using field campaigns results to reduce uncertainties in inventories wenche aas, knut breivik and...

20
Using field campaigns results to reduce uncertainties in inventories Wenche Aas, Knut Breivik and Karl Espen Yttri And material from: Eiko Nemitz (CEH, UK) Svetlana Tsyro and David Simpson (EMEP MSC-W)

Upload: laureen-lucy-matthews

Post on 18-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Using field campaigns results to reduce uncertainties in inventories

Wenche Aas, Knut Breivik and Karl Espen Yttri

And material from:Eiko Nemitz (CEH, UK)Svetlana Tsyro and David Simpson (EMEP MSC-W)

Use ambient air measurements to improve emission inventories ?

• Carbonaceous mattero Very uncertain emissions from wood combustion and

biomass burningo Regular EC/OC measurements don’t distinguish between

natural / anthropogenic and primary /secondary

• Heavymetalso Emissions too low to give model results comparable to

measurementsCase study (to be discussed by MSC-E)

• POPso Measurements not always available in time and space to

directly assess present emissions. I.e. on historical emissions and sea /water exchange (diffusion processes)

OCbsoa OC from biogenic sec. org. aerosolsOCasoa OC from anthropogenic sec. org. aerosols

OCbb OC from residential wood burningECbb EC from residential wood burning

OCff OC from combustion of fossil fuelECff EC from combustion of fossil fuel

OCpbs OC from fungal sporesOCpbc OC from plant debris

Sources of carbonaceous matter

9 participating sites, situated in C, E, S, NW Europe.

EMEP intensives 2008/2009 Carbonaceous matter

•14C–analysis delayed, ready in a month or so

• EC/OC and levoglucosan analysis are ready

• To be published in ACP Special issue in a few months

Site

Thermal-optical analysis

Levoglucosan analysis

14C-analysis

S. 08 F. 09 S. 08 F. 09 S. 08 F. 09 Birkenes (NO) X X X X X Ispra (IT) X X X X X Kocetice (CZ) X X X X X X K-puszta (HU) X X X X Lille Valby (DK) X X X X X X Melpitz (DE) X X X X X X Montelibretti (IT) X X X X Mace Head (IE) X X X X X Payerne (CH) X X X X X X

•17 Sep – 16 Oct 2008• 25 Feb – 26 Mar 2009

Results OCp and Levoglucosan

•OCp = particulate OC. Front – backup filter, conservative OC estimate

•OC wood from levoglucosan analysis

•increasing concentrations along a Southern and Eastern transect.

4 sites in Northern Europe subject to extended sampling and chemical analysis the summer 2009 (SONORA project)

EMEP Intensives – cont.

Analyis of following tracers:•Levoglucosan: wood burning•Sugars/ sugar alcohol: fungal spores (PBAP)•Cellulose: Plant debris (PBAP)•14C analysis: modern and fossil carbon

+•Pinic acid: Biogenic VOC•Organosulphates/nitrates: Biogenic VOC(these are not used quantitatively but foridentification of sources

Results to be presented in ACP special issue in a few months

SORGA- Measurements sites

Oslo (Urban background) Hurdal (Rural Background)

Oslo

Hurdal

Measurement campaignsSummer period: 19 June - 5 July 2006Winter period: 1 - 8 Mars 2007

Results from SORGA project (2006 and2007) Source apportionment of TCp in PM10 in Hurdal (NO)

TCp = 2.9 ± 1.2 µg C m-3 Natural: 72% Anthropogenic: 28%

TCp = 1.2 ± 0.5 µg C m-3

summer

Natural: 8% Anthropogenic: 92%

winter

Improvements in modelling of SOA• VBS (volatility basis set) approach used for the first time

Ref:David Simpson, MSC-W

Improved modeling may give better emissioninventories

From EC/OC campaign 2002-2003

From S. Tsyro, Dublin TFMM/TFEIP 2007

In winter, indication of overestimation of wood burning in N. Europe and underestimation in C/S Europe

Uncertainties in OC measurements: Estimates of the positive artefact of OC in PM10 and PM2.5/PM1 -June 2006 (OBQ approach)

0

10

20

30

40

50

60

70

NO56 IT01 NO01

Po

siti

ve a

rtef

act

OC

p/O

C (

%)

PM10

PM2.5 or PM1

Difficult to use OC data without assessing the artefacts (i.e OC vs OC particulate)

65

60

55

50

45

40

35

3020100-10

May 2008 Sep/Oct 2008 Feb/Mar 2009

High resolution measurements from EUCAARI (EU FP 7 project)

•Hourly data using AMS instrument

•Part of EMEP intensive 2008/2009

From E. Nemitz, Paris, TFMM, 2009

40

20

0

21/09/2008 26/09/2008 01/10/2008 06/10/2008 11/10/2008 16/10/2008

20

0

4020

0

6420

40

20

0

Aer

osol

Con

cent

ratio

n [

g m

-3]

10

5

0

40

20

0

10

5

0

5

0

10

5

0

Vavihill (Sweden)

Bush (Scotland)

Harwell (England)

Hyytiala (Finland)

Puijo (Finland)

Melpitz (Germany)

Mace Head (Ireland)

K-Puszta (Hungary)

Puy de Dome (France)

Payerne (Switzerland)

Org

SO42-

NH4+

NO3-

Cl-

Concentrations Sep/Oct 2008

From E. Nemitz, Paris, TFMM, 2009

Identification of Organic Aerosol Classes by Positive Matrix Factorisation (PMF)

0.20

0.15

0.10

0.05

0.00

Nitr

ate

Equ

ival

ent M

ass

Con

cent

ratio

n (µ

g m

-3)

140120100806040

12

10

8

6

4

2

0Ma

ss C

on

cen

tra

tion

g m

-3)

09/06/2003 11/06/2003 13/06/2003 15/06/2003 17/06/2003 19/06/2003

Total Organics HOA OOA I OOA II

10

8

6

4

2

0

16012080400m/z

16

12

8

4

0% o

f Tot

al S

igna

l

40

30

20

10

0

Diesel aerosol

Remote oxidised aerosol

B. SOA from -humulene

10

8

6

4

2

0

16012080400m/z

16

12

8

4

0% o

f Tot

al S

igna

l

12

10

8

6

4

2

0

Hydrocarbon-like organic aerosol: HOA

Highly oxidised aerosol: OOA I

Less oxidised organic aerosol: OOA IIA.

From E. Nemitz, Paris, TFMM, 2009

POP measurements to use for emission inventories• Difficult to use measurement data alone to

assess quality of emission• Limited number of measurements, both spatially

and temporally• Large uncertainty in the measurements• Difficult to seperate primary from secondary

emissions

Necessary to use a model/measurement combination

EMEP POP passive campaign (2006)

S7PCBs (pg/m3) S3HCHs (pg/m3)

S4DDTs(pg/m3)

S4chlordanes (pg/m3)

S8PAHs (ng/m3)

HCB (pg/m3)

Figure 3c) Figure 3d)

Figure 3e) Figure 3f)

Figure 3a) Figure 3b)

Ref: Halse AK, Schlabach M, Eckhardt S, Sweetman A, Jones KC, Breivik K. (2010). Spatial variability of POPs at European background

air monitoring sites. In prep. for ACP EMEP Special issue:

Comparability between passive and high volume measurements

a)

0

10

20

30

40

50

60

Košetice (CZ)

Råø (S) Birkenes (N)

Aspvreten (S)

Stòrhöfdi (IS)

Pallas (SF) Spitsbergen (N)

pg/m

3

-HCH

PAS

AAS

b)

c) d)

e)

0

20

40

60

80

100

120

Košetice (CZ) Birkenes (N) Stòrhöfdi (IS) Spitsbergen (N)

pg/m

3

HCB

PAS

Hivol

f)

1

10

100

Košetice (CZ)

Råø (S) Birkenes (N)

Aspvreten (S)

Stòrhöfdi (IS)

Pallas (SF) Spitsbergen (N)

pg/m

3

g-HCH

PAS

AAS

05

1015202530354045

Košetice (CZ) (n=7)

Råø (S) (n=7)

Birkenes (N) (n=7)

Aspvreten (S) n(=7)

Stòrhöfdi (IS) (n=7)

Pallas (SF) (n=6)

Spitsbergen (N) (n=3)

pg/m

3

SnPCBsPAS

AAS

1

10

100

1000

Košetice (CZ) (n=3)

Råø (S) (n=3) Aspvreten (S) (n=1)

pg/m

3

SnDDTs

PAS

AAS

Bias depends on :• Component (particulate or gaseous)• Site (meteorological difference) • Laboratory performance (NILU (campaign) vs national

Ref: Halse AK, Schlabach M, Eckhardt S, Sweetman A, Jones KC, Breivik K. (2010). Spatial variability of POPs at European background

air monitoring sites. In prep. for ACP EMEP Special issue:

Predicted (Flexpart model)versus observed (PAS) air concentrations for PCB-28

Birkenes

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Mod

el

Measured (PAS)

Košetice

Longobucco

Spitsbergen

Borovye

Els TormsViznar

Birkenes

Figure 4

Measured (PAS)

Mod

el

Systematic bias may indicate that emission data are too high for PCB-28

Ref: Halse AK, Schlabach M, Eckhardt S, Sweetman A, Jones KC, Breivik K. (2010). Spatial variability of POPs at European background

air monitoring sites. In prep. for ACP EMEP Special issue:

The power of high resolution data to assess emission sources

Ref: Eckhardt et al. (2007)PCB peaks in the Arctic, Atmos. Chem. Phys., 7, 4527-4536.

PCB episodes at Zeppelin Svalbard:Agricultural waste burning in Eastern Europe in spring 2006 Forest fire in North America in July 2004Used for calculating emission factors for the most important PCB congeners

EMEP (intensive) data can be used for identification and quantification of sources, to some extent

A necessity and much more powerful if model and measurements are used in combination to evaluate emission estimates

The combined effort of 14C, TOA, and organic tracer analysis is a powerful tool to explore various sources of carbonaceous matter

Uncertainty in measurements methods etc may hamper the comparability of results

o Need for reference methods and/or centralized laboratories for advanced measurements

Summary