using quasar physics to improve the vlbi reference frame · −300 −200 −100 0 100 200 300...

67
Using quasar physics to improve the VLBI reference frame with: Lucia Plank, Jamie McCallum, Rob Schaap (UTAS) Johannes Böhm, Hana Krásná (TU Wien) Jing Sun (Shanghai Astronomical Observatory) Stas Shabala University of Tasmania

Upload: others

Post on 06-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Using quasar physics to

improve the VLBI reference frame

with:    Lucia  Plank,  Jamie  McCallum,  Rob  Schaap  (UTAS)      Johannes  Böhm,  Hana  Krásná  (TU  Wien)      Jing  Sun  (Shanghai  Astronomical  Observatory)  

Stas Shabala University of Tasmania

Page 2: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Outline

①  What are these radio sources we look at ?

②  Quantifying the effects of quasar structure

③  VieVS structure simulator §  Simulation strategy §  Effect on the reference frame (Station positions : mm level)

④  Mitigation strategies Stas  Shabala  -­‐  REFAG14  

Page 3: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Uncooperative quasars What  you  want  them  to  be  ² Bright  point  sources  ² Fixed  in  space  and  Sme  

Image:  N.  Reid  

What  they  are  ² Supermassive  black  holes  ² Jets  è  structure  ² Evolve  on  human  Smescales  

Image:  NASA  

Image:  C.  Mueller  

Lister  et  al.  (2009)  Stas  Shabala  -­‐  REFAG14  

Page 4: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Inner regions of an Active Galactic Nucleus

Stas  Shabala  -­‐  REFAG14  

Image:  BU  /  A.  Marscher  

core   jet  jet  origin  

One  jet  towards  us  (Doppler  boosted)  -­‐>  seen  One  jet  away  from  us  (D.  deboosted)  -­‐>  unseen  

1  mas  @  z=1  

Page 5: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

uv plane  

separation

²  interferometers measure correlated amplitude and phase

u (Mh)v

(Mh)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10

distances measured in units of wavelength λ=c/ν

N-E plane projected in source direction

Visibility  phase  

Page 6: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

uv plane  

separation

²  interferometers measure correlated amplitude and phase ²  image çFourierTransformè

amplitudes/phases in uv plane

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10

N-E plane projected in source direction

Lister  et  al.  (2009)  

Page 7: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Simulated source  

Right Ascension (mas)

Dec

linat

ion

(mas

)

−2 −1 0 1 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stas  Shabala  -­‐  REFAG14  

Page 8: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency and baseline  

Page 9: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure in geodetic VLBI  ² Group delay = (1 / 2π) (Δ phase / Δ frequency)

ª  phase depends on projected structure as seen by a given baseline

ª  function of: •  baseline •  observing time •  amount and direction of structure

ª effect is different at each of 8 sub-bands at X-band (because frequencies are slightly different)

² Hence group delay (= slope across band) changes

 Stas  Shabala  -­‐  REFAG14  

Page 10: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency and baseline  

Page 11: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Structure phase on 9000 km baseline  

8200 8300 8400 8500 8600 8700 8800 8900 9000−8

−7

−6

−5

−4

−3

−2

Frequency (MHz)

Phas

e (d

egre

es)

slope = structure delay

Stas  Shabala  -­‐  REFAG14  

Page 12: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency, baseline and time  

Page 13: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.04

-0.02

0

0.02

0.04

8.2 8.4 8.6 8.8

phas

e / r

adia

ns

frequency / GHz

structure delay = 11 ps(3.3 mm light travel time)

structure delay = 6.9 ps(2.1 mm light travel time)

jet orthogonal to baseline

Hobart - HartRAOHobart - Katherine

Jet – baseline orientation  

How a source is observed is important

slope = extra (structure) delay

Stas  Shabala  -­‐  REFAG14  

Page 14: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

1.  Measure  incorrect  posiSon  •  PosiSon  offset  (X,  Y,  Z)  from  “correct”  value  

2.  Measure  different  posiSons  for  different  schedules  

•  Scaier  in  staSon  posiSons  for  different  baseline/schedule  combinaSons  (even  with  same  quasars)  

   è    increased  rms  for  posiSons  derived  from        different  schedules  

3.  MulSple  observaSons  inconsistent  with  each  other  

•  Larger  formal  uncertainSes,  within  a  single  session  

3 effects of quasar structure  

slope changes with projected structure

slope ≠ 0

Stas  Shabala  -­‐  REFAG14  

Page 15: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Vienna  VLBI  Solware  (VieVS)  •  Simulate  geodeSc  observaSons  •  Process  simulated  observaSons   è  staSon  /  source  posiSons,  EOPs  

Quasar  structure  simulaSons  •  Quasars  ≠  point-­‐like  •  Extra  structure  delay  per  observaSon  •  (mostly)  Mock  source  catalogues  

VieVS source structure simulator  

VIEVS

Stas  Shabala  -­‐  REFAG14  

Page 16: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Simulated catalogues  

² Structure indices è mock quasar images SI = 1 + 2 log (τ / ps) u  Choose SI (none, 1, 2, 3, 4, ICRF2 distribution) u  2-component sources u  Also one “real” CONT11 catalogue

² Simulate realistic schedules with VieVS u  CONT11

o  15 – 29 September 2011 o  13 stations o  30 realizations of each day

u  Additional delay term due to source structure

Stas  Shabala  -­‐  REFAG14  

SI 3 = 10 ps

Page 17: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

CONT11  

Stas  Shabala  -­‐  REFAG14  

Page 18: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

X po

sitio

n of

fset

/ cm

real structureno structure

Real sources – X coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 19: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

Y po

sitio

n of

fset

/ cm

real structureno structure

Real sources – Y coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 20: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

Z po

sitio

n of

fset

/ cm

real structureno structure

Real sources – Z coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 21: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

posi

tion

offs

et /

cmreal structureno structure

Real sources – 3D coord offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 22: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

posi

tion

offs

et /

cmreal structureno structure

Offset > 2 mm

Real sources – 3D coord offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 23: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 24: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Higher SIs give worse positions

Page 25: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertaintytheory

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 26: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps)

0.5 – 1 mm error

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 27: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps)

Rms  and  σ  underes1mate  how  wrong  the  soluSon  really  is  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 28: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.01

0.02

0.03

none 1 2 3 4ICRF2 real 0

0.001

0.002

pol r

ms

/ mas

(UT1

-UTC

) rm

s / m

s

structure index

xpolypol(UT1-UTC)

EOP rms  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 29: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

What happens if we include troposphere ?

Stas  Shabala  -­‐  REFAG14  

Page 30: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

none 1 2 3 4 ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

Station positions (with trop.)  

SI = 1 + 2 log (τ / ps)

Troposphere dominates

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 31: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.02

0.04

0.06

0.08

0.1

0.12

none 1 2 3 4ICRF2 real 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

pol r

ms

/ mas

(UT1

-UTC

) rm

s / m

s

structure index

xpolypol(UT1-UTC)

EOP rms (with troposphere)  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 32: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure : effects on CRF  

SIMULATED

Simulation (Cont11), with troposphere & measurement noise

NO STRUCTURE STRUCTURE, SI=3

Stas  Shabala  -­‐  REFAG14  

Page 33: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure : effects on CRF  

SIMULATED

Simulation (Cont11), with troposphere & measurement noise

NO STRUCTURE STRUCTURE, SI=3

MEDIAN ESTIMATED POSITION

JET DIRECTION

Systematic displacement ~ 100 µas

Page 34: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2.5

3.0

3.5

Structure Index

log

as

(0,1.5

)

(1.5,1

.75)

(1.75

,2)

(2,2.5

)

(2.5,3

)

(3,3.5

)

(3.5,4

)

(4,4.5

)

(4.5,5

)(5,

6)

less  stable  

posiS

ons  

more  structure  

Source structure : effects on CRF  

OBSERVED

More  structure    =    worse  source  posiSons  

Schaap  et  al.  2013,  MNRAS,  434,  585  

Page 35: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Problem summary  ²  Quasar structure simulations with VieVS

²  mock + real quasar catalogues

²  Station positions u  offset from true values u  larger formal uncertainties u  increased rms u  important at mm level

²  EOPs and source positions also get worse with increasing structure  

Stas  Shabala  -­‐  REFAG14  

Page 36: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

(and make corrections)

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  Lister  et  al.  (2009)  

Page 37: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

(and make corrections)

Bad news Quasars evolve (need to to this often)  

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  Lister  et  al.  (2009)  

Page 38: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

②  Jet direction remains constant (avoid unfavourable baseline – jet orientation)

 

Bad news Quasars evolve  

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  

Page 39: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

②  Jet direction remains constant

③  Quasars evolve ! (observe quasars when they are “well behaved”)  

Bad news Quasars evolve  

✗  ✓  

How do we improve the Reference Frames ? (with quasar physics)

Page 40: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

How do we improve the Reference Frames ? (with quasar physics)

Good news ①  We can image quasar structure

②  Jet direction remains constant

③  Quasars evolve !  

Strategies ①  Use real sources to correct observations

②  Minimize projected structure through clever scheduling  

③  Include / exclude sources at appropriate times

Bad news Quasars evolve  

Stas  Shabala  -­‐  REFAG14  

Page 41: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

1. Quasar structure corrections

Impr

ovem

ent

Raw  observaSons  rms  

Corrected  using  available  images  

OBSERVED

CONT11  OBSERVATIONS  

Stas  Shabala  -­‐  REFAG14  

Page 42: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

Raw  observaSons  rms  

Corrected  using  available  images  

Improvement  =  raw  -­‐  corrected  

OBSERVED

Stas  Shabala  -­‐  REFAG14  

Page 43: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

OBSERVED

Problems  •  Dominated  by  

troposphere  •  Many  quasars  don‘t  

have  images  •  Quasars  evolve    Future  •  Imaging  from  

geodeSc  VLBI  data  

Small  improvement  •   45  bl  beier:    +0.22  mm        33  bl  worse:  -­‐0.12  mm  <  1  mm  ...  but  promising...  

Stas  Shabala  -­‐  REFAG14  

Page 44: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

OBSERVED

Problems  •  Dominated  by  

troposphere  •  Many  quasars  don‘t  

have  images  •  Quasars  evolve    Future  •  Imaging  from  

geodeSc  VLBI  data  

Small  improvement  •   45  bl  beier:    +0.22  mm        33  bl  worse:  -­‐0.12  mm  <  1  mm  ...  but  promising...   Long baselines most improved

Stas  Shabala  -­‐  REFAG14  

Page 45: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

•   Jet  direcSon  is  constant  •   Worst  case:  parallel,  long  baselines  

Stru

ctur

e de

lay

in p

s

Angle + length of baseline

Stru

ctur

e de

lay

in p

s

Angle between jet & baseline [°]

R1/R4 of Oct 2013, SI=3

%... median value & % of observations

2. Re-analysis using source structure

Stas  Shabala  -­‐  REFAG14  

Page 46: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

•   Jet  direcSon  is  constant  •   Worst  case:  perpendicular,  long  baselines  

Stru

ctur

e de

lay

in p

s

Angle + length of baseline

Stru

ctur

e de

lay

in p

s

Angle between jet & baseline [°]

R1/R4 of Oct 2013, SI=3

%... median value & % of observations

2. Re-analysis using source structure

Half  the  data  is  ok  

¼  of  data  downweighted  

Stas  Shabala  -­‐  REFAG14  

Page 47: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Stru

ctur

e de

lay

in p

s

Angle + length of baseline Half  the  data  is  ok  

¼  of  data  downweighted  

Simula1on  test  •   Downweight  23%  of  

observaSons  •   Structure  only  simulaSons  Improvement  •   StaSon  posiSons  by  22%  •   Formal  uncertainSes  by  30%  

Problem    Need  these  observaSons  to  resolve  troposphere  !  

2. Re-analysis using source structure

SIMULATED Stas  Shabala  -­‐  REFAG14  

Page 48: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Scheduling  •  Complex  task  •  OpSmizing  for  max.  number  of  scans,  

sky  coverage,  etc.  Strategy  •  Schedule  w.r.t.  relaSve  orientaSon  

and  baseline  length  •  Simulate  

First  results  appear  promising  

2. Re-scheduling w.r.t source structure

SIMULATED

R1/R4 (re-scheduled) of Oct 2013

Impr

ovem

ent

Stas  Shabala  -­‐  REFAG14  

Page 49: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2

2.5

3

3.5

1995 2000 2005 0

0.5

1

1.5

stru

ctur

e in

dex

flux

dens

ity /

Jy

Year

SIX-band

3. Quasar evolution !  NEW  !    •  Structure  anS-­‐correlates  with  flux  

density  è  Observe  sources  when  flux  density  is  high  (and  so  structure  is  small)  

Source  1357+769  

Stas  Shabala  -­‐  REFAG14  

Page 50: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

3. Quasar evolution

2

2.5

3

3.5

1995 2000 2005 0

0.5

1

1.5

stru

ctur

e in

dex

flux

dens

ity /

Jy

Year

SIX-band

!  NEW  !    •  Structure  anS-­‐correlates  with  flux  

density  è  Observe  sources  when  flux  density  is  high  (and  so  structure  is  small)  •  PosiSon  scaier  decreases  for  sources  

with  high  flux  density  

−2 −1 0 1 2

−2−1

01

2

RA Deviation (mas)

Dec

Dev

iatio

n (m

as)

−2 −1 0 1 2

−2−1

01

2

RA Deviation (mas)

Dec

Dev

iatio

n (m

as)

−2 −1 0 1 2

−2−1

01

2RA Deviation (mas)

Dec

Dev

iatio

n (m

as)Low  flux  density   Medium  flux  density   High  flux  density  

Source  1357+769  

Page 51: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Summary  q  Quasars are not point sources

o  extra group delay ²  Baseline-, time-, frequency- dependent

o  systematic error è simply more observations won’t help

q  Quasar structure simulations with VieVS 2.2 ²  new source structure simulator module ²  mock + real quasar catalogues ²  station positions affected at mm level ²  troposphere dominates (for now)

u  Mitigation strategies v  corrections using source images in analysis v  not scheduling unfavourable jet / baseline combinations

§  avoid long baselines parallel to jet v  source selection

§  radio sources vary in structure on year timescales §  more compact when flaring (bright)  

Page 52: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Stas  Shabala  -­‐  REFAG14  

Page 53: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Inner regions of an Active Galactic Nucleus

Stas  Shabala  -­‐  REFAG14  

Image:  BU  /  A.  Marscher  

Image:  Kovalev  et  al.  (2008)  

core   jet  jet  origin  

Synchrotron  self-­‐absorpSon  è core  locaSon  depends  on  frequency  è  “Core  ShiN”  

One  jet  towards  us  (Doppler  boosted)  -­‐>  seen  One  jet  away  from  us  (D.  deboosted)  -­‐>  unseen  

1  mas  @  z=1  

Page 54: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2 3 4 5 6 7 8 9 10 11 12

phas

e (a

rbita

ry u

nits

)

frequency / GHz

total

ionosphere

non-dispersive

Quasar structure in VGOS  

How do we connect phases across 10 GHz?

-0.04

-0.02

0

0.02

0.04

2 4 6 8 10 12

phas

e / r

adia

ns

frequency / GHz

max structure delay = +/- 26 ps(7.6 mm light travel time)

max structure delay = +/- 8.2 ps(2.4 mm light travel time)

Expected  delay  accuracy  2-­‐4  ps  

Quasar  structure  >  20  ps  

Page 55: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Quasars What  you  want  them  to  be  ² Bright  point  sources  ² Fixed  in  space  and  Sme  

Image:  N.  Reid  

What  they  are  ² Supermassive  black  holes  ² 106  Smes  more  distant  than  stars  

Image:  NASA  

Image:  C.  Mueller  

•  Quasars  are  really  far  away  (z  >=1  )  (z  =  1  is  half  the  age  of  the  Universe)    •  Use  quasars  because…    D(z  =  1  quasar)  =  6.7  x  109  pc  D(stars  at  GalacSc  centre)  =  8  x  103  pc    è  quasi-­‐iner1al  reference  frame  

Page 56: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Structure delay (ps)  

Stas  Shabala  -­‐  REFAG14  

Page 57: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.01

0.02

0.03

none 1 2 3 4ICRF2 real 0

0.001

0.002

pol f

orm

al e

rror /

mas

(UT1

-UTC

) for

mal

erro

r / m

s

structure index

xpolypol(UT1-UTC)

EOP formal error (structure only)  

Stas  Shabala  -­‐  REFAG14  

Page 58: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.02

0.04

0.06

0.08

0.1

0.12

none 1 2 3 4ICRF2 real 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

pol f

orm

al e

rror /

mas

(UT1

-UTC

) for

mal

erro

r / m

s

structure index

xpolypol(UT1-UTC)

EOP formal error (with trop.)  

Stas  Shabala  -­‐  REFAG14  

Page 59: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

no structure

Median position offset  median of 15 x 30 realizations

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 60: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 61: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 62: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 63: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 64: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 65: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 66: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 67: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.1

0.2

0.3

0.5

1.0

2.0

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWz YsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted