontenegro-AdrianaMontezumaMontezumaMontosaMontredonMoonlightMooreMoore's FlatMoorsomMoose MountainMoose RiverMooseheadMooselandMoramangaMordeyMorenciMoreton IslandMormon BarMorning StarMorocochaMorphine-LogMorrachiniMorris RavineMorris-KirklandMorrisonMorro VelhoMorro da MinaMorro de EngenhoMosMoscatelliMoscatelli No. 2MoskogaissaMoss ValeMother LodeMother Lode-SunsetMotoyasuMoularesMoulton HillMount BischoffMount BulgaMount Bullion

368

USAKAUTSPORTZMBASRLNUSCACNSKURRSMXCOCNNSCNQUURRSCNBCCNBCINDACNBCBRMACNQUAUWAUSMTCNNSCNONNCRGCUBACNBCUSNYMXCOFRNCUSNVUSCAUSCAPLPNCNONCNNSCNNSCNNSMDGSCNONUSAZAUQLUSCAAUVTPERUURRSNCALUSCACNONCNBCBRZLBRZLBRZLNRWYUSCAUSCANRWYAUNSUSCACNBCJAPNTUNSCNQUAUTSAUNSUSCA

36a14b28a30b38b36a28a8d34 b36a28a39b22c32a,32b38b22c1728a28a34c36a7a18d24c22c27d25g15a25r8a36a38a34a,28b36a36a36a38a28a21a39c36a36a1739b8a36a36b1736b34b38a28a8aBa28a38b36a,39a18b24b34c28a14c28a36a

Mount Burton (Rum Jungle)Mount CannindaMount ChalmersMount Ejuanema-NaisresoMount EmmonsMount Finch (Rum Jungle)Mount GainesMount GibsonMount GouldMount HaleMount HopeMount HundereMount IsaMount LyellMount MorganMount MulcahyMount Nolan Dist.Mount PaynterMount PhilipMount PleasantMount SaddlebackMount ShastaMount ThomlinsonMount TolmanMount UniackeMount VernonMount WellingtonMountain Chief and vicinityMountain ConMountain KingMountain MinesMountain PassMountain SpringsMountain ViewMountain View Cp.Mousoulos-KalavasosMowbray CreekMoxie PlutonMrataMrimaMrima HillMt. DiabloMt. EdwardsMt. GunsonMt. KeithMt. MagnetMt. MorgansMt. OxideMt. ShollMt. WindarraMuNalyMufulira

Mugi

Mulcahy ProspectMule CreekMum and Alice June ClaimMunbinea ShorelandMundaMunesadaMunmorahMunroMurguia

Murgul

Muriwai

AUNTAUQLAUQLAUNSUSCOAUNTUSCAAUWAAUWAAUWAUSNVCNYTAUQLAUTSAUQLAUWAAUQLAUNSAUQLUSCAAUWAUSCACNBCUSWACNNSUSCAGRBRCNBCCNBCUSCAPLPNUSCAUSNVUSCAUSCACYPSAUQLUSMATUNSKNYAKNYAUSCAAUWAAUSAAUWAAUWAAUWAAUQLAUWAAUWAUSCAZMBAJAPNUSCAUSCAUSCAAUWAAUWAJAPNAUNSCNONMXCOTRKYNZLD

38d1728a38b1638d36a34a,28b34a,28b34a,28b1618c31a28a28a28a15b15b34a,28b36a38b36a21b21b36a36a15b22c22o36a20c1031bBa8a24a15b7a34o24c1027c6a30b6b36b36b30b7a6a8a30b27d8a8a8a39c6a18d39c8d25g28a39c

Page 382: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Nam Country Model No Name Country Model No

MurphyMurray BrookMusa DanismanMusanMusonoiMusoshiMutumMuzaffarabadMuzoMuzzleloader (Stevens No. 1)MwaytungMyallaMyra Falls-LynxMystery LakeMzaitaN. Stradbroke IslandN.L. Industries (Aurora)NW GroupNabarlekNacimientoNacozariNagamatsuNagyegyhazaNahal-ZinNaicaNakatatsuNakayamaNakerivaaraNalden SouthNamosiNaniangoNanisivikNanogawaNarcisoNaruyasuNashvilleNaslidenNassau MountainsNatchez Trace StateNationalNationalNavanNawajiNaybobNeardieNeedle HillNeedle MountainNemogosNepeanNepisiguitNepouiNevada KingNevada Sulphur co.Nevada-MassachusettsNevada-ScheeliteNew AlmadenNew Bay PondNew BendigoNew CalumetNew CuyamaNew Era-RoweNew FrontierNew HopeNew Hope Claim

USCACNNBTRKYNKORZIREZIREBLVAPKTNCLBAUSCABRMAAUNTCNBCCNHALGRAUQLUSNCGUYNAUNTUSNMMXCOJAPNHUNGISRLHXCOJAPNJAPNSWDNAUVTFIJIWVOLCNNTJAPNCUBAJAPNUSCASWDNSRNMUSTNCNQUUSCAIRLDJAPNCNONAUQLHONGCNCQCNONAUWACNNBNCALUSNVUSNVUSNVUSNVUSCACNNFAUVTCNQUUSCAAUVTPLPNUSCAUSOR

Ba28aBa34a,28b30b30b34a,28b38c31c8a38a38b28a6b34c39c39c38b38d30b25g25d38c34c19a19a24b25i36a1734b32a,32b24b8a24b36a28a38b39c8d36a31a25c36b27d15a18a106a28a38a27d27a14a14a27c28a36a19a34c36a38a8a8a

New HoscoNewroundland ZincNewmanNewtonNhamundaNi Te OcutesNiasman R.Nichelini MineNickel MountainNickel MountainNickel RidgeNicolet AsbestosNievesNiggerheadNilNikolaevskoeNikolai-TschoudotworskyNikopolNiksicka ZupaNilgiri HillsNimiuktukNimpkishNimrodNine Mile BrookNiquelandiaNishinokawaNizne-UdinskajaNoamundi-Joda-Gua etc.Noble Electric Co.Nobles NobNogalNojiNonocNonowakiNoondayNorahNoralyn-PhosphoriaNorbergNorcrossNordre GjetryggenNoril'skNoritaNormandie/PenhaleNormetalNorseman-DundasNorth Arkansas-OzarkNorth BoundaryNorth Camden (Keer-McGee)North Carolina phospateNorth Cerbat (Golconda)North End, West End,SpottedNorth Florida phosphateNorth ForkNorth Fork ChromeNorth KeystoneNorth MocassinNorth MurphyNorth StarNorth StarNorth StarNorth Star (Red Mtn)North WeipaNorthairNortheast Florida

CNQUCNNFUSCAUSCABRZLCUBAURRSUSCAUSORUSORUSORCNQUMXCOUSNMJAPNURRSURRSURRSYUGOINDAUSAKCNBCAUVTCNNBBRZLJAPNURRSINDAUSCAAUWAUSNKMJAPNPLPNJAPNCNBCZIMBUSFLSWDNUSCANRWYUSSRCNQUCNQUCNQUAUWAUSARCNNEUSTNUSNCUSAZ

FawnUSFLUSWAUSCAUSCAUSMTUSCACNMNUSAKUSORUSCAAUQLCNBCUSFL

28a32a,32b8a28a38b8a39b8a38a8a8a8d27d25g24b34b39b34b38c38b31b18d36a28a38a24b34b34a,28b8a36b25b24b38a24b22c30b34d34a,28bBa28a5b28a8d28a36b32a,32b28a39c34d22cUSCABa34d17Ba28a22b36a28a36a8a8a38b28a34d

369

Page 383: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

r

Name

Northern AnomalyNorthern Bell-JacksonNorthern IrelandNorthumberlandNorthumberland bariteNorwayNount WellsNovazzaNovo MaslovoNovo PeschanskNovoi-LogNueva EsperanzaNugget Creek (South Fork)NuggettyNuqrahNuriaNy SulitjelmaNyinahinNyiradNymbool Dist.NyseterO'ConnorsOak Grove (Ethyl)Oak RidgeOakleigh CreekOamiteOatmanOberpfalzObiObiraObodranny-LojokOchanocagiOcna de FierOeOfeliaOffshoreOganeOhguchiOhitoOkOk TediOkaOkukiOld Dad MountainsOld DiggingsOld WaiteOldhamOlinghouseOlive B.OlsenOlympias ChalkidikiOlympic DamOmineOnion SpringsOpaliteOphirOphirOphirOphirOra BandaOrange HillOrange PointOrchanOre Drag

370

Country Model No Name Country Model No

IRANCNBCIRLDUSNVUSNVUSORAUNSITLYURRSURRSURRSCLBAUSIDAUVTSAARVNZLNRWYGHNAHUNGAUQLNRWYAWVTUSTNUSCAAUTSNAMBUSAZCBMYINDSJAPNUSSRTRKYRMNAJAPNCUBAUSGAJAPNJAPNJAPNCNBCPPNGCNQUJAPNUSCAUSCACNQUCNNSUSNVUSORUSCAGRECAUSAJAPNUSORUSORUSCAUSCOUSMTUSUTAUWAUSAKUSAKCNQUUSNV

25i22c38b26a31b8a15b25f18d18d39b27b39a36a28a38b24 a38b38c15b18c36a39c8a15a30b25c30a38a18b39bBa18d25b8a34d25b25c25c1720c1024 b18d36a28a36a25cBa8a19a29b24bBa27a36a25b39a19a38a1728a28a27d

OregonOregonOregon BellOregon ChromeOrendereOrientOrientialOrijarviOrissa (Chatrapur)Oro Denoro (Ema)Oro Grande-Buena VistaOrograndeOrontaOrpitOrskOrta EzanOsamu UtsumiOsbourne LakeOsenOsgood RangeOshioOsokino-AleksandrovskOstra HogkullaOtjosonduOtmanlar-HarpuzluOtmanlar-MesebukuOttery LodeOturehua FieldOulad-AbdounOuremOuseOvensOviachic 1&2OxecOxfordOyaP. B.P. U. P. (Zenith)Pa-pan-lingPabineau RiverPachuca-Real del MontePactolusPaddy's FlatPadurea CraiuluiPagePahangPainirovaPalettePalmer's FindPalni HillsPalo ColoradoPaloma-GwinPambuhan SurPampa NortePampachiriPanamana-AnPanasqueriaPanchilloPanguanaPangunaPanowkaPantherPaparoa RangeParacale

CNBCUSAZUSORUSORTRKYUSWAAUVTFNLDINDACNBCUSCAUSNMISRLCNONURRSTRKYBRZLCNMNNRWYUSNVJAPNURRSSWDNSAFRTRKYTRKYAUNSNZLDMRCOBRZLAUTSCNNSMXCOGUATUSCAJAPNNCALUSCACINACNNBMXCOUSCOAUWARMNAUSNVMLYSSWDNAUNTAUWAINDAMXCOUSCAPLPNCILEPERUPLPNPORTMXCOPPNGPPNGURRSUSNVNZLDPLPN

18b19b36a8a27d25c36a28a39c18b36a18d34c36b38a8a25f28a30a14a28a18d28a34 b8a8a15b36a34a38b38b36a25g24a8a36a8a8a34a,28b28a25b39a36b38c27d15b25i38d36b38b25h36a18d1718d8a15a25h20c1739b27d36a18d

Page 384: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

N

Name

ParadiseParagominasParamillosParanamParishParkPark CityPark's RanchParkerParkesonParksParnassus-HelikonParonenParroquio-MagistralParys MountainPashpapPassagemPasto BuenoPasuquinPatchekPaterPatos de MinasPatrickPatriquinPattersonPaulistaPayasPaymogoPayne GroupPea RidgePearsoll PeakPecosPeewanPeg Leg (Lambert)PelicanPen-chi-huPena ColoradaPennPennington ButtePennsylvaniaPenobscotPenrynPeravasaPerconi RanchPerda NieddaPerginiPerrunalPersbergPerseverancePeschanskPestchanka R.PetaquillaPetersen Mtn.Phedinan R.-TriokPhelps DodgePhilipsburgPhillips LeasePhoenixPhoenixPhoenixPiacoaPicachoPicilaPickle Crow

Country Model No Name Country Model No

USORBRZLAGTNSRNMAUNSUSTNUSUTUSCAUSCAUSCAAUNSGRECFNLDMXCOGRBRPERUBRZLPERUPLPNURRSCNONBRZLUSCAUSCAUSCABRZLTRKYSPANCNBCUSMOUSORUSNMUSCAUSCAUSWICINAMXCOUSCAUSORUSCOUSMEUSCACYPSUSCAITLYTRKYSPANSWDNZIMBURRSURRSPANAUSCAURRSCNQUUSMTUSNMBOTSCNBCUSCAVNZLUSCAMXCOCNON

8a38b1738b38b39c19a8a8aBa1738c28a18c28a1736b15a28a39b28a34c36a27c25c34 d38c28a22c25i8a28a8a8a28a34a,28b18d28aBa22c28a36a24a8a18d8a28a18d6a18d39b1725f39b28a19b25g7a18b36a34a,28b37b18d36b

PicurisPiddigPikwePilleys IslandPillikinPima-MissionPine BayPine CreekPine GrovePine Mountain ClaimPine NutPine PointPinesPinnaclesPinsonPintada-StauberPioneerPipePipestemPirayPirkiPiskalaPitman (JB)Pito RealPlacervillePlagiaPlan de TecolotesPlatiesPleasant No. 1 & 2Pleasant RiverPlomosasPluma HidalgoPlurhinalerPoco Tiempo QuartzPocos de CaldasPodbornaiaPodmoskowoi-LogPoerua RiverPoint LeamingtonPoirierPoison MountainPokrovskPolar StarPolaris-EclipsePoludnig-HermagorPomaleaPontbriandPonupoPonupo de ManacalPony ShoePoodle DogPopowsky-LojokPopretschne-LogPorkonenPoroPort Aux MoinesPorter PropertyPorto RicoPot LakePotosiPotosiPotosiPotrerillosPotrero del Molino

USNMPLPNBOTSCNNFUSCAUSAZCNMNUSCAUSUTUSCAUSNVCNNTUSORAUQLUSNVUSNMUSMTCNMNCNBCPLPNTRKYTRKYCNBCMXCOUSCAGRECMXCOCYPSUSORCNNSMXCOMXCOTHLDUSCABRZLURRSURRSNZLDCNNFCNQUCNBCURRSUSCACNNTASTRINDSCNQUCUBACUBAUSCAUSCAURRSURRSFNLDNCALFRCNUSCACNBCCNMN8LVABRZLCUBACILEMXCO

39a18d7a28a8a18a28a14a16Ba21b32a,32bBa14 b26a30b39a6b36a28a24c24c21b25g36a18d25h24a8a36a19a7b17Ba38b39b39b39o28a28a1718d27c32a, 32b19b38a8d24c24c8a8a39b39b34a,28b38a28aBa36a28a20b15c8a18a25h

371

Page 385: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

PoumPowersPozo PrietoPratapolisPraterPreblePrebuzPresque IslePricePrickly Pear CreekPrimerProgresoPronyPropretschnoiPruntyPuerto Rico bauxitePujada PenPulmoddaiPunchPyhasalmiPyramid (Mariposa Co.)Pyramid (Humboldt Co.)Qala-el-NahlQuartz HillQuarzazateQue RiverQuebrada BlancaQueen Bess and vicinityQueen HillQueen Victoria (Swift)Queen of MayQueenstonQuellevecoQuesta-Goat HillQuien-SabeQuiggQuilon (Chavara)QuintoQuixabaQusseirR.R. Flat SouthRabbit LakeRadiore ERail LakeRainRainbowRainbowRainbowRainy DayRajabasaRaJpura-DaibaRakkejaurRambler-CaribooRambler-MingRammelsbergRammelsberg BariteRamona-LomaRampura-AguchaRamseyRamunia-Telok RamuniaRanaRanchRancherieRanchi-Palamau

372

Country Model No Name Country Model No

NCALUSORCUBABRZLUSORUSNVCZCLUSMICNBCUSMTCNBCCUBANCALURRSUSNVPTRCPLPNSRILINDAFNLDUSCAUSCASUDNUSAKMRCOAUTSCILECNBCAUTSCNBCUSORCNONPERUUSNMUSCAUSCAINDACUBABRZLEGPTUSCACNSKCNQUCNMNUSNVUSCAUSORUSORUSORINDSINDASWDNCNBCCNNFCRMYGRMYCUBAINDACNSKMLYSNRWYUSCAUSORINDA

38a8a24c38a8a26a15c30b28a39a1724c38a39b27d38c38a39c38c28a36a8a8d21b24c28a1722c14c18b8a36b171627d8a39o24 c14a34c36a38d28a28a26a36a36aBa8a18c31a28a22c28a31a31b38a31a28a38b7a36a8a38b

RandallRangerRankinRankin InletRapososRattlesnake MountainRaulRavensthorpeRavenswoodRavlidenRavlidmyranRayRay (Tip Top)Ray GulchRay SpringRaymondRazorbackRecibimientoRecskRed BirdRed ChrisRed CrestRed DogRed ElephantRed Hill-Red Hill Ext.Red Lake Gold ShoreRed LedgeRed MountainRed MountainRed MountainRed MountainRed RickRed Slide Gp.Red WingRedeyefRedrossRedskinRedstoneRedwellReedReed LakeReefton GoldfieldReevesReeves MacDonaldReicher TrostRelief CanyonRendall-JacksonRenfrewRenison BellRenstromRenzyRepublicRexRexsparRhiwRichRich GulchRich Gulch (Virgilia)RichardsRichards BayRichey, U.S. & S.J.RiddleRieppeRim Rock and Homestake

USCAAUNTCNONCNNTBRZLUSCAPERUAUWANZLDSWDNSWDNUSAZUSORCHYTUSORNCALAUTSMXCOHUNGCNBCCNBCCHONUSAKUSCAUSNMCNONUSCAUSAZUSCOUSORCNYTUSCAUSCACNBCTUNSAUWAUSCACNNTUSCOUSCACNMNNZLDCNONCNBCPLNDUSNVCNNFCNNSAUTSSWDNCNQUUSWACNYTCNBCGRBRUSCAUSCAUSCAUSCASAFRUSCAUSORNRWYUSNY

8a38d18d6a36b8a24b34b36a28a28a21a8a14a

8a24c14c18d18a 22a21b20c36b31a27c25g36b8a1725b8a21b27c8a28a34c6a8a231627c28a36a8d31a36a26a24a36a14c

28a7a25c8d25f24c36a36a36a8a39c8a38a28a27a

Page 386: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Rindge No. 1RingwoodRioRio BlancoRio ChallanaRio ChimateRio PallangaRio TintoRio TubaRio Tuichi (upper reach)Rio ViviRio YolosanoRio YuyoRislidenRoan Antelope (Luanshya)Robb LakeRoberge LakeRobert ERobert EmmetRoberts Mtns. Dist.RobertsonRobt. S.Rochelois Plat.Rock CreekRock Wren MineRockhole-TeagesRocklandRocky TurnRodRodhammerenRodkleivRokana (Nkana)Romanera

J RomeritoRondoniRosarioRoseRose ClaimRose of DenmarkRosebery-ReadRoselandRosethistle & ShamrockRosh PinahRosie ClaimRositaRossRossRostvangenRoublewik R.Round BottomRound Mountain AuRound Mountain WRoupeRouyn MergerRowghatRoyal GeorgeRoyal Mountain KingRua CoveRuby CreekRudna GlavaRudtjebackenRuff Claim No. 32Rum Jungle Creek SouthRuseifa

USCAUSNJCNBCCILEBLVABLVAPERUSPANPLPNBLVAPTRCBLVABLVASWDNZMBACNBCCNQUUSORUSMTUSNVUSORUSORHATIUSORUSCAAUNTUSFLCNNBCNMNNRWYNRWYZMBASPANSPANPERUHNDRCNBCUSCAAUVTAUTSUSVAAUVTNAMBUSORNCRGCNONNZLDNRWYURRSUSCAUSNVUSNVUSCACNQUINDAAUTSUSCAUSAKUSAKYUGOSWDNPLPNAUNTJRDN

36a25i22c1739a39a25b28a38a39a20c39a39a7a30b32a,32b8d36a22c26a36aBa38c8a8a38d34d28a28a28a28a30b28a28a18d25c18d8a36a28a7b36a31a8a18b36b39c28a39b8a25a15aBa36b34a,28b15b36a24 a32c18d28a8a38d34c

Rush ValleyRuthRuttanRuwe (Mutoshi)RyanRyan GroupRyllshyttanRyuoSabana GrandeSabanillaSabetjokSablayonSacatonSad SackSaddle ChromeSadoSafagarSafford (KCC)SaghandSaglidenSagmoSaiSailor's GullySain BelSaindakSaindak SouthSaintSakaSalaSalem HillsSalignySaline-PulaskiSalitreSally AnnSally MalaySalmon RiverSalsigneSalt RockSalurSam GooslySamarSambalpurSambasSamliSan AntonioSan AntonioSan BernardoSan CarlosSan DomingosSan EmigdioSan FabianSan FranciscoSan FranciscoSan Giovanni RotondoSan Guillermo-SierraSan HumbertoSan JuanSan Juan de ChacnaSan Juan de la CostaSan JuaneraSan LeoneSan ManuelSan MartinSan Mateo

USUTUSNVCNMNZIREUSCAUSAKSWDNJAPNDMRPCUBANRWYPLPNUSAZUSORUSORJAPNEGPTUSAZIRANSWDNNRWYJAPNAUVTFRNCPKTNPKTNUSCATRKYSWDNUSORFRNCUSARBRZLUSORAUWACNNSFRNCUSORTRKYCNBCPLPNINDAAUVTTRKYPLPNSPANMXCOMXCOPORTUSCAPLPNMXCOUSUTITLYSPANMXCOUSAZPERUMXCOMXCOITLYUSAZAGTNPLPN

19a18a28a30b36a36a18c24b18d24c28a38a178a8a25d34c1725i30a28a25b36a28a1720c8aBa18c38b19b38b108a7a36a36a8aBa22a1738b36a18d20c28a25g18d28a27d20c25h19a38c28a25h1718d34c25h18d1715a28a

373

Page 387: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name

San Miguel El AltoSan PedroSan PedroSan PlatonSan RafaelSan RupertoSan TelmoSan XavierSanchezSand CreekSand SpringsSandfordSaneiSanford LakeSang DongSangalwaraSangarediSankyoSanshawSanta AnaSanta BarbaraSanta BarbaraSanta BarbaraSanta EfigeniaSanta EulaliaSanta FeSanta GertrudisSanta LeonorSanta LuciaSanta LuciaSanta RitaSanta RosaSanta RosaSantanderSantiago PapaloSantiago-Commonwealth-CentennialSanto NinoSanto TomasSanto TomasSao Domingos do CapimSao Joao do PiauiSao PauloSanta CruzSapalskoeSar CheshmehSarbaySardegnaSarialanSarikayaSaruabiSasagataniSasca MontanaSatevoSattelbergesSaturday AnneSaua-ToranicaSavage RiverSavannahSavannah RiverSaxbergetSaysinSazareSchaft Creek

374

Country Model No Name Country Model No

MXCOSPANUSNMSPANMXCOMXCOSPANUSAZUSAZSIDUSNVUSAKJAPNUSNYSKORINDAGNEAJAPNCNONMXCOBRZLVNZLPERUMXCOMXCOUSNVMXCOMXCOMXCOPERUUSNMCUBASPANPERUMXCO

USCOPLPNMXCOPLPNBRZLBRZLBRZLPLPNURRSIRANURRSITLYTRKYTRKYINDAJAPNRMNAMXCOASTRUSORYUGOAUTSUSGAUSGASWDNTRKYJAPNCNBC

25S28a18b28a25h25h28a171739a25c36a25d7b14a

34a,28b38b18d36b25g38b34a,28b27b25h19a26a25h25h25h18d18a24c28a19a8d

22c20c1720c38b38a38b38a24c1718d25g8a8a38a18b18b25g19b8a19a25i34d34d18c8a24b17

Schissler CreekSchist LakeSchmidScinto 5ScotiaScott BarScott RiverScraffordScraton-Pontiac-SunsetSe ChakhumSeal HarbourSearchlightSechuraSecond ReliefSehibSeiad Creek (Mt. View)SeibaSeikoshiSekiorenSelco-ScottSelebiSelimiyeSelkirkSelukweSenor de HuarquisaSeptember MornSerb CreekSerenoSerra NegraSerria do CarajasSesson MineSetting Net LakeSeven TroughSevernoeSexton MountainSeydisehrShaShackletonShade ChromiteShafer LeaseShag RockShagyrkulShahinShamrockShamva-Cymric Gp.ShanganiShasta KingShasta-CaliforniaShediyahSheep RanchSheep TankShellyShenandoah MineSheppard MineSherrin CreekShertingdalShevaroy HillsShihmienShiiba, TakaragiShimoga (Karnatoka)ShimokawaShimokawa (Kouchi)ShingaShinyama

USIDCNMNUSORAUNTAUWAUSCAAUWAUSAKCNBCIRANCNNSUSNVPERUCNBCTUNSUSCAURRSJAPNTRKYCNQUBOTSTRKYBOTSZIMBPERUUSCACNBCBRZLBRZLBRZLUSCACNONUSNYURRSUSORTRKYCYPSZIMBUSORUSCACNBCURRSIRANUSCAZIMBZIMBUSCAUSCAJRDNUSCAUSAZUSCAUSCAUSCAAUQLNRWYINDACINAJAPHINDAJAPNJAPNJAPNJAPN

39a28a8a38d6a36a39c27d22c25i36a25c34c36a34cBa34b25c8a28a7a25g7a6a18d8a21b24c1034a,28b36a21b25¢18dBa38c24a30b8a8a25g18d8a8a36b6a28a18d34c36a25c8a36a8a34c30a38b8d24b34b24b24b24b18d

Page 388: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

Ship IslandShiratakiShotgun CreekShuikoushanShunsbySicankaleSidamoSierra GordaSierra Los OrganosSierra de El AltoSierra de EnmedioSierrecillaSierrita-EsperanzaSiguaSiirt MadenkoySilica MineSilva-AysenSilver BellSilver CitySilver CloudSilver LakesSilver LeaseSilver QueenSilver ValleySilverminesSilversideSilversmith-Richmond-Ruth-HopeSimlipalSimmonsSimonSimsSipalaySiracSirigaoSirkov LogSix MileSix-MileSkaideSkorovassSkouriotissaSkullSkyline MineSleisbeckSligerSlocan-SovereignSmith GeitsfieldSmithfieldSnake MountainSnakehead (Jumbo)SneffelsSnowdriftSnowshoeSnowstormSnowstorm areaSnowy RidgeSnowy RidgeSnyderSdveSoabSocorro-GuadalupeSocratesSofuluSogham

USMSJAPHUSCACINACNONTRKYETHPCILEMXCOMXCOMXCOSPANUSAZCUBATRKYUSTNCILEUSAZUSNVUSNYUSCAUSORCNBCAUQLIRLDZIMB

CNBCINDAUSCAUSCAUSCAPLPNTRKYINDAURRSAUWAUSORNRWYNRWYCYPSAUNTUSCAAUNTUSCACNBCUSORCNNSUSNVUSCAUSCOUSNVUSNMUSMTUSCOUSCAUSORUSCANRWYCNMNMXCOUSCATRKYIRAN

39c24b8a18c28a8a38a1725g25g25g28a21a24c24a39c19a18a25c27a18dBa28a15b31a30b

22c38a8a8a8a178a34a,28b39b6b8a28a24a24a38dBa38d36a22cBa30a31b8a25b27d18b30b39a8a8a8a106b25h27c8a8a

SohoSohodol-CimpeniSolbecSoloviejoSolovyevskii LogSombrereteSombreretilloSon of GwaliaSooSoquemSorkaSoroakoSosnowkaSosvaSothman Twp.SotielSotoSoto (Chihuahua)Soukhoi LogSoulsbyvilleSour DoughSourdough BaySousa RanchSouth CroftySouth DufaultSouth Florida phosphateSouth Rusty HillSouth SarbaySouth ThomasSouth UniackeSouth WeipaSpar Lake (Troy)SpargovilleSpencevilleSpinazzolaSpotSpring GullySpring HillSpruce MountainSpruce PointSquirrel HillsSrednia-ProstokischenkaSsu-chia-yingSt. Adrien Mtn.St. Ann Plat.St. AnthonyCyrSt. DizierSt. GeorgeSt. HonoreSt. LeonardsSt. Patrick (Camp 8)St. PietroSta. CruzStadaconaStaffordStall LakeStandardStandard and vicinityStannary HillsStarStar Mt.-FubilanStar Mt.-FutikStar Mt.-Nong River

CNBCRMNACNQUSPANURRSMXCOMXCOAUWAUSAKCNQUURRSINDSURRSURRSCNONSPANMXCOMXCOURRSUSCAUSORCNMNUSCAGRBRCNQUUSFLCNQUURRSUSCACNNSAUQLUSMTAUWAUSCAITLYUSCAAUVTUSCAUSNVCNMNAUQLURRSCINACNQUJMCAUSAZCNQUAUTSAUQLCNQUAUTSUSCAITLYPLPNCNQUUSCACNMNUSNVCNBCAUQLUSUTPPNGPPNGPPNG

22c38c28a24c39b19a25h36b36a1018d38a39b18d6a28a25h25g39b36a8a28a8a15b28a34d28a18d24c36a38b30b6a28a38c8a36a8a19a28a31a39b34a,28b8d38c22cSt.8d14c

27d1038b8a25gBa36b8a28a26a22c15b19a20c20c17

375

a I

Page 389: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

--- -

Name

Star Mt.-OlgalStark BeeStarratt-OlsenState SchoolSteamboat SpringsStedmanSteele BrookStekenjokkStepanoff-LogStephaneSterling CreekSterling LakeStevens-MillerStewartStewart IslandStewart MayStibniteStillwaterStirlingStocktonStockton BightStollbergStone & HaskinsStonewallStore GulchStoreys CreekStorieStormy GroupStowellStra QuertaneStralakStrandzhaStratmatStrawberryStray DogStripa-StribergSturgeon LakeSuffieldSuftlii BorSugarloaf HillSukindaSukuluSulatSullivanSullivan and KahlSulphur BankSultanSuluSuluiyehSulukSumadisaSummitSummitvilleSumpter BarSunSunnyslopeSunriseSunsetSunshineSunshineSunshine CreekSunshine-CorinthSurf InletSurigao

376

Country Model No Name Country Model No

PPNGUSCACNONUSCAUSNVUSCACNQUSWDNURRSNCALUSORUSNYUSORUSCACNSKUSARUSAKUSMTCNNSUSAZAUNSSWDNUSORUSCAUSORAUTSCNBCCHYTUSCATUNSCNONBULGCNNBUSCAUSORSWDNCNONCNQUURRSCNBCINDAUGNDPLPNCNBCUSCAUSCAAUVTTRKYIRANTRKYYUGOUSAZUSCOUSORCNMNUSCAUSCAUSCACNBCUSCACNBCCNBCCNBCPLPN

178a36b8a27a25e8d28a39b8a39a25i8a8a38d27d27d1,2a,2b28a22c39c18c8a36a8a15a21b14a28a34c28a18b28a14a8a34a,28b28a28a39b1738a1028a31a8a27a36aBa8a8a19a19b25e39a28a8a8a8a28a8a21b22e36a38a

Surprise-Noble Five andvicinitySustutSusu LakeSutherlandSutpinarSutroSutro MineSutter CreekSuzanneSuzy Bell (Lucky Strike)SvanoSvardsioSwan RiverSwanseaSwayneSweetwaterSwim LakeSydvanangerSylvaniteSyssim R.Tache LakeTaco BayTagpuraTaibaTaioTaisho (Nishimata)TakahataTakanokuraTakatamaTakauraTakenoTakijug LakeTaknarTalamantesTallering PeakTalmora LonglacTamborine MountainTanamaTangierTangle Blue DivideTapairihuaTapiraTapleyTaratanaTaritipanTarkwaTasdibiTashiroTaslicaTasu-WesfrobTawi-TawiTaylorTayoltitaTaysanTeaTeahanTechaTecoloteTecolotesTecopaTediTekneliTekwane

CNBCCNBCCNNTUSNVTRKYUSCAUSCAUSCANCALUSCANRWYSWDNUSCOUSAZUSCAUSCACNYTNRWYUSORURRSCNQUCUBAPLPNSNGLJAPHJAPNJAPNJAPNJAPNJAPNJAPHCNNTIRANMXCOAUWACNONAUQLPTRCCNNSUSCAPERUBRZLUSMECUBAINDSGHNATRKYJAPNTRKYCNBCPLPNUSCAMXCOPLPNCNYTCNNBURRSUSNMMXCOUSCACNBCTRKYBOTS

22e2328a27d&a28a8a36a8a8a24a18c39a37b8a8a31a34a,28b36a39b28a38a1734o25c28a25d18d25d24b25d28a28a25g34a,28b36b38b20c36a8a18d1028a24c24c29a27d28a28a18b20c36a25c20c31b28a18d18d25h19a28a8a7a

Page 390: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

TellurideTem Piute districtTenke-FungurumeTennessee ChromeTennessee PassTepebasiTepusteteTeranoTerlikTerra NovaTerrenatesTetyukheTeutonic BoreTexadaTexasTextmontThabazimbiThamar-KotraThatcher CreekThetford GroupThierryThiesThioThird PortageThomasThompsonThompson BousquetThompson CreekThompson FallsThompson Gp.ThuburnicThurston & HardyTiebaghi Ni

) Tiebaghi CrTienpaoshanTiereTilai R.Tilkim-KaranlikTilt CoveTimnaTimoniTin Cup PeakTintayaTintieTiouineTipperary MineTjarrojakkaTjokkolaTogobomarToiToiyabeTokoroTolanoToledoTolmanTomTombstoneTomkinTomogonopsTonkin SpringsTonkollliTonopahToombouToparlar-Alacik

USCOUSNVZIREUSORUSORTRKYMXCOJAPNTRKYCNNFMXCOURRSAUWACNBCCNNBCNONSAFRINDAUSCACNQUCNONSNGLNCALCNNBUSCACNMNCNQUUSIDUSMTUSORTUNSUSAZNCALNCALCINAUVOLURRSTRKYCNNFISRLAUWAUSORPERUUSUTMRCONZLDSWDNSWDNPLPNJAPNUSNrJAPNMXCOPLPNUSIDCNYTUSAZUSCACNNBUSNVSRLNUSNVAUVTTRKY

25b14a30b8a8a8a18d24 b8a28a25g18c28a18d28a6a34a,28b34c24c8d7a34c38a28a24c6b36b21b27d8a19b25g38a8a18c24c39bBa24a34b36b1018b19a24c36a25i28aBa25c26a24c25h20c26a3,a19a8a28a26a34a,28b25c36a8a

TopkirozlarTopockToquepalaToscana (Cerchiara)TosinTougueToujours GaiToura R.TovarnicaToyohaTrail RidgeTraversellaTreadwell MinesTreasure HillTregiolvoTrepea-KopaonikTri StateTrinidadTrinintyTritonTrojanTrojanTrombetasTroulliTrout BayTrout LakeTrudny-LogTruscottTsaitsukouTsauch B.TschachewitaiaTschch R.TshinsendaTsuchihataTsumebTsumoTulameenTulk's PondTulsequahTuncaTuncurry-Tomago areaTurfullarTurner-AlbrightTurtle HeadTuscaroraTutunculerTuzlakayaTverrfjelletTwin ButtesTwin CedarsTwin PeaksTwin ValleyTynaghTyboTyrny-AuzTyroneU.S. GroupUV IndustriesUchiUchiUchucchacuaUckopruUddenUdokan

TRKYUSAZPERUITLYTRKYGNEAUSCAURRSYUGOJAPNUSFLITLYUSAKUSAZITLYYUGOUSMO-USOKUSCACNQUAUWACNBCZIMBBRZLCYPSCNONCNBCURRSUSCACINAURRSURRSURRSZIREJAPNNAMBJAPNCNBCCNNFCNBCTRKYAUNSTRKYUSORAUQLUSNVTRKYTRKYNRWYUSAZUSORUSCAUSORIRLDUSNVURRSUSNMUSAZUSNVCNONCNONPERUTRKYSWDNURRS

24c25g1724cBa38bBa39b18d25b39c18b36a22c30a19a32a,32b8a28a36b176a38b24a28a21b39b36a18d39b39b39b30b28a32c18b39b28a28a28a39c25g24a38b25c24cBa28a18a,21a8a27c8a31a22c14a21a25g21b28a36b18c8a28a30b

377

Page 391: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

/

Name Country Model No Name Country Model No

Uinta Mtns.UlchinUludagUlukoyUncle SamUncle SamUnduUnionUnterlaussaUpataUpper BeaverUpper BellingenUpper CanadaUpper Mississippi ValleyUpper Seal HarbourUpper SilesiaUracumUribeUrkutUruachicUsinskUticaVaddasVakkerlienVal Di PeioValen ProspectValentiValle de ManganesoValle del GeneralValley CopperValley ViewValuevVammalaVampVanandaVancouver GroupVangordaVarnaVassboVauzeVeitschVekolVelardepaVerkho-TourieVermilionVermilion RiverVermillionVernalVestpolltindVeta BlancaViburnumVictoriaVictoryVictory No. 3Vieille MontagneVigsnesVioletViscariaViterbo-RomaVlasenicaVogelgesangVogler's CoveVolcanic PeakVon Roi-Hewitt

378

USUTSKORTRKYTRKYUSCAUSORFIJIUSNVASTRVNZLCNONAUNSCNONUSWICNNSPLNDBRZLUSWAHUNGMXCOURRSCNBCNRWYNEWYITLYUSORUSCACUBACORICNBCUSCAURRSFNLDCNMNCNBCCNBCCNYTBULGSWDNCNQUASTRUSAZMXCOURRSUSMNUSMTCNONUSUTNRWYMXCOUSMOUSNVCNBCUSCANCALNRWYUSORSWDNITLYYUGOUSCACNNSUSNVCNBC

34c18c14a

19b36a8a28a22c38o38b36b27d36b32a,32b36a32a,32b34b31b34b25b34b22c28a7a18d8a8a24c38b21a36a18d7a28a18b22c31a34b30a28a19b1719a39b34a,28b39a28a34c34a,28b25h32a18b14a

8a8a28a8a28a25g38c8a36a27d22c

Vorderen StrubbergesVorontsovkaVubachikweVulcanVyhneW.P.Waden BayWafangtzuWagasenninWaiho RiverWait (Amador Co.)Waite (Nevada Co.)Waite EastWalibuWalkerWall CanyonWall StreetWallapai DistrictWallarooWannawayWar BondWar EagleWar Eagle-MillerWardWardWard and LyonsWarm Springs, North MocassinWarm SpringsWaroona ShorelineWarringtonWasa LakeWashingtonWashingtonWashington CampWashoutWaterlooWatsonvilleWattle GullyWaverleyWaysideWeaverWedgeWeebo BoreWeedarooWeedonWeipa-Andoom-Pera HeadWeissWelchWelch ProspectWeld Range-Wilgie MiaWellingtonWellingtonWenlock RiverWest BearWest ChromeWest GoreWest JacksonvilleWest MauiWest NiggerheadWest Ore BodyWestarmWestern MagnesiteWestern NevadaWestland

ASTRURRSZIMBUSCACZCLUSNVCNSKCINAJAPNNZLDUSCAUSCACNQUUSCAUSCAUSNVUSCAUSAZAUWAAUWAUSCACNYTUSCACNBCUSORUSCAUSMTUSMTAUWAUSCACNQUMXCOUSCAUSAZUSCAUSAZAUQLAUVTCNNSCNBCUSAZCNNBAUWAAUSACNQUAUQLTRKYUSCAUSCAAUWAAUNSCNBCAUQLCNSKUSCACNNSUSCAUSHIUSNMPLPNCNMNUSCAUSNVNZLD

19b18d36b18d18d27d28a34b18d39c8a8a28a27a8a27d27c22c28a6a8a18bBa36a8a8a22b34c39o36a36b1736a18c8a19b15b36a36a36a25c28a6b31b28a38b28a24cBa34a,28b39a22c38b38d8a27d36a38b25g8a28a8a18b36a

Page 392: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

Name Country Model No Name Country Model No

WestportWexfordWezaWhalesback-Little DeerWheal JaneWheal Kitty-PenhallsWhim CreekWhite BearWhite CedarWhite FeatherWhite FeatherWhite KingWhite LakeWhite PineWhite PineWhite Pine MineWhite's (Rum Jungle)WhiteburnWhitlockWhundoWigie 3WigwamWild Cat ClaimWildcatWilder (Fish Creek)Wildrose CanyonWillechoWilmar and othersWilshire-BishopWiluna-MoonlightWimWindarraWindfallWindsorWindyWindy PointWine HarbourWingelinna-DaisyWintersWintropWitswatersrandWolf CreekWolf Creek areaWombat CreekWonderWonder Op.Wonderful-ElkhornWoodcuttersWoodlawnWoodsreef MineWoody WoodyWyomingWyssim R.XihuashanYahualicaYakobi IslandYanaharaYanchiachangtzeYanderaYanikaraYankee HillYaprakliYataniYava

NZLDCNBCSAFRCNNFGRBRGRCBAUWAUSCAUSCAAUWAUSCAUSORCNMNUSMIUSNVUSCAAUNTCNNSUSCAAUWAAUWACNBCUSORPLPNUSCAUSCACNONCNONUSCAAUWACNMAUWAUSNYCNQUCNBCUSORCNNSAUWAUSCACNBCSAFRUSCAUSCAAUNSUSORUSORCNBCAUNTAUQLAUNSAUWAUSWYURRSCINAMXCOUSAKJAPNCINAPPNGTRKYUSCATRKYJAPNCNNT

39c18b38b24a15b15b28a8a8a36b8a25f28a30b19a8a38d36a34 d28a6a31a8a28aBa27d28a36b36a36b28a6a26a8d28a8a36a38a25d22c29a8aBa39aBa8a22c31a28a8d24c34c39b15a25g7a24b18c178a36a8a25b28a

Yava (Silvermine)Yayca BoynaYellow JacketYellow PineYellow PineYellow Pine districtYeonhwaYeovalYeringtonYermakof-LogYeyaYilmaz OcagiYoganup ShorelineYoichiYokota (Motoyama-Hama.)York HarbourYoshimotoYoshino (Hisaka)Yoshino (Main)YouanmiYoungYoung's MineYrekaYsxjobergYugashimaYukari ZorkumYuleeYunus YaylaYurtlakYuryoZZacate-Cerro ChinoZaetzeff, B.Zambales ChZanitzaZarikanZawarZawarmalaZeballosZeidaZeilaZemlianoi-Mostik LogZerfirg RanchZimapanZimparalikZindaniZipZonguldakZortman Landusky

CNNSTRKYUSNMUSCAUSNVUSIDSKORAUNSUSNVURRSCUBATRKYAUWAJAPNJAPNCNNFJAPNJAPNJAPNAUWAUSORUSORCNBCSWDNJAPNTRKYUSFLTRKYTRKYJAPNCNMNMXCOURRSPLPNMXCOIRANINDAINDACNBCMRCOUSCAURRSUSCAMXCOTRKYGRECCNBCTRKYUSMT

30a8a18d8a19a14a18c171739b -24c8a39c28a28a24a24b28a28a36b8a8a18b14a25cBa39c8a8a24 b28a25g39b8a18d18d31a31a18d30a36a39b8a19a8a8d18b, 1838c22b

379

Page 393: USGS - Mineral Deposit Models (1986 - Singer and Donald)(ML033560398)

GPO 785-048/48045