uslides4

139
Back to Electrons . . . Planetary Model of the Atom: Central Nucleus with protons & neutrons Electrons in orbits

Upload: uc-berkeley-extension

Post on 11-Nov-2014

444 views

Category:

Education


2 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Uslides4

Back to Electrons . . .

Planetary Model of the Atom:Central Nucleus

with protons & neutronsElectrons in orbits

Page 2: Uslides4

SchrödingerMathematical Solution to Electron Probability

Spherical orbitals

Page 3: Uslides4

The Hydrogen AtomOne Electron but

Multiple electron shellsGround State: level closest to nucleus

Page 4: Uslides4

Organizing Electrons in Shells

Helium with 2 electrons?

Both are placed in Shell #1

Maximum # electrons/shell: 2n2

Page 5: Uslides4

Atoms with More electrons

Lithium with 3 electronsExtra electron goes into next shell

Page 6: Uslides4

Shell Organization

n = 1

n = 2

2 e

8 e

Page 7: Uslides4

The Periodic Table

Johann Dobereiner 1817

TRIADS:Li, Na, K

Page 8: Uslides4

Mendeleev & Meyer

1868/9Both published versions of a periodic table

of the elements

Page 9: Uslides4

Mendeleev’s VersionLeft BLANK SPACES

For undiscovered elements:e.g. Germanium

1886

Page 10: Uslides4

The Modern Periodic Table

Page 11: Uslides4

Periodicity

Coinage Metals

Page 12: Uslides4

Noble GasesChemically inert

All gasesProgressively heavier

Page 13: Uslides4

Electron ConfigurationLi 3 electrons 2 + 1 Valence

Be 4 electrons 2 + 2 Valence

B 5 electrons 2 + 3 Valence

C 6 electrons 2 + 4 Valence

N 7 electrons 2 + 5 Valence

O 8 electrons 2 + 6 Valence

F 9 electrons 2 + 7 Valence

Ne 10 electrons 2 + 8 (filled shell)

Na 11 electrons 2 + 8 + 1 Valence

Page 14: Uslides4

Periodicity

Ionization EnergySome atoms lose electrons more easily than others

L i Li+ + e-

Cs Cs+ + e-

Page 15: Uslides4

Periodicity

Electron AffinitySome atoms attract electrons more avidly

Cl + e- Cl-

F + e- F-

Page 16: Uslides4

How do Atoms Combine?

Ions = Electrically Charged Atoms

Na+ + Cl- NaCl

Page 17: Uslides4

Salts

•Always contain balanced +/- charges•Lots of possibilities:

Li+Br- Rb+I-

K+F-

Page 18: Uslides4

Salts

Alkaline Earth atoms & Chalcogens:

Be Be2+ + 2e-

• O + 2e- O2-

• Be2+ + O2- BeO

Bromellite

Page 19: Uslides4

Salts

Combinations:

Opposite charges must be balanced:

Ba2+ + 2 I- BaI2

2 Rb+ + Se2- --> Rb2Se

Page 20: Uslides4

What about Carbon?

Carbon has 4 valence electronsIt needs to lose or gain 4 electrons

to achieve Ne electron configuration

Page 21: Uslides4

Covalent Bonding

Electron “sharing”Electrons are always paired

Atoms seek to achieve an OCTET

Page 22: Uslides4

Water

H2O = 2 hydrogen and one Oxygen atom

Page 23: Uslides4

Methane CH4

Carbon = 4 valence electronsHydrogen = 1 valence electron

Page 24: Uslides4

Ammonia NH3

Nitrogen = 5 valence electronsHydrogen = 1 valence electron

Page 25: Uslides4

Multiple Covalent Bonds

Shorter and Stronger than single bonds

Page 26: Uslides4

Carbon Monoxide CO

Page 27: Uslides4

Water

H2O = 2 hydrogen and one Oxygen atom

Page 28: Uslides4

Polar Covalent Molecules

Page 29: Uslides4

DNA’s Hydrogen Bonds

Weak bondsEasily broken but easily reformed

Page 30: Uslides4

Chlorofluorocarbons (CFC’s)

Synthetic compoundsGood heat transfer agents

Refrigerants; aerosol sprays

Page 31: Uslides4

Ozone Hole

Ozone = O3Absorbs ultraviolet rays Increase in skin cancer,

& cataracts

Page 32: Uslides4

Carbon – Chlorine Bonds

Page 33: Uslides4

Why Antarctica?

•Coldest place on earth

•Polar vortex traps gases

•Ice crystals enhance

reaction

Page 34: Uslides4

Types 0f Chemical Bonds

Ionic Bonding Covalent Bonding

Salts; electrons lost from oneAtom and gained by anotheratom

Electrons are shared in single (one pair), double (two pairs) or triple (three pairs) bonds.

Page 35: Uslides4

Metallic Bonding

Loosely held electronsGood conductorsTough materials

Page 36: Uslides4

Atoms -> Molecules -> Substances

Gases Liquids Solids

Atoms far apartNon-interactiveFast movingNo shapeFormed by liquid evaporation

Atoms closerSome interactionOccupies a defined volumeSolids meltGases condense

Atoms in set arrangementAtoms vibrate but do not translateRigid ShapeStrong interactionLiquid freezes

Page 37: Uslides4

Crystalline Solids: Carbon

Diamond Graphite

High melting pointExceptional hardness

Lubricating (slippery)

Page 38: Uslides4

SolidsCrystalline Amorphous

Regular repeating arrangement of atoms

Lacks a regular 3-D pattern

Page 39: Uslides4

Liquid Crystals

Page 40: Uslides4

Minerals

Naturally occurring crystalline compound

with a known elemental composition

Silicates (SiO4) Non-silicates

Quartz pyrite

Page 41: Uslides4

How are minerals formed?

Page 42: Uslides4

Earth’s Interior

Inner Core: solid nickel/ironOuter Core: liquid

Mantle: SilicatesCrust: thin, rigid

Page 43: Uslides4

Continental DriftAlfred Wegener

1880 - 1930

Meteorologist

1915 “The Origin of Continents and Oceans”

Page 44: Uslides4

Pangaea

Page 45: Uslides4

Plate Tectonics

Evidence:

Mesosaurus fossils

Glossopteris ferns

“puzzle pieces”

Glacial debris

Page 46: Uslides4

Tectonic Plates

Page 47: Uslides4

Plate Boundary TypesDivergent Convergent Lateral

Transform

North American and Eurasian plates

Nazca and South American plates

San Andreas fault

Page 48: Uslides4

Finding the epicenter

Page 49: Uslides4

Richter ScaleLogarithmic

scale

7.2 quake hasamplitude

10x greater than6.2

30x energy released

Page 50: Uslides4

The Ring of Fire

Page 51: Uslides4

Hot Spots

Page 52: Uslides4

Volcanic Eruptions

Krakatoa 1883

Page 53: Uslides4

Volcanic Eruptions

Kilauea

Page 54: Uslides4

Mt St Helens (1980)

Before and after the May 1980 eruption

Page 55: Uslides4

Mt Redoubt

Alaska 2009

Page 56: Uslides4

Mt Tambora (1815)

Page 57: Uslides4

1816

The Year without a Summer

““Darkness” (Lord Byron)

“I had a dream, which was not all a dream.The bright sun was extinguish'd, and the stars

Did wander darkling in the eternal space,Rayless, and pathless, and the icy earth

Swung blind and blackening in the moonless air;Morn came and went--and came, and brought no day”

Page 58: Uslides4

Volcanoes & Climate

1783/1784:Laki, Iceland

Asama, Japan

Page 59: Uslides4

Earth’s Atmosphere

Shell of gases circling the Earth

Page 60: Uslides4

Troposphere

Where all weather systems operate

Densest layer, due to gravity

Page 61: Uslides4

Stratosphere

Ozone LayerJet stream

Page 62: Uslides4

IonospherePropagates AM radio signals

(Longer wavelengths)Aurora Borealis (Northern Lights)

Page 63: Uslides4

Early Earth’s Climate

3 Billion years agoinitially H2 & He

Nitrogen (N2),

Carbon dioxide(CO2)

from volcanoes

Page 64: Uslides4

PhotosynthesisCO2 + H2O -----> O2 + Glucose

Page 65: Uslides4

Earth’s current atmosphereN2 78%

O2 20.9%

Ar 0.93 %

CO2 0.038%

Page 66: Uslides4

Carbon Dioxide Levels

Page 67: Uslides4

Humidity

Page 68: Uslides4

Hydrological Cycle

Page 69: Uslides4

Water Molecules in Air

Volume increases with higher temperatureDensity decreases with temperature

HOT AIR RISES and HOLDS MORE H2O9 g @ 10°C 17 g @ 20°C

30 g @ 30°C

Page 70: Uslides4

Relative Humidity

Amount of water vapor increasesEXPONENTIALLY With temperature

Page 71: Uslides4

Saturation Pointmaximum amount of H2O vapor at that temperature

Reached by 1. Excessive evaporation

2. Rapid Temperature drop

Page 72: Uslides4

Dew

Water condenses as Temperature drops

Night temperatures cooler

Page 73: Uslides4

FrostIs formed if temperature

approach the freezing point of H2O

(32°F or 0°C)

Page 74: Uslides4

SF Bay Fog

Cooler ocean air + warm land

Usually late afternoon

Page 75: Uslides4

Clouds

Page 76: Uslides4

Weather Systems

Warm front

Page 77: Uslides4

Ring around the Sun (or Moon)

Means rain on the way

Page 78: Uslides4

Weather Systems

Cold front

Page 79: Uslides4

Thunderstorms

Page 80: Uslides4

Lightning = Voltage Discharge

Page 81: Uslides4

Hail

Page 82: Uslides4

Severe Weather

Tornadoes and WaterspoutsWind speeds 60 – 120 mph

Page 83: Uslides4

Tornado Formation

Page 84: Uslides4

Tornado Frequency

Page 85: Uslides4

Tornado Season

Page 86: Uslides4

Cyclonic Storms

Hurricanes & Typhoons

Page 87: Uslides4

Hurricane Formation

Warm ocean waters temperatures > 76°F

> 24.4°C

Page 88: Uslides4

Hurricanes 2005

26 stormsJune -> December

Page 89: Uslides4

El Nino1997 – 1998 winter

Flooding in N. & S. AmericaRecent drought & fires in Asia

Page 90: Uslides4

El Nino Southern Oscillation (ENSO)

Page 91: Uslides4

1982 – 1983 winter

Page 92: Uslides4

El Nino/La Nina Events

Page 93: Uslides4

Earth’s climate

Page 94: Uslides4

The Last Million Years

Climate cycles:Hot House vs. Ice Age

Average: 15° C

Page 95: Uslides4

The Last Ice Age

Page 96: Uslides4

Climate Cycles

Orbital variation

Tilt change

Solar flux

Page 97: Uslides4

Orbital Variations

100,000 year cycles

Page 98: Uslides4

Obliquity of the Earth’s Axis

Page 99: Uslides4

Change in the Earth’s Tilt

41,000 year cycle

Greater tilt: Interglacial

Less tilt: Glaciation

Page 100: Uslides4

Precession26,000 year cycle

Page 101: Uslides4

Changes in Solar Flux

Page 102: Uslides4

Sunspots?

25 April 2009

Page 103: Uslides4

Maunder Minimum

Page 104: Uslides4

Historic Climate Eras

Page 105: Uslides4

Medieval Warm PeriodPopulation Boom

Viking Travel

England exported wine

Steppe Drought

Page 106: Uslides4

The Little Ice AgeGrain production

Ergot Blight

Plague

Patagonianicefields

Page 107: Uslides4

Climate Cycles

Role Of

CO2

Page 108: Uslides4

Greenhouse Gases

Page 109: Uslides4

Greenhouse Gases

Svante Arrhenius

Fuel Burning <-> Global Warming

cutting the amount of CO2 in the atmosphere by half could lower the temperature in Europe by some 4-5 oC.

Page 110: Uslides4

Greenhouse Gases Sources

CxHyOz + O2 -> CO2 + H2O

Page 111: Uslides4

Greenhouse Gases

Page 112: Uslides4

Greenhouse Gas Levels

Page 113: Uslides4

Venus

800 K temp

90x atmosphere

96% CO2

Page 114: Uslides4

Global WarmingGlacial Melting

Permafrost thaw

Increased evaporation

Seasonal change

Coral reef bleaching

Page 115: Uslides4

Glacial Melting

Page 116: Uslides4

Arctic Ice Cap

Page 117: Uslides4

Greenland Ice

Page 118: Uslides4

Antarctic Ice

Page 119: Uslides4

Sea Level Rising

Page 120: Uslides4

Imperiled Coastlines

Page 121: Uslides4

One – Five Meter Sea Level Rise

Page 122: Uslides4

Consequences

Page 123: Uslides4

Local Consequences

Page 124: Uslides4

Increased Evaporation RatesSevere Storms

Coastal Erosion

Fires

Page 125: Uslides4

Tropical Storm Formation

Page 126: Uslides4

2005

KatrinaRita

Wilma

Page 127: Uslides4

Coastal Erosion

Page 128: Uslides4

Saltwater Intrusion

Page 129: Uslides4

More Frequent El Niño

Page 130: Uslides4

1997-8 El Niño

Page 131: Uslides4

El Niño Frequency

Page 132: Uslides4

Permafrost Thaw

Page 133: Uslides4

Coral Reef Bleaching

Page 134: Uslides4

Wildlife Habitats

Page 135: Uslides4

Already Extinct

Page 136: Uslides4

Expanded Pest Ranges

Page 137: Uslides4

More Pests

Page 138: Uslides4

Physical ScienceThe Universe Around Us

How does it Work?

What is it made of?

How does it affect us?

Page 139: Uslides4

Physical ScienceThe Universe Around Us

How does it Work?

What is it made of?

How does it affect us?

How have we affected the world?