uv webcast 5 17 13 - water research · pdf fileuv is the most scrutinized water technology...

104
5/16/2013 1 © 2013 Water Research Foundation. ALL RIGHTS RESERVED. © 2013 Water Research Foundation. ALL RIGHTS RESERVED. UV Disinfection Greater Cincinnati Water Works © 2013 Water Research Foundation. ALL RIGHTS RESERVED. Richard Miller Treatment Plant * chemical fed as needed Clearwells GAC Adsorption Sand Filtration Secondary Sedimentation (Clarification Basins) Primary Sedimentation (Lamella) Reservoirs (Settled) Alum Polymer PAC * Lime Ferric Sulfate* KMnO 4 * PAC * PAC * NaOH Chlorine Ohio River Supply To Distribution System Sludge Discharge Washwater Recovery UV-MP Na Hex Fluoride

Upload: buiquynh

Post on 07-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

5/16/2013

1

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

UV DisinfectionGreater Cincinnati Water Works

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Richard Miller Treatment Plant

* chemical fed as needed

Clearwells GACAdsorption

SandFiltration

SecondarySedimentation

(Clarification Basins)

PrimarySedimentation

(Lamella)

Reservoirs(Settled)

AlumPolymerPAC *

LimeFerric Sulfate*KMnO4 *PAC *

PAC *

NaOHChlorine

OhioRiverSupply

ToDistributionSystem

SludgeDischarge

WashwaterRecovery

UV-MP

Na HexFluoride

5/16/2013

2

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Why UV • Vulnerability of the Ohio

River water• Upstream wastewater

plants• Multiple inactivation

barrier Cl2 + UV• >7-log removal plus

inactivation of Cryptosporidium and giardia

• Several logs of virus inactivation

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

UV System• Designed and

approved for 4-log Giardia and Cryptosporidium

• Validation— 3 to 52 mgd/reactor— 75-98.2% UVT— MS2, T1UV, and T7

5/16/2013

3

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Ongoing activities

• Field Testing—Operational readiness – hardware—Functional demonstration – performance—Site acceptance – 30-days of continuous

operation

• Training • Fully functional – late summer

UV Disinfection Technologies:gWhat Are the Issues?

Paul Swaim, P.E.Paul Swaim, P.E.

Vice President, CH2M HILL Denver

President, IUVA (www.iuva.org)

Vice President, CH2M HILL Denver

President, IUVA (www.iuva.org)

May 17 2013May 17 2013

, ( g), ( g)

May 17, 2013May 17, 2013

Presentation Outline

� UV disinfection regulations and grequirements

� Introduction to current key issues� Introduction to current key issues

� UV disinfection systems� How are they different?� What do they mean?� PLC programs� PLC programs� Cleaning systems

� Start-up, testing, and optimizationStart up, testing, and optimization

UV Disinfection RegulationsUV Disinfection Regulationsand Requirementsq

Availability and Feasibility of UV Disinfection Was a Premise of USEPA’s LT2ESWTR

EPA recognized that UV disinfection was a newEPA recognized that UV disinfection was a newtechnology to the water industry. EPA developed the UVDGM including:

UV dose tablesValidationprotocolOff-specoperationMonitoringReporting

UVDGM Published in November 2006

Many years of y yeffort

S ti fScrutiny frommultiplestakeholdersand reviewersand reviewerswith disparate

http://www.epa.gov/safewater/disinfection/lt2/compliance.htmlinterests

UV: a New Technology for Water Treatment?Treatment?

• Can you guess the year? “It is a matter of common k l d d th t th lt i l t hknowledge nowadays that the ultraviolet rays have a strong bactericidal power.”

� 1887 � 1955� 1914

Source: AWWA Conference Proceedings, 1914

� 2001

• 1991 SWTR GM: 4-page appendix allows UV for virus inactivation

• As of 2012, more than 300 UV disinfection installations being implemented across North America (Wright et al.,g p ( g ,WaterRF 3117, 2012)

UV Is the Most Scrutinized Water Technology EverTechnology Ever

• Technology-Specific EPA Guidance for Drinking Water Treatment

• SWTR Compliance Guidance Manual: �580 pages addressing unfiltered systems, filtration,

disinfection, residual monitoring, etc.�Appendix O: Guidance to Evaluate Ozone�Appendix O: Guidance to Evaluate Ozone

Disinfection (80 pages)• LT2ESWTR:LT2ESWTR:

�Membrane Filtration Guidance Manual (332 pages)�UVDGM (436 pages)

Typical UV Disinfection Design Criteria

� Target Pathogen and Inactivation (Dose) � Design Flowrate� UV Transmittance � Sleeve Fouling and Lamp Aging Factor:

� Tie lamp aging to lamp life guaranteep g g p g� Tie sleeve fouling to water quality, cleaning

method, and frequency� Level of redundancy� Future considerations (expansion, new

applications)

Regulatory Approval of UV Disinfection Projects Encompasses More than Validationj p

� Water quality data and design criteria� Elements of UV design� Hydraulic configuration for UV reactor� Consideration of potential off-spec operation� I&C approach� Plan for commissioning� Monitoring and reportingg p g

EPA Requirements for “Off-Spec Operation”Operation

• Continuously monitor dose-monitoring parameters (i.e., at least every 5 minutes) for each reactor

• Record values at least once every 4 hours• Record off-spec at minimum of 5-minute intervals until

condition is corrected

Introduction to CurrentIntroduction to CurrentKey Issuesy

What Are the Issues? Critical Issues for Successful UV Implementationp

1. Collect UV transmittance data as soon as possible if you are considering UV

2. Once the project begins, talk to your State regulator early and often

3. Understand seasonal issues that impactpwater quality or water demands

4. There is no EPA requirement for a UV dose4. There is no EPA requirement for a UV doseof 40 mJ/cm2 – select the appropriate UV dose for your facility

What Are the Issues? Critical Issues for Successful UV Implementationp

5. Procure equipment early in design for5. Procure equipment early in design forefficiency and optimized O&M

6 Select the best reactor for your operations6. Select the best reactor for your operations,considering validated operation of the UV reactor and turndown optimizationp

7. UV reactor’s validation window should extend well beyond your design criteriaextend well beyond your design criteria

8. Hydraulic configuration at the WTP must be equivalent or better to the validationequivalent or better to the validationconfiguration

What Are the Issues? Critical Issues for Successful UV Implementationp

9. Consider off-specification operation during design, but remember that off-spec of zero is analogous to an MCLG

10. Validation testing is not the only testing needed for smooth startup

11. Specify the performance of intensity sensors, UVT analyzer, cleaning system

12. Develop emergency operatingplans/emergency response plans before UV equipment arrives on site

2011: MP Low-Wavelength Issue Emerges

9

10 • Slide courtesy of WaterRF

7

8

9MS2�Action�Spectrum

Cryptosporidium�Action�Spectrum

of WaterRF4371 and Dr. Karl Linden

5

6

e�Actio

n

Karl Linden• Issue applies

to MP UV only

3

4

Relativ

e to MP UV only

1

2

0200 220 240 260 280 300

Wavelength,�nm

UV Disinfection SystemsUV Disinfection Systems

UV Lamp Types for Large Commercial Drinking Water ApplicationsDrinking Water Applications

Lo Press re/Lo Press re Medi m Press re*• Low Pressure/Low PressureHigh Output (LPHO)

Monochromatic light

• Medium Pressure*Lamps

Polychromatic lightMonochromatic lightLower kW lampsLarger footprint

Polychromatic lightHigher kW lampsSmaller footprintg p p

* Indicates the vapor pressure within the lamp

UV Lamp Output (EPA UVDGM)

tive

toRa

nge

DNA MP tive

ton

Rang

e

1 0 1 0tive

toRa

nge

DNA MP tive

ton

Rang

e

1 0 1 0

tput

Rel

atO

utpu

t in

R Absorbance Output �

ance

Rel

arb

ance

in

0.6

0.8

1.0

0.6

0.8

1.0

tput

Rel

atO

utpu

t in

R Absorbance Output �

ance

Rel

arb

ance

in

0.6

0.8

1.0

0.6

0.8

1.0

Lam

p O

utax

imum

O

LP Output�

A Ab

sorb

am

um A

bso

00.0

0.2

0.4

0.0

0.2

0.4

Lam

p O

utax

imum

O

LP Output�

A Ab

sorb

am

um A

bso

00.0

0.2

0.4

0.0

0.2

0.4

200 250 300Wavelength (nm)

LM

a

DNA

Max

im

200 250 300Wavelength (nm)

LM

a

DNA

Max

im

UVDGM (EPA, 2006)

UV Reactor Considerations

• Manufacturers design UV reactors, which vary in size, shape geometry components and lamp configurationshape, geometry, components, and lamp configuration

• Flow through reactors is turbulent with residence times of seconds or less

• Some reactors incorporate baffles to improve hydrodynamics and dose deliveryInlet and outlet conditions influence reactor hydrodynamics• Inlet and outlet conditions influence reactor hydrodynamicsand UV dose delivery

Evaluate Potential UV Systems

LPHO vs. MP lamps: reactor configuration and size p gValidation hydraulic conditionsFootprint and power requirementsp p qControl strategiesPower modulation capabilitiespO&M requirements:

Lamp aging, lamp life, and lamp replacementSleeve fouling and cleaning

Key Design Issues – I&C

• Programmed with validated dose equationC di t I&C d i ith it i d ti• Coordinate I&C design with monitoring and reportingguidance from UVDGM and input from regulator

• Think through alarms and resulting actions and UV reactorThink through alarms and resulting actions and UV reactorstart-up and shut-down sequences

• Intertie with controls for upstream pumps or filters• Safety controls and avoiding high flowrates

UV Sleeve Cleaning Systems

Startup Testing andStartup, Testing, andOptimizationp

Functional Testing Verifies Functionality

• First testing step following installationinstallation

• Verification of: � Operation of each system

componentcomponent� I&C systems � Signals and scaling

Alarms and responses� Alarms and responses� Ancillary items (e.g., flowmeters,

valves)Responsibilit ill t picall reside• Responsibility will typically residewith Contractor and UV manufacturer to certify functionalityO E i R l t• Owner, Engineer, Regulator may want to witness

Some Typical Alarm Conditions for UV ReactorsReactors

Low UV validated dose

Low UV intensity

Low UVT

High flowrate

Lamp/Ballast failure

Low liquid levelLow liquid level

High temperature

Mechanical cleaning failureMechanical cleaning failure

Lamp life exceeded

Calibration check of UV intensity sensor due

UV System Performance Testing

• Performance Testing:A ti f f th UV f ilit� Assess operating performance of the UV facility

� Demonstrate performance under extended period at actual operating conditions during early stages of operation

� Verify manufacturer guarantees and claims

• Performance Testing may be as little as 48 hrs to as much as weeks or months in durationweeks or months in duration

• May require UV manufacturer and/or contractor involvement

Performance Testing May Include:

• Observation of operation including typical operation, alarm diti ff ifi ti ticonditions, off-specification operation

• Monitor dose control using input signalsM t f l t i l i ti• Measurement of electrical service, power consumption,harmonics, power factor

• Test performance of UV intensity sensors with frequent• Test performance of UV intensity sensors with frequentcalibration checks

• Test performance of UVT analyzer with frequent calibration• Test performance of UVT analyzer with frequent calibrationchecks

• Headloss verificationHeadloss verification

Conclusions: UV Disinfection System Testing and Commissioning IssuesTesting and Commissioning Issues

• Validation testing is not the only necessaryg y ytesting for UV systems

• Functional Testing and PerformanceFunctional Testing and PerformanceTesting are critical to successful startup and operationp

Where Can I Turn for Help?

IUVA vision:…to advance the science,…to advance the science,engineering and applications ofultraviolet technologies to enhanceultraviolet technologies to enhancethe quality of human life and toprotect the environment.protect the environment.

About the IUVA

• IUVA is a non-profit educational association founded in 1999• 600+ members from 35 countries including leading utilities• 600+ members from 35 countries including leading utilities,

regulators, academicians, consulting engineers, manufacturers, and more

• Our website: www iuva org• Our website: www.iuva.org• See you in Las Vegas in September?

UV Disinfection Technologies:gWhat Are the Issues?

Paul Swaim, P.E.Paul Swaim, P.E.

Vice President, CH2M HILL Denver

President, IUVA (www.iuva.org)

Vice President, CH2M HILL Denver

President, IUVA (www.iuva.org)

May 17 2013May 17 2013

, ( g), ( g)

May 17, 2013May 17, 2013

5/16/2013

1

Uniting the World of WaterJune 9 – 13, 2013 | Denver, Colorado

Regulatory Compliance Concerns and ChallengesWhat type of information do regulators expect and need?

Christine Cotton, P.E.

Associate Vice President

213-327-1615

[email protected]

Imagine the result

James Collins, P.E.

Project Manager

Acknowledgements and Disclaimer

• Thank you to regulators

• Regulatory requirements are state and can be district dependent

5/16/2013

2

Regulatory Coordination is Critical

Drives design requirements

Sets required timelines

Establishes long-term reports

Issues permit

Monitors reports

Example Regulator Involvement

Rel

ativ

e R

egul

ator

Coo

rdin

atio

n

Conceptual Design

Detailed Design

Construction Start-up & Commissioning

Operations

5/16/2013

3

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

5/16/2013

4

Off-Specification Operation Can Occur

Flowrate

UVT

Calculated dose

UV sensor and UVT analyzer calibration

Installed UV equipment different from validated

Validation Conditions

LT2ESWTR Allows a Maximum of 5% Off-spec Each Month

May be challenging

Increased operational

flexibility

Min

imal

5%

Target driven by the utility or regulator

5/16/2013

5

Off-Spec Requirements

Off-Spec Requirements

DesignDesignValidationValidation

Off-Specification Affects all Project Elements

Design values chosen to reduce off-spec

Validation must include design conditions

The reactor is operated to minimize off-specification

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

5/16/2013

6

Design Elements Typically Discussed

Design Criteria

Hydraulics

Off-Specification Management

Regulators Focus on Design Criteria

Target Pathogen and

Log InactivationFlow Rate

Design UVT Power Supply

5/16/2013

7

UV Facility Inlet Piping Configuration

Five pipe diameters upstream • 90-deg bend

directly upstream during validation

UV facility inlet piping• Includes any

additional piping downstream of 90-deg bend during validation

Custom-validated hydraulics

CFD modeling of

different conditions

Off-Spec Requirements Affect Design

Preventable Conditions

• Conservative design

• Power supply

• Conservative design

• Power supply

Unpreventable Conditions

• Equipment failure• Lamp/ballast• UV sensor

• Equipment failure• Lamp/ballast• UV sensor

5/16/2013

8

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

Review Validation Results

Validation ConditionsValidation Conditions

Flow

UVT

Include Fouling/Aging

Any UVDGM Exceptions

Any UVDGM Exceptions

Upstream piping

QA/QC

Validation calculations

ChecklistsChecklists

UV Reactor Documentation

Validation Test Plan

Validation Report Review

QA/QC

5/16/2013

9

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

Start-up and Operations

Start-up• Verify validation

equations in programming

Commissioning • Verify and tweak overall operation

Operations • Routine O&M

5/16/2013

10

O&M Supporting Documents

• Overall UV facility operation• UV integration with other facilities• Backup plans• Required procedures

• Overall UV facility operation• UV integration with other facilities• Backup plans• Required procedures

Operations and

Maintenance Plan

• Manufacturer supplied• Detailed procedures• Manufacturer supplied• Detailed proceduresO&M Manual

Items may have been developed earlier in project

Required Maintenance Activities

Required Tasks Recommended Frequency

Duty UV sensor calibration check

Monthly

UVT analyzer calibration check

Weekly

5/16/2013

11

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

UV Disinfection Reporting Critical

USEPA UVDGM provides example forms

Most states have adopted UVDGM forms

Coordination for state specific requirements

5/16/2013

12

Operation and Key Maintenance Reports

Daily treatment performance per unit

Percentage of off-specification water by volume

UV sensor calibration monitoring

UVT analyzer calibration monitoring

Off-specification Volume Key Compliance Measure

• Other communication may be necessary• Other communication may be necessary

Compliance is based on monthly totals

• Select alarms to document reason for off-spec events• Coordination between UV manufacturer and controls• Capturing information for each off-spec event

• Select alarms to document reason for off-spec events• Coordination between UV manufacturer and controls• Capturing information for each off-spec event

UV reactor and SCADA programming is key

5/16/2013

13

Regulatory Coordination Can Drive UV Projects

Regulators

OffSpecifi-cation

Design

Validation

Operations

Reporting

Regulatory Coordination is Critical

Regulatory input can change design elements

Saves time/money to coordinate periodically

Less surprises through project

Clear expectations to obtain permit

5/16/2013

14

Uniting the World of WaterJune 9 – 13, 2013 | Denver, Colorado

Regulatory Compliance Concerns and ChallengesWhat type of information do regulators expect and need?

Christine Cotton, P.E.

Associate Vice President

213-327-1615

[email protected]

Imagine the result

1

WaterRF UV Knowledge Base Documents UV Disinfection in

North America

Water Research Foundation Webinar, May 17, 2013

Harold WrightCarollo Engineers

12592 West Explorer, Suite 200, Boise, Idaho [email protected]

Drinking Water UV Has Evolved Over Last Ten Years

Regulations Validation

Portland Validation Facility2006 UVDGM

2

Drinking Water UV Has Evolved Over Last Ten Years

Technology Science

Impacts of Wall ReflectionsUV AOP Reactor

How much lamp aging and fouling occurs? Are UV systems properly sized? How reliable are UV systems? How much do they cost? Is mercury release an issue? How do they comply with Guidance and

Regulations? What are the lessons learned?

Utilities, Engineers and Regulators Have Questions

3

WaterRF UV Knowledge base Project Documents UV

DataBase Includes Geographic Info on Who’s Implementing UV

4

Including Canada, eh!

Data Shows Top States and Provinces Implementing UV United States

• New York• Massachusetts• Colorado• California• Arizona• Georgia

Canada• Ontario• British Columbia• Alberta

5

DataBase Shows Market Share by UV System Manufacturer

0 10 20 30 40 50 60

Sunlight Systems

Severn Trent Services

Hanovia

Aquionics

Ondeo Degremont

R-Can

Siemans

WEDECO UV Technologies

Calgon Carbon Corporation

Trojan Technologies

Percentage of UV Systems

USA

Canada

And Where Those Systems are Being Installed

6

0 10 20 30 40 50 60 70

K3000

B Series

BX3200

K143

IH-20L

UVSw ift 30

UVSw ift SC

NYC LPHO

UVSw ift 24

UVSw ift

UVSw ift 12

SUVAM

36" Sentinel

24" Sentinel

48" Sentinel

18" Sentinel

12" Sentinel

Aquaray H2O

CrossFlow

Frontline

UVP200M

PMD200D1

PAP503L8

sun series

Number of Systems

Calgon

Trojan

WEDECO/ITT

R-CAN

Ozonia

Aquionics, Hanovia, Berson

Sunlight

And What They Are …

Survey Requested Photos and Drawings of Installed Systems

Lethbridge, Alberta

7

Photos Provide Ideas for Installation Alternatives

UV is Treating Waters from Various Sources

0 5 10 15 20 25 30 35 40

Surface water

River/Reservoir

River/Lake

River

Reservoir

Lake

GWUI

Groundwater

Number of Systems

USA

Canada

8

Top Locations: Combined Filter Effluent, Post Pumps, Each Filter

0 10 20 30 40 50 60

Other

Wash Water Return

Post Ozone

Finished Storage Reservoir Outlet

Incoming Transmission Line

Pre filter

Pre-High Lift Pumps

Post Clearwell

Well Discharge

Each filter

Post High/Low Lift Pumps

Combined Filter Effluent

Percentage of Systems

Many Plants Have Multiple UV Treatment Objectives

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

Percentile Ranking (%)

Nu

mb

er

of

UV

Tre

atm

en

t O

bje

cti

ve

s

9

0 10 20 30 40 50 60

Contact time

Taste

Advanced Oxidation for T&O

GWUDI

Regs Require UV for Wells

Government Gudielines

Disinfection

Sulphur & Iron Bacteria

Bacteria

Heterotroph Inactivation

DBP Reduction

Virus Credit

Reduce Chemical CT

Multibarrier Disinfection

Giardia Credit

Crypto Credit

Number of Systems

Surface Water

Groundwater

Database Obtained Info on Target Microbes

0 5 10 15 20 25 30 35

Total Coliform

Bacteria

Heterotrophs

Virus

Giardia

Crypto & Giardia

Cryptosporidium

Percentage of UV Systems

10

Target Pathogen Log Inactivation Criteria

Number of Responses

0.5 log 1.0 log 2.0 log 2.5 log 3.0 log 4.0 log

Cryptosporidium 0 1 6 1 7 6Crypto & Giardia 0 0 1 0 7 1Giardia 2 1 0 0 0 3Virus 0 0 1 0 0 5Heterotrophs 0 0 0 1 1 1Total Coliform 0 0 0 0 0 1

Most UV Systems are Small Systems < 5 mgd

0

20

40

60

80

100

120

140

160

180

0.5 to 5 mgd 5 to 50 mgd 50 to 500 mgd > 500

Design Flowrate (mgd)

Nu

mb

er o

f U

V S

yste

ms

11

Total Installed Capacity Driven by Large Utilities and 3 Vendors

0 500 1000 1500 2000 2500 3000 3500

Sunlight Systems

Severn Trent Services

Hanovia

Aquionics

Ondeo Degremont

R-Can

Siemans

WEDECO UV Technologies

Calgon Carbon Corporation

Trojan Technologies

Total Flowrate (mgd)

New York City

Vancouver

Washington Suburban Sanitary Commission

Design UVT Being Defaulted to 75, 80, 85, 90 or 95%

0

10

20

30

40

50

60

70

80

90

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Design UVT (%)

Nu

mb

er o

f U

V S

yste

ms

12

Headloss Ranges from 1 to 34”, Lower with MP

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Percentile Ranking (%)

Hea

dlo

ss (

inch

es)

All

MP

LPHO/Amalgam

UV Knowledge Base Includes UV System Component Data Lamps, sleeves, ballasts, wipers, UV sensors Lifetime, replacements labor, replacement

costs

13

LPHO Replacement Costs Typically $140 to $200

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

Percentile Ranking (%)

UV

Lam

p R

epla

cem

ent

Co

sts

($)

LPHO All

LPHO Canada

LPHO USA

MP Replacement Costs Range from $250 to $1500

0

500

1000

1500

2000

2500

0 20 40 60 80 100

Percentile Ranking (%)

UV

Lam

p R

epla

cem

ent

Co

sts

($)

MP All

MP Canada

MP USA

14

Auto Cleaning Frequencies Range from 1 to 24 hrs

0

5

10

15

20

25

30

0 20 40 60 80 100

Percentile Ranking (%)

Au

toC

lea

nin

gP

eri

od

(h

rs)

MP

LPHO

Off Line Cleaning Frequencies Range from 1 to 6 Months

0

2

4

6

8

10

12

14

0 20 40 60 80 100

Percentile Ranking (%)

Off

lin

e C

lea

nin

g P

eri

od

(m

on

ths

)

MP

LPHO

15

35 Percent of Systems not Using On-Line or Bench UVT Monitors, 50% Not Checking Monitors

0%

10%

20%

30%

40%

50%60%

70%

80%

90%

100%

UVT Monitor Lab Spec UVT Monitorchecks

Nu

mb

er o

f S

yste

ms

No

Yes

Data Collected on Reporting

USA

0% 25% 50% 75% 100%

UVT Monitor Checks

UV Sensor Checks

Off spec

UV Sensor

UVT

Flow rate

UV Dose

Percentage of UV Systems

Yes

No

16

Data Collected on UV System Labor

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Percentile Ranking (%)

UV

La

bo

r H

ou

rs P

er

Mo

nth MP

LPHO

UV Knowledgebase Project Documents Drinking Water UV Experience in North America Database includes information on:

• Who is implementing UV • UV system design criteria• Locations and installation configurations• Performance and replacements costs for UV

systems components• UV system operation and maintenance• Lessons learned and recommendations

17

WaterRF UV Knowledge Base Documents UV Disinfection in

North America

Water Research Foundation Webinar, May 17, 2013

Harold WrightCarollo Engineers

12592 West Explorer, Suite 200, Boise, Idaho [email protected]

1

Start-up of San Francisco’s UV Disinfection Facility

Enio Sebastiani, P.E.SFPUC Water Quality Division

Operated by the San Francisco Public Utilities Commission

Water Research Foundation Webcast May 17, 2013

2

Overview

• SFPUC System Background

• Tesla Treatment Facility Design Criteria

• Start-up Tests and Facility Permitting

• Fouling Condensation in sensor wells

Biofilm in reactor piping

• Flow Split and Valve Position

• Lessons Learned

2

3

SFPUC System Background

• Hetch Hetchy is 85% of the water supply for San Francisco and its wholesale customers (about 2.6 million total customers).

• Unfiltered Hetch Hetchy supply requires 2-log Cryptosporidium inactivation and two disinfectants per the LT2ESWTR.

• Added 315 mgd UV disinfection system to complement sodium hypochlorite system. Lime added for pH adjustment.

4

Raw Water Quality

Parameter Units Average Range

Turbidity NTU 0.56 0.23 - 2.6

TDS mg/L 12.1 5 - 23

pH 6.8 6.3 - 7.6

Total Hardness mg/L CaCO3 5.5 2 - 20

Alkalinity mg/L CaCO3 6 4 - 20

TOC mg/L 1.7 0.6 - 2.7

UVT 89% 83.5 - 93.8

Color (apparent) CU 11 9 - 15

Iron μg/L 58 35.3 - 116

Manganese μg/L 4.4 2.8 - 7.3

3

5

SFPUC Regional System

6

Key UV Design & Operating Criteria

• Design 3.4 log Cryptosporidium using MS2 82.5% UVT (reactor validated off-site down to 75% UVT) Fouling Factor of 0.8 End of lamp life (EOLL) factor of 0.9 for a Combined Aging and

Fouling (CAF) factor of 0.72 315 mgd (nominal max) 10 Duty and 2 Standby reactors at max flow

• Operation 2.3 log Cryptosporidium using MS2 (includes 20% dose safety

factor) 89% UVT annual average (83.5% to 94% range) 45 mgd max flow per reactor (validated up to 51.3 mgd)

4

7

Additional Design Criteria

• Provide storage and chemical feed facilities for upgraded NaOCl, new fluoride (H2SiF6), and new CO2 system to lower pH.

• Maximum headloss of 6.5 feet over entire facility (achieved 4.74 ft).

• Reduce inlet flow velocities to 2.2 fps for sand/grit settling with large diameter header. Include grit removal system along header invert.

• UPS and Diesel Generators 3 – 1200 kVA/960 kW Flywheel UPS for UV system Battery UPS for chemical pumps (4 hours) 2 – 1875 kVA/1500 kW Diesel generators for entire plant (72

hour fuel storage)

8

Tesla Layout

5

9

Sentinel 48-inch Chevron 9 lamps (20 kW ea)

• Validated Off-site in 2010

• 108 UV Intensity Sensors One germicidal sensor/lamp

in dry well

Mechanical cleaning of sensor window

• Lamp Sleeves Suprasil synthetic quartz

Mechanical cleaning with stainless steel brush

• Ballasts Electromagnetic

One lamp per ballast

(Courtesy of Calgon Carbon Corporation)

10

Off-site Validation and Hydraulics

• Reactors validated off-site Feb-Mar 2010.

• Minimum of 5 pipe diameters of straight pipe upstream of the UV reactors to ensure dose delivery per UVDGM.

31.3 ft or 7.8 diam.

6

Velocity Profile Measurement

11

• Velocity Measurements

6 traverses for first, middle, and last reactor on each train (4 for others)

Measure 5 cm apart

At 10, 25, and 45 mgd

1 ft upstream

Must be within 20% of the theoretical velocity

• Upstream for 12 reactors

• Downstream for 6 reactors

First, middle, and last reactor on each train

12

Velocity Profile Measurement

• Velocity profile measurements were as good or better than those from Validation.

7

13

Start-up Tests

• Velocity Profile Measurements

• 7-day Operational Test prior to substantial completion Wiper travel alarms and drive system repairs

Low Irradiance Alarms

• Power Guarantee at typical seasonal UVTs and flows and combined aging and fouling allowance (CAF).

• Maximum Power Consumption

• Harmonics

• Final Acceptance (30-day) Tests (two by contract) First test from January 12 to February 12, 2012

Second test from April 12 to May 17, 2012

Third test from July 13 to August 13, 2012 for valve position and flow variation follow-up

14

CDPH Permitting Documents

• Permit Application on January 6, 2011

• Design Drawings and Workshops

• Validation Protocol WTC for off-site approval

• Validation Report

• Velocity Profile Test Plan and Test Report

• Validation Control Sheet

• UV Control Narrative

• Operations Plan (three inspections)

• Action Spectra Correction Factor Modeling Memo

• Permit received February 28, 2012

8

15

Sensor Well Interior Window Fouling

16

Sensor Well Interior Window Fouling

9

Sensor Well Interior Window Fouling

• Include desiccant packs in the PVC insertion tube housing the sensor.

• Add slots in insertion tube and on sensor rim to allow air circulation to desiccant.

• Desiccant packs checked during monthly sensor calibrations.

17

Biofilm Growth

• Biofilm growth was observed in areas removed from UV light but exposed to some incidental visible light.

• Pre-chlorination practice initiated in January 2013. Objective is to just meet demand with minimal residual in the

reactors.

Observed about 0.5% increase in UVT during test in Fall 2012.

• Reactors chlorinated and flushed in February 2013 during aqueduct shutdown.

• Pre-chlorination has continued.18

10

Biofilm Growth

19

20

Sleeve Fouling

• Quartz sleeves (type 214A) replaced in September 2011

• Suprasil 300 synthetic quartz installed to match those used in validation.

• Old sleeves were in reactors since January 2010

• Lamps operating since May 2011

• Wipers operate every 6 hours

• Sleeve fouling will be continue to be examined especially with pre-chlorination practice or any future pH adjustments.

11

Flow Split and Valve Position

• Initial goal was to operate reactors with effluent valves 100% open based on favorable flow split from CFD modeling.

• Lower system headloss resulted in uneven flow split requiring modulating effluent valves.

• Difficulties experienced with valve position feedback resulted in Mechanical Dial Position Indicator gear replacement for valve actuator on four reactors.

• Periodic effluent valve hunting also evident.

• Investigating alternative control strategy not as reliant on valve position feedback. Goal is to remain safely below 45 mgd hydraulic limit per reactor

without negative impact on power consumption.21

Flow Split and Valve Position

Reactor Flow % Open Flow % Open

1 0 0 33.9 100

2 36.8 69 30.4 100

3 36.9 75 26.5 100

4 0 0 23.7 100

5 37 80 22.9 100

6 36.7 100 20.8 100

7 0 0 0 0

8 37.1 82 31 100

9 37.1 83 28.3 100

10 35.8 100 25.6 100

11 0 0 25 100

12 33.1 100 22.3 100

Total 290.5 290.4 22

12

23

Key Lessons Learned

• Start Early

Crypto and on-line UVT data collection began in 2004.

Design-Build contract substantially complete in 32 months (November 10, 2008 start design; March 31, 2009 start construction; June 24, 2011 Substantial Completion).

• 9-month commissioning period prior to April 1, 2012 was invaluable to verify systems, make corrections, and gain operational familiarity.

• Conservative design criteria (3.4-log, 82.5% UVT, 0.72 CAF) have already paid dividends in addressing start-up issues.

• Coordination and communication with CDPH in all project phases facilitated securing plant’s permit.

24

Thank You

[email protected]

26 December 2012

PowerPoint Sample 1

17 M

ay 2013

UV PROCESS SPECIALISTB&V WATER TECHNOLOGY GROUPBRYAN TOWNSEND

P L C   B L A C K B O X4

IMPLEMENTATION OF VALIDATED MODELS FOR THE MONITORING AND OPERATION OF UV SYSTEMS

• UV Dose = Intensity x Time

• All UV reactors have a dose distribution

• Non‐uniform distribution of irradiance field and velocity profile

• Avg. LogI of a microbial population is a function of:

• Flow path through the reactor  UV intensity & exposure time

• UV sensitivity (i.e. dose‐response) of the microbe @ 254nm

• Microbial action spectra @ 200‐300nm for MP systems

NEED FOR VALIDATION

2

Ideal (plug flow)1

0

Probability

Wider Distribution (less efficient)

Narrow Distribution (more efficient)

UV Dose (mJ/cm2)

17 May 2013WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

26 December 2012

PowerPoint Sample 2

• Testing of full‐scale reactor with identical wetted dimensions to vessel installed at a WTP

• Conducted at validation facility by independent 3rd party

• UV Disinfection Guidance Manual (UVDGM)

• Released in November 2006

• Primary guidelines for validation, sizing and operation of UV systems in the U.S.

• Increasing interest and applications world wide

• Established a long awaited standard for UV disinfection of potable water

• Allows for flexibility / advancement in techniques

UV REACTOR VALIDATION TESTING

17 May 2013

3

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

• Functional Testing• Head loss

• UV Intensity

• Biodosimetry• Reactor challenges – measure logi of a microbial surrogate(s) under various operating conditions

• UV254 Transmittance (UVT), Flow (Q), UV intensity (S)

• Collimated beam testing – measure microbial dose‐response 

• Equate the measured logi through reactor to a “Reduction Equivalent Dose” (RED)

• Development of dose monitoring algorithm

VALIDATION TESTING COMPONENTS

17 May 2013

4

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

2

10

UVAEUVADC

oUVABA

Q

SS

UVARED

0

20

40

60

80

100

0 1 2 3 4

Dos

e (

mJ/

cm2 )

MS2 logi

• Power (kW)

26 December 2012

PowerPoint Sample 3

• Validated Dose (DVal)

• Validation Factor accounts for:

• Polychromatic bias (BPoly) ‐MP systems only

• RED bias (BRED) 

• Validation testing uncertainty (UVal)

• Uncertainty of Interpolation (UIN) of dose monitoring algorithm

• Uncertainty of surrogate microbe(s) dose‐response (UDR) from collimated beam testing

• UV sensor measurement uncertainty (US)

VALIDATION FACTOR & VALIDATED DOSE

17 May 2013

5

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

VF

REDDVal

1001 Val

REDPoly

UBBVF

222SDRINVal UUUU

• Provided in LT2ESWTR

• Validated dose (DVal) ≥ the required dose (DReq) to receive inactivation credits for target pathogen

DOSE REQUIREMENTS

17 May 2013

6

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

qVal DD Re

UV Dose Requirements (mJ/cm2)

TargetPathogen

Log Inactivation

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Crypto 1.6 2.5 3.9 5.8 8.5 12 15 22

Giardia 1.5 2.1 3.0 5.2 7.7 11 15 22

Virus 39 58 79 100 121 143 163 186

26 December 2012

PowerPoint Sample 4

• Accounts for bias in dose monitoring algorithm resulting from differences in UV sensitivity between target pathogen and microbial surrogate used for validation

• Surrogates having a higher resistance to UV disinfection will tend to overestimate the dose received by target pathogen

• Reactor‐specific dose distribution

• UV sensitivity of pathogen and surrogate

• RED bias values in UVDGM based on CFD modeling of UV reactor with “worst case” dose distribution

• Typically results in conservative calculation of VF and DVAL

• Selection of proper surrogate microbe (or microbes) with is key

• Major focal point of recent validation advancements to develop more accurate dose monitoring algorithms

• Reduce or eliminate RED bias from VF calculation

RED BIAS 

17 May 2013WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

7

• Developed from testing with a single phage

• RED bias can be reduced using a surrogate with similar UV254 dose response as pathogen (such as T1UV)

CALCULATED DOSE (RED) ALGORITHM

17 May 2013WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

2

10

UVAEUVADC

oUVABA

Q

SS

UVARED

8

0

20

40

60

80

100

0 1 2 3 4

UV

Do

se (

mJ/

cm2 )

Log Inactivation

T1UV Giardia Crypto

26 December 2012

PowerPoint Sample 5

2

10log

UVAEUVADC

L

oUVABA

DQ

SS

UVAi

• Developed from testing with multiple (2 to 3) phage having UV254 

dose‐responses bracketing the target pathogen

• Direct calc of pathogen log inactivation (logi) or RED based on interpolation of UV sensitivity (DL) = eliminate RED bias

LOG INACTIVATION (logi) ALGORITHM

17 May 2013WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

LDiRED log

9

0

20

40

60

80

100

0 1 2 3 4

UV

Do

se (

mJ/

cm2 )

Log Inactivation

MS2 T1UV T7 Giardia Crypto

• Incorporates equations developed from reactor validation

• Algorithms for UV reactor monitoring and control

• Generation of warnings, alarms, and critical alarms

• Two levels of system control/monitoring

• Local Control Panel (LCP)

• Monitoring / control individual reactor

• Master Control Panel (MCP) 

• Supervision of entire UV facility

• Coordination of UV reactor operation

PLC BLACKBOX

17 May 2013

10

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

26 December 2012

PowerPoint Sample 6

MONITORING ALGORITHMS

17 May 2013

11

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

logi & RED

1a

1b

• Target logi is entered in PLC (fixed)• UVA calc by PLC (Eq. 2)• Intensity (S) measured by UV sensors• S0 calc by PLC (Eq. 3)• Flow (Q) from flow meter• UV sensitivity (DL) calc by PLC‐ Pathogens: LT2 dose requirements‐ Surrogate: Validated dose‐response

UV254 Absorbance (UVA)

2• UV254 Transmittance (UVT) from on‐line monitor (via MCP)

Max UV Intensity (S0)

3• UVT from on‐line monitor (via MCP)• Lamp power (PL) set to 100% for S0

2

10log

UVAEUVADC

L

oUVABA

DQ

SS

UVAi

2

10 UVTDUVTCL

BUVTA PUVTS

100log UVTUVA

LDiRED log

MONITORING ALGORITHMS

17 May 2013

12

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

Validated Dose

4• RED calc by PLC (Eq. 1b)• VF calc by PLC (Eq. 5)

Validation Factor

5• BRED derived from UVDGM (App. G)• BPoly fixed value or calc by PLC• UVal calc by PLC (Eq. 6)

Validation Uncertainty

6

• UIN calc by PLC f(RED)• UDR calc by PLC f(RED); or fixed value‐ omit if < 15%

• US fixed value (typ. 0)‐ omit if < 10%

1001 Val

PolyREDUBBVF

222SDRINVal UUUU

VFREDDVal

26 December 2012

PowerPoint Sample 7

• Two dose set points

• Compliance set point (DReq): DVal required to provide logi required for compliance with regulations

• PLC generates off‐spec alarm is DVal < DReq

• Target dose (DTar): Normal operating target typ. set above DReq

• Provide an operating buffer to account for process fluctuations 

• PLC generates warning if DVal < DTar

• Response to process fluctuations (normal operation)

• PLC will adjust operating parameters to maintain target dose

• ↓UVT or ↑Flow = decrease in UV dose provided by reactor

• PLC: ↑lamp power (intensity), ↑lamps or ↑reactors

• ↑UVT or ↓Flow =  increase in UV dose

• PLC : ↓ lamp power (intensity), ↓lamps or ↓reactors

MAINTAINING DOSE

17 May 2013

13

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

*Not universally applied for all UV disinfection applications : Depends on interpretation of LT2ESWTR (not specifically recommended by UVDGM)

OFF‐SPEC OPERATION

17 May 2013

14

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

• DVal < DReq

• Operating outside of validated limits

• Flow rate > maximum validated flow

• UVT < minimum validated UVT

• S/S0 < minimum validated S/S0*

• PLC calculated logi < minimum validated logi (or REDCALC < REDValMin)

• Calibration of monitors not properly maintained

• UV Sensors (monthly) & UV Sensor (weekly)

• Meter (or signal) failure

• May include flow meter and UVT monitor

• LT2ESWTR allowance of ≤ 5% off‐spec (monthly production vol.)

26 December 2012

PowerPoint Sample 8

• In some circumstances operation outside of the validated range is acceptable

• Values used in monitoring algorithms must result in conservative estimate of logi or RED

• If Q < validated range, lower limit used in logi calc

• If UVT > validated range, upper limit used in logi calc

• Actual UVT should be used to calculate S0• If S/S0 > validated range, upper limit used in logi calc*

• If PLC calc logi > validated range, value capped at upper limit

or If PLC calc RED > validated range, upper limit used in DVal calc

DEFAULT VALUES USED FOR CONSERVATIVE SYSTEM CONTROL

17 May 2013

15

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

*Not universally applied for all UV disinfection applications : Depends on interpretation of LT2ESWTR (not specifically recommended by UVDGM)

2D evaluation of validated limits, typically as a f(flow & UVT)

VALIDATION “ENVELOPE”

17 May 2013

16

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

50

60

70

80

90

100

0 10 20 30 40 50

UV

T (

%)

Q (mgd)

Validation Conditions Validation Envelope

26 December 2012

PowerPoint Sample 9

RESPONSE TO COMPONENTOR SIGNAL FAILURE

17 May 2013

17

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

Component Response

Lamp or Sensor

LCP• Lamp or Sensor failure alarm • Lamp or assoc. bank removed from logi (or RED) calc ‐ if DVal < DReq = off‐spec alarm, record vol.‐ if DVal < DTar = warning

• Calc. available reactor capacity  (send to MCP)‐ if capacity > Q: ↑power, ac vate req. lamps /banks‐ if capacity < Q: ↑power of on‐line lamps

MCP• if capacity < Q: Activate backup reactor, remove faulted reactor from service

RESPONSE TO COMPONENT OR SIGNAL FAILURE

17 May 2013

18

WaterRF Webcast: UV System Start‐Up, Operations and Avoidance of Off‐Spec Water

Component Response

Flow meter LCP• Flow meter failure alarm (send to MCP)• if alt. signal* not provided by MCP = off‐spec alarm, record vol.‐ ↑power of on‐line lamps 

MCP• Provide alt. signal* (if avail.) for temporary operation ‐ Avoidance of off‐spec operation

• Activate backup reactor, remove faulted reactor from service

UVT monitor MCP• UVT monitor failure alarm • Default or manually entered UVT sent to LCP of each reactor for logi or REC calc‐ Avoidance of off‐spec operation

*Site‐specific – alternate approaches may be available to determine flow through a reactor in the event of a single flow meter failure

26 December 2012

PowerPoint Sample 10

17 M

ay 2013 THANK YOU

BRYAN [email protected]

5/16/2013

1

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Performance of Installed UV Systems

WaterRF Webcast, May 17, 2013

Mark HeathCarollo Engineers

720 SW Washington St., Suite 550, Portland, OR 97205 [email protected]

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Presentation Overview

UV Disinfection Knowledge Base Dose Monitoring Algorithms Lamp Ageing Sleeve Fouling

Combined Aging and Fouling

5/16/2013

2

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Database Supported by Detailed On-site Investigations

Poughkeepsie, N.Y.Victoria, B.C.Lethbridge, Alta.Edmonton, Alta.Lake Havasu, Ariz.Tempe, Ariz.Weber Basin, Layton, UTNeenah, Wis.

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Online UV Dose Monitoring is the Basis for Compliance

UVIntensity

UVT

Flowrate

UV Dose

LampStatus

5/16/2013

3

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

UV Monitoring Algorithms Evaluations

Simulate a range of flows, UVTs, lamp power settings

Compare displayed RED to UV validation report Excellent agreement with more recent UV

systems (post 2003 UVDGM) Early systems (pre 2003) have undocumented

UV dose algorithms Not UVDGM compliant Recommend UV system upgrades

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Many UV Systems Overdosing by a Factor of 2 or More

0

10

20

30

40

50

60

70

80

90

100

1/3/07 4/13/07 7/22/07 10/30/07 2/7/08 5/17/08 8/25/08 12/3/08

Ca

lcu

late

d R

ED

(m

J/c

m2 )

Date

MS2 RED Sliding Average Required MS2 RED

5/16/2013

4

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

MP UV Lamps Met Lamp Aging Criteria

• Design: 0.80 lamp output after 5,000 hrs• Observed: 0.92 lamp output after 14,000 hrs

0.880.900.920.940.960.981.001.021.041.061.08

0 2000 4000 6000 8000 10000 12000 14000

Rel

ativ

e U

V S

enso

r R

ead

ing

Lamp Age (Hours)

100% 80% 60%

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

LPHO UV Lamps Also Met Lamp Aging Criteria

• Design: 0.87 lamp output after 12,000 hrs• Observed: 0.88 to 1.08 lamp output after

6,000 hrs, average output 0.99

5/16/2013

5

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

With Wipers Disabled, No Fouling Observed at Two MP Locations

y = -0.0002x + 1

0.8

0.9

1.0

1.1

1.2

0 50 100 150 200

CA

F

Run Time (days)

Wipers Disabled to Reduce Maintenance

0.97 factor after 175 days

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

MP Wipers are Doing Their Job

5/16/2013

6

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

But Internal Fouling Can Be an Issue With MP Systems

Internal Fouling Sometimes Can be Removed Using Acid Cleaning

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Significant Fouling Observed with Unwiped LPHO Systems

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 2 3 4 5 6Sle

eve/

UV

Sen

sor

Po

rt F

ou

lin

g

Fac

tor

UV Sensor Port ID

Reactor 1 Reactor 2

Direction of Water Flow

5/16/2013

7

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Foulant Removed by Offline Acid Cleaning

0

0.2

0.4

0.6

0.8

1

1.2

2-1 3-4 3-7 3-10

Sleeve ID

Sle

eve

Fo

uli

ng

Fa

cto

r

Viewed Top to Bottom Viewed Side to Side

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

But Manual Cleaning May Be Required

0.000.100.200.300.400.500.600.700.800.901.00

After Chemical Cleaning After Spray with Water Only

Sleeve ID

Sle

eve

Fo

uli

ng

Fa

cto

r

Viewed Top to Bottom Viewed Side to Side

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Spray Wand Location

Lamp Rows Lamp

5/16/2013

8

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Fouling: Out of Sight, Out of Mind

Utility operators do not have tools to quantify lamp aging and fouling

So if UV dose meets target dose, operators assume all is OK

But fouling significantly increases UV system O&M costs

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

CAF Index Uses UV Sensors to Monitor Lamp Aging/Fouling

CAFS

Sp

Measured UV Sensor Reading

Predicted UV Sensor Reading

5/16/2013

9

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

What is Sp

CAP PUVTBS exp10

UVT Lamp PowerSensor Reading

with New Lamp and Clean Sleeve

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

How Do We Determine Sp

The Easy way: Obtain Equation from Validation Report

The Hard Way: Determine Directly

5/16/2013

10

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

What Can The CAF Index tell Us?

Provides Real-Time Status on Lamp Output Indicates When Fouling is Occurring Monitor Wiper Performance Trigger Manual Cleaning May Identify a Failing Sensor May Identify Problems with On-Line UVT Monitor

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Monitor CAF Index Over Time to Identify Important Trends

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CA

F I

nd

ex B

ased

on

Lab

UV

T

Date

Reactor 1 Reactor 2 Reactor 3 Reactor 4 Average

5/16/2013

11

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Bad News

Sensor Equations from Validation Reports can be Complex, Requiring Calculations Run in SCADA or External Spreadsheets.

Normal Variations in Lamp Output, Sleeve Transmittance and Water Quality during Validation may Cause Inaccuracies at Installation.

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Good News

Many UV Vendors are Incorporating CAF Index Calculations into System Control Software Displaying Real Time Data on System HMI.

On-Site Fine Tuning is possible to Account for Variability in Lamp Output and Sleeve Transmittance for LP and MP Systems, and Spectral Differences in Water, for MP Systems to improve CAF Accuracy.

5/16/2013

12

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Conclusions Dose monitoring algorithms in good agreement with

validation reports written post 2003. Many systems providing significant overdosing. Lamp aging criteria generally met or exceeded. Wipers for MP system generally effective. Significant fouling observed in some un-wiped systems. Operators do not have sufficient tools to monitor sleeve

fouling. CAF index provides operators a real-time troubleshooting

tool to understand system performance.

© 2013 Water Research Foundation. ALL RIGHTS RESERVED.© 2013 Water Research Foundation. ALL RIGHTS RESERVED.

Performance of Installed UV Systems

WaterRF Webcast, May 17, 2013

Mark HeathCarollo Engineers

720 SW Washington St., Suite 550, Portland, OR 97205 [email protected]

5/16/2013

1

UV Disinfection 

Tools, Tips, and Techniques for Operations and Maintenance

Presenters:

• Marilyn Towill, Superintendent SCFP and Systems Control

• Kevin Brown, Assistant Water Treatment Operations Supervisor

Co‐Authors:

• Willyam Dragon, Operations Supervisor SCFP

• Karen Tully, Senior Project Engineer

5/16/2013

2

Three Source Lakes

Multiple Protection Barriers• Closed Watersheds

• Water Treatment 

• Water Distribution integrity 

• Certified Operators

• Monitoring

5/16/2013

3

Seymour Capilano Filtration Plant

Clearwells

Post‐Treatment using Chlorine & pH adjustment

Filtration

Flocculation

Pre‐Treatment

UV Disinfection

5/16/2013

4

UV Reactors

• WEDECO model K143 12/4 (5) 

• 24 UV reactors , each located directly downstream of a filter

• Each UVR has 4 rows of 12‐low pressure high output (LPHO) lamps, 1 additional row for future use, 350 Watts per lamp

• Online UV transmittance monitors, 2 for each process train

• UV design > 2‐log Cryptosporidium and Giardiainactivation

UV Performance Parameters

• SCFP Individual Filter/UV operations: 

‐ 40 to 80 MLD (11 to 21 MGD)

‐ 95 to 98% UVT

• Normally 2 rows operating at 70% power, dose over30 mJ/cm2

‐ UV operating at or above target dose ≥ 99% time

‐ US EPA guideline > 95% on a monthly basis

‐ UV default startup was 4 rows of lamps on for 8 hours prior to modulation. Reset to 1 hour saving 23% energy per filter run

• UV uses < 8% of total SCFP energy use

5/16/2013

5

Tips and Tricks

Training and Procedures

– Web based training developed for SCFP prior to start up, with knowledge assessment 

– Field assessment

– Continuously updated as operations change

– Consistency of operations and knowledge 

Web based Training

5/16/2013

6

Web based Training

Tips and Tricks

• Daily coordination meeting (Monday ‐ Friday )

– Operations, Maintenance, Quality Control, Software Specialists, Utility System Control

– Coordinate work activities:

• Next month, next week, and today

• Including contractors, preventative maintenance

• Safety

• Equipment or process issues

5/16/2013

7

Tips and Tricks

Alarm management ‐ Today

– 20,000 alarm points 

– Multiple nuisance alarms 

– Need to review, rationalize and prioritize alarms

Tips and Tricks

Alarm management ‐ Tomorrow

– Alarms reduced to less than 15,000

– Eradication of nuisance alarms

– Alarms prioritized to appropriate level based on:

• Safety Consequences

• Environmental Consequences

• Process  Interruptions and Upsets

• Time Response for Operator intervention

5/16/2013

8

Tips and Tricks

• Alarm Optimization

Filter Water Level

UVR Level

Filter in Service

Level Switch Low

Tips and Tricks

• Alarm Optimization

Filter Water Level

UVR Level

Filter Drain down

Level Switch Low

5/16/2013

9

Tips and Tricks

• Alarm Optimization

– UV lamp row start alarm

• Lamp warranty based on no more than 4 starts per day

• Lamps occasionally starting multiple times per day

• Added alarm to alert Operator if this condition occurs

Tips and Tricks

• Alarm Optimization

– UV dose auto increase

• When filter turbidity is >0.1 NTU and particle count is >90 counts/100ml the UV dose doubles for that reactor

• Dose increase ensures effective UV disinfection with abnormal water quality from an individual filter

5/16/2013

10

Tools and Techniques

UVR Excel spreadsheet

• Almost realtimeinformation 

• Easily select and view UVR 1 to 24

• Choose start date and span

• Observe long‐term trends 

• Remotely accessible via secure network

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:20 to 02-Apr-2013 02:40

5/16/2013

11

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:45 to 01-Apr-2013 02:45

UVT Measure (%)

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:45 to 01-Apr-2013 02:45

Power (W)

5/16/2013

12

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:45 to 01-Apr-2013 02:45

Rows 1, 2, 3, 4Sensor Intensity (mW/cm2)

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:45 to 01-Apr-2013 02:45

Flow (MLD)

5/16/2013

13

SCFP UV Intensity Filter Number 14, from 31-Mar-2013 23:45 to 01-Apr-2013 02:45

Calculated UV Dose (mJ/cm2)

Target Dose (21 mJ/cm2)

Tools and Techniques

Monthly Sensor Checks• Compare to reference sensor, replace if % Error is too great

5/16/2013

14

Tools and Techniques

• UV Manual Cleaning Frequency

– Every 6 months clean sensor sleeves 

– Every 12 months clean reactors

– Timed prior to organic seasons

– Benefits:

• More accurate performance information

• Power savings

• Mitigate low intensity alarms on older lamps

Tools and TechniquesManual Cleaning

• 5% phosphoric acid made from 85% food grade

• Use one batch solution for 12 reactors

• Reactor isolated from filter and clearwell during cleaning

• After cleaning neutralize acid solution with sodium bicarbonate

5/16/2013

15

Tools and Techniques

UV Cleaning Results

• Deposits primarily aluminum and iron

• Overall 7 to 15% improvement in sensor readings

• Virtually full recovery to initial cleanliness

before

after

Tools and Techniques

UV Cleaning Results

• Results kept as records

• Compare initial, pre, and post data

• Helps identify end of life for UV lamps

5/16/2013

16

Overall Results

• UV Reactors are more reliable with less downtime

• Reduction in staff time associated with maintaining UV Reactors

• Reduced energy costs

• Improved alarms and focused troubleshooting

Before optimization

After optimization with 3 years operating experience

5/16/2013

17

What’s next at SCFP

• Lamp replacements (upgrade)

– Ecoray® Lamps and ballasts are next generation

• Less mercury in lamps

• Lower power consumption when dimmed

• More reliable startup / operation

• Parts same cost, longer warranty on lamps

– Project to replace all 24 units over 4 years

• Normalizes Maintenance replacement cost and labourover time

What’s next at SCFP

• Investigating revalidation based on available data

– UV reactors validated had limited data points above 96% UVT 

– Actual filtered UVT is up to 98%

– Expected to reduce amount of energy consumed

5/16/2013

18

Coming Soon

Complement existing ozone treatment

By adding ultraviolet treatment

Coquitlam Source Treatment

5/16/2013

19

CWTP UV Reactors• Trojan UVTorrent ®

• 8 Reactors (7 duty, 1 standby)

• 5 rows of 8 Lamps

• Higher intensity (1 kW) LPHO Lamps

• 200 MLD (53 MGD) per unit

• Chemical/mechanical wipers

• On demand to distribution system

Lessons Learned

• Training and Procedure development prior to start up helped transition from theory to operation.

• Clear communication between all work groups on a daily basis ensures work is done efficiently and effectively.

• Alarm management and optimization helps Operators focus on key issues, problems, and opportunities for further optimization.

5/16/2013

20

Lessons Learned

• Excel tools, developed in‐house, help trend performance and identify longer term issues and opportunities

• Manual cleaning proves to be relatively easy and very effective

• Keep lessons learned in mind as Plant upgrades happen and new technologies become available