uva-dare (digital academic repository) breaking the code ... · associated genetic loci. nature 511...

40
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Breaking the code: Statistical methods and methodological issues in psychiatric genetics Stringer, S. Link to publication Citation for published version (APA): Stringer, S. (2015). Breaking the code: Statistical methods and methodological issues in psychiatric genetics. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 16 Jun 2020

Upload: others

Post on 09-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Breaking the code: Statistical methods and methodological issues in psychiatric genetics

Stringer, S.

Link to publication

Citation for published version (APA):Stringer, S. (2015). Breaking the code: Statistical methods and methodological issues in psychiatric genetics.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 16 Jun 2020

Page 2: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

199

Reference list 1. Venter,J.C. et al. The sequence of the human genome.

Science 291, 1304-1351 (2001).

2. Cross-Disorder Group of the Psychiatric Genomics Consortium Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature genetics 45, 984-994 (2013).

3. Lichtenstein,P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234-239 (2009).

4. Sullivan,P.F., Daly,M.J., & O'Donovan,M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews Genetics 13, 537-551 (2012).

5. Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421-427 (2014).

6. International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748-752 (2009).

7. Gladwin,T.E. et al. Segment-wise genome-wide association analysis identifies a candidate region associated with schizophrenia in three independent samples. PloS One 7, e38828 (2012).

8. Zuk,O., Hechter,E., Sunyaev,S.R., & Lander,E.S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences 109, 1193-1198 (2012).

9. van Os,J. & Kapur,S. Schizophrenia. Lancet 374, 635-645 (2009).

10. Mesholam-Gately,R.I., Giuliano,A.J., Goff,K.P., Faraone,S.V., & Seidman,L.J. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 23, 315-336 (2009).

Page 3: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

200

11. American Psychiatric Association Diagnostic and statistical manual of mental disorders: DSM-IV-TR (American Psychiatric Pub, 2000).

12. Robinson,D.G., Woerner,M.G., McMeniman,M., Mendelowitz,A., & Bilder,R.M. Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder. Am. J. Psychiatry 161, 473-479 (2004).

13. Harrison,G. et al. Recovery from psychotic illness: a 15- and 25-year international follow-up study. British Journal of Psychiatry 178, 506-517 (2001).

14. Marwaha,S. et al. Rates and correlates of employment in people with schizophrenia in the UK, France and Germany. British Journal of Psychiatry 191, 30-37 (2007).

15. Lieberman,J.A. et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New England Journal Of Medicine 353, 1209-1223 (2005).

16. Miller,G. Beyond DSM: seeking a brain-based classification of mental illness. Science 327, 1437 (2010).

17. Wessman,J. et al. Mixture Model Clustering of Phenotype Features Reveals Evidence for Association of DTNBP1 to a Specific Subtype of Schizophrenia. Biological Psychiatry 66, 990-996 (2009).

18. First,M.B., Spitzer,R.L., Gibbon,M., & Williams,J.B. Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I), Clinician Version, Administration Booklet (American Psychiatric Publishing, 1997).

19. Derks,E.M. & Ophoff,R.A. Replication and refinement of the role of rs548181 in schizophrenia: results from a family based study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 162B, 75-77 (2013).

20. Derks,E.M. et al. Kraepelin Was Right: A Latent Class Analysis of Symptom Dimensions in Patients and Controls. Schizophrenia. Bulletin 38, 495-505 (2012).

21. Derks,E.M., Vorstman,J.A., Ripke,S., Kahn,R.S., & Ophoff,R.A. Investigation of the Genetic Association between

Page 4: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

201

Quantitative Measures of Psychosis and Schizophrenia: A Polygenic Risk Score Analysis. PLoS One. 7, e37852 (2012).

22. Fanous,A.H. et al. Genome-wide association study of clinical dimensions of schizophrenia: polygenic effect on disorganized symptoms. American Journal of Psychiatry 169, 1309-1317 (2012).

23. Gottesman,I. Schizophrenia Genesis: The Origin of Madness (Freeman, New York, 1991).

24. Sullivan,P.F., Kendler,K.S., & Neale,M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of General Psychiatry 60, 1187-1192 (2003).

25. Wray,N.R. & Gottesman,I.I. Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers of Genetics 3, 118 (2012).

26. McGue,M. & Gottesman,I.I. Genetic linkage in schizophrenia: perspectives from genetic epidemiology. Schizophrenia Bulletin 15, 453-464 (1989).

27. Kirov,G. et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Molecular Psychiatry 14, 796-803 (2009).

28. Stefansson,H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744-747 (2009).

29. Shi,J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753-757 (2009).

30. McKusick,V.A. Mendelian Inheritance in Man and its online version, OMIM. American Journal of Human Genetics 80, 588-604 (2007).

31. Hindorff,L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences 106, 9362-9367 (2009).

Page 5: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

202

32. Ripke,S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics 45, 1150-1159 (2013).

33. Walters,J.T. et al. The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry 170, 877-885 (2013).

34. Kahn,R.S. & Keefe,R.S. Schizophrenia Is a Cognitive Illness: Time for a Change in Focus. JAMA Psychiatry 70, 1107-1112 (2013).

35. Ripke,S. et al. Genome-wide association study identifies five new schizophrenia loci. Nature Genetics 43, 969-976 (2011).

36. Bemis,L.T. et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Research 68, 1362-1368 (2008).

37. Szulwach,K.E. et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. Journal of Cell Biology 189, 127-141 (2010).

38. Silber,J. et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine 6, 14 (2008).

39. Smrt,R.D. et al. MicroRNA miR-137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb-1. Stem Cells 28, 1060-1070 (2010).

40. Betancur,C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Research 1380, 42-77 (2011).

41. Chiurazzi,P., Schwartz,C.E., Gecz,J., & Neri,G. XLMR genes: update 2007. European Journal of Human Genetics 16, 422-434 (2008).

42. Cross-Disorder Group of the Psychiatric Genomics Consortium Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371-1379 (2013).

Page 6: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

203

43. Visscher,P.M., Goddard,M.E., Derks,E.M., & Wray,N.R. Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Molecular Psychiatry 17, 474-485 (2011).

44. Maher,B. The case of the missing heritability. Nature 456, 18-21 (2008).

45. Gibson,G. Rare and common variants: twenty arguments. Nature Reviews Genetics 13, 135-145 (2012).

46. Manolio,T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747-753 (2009).

47. Frazer,K.A., Murray,S.S., Schork,N.J., & Topol,E.J. Human genetic variation and its contribution to complex traits. Nature Reviews Genetics 10, 241-251 (2009).

48. Eichler,E.E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics 11, 446-450 (2010).

49. Hemani,G., Knott,S., & Haley,C. An Evolutionary Perspective on Epistasis and the Missing Heritability. PLoS Genetics 9, e1003295 (2013).

50. Stringer,S., Derks,E.M., Kahn,R.S., Hill,W.G., & Wray,N.R. Assumptions and properties of limiting pathway models for analysis of epistasis in complex traits. PloS One 8, e68913 (2013).

51. Hill,W.G., Goddard,M.E., & Visscher,P.M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics 4, e1000008 (2008).

52. Yang,J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics 42, 565-569 (2010).

53. Yang,J., Lee,S.H., Goddard,M.E., & Visscher,P.M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics 88, 76-82 (2011).

Page 7: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

204

54. Lee,S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics 44, 247-250 (2012).

55. Stahl,E.A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics 44, 483-489 (2012).

56. Wegmann,D., Leuenberger,C., Neuenschwander,S., & Excoffier,L. Abctoolbox: a versatile toolkit for approximate bayesian computations. BMC Bioinformatics 11, 116 (2010).

57. Altshuler,D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52-58 (2010).

58. Abecasis,G.R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061-1073 (2010).

59. Huang,J. et al. Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. American Journal of Psychiatry 167, 1254-1263 (2010).

60. Voineskos,A.N. et al. Neurexin-1 and frontal lobe white matter: an overlapping intermediate phenotype for schizophrenia and autism spectrum disorders. PLoS One 6, e20982 (2011).

61. Solovieff,N., Cotsapas,C., Lee,P.H., Purcell,S.M., & Smoller,J.W. Pleiotropy in complex traits: challenges and strategies. Nature Reviews Genetics 14, 483-495 (2013).

62. Koboldt,D.C., Steinberg,K.M., Larson,D.E., Wilson,R.K., & Mardis,E.R. The Next-Generation Sequencing Revolution and Its Impact on Genomics. Cell 155, 27-38 (2013).

63. Malhotra,D. & Sebat,J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223-1241 (2012).

64. Kunii,Y. et al. Revisiting DARPP-32 in postmortem human brain: changes in schizophrenia and bipolar disorder and genetic associations with t-DARPP-32 expression. Molecular Psychiatry 19, 192-199 (2014).

Page 8: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

205

65. Nair,A. & Howard,R. ENCODE and a new landscape for psychiatric genetics. British Journal of Psychiatry 203, 84-85 (2013).

66. Gibbs,R.A. et al. The international HapMap project. Nature 426, 789-796 (2003).

67. The 1000 Genomes Project Consortium An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56-65 (2012).

68. Gottesman,I.I. & Gould,T.D. The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636-645 (2003).

69. Brown,T.A. Genomes (Wiley-Liss, Oxford, 2002).

70. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).

71. Brookes,K.J. The VNTR in complex disorders: The forgotten polymorphisms? A functional way forward? Genomics 101, 273-281 (2013).

72. MacArthur,D.G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823-828 (2012).

73. Glenn,A.L. The other allele: Exploring the long allele of the serotonin transporter gene as a potential risk factor for psychopathy: A review of the parallels in findings. Neuroscience & Biobehavioral Reviews 35, 612-620 (2011).

74. Homberg,J.R. & Lesch,K.P. Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry 69, 513-519 (2011).

75. Caspi,A., Hariri,A.R., Holmes,A., Uher,R., & Moffitt,T.E. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry 167, 509-527 (2010).

Page 9: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

206

76. Ferrer Agüero,J.M., Millán,S., Rodríguez de Castro,F., Martín-Loeches,I., & Solé Violán,J. Community acquired pneumonia: Genetic variants influencing systemic inflammation. Medicina Intensiva (English Edition) (2014).

77. Neale,B.M., Ferreira,M.A.R., Medland,S.E., & Posthuma,D. Statistical genetics: gene mapping through linkage and association (Taylor & Francis New York, 2008).

78. Lao,O. et al. Correlation between genetic and geographic structure in Europe. Current Biology 18, 1241-1248 (2008).

79. Welter,D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research 42, D1001-D1006 (2014).

80. Dudbridge,F. & Gusnanto,A. Estimation of significance thresholds for genomewide association scans. Genetic Epidemiology 32, 227-234 (2008).

81. Hoggart,C.J., Clark,T.G., De Iorio,M., Whittaker,J.C., & Balding,D.J. Genome wide significance for dense SNP and resequencing data. Genetic Epidemiology 32, 179-185 (2008).

82. Niculescu,A.B. Convergent functional genomics of psychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 162, 587-594 (2013).

83. Dick,D.M., Latendresse,S.J., & Riley,B. Incorporating genetics into your studies: A guide for social scientists. Frontiers in Psychiatry 2, 17 (2011).

84. Tranchevent,L.C. et al. A guide to web tools to prioritize candidate genes. Briefings in Bioinformatics 12, 22-32 (2011).

85. Yu,W., Wulf,A., Liu,T., Khoury,M.J., & Gwinn,M. Gene Prospector: an evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases. BMC Bioinformatics 9, 528 (2008).

86. Cheng,D. et al. PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Research 36, W399-W405 (2008).

Page 10: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

207

87. Hamosh,A., Scott,A.F., Amberger,J.S., Bocchini,C.A., & McKusick,V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Research 33, D514-D517 (2005).

88. Sham,P.C. & Purcell,S.M. Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics 15, 335-346 (2014).

89. Purcell,S.M., Cherny,S.S., & Sham,P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149-150 (2003).

90. Ioannidis,J.P., Castaldi,P., & Evangelou,E. A compendium of genome-wide associations for cancer: critical synopsis and reappraisal. Journal of the National Cancer Institute(2010).

91. Park,J.H. et al. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proceedings of the National Academy of Sciences 108, 18026-18031 (2011).

92. Patnala,R., Clements,J., & Batra,J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genetics 14, 39 (2013).

93. Lonsdale,J. et al. The genotype-tissue expression (GTEx) project. Nature Genetics 45, 580-585 (2013).

94. Sherry,S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29, 308-311 (2001).

95. Marchini,J., Cardon,L.R., Phillips,M.S., & Donnelly,P. The effects of human population structure on large genetic association studies. Nature Genetics 36, 512-517 (2004).

96. Hu,X.Z. et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. American Journal of Human Genetics 78, 815-826 (2006).

97. Visscher,P.M., Brown,M.A., McCarthy,M.I., & Yang,J. Five years of GWAS discovery. American Journal of Human Genetics 90, 7-24 (2012).

Page 11: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

208

98. Ott,J., Kamatani,Y., & Lathrop,M. Family-based designs for genome-wide association studies. Nature Reviews Genetics 12, 465-474 (2011).

99. Salvatore,J.E. et al. Polygenic Scores Predict Alcohol Problems in an Independent Sample and Show Moderation by the Environment. Genes 5, 330-346 (2014).

100. Belsky,D.W. et al. Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: evidence from a 4-decade longitudinal study. JAMA Psychiatry 70, 534-542 (2013).

101. Mier,D., Kirsch,P., & Meyer-Lindenberg,A. Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Molecular Psychiatry 15, 918-927 (2009).

102. Flint,J. & Munafò,M.R. The endophenotype concept in psychiatric genetics. Psychological Medicine 37, 163-180 (2007).

103. Evangelou,E. & Ioannidis,J.P. Meta-analysis methods for genome-wide association studies and beyond. Nature Reviews Genetics 14, 379-389 (2013).

104. Richard,J., Pillemer,D.B., & Light,R.J. Summing up: the science of reviewing research (Harvard University Press, 2009).

105. United Nations Office on Drugs World drug report 2010 (United Nations Publications, 2010).

106. Aggarwal,S.K. et al. Medicinal lise of cannabis iti the United States: Historical perspectives, current trends, and future directions. Journal of Opioid Management 5, (2009).

107. Lucas,P. Cannabis as an adjunct to or substitute for opiates in the treatment of chronic pain. Journal of Psychoactive Drugs 44, 125-133 (2012).

108. Huas,C., Hassler,C., & Choquet,M. Has occasional cannabis use among adolescents also to be considered as a risk marker? European Journal of Public Health 18, 626-629 (2008).

Page 12: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

209

109. Davis,G.P., Compton,M.T., Wang,S., Levin,F.R., & Blanco,C. Association between cannabis use, psychosis, and schizotypal personality disorder: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. Schizophrenia Research 151, 197-202 (2013).

110. Power,R.A. et al. Genetic predisposition to schizophrenia associated with increased use of cannabis. Molecular Psychiatry 19, 1201-1204 (2014).

111. Hall,W. & Babor,T.F. Cannabis use and public health: assessing the burden. Addiction 95, 485-490 (2000).

112. Hall,W. & Solowij,N. Adverse effects of cannabis. Lancet 352, 1611-1616 (1998).

113. Fergusson,D.M. & Horwood,L.J. Does cannabis use encourage other forms of illicit drug use? Addiction 95, 505-520 (2000).

114. Verweij,K.J. et al. Genetic and environmental influences on cannabis use initiation and problematic use: a meta analysis of twin studies. Addiction 105, 417-430 (2010).

115. Gillespie,N.A., Lubke,G.H., Gardner,C.O., Neale,M.C., & Kendler,K.S. Two-part random effects growth modeling to identify risks associated with alcohol and cannabis initiation, initial average use and changes in drug consumption in a sample of adult, male twins. Drug and Alcohol Dependence 123, 220-228 (2012).

116. Gillespie,N.A., Neale,M.C., & Kendler,K.S. Pathways to cannabis abuse: a multi-stage model from cannabis availability, cannabis initiation and progression to abuse. Addiction 104, 430-438 (2009).

117. Agrawal,A., Neale,M.C., Jacobson,K.C., Prescott,C.A., & Kendler,K.S. Illicit drug use and abuse/dependence: modeling of two-stage variables using the CCC approach. Addictive Behaviors 30, 1043-1048 (2005).

118. Kendler,K.S., Karkowski,L.M., Corey,L.A., Prescott,C.A., & Neale,M.C. Genetic and environmental risk factors in the aetiology of illicit drug initiation and subsequent misuse in women. British Journal of Psychiatry 175, 351-356 (1999).

Page 13: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

210

119. Agrawal,A. et al. Linkage scan for quantitative traits identifies new regions of interest for substance dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. Drug and Alcohol Dependence 93, 12-20 (2008).

120. Agrawal,A. et al. An autosomal linkage scan for cannabis use disorders in the nicotine addiction genetics project. Archives of General Psychiatry 65, 713-721 (2008).

121. Agrawal,A. et al. Autosomal linkage analysis for cannabis use behaviors in Australian adults. Drug and Alcohol Dependence 98, 185-190 (2008).

122. Ehlers,C.L., Gilder,D.A., Gizer,I.R., & Wilhelmsen,K.C. Heritability and a genome wide linkage analysis of a Type II/B cluster construct for cannabis dependence in an American Indian community. Addiction Biology 14, 338-348 (2009).

123. Ehlers,C.L., Gizer,I.R., Vieten,C., & Wilhelmsen,K.C. Linkage analyses of cannabis dependence, craving, and withdrawal in the San Francisco family study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 153, 802-811 (2010).

124. Hopfer,C.J. et al. A genome-wide scan for loci influencing adolescent cannabis dependence symptoms: evidence for linkage on chromosomes 3 and 9. Drug and Alcohol Dependence 89, 34-41 (2007).

125. Agrawal,A. & Lynskey,M.T. Candidate genes for cannabis use disorders: findings, challenges and directions. Addiction 104, 518-532 (2009).

126. Gillespie,N.A., Lichtman,A., & Kendler,K.S. The Genetics of Cannabis Use and Cannabis Use Disorders. Biological Research on Addiction 2, 523-531 (2013).

127. Agrawal,A. et al. Evidence for association between polymorphisms in the cannabinoid receptor 1 (CNR1) gene and cannabis dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 150, 736-740 (2009).

128. Hopfer,C.J. et al. Cannabis receptor haplotype associated with fewer cannabis dependence symptoms in adolescents.

Page 14: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

211

American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141, 895-901 (2006).

129. Agrawal,A. et al. Association of GABRA2 with drug dependence in the collaborative study of the genetics of alcoholism sample. Behavior Genetics 36, 640-650 (2006).

130. Philibert,R.A. et al. The role of GABRA2 on risk for alcohol, nicotine and cannabis dependence in the Iowa adoption studies. Psychiatric Genetics 19, 91 (2009).

131. Filbey,F.M., Schacht,J.P., Myers,U.S., Chavez,R.S., & Hutchison,K.E. Individual and additive effects of the CNR1 and FAAH genes on brain response to marijuana cues. Neuropsychopharmacology 35, 967-975 (2009).

132. Schacht,J.P., Selling,R.E., & Hutchison,K.E. Intermediate cannabis dependence phenotypes and the FAAH C385A variant: an exploratory analysis. Psychopharmacology 203, 511-517 (2009).

133. Tyndale,R.F., Payne,J.I., Gerber,A.L., & Sipe,J.C. The fatty acid amide hydrolase C385A (P129T) missense variant in cannabis users: studies of drug use and dependence in Caucasians. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 144, 660-666 (2007).

134. Benyamina,A. et al. Association between ABCB1 C3435T polymorphism and increased risk of cannabis dependence. Progress in Neuro-Psychopharmacology and Biological Psychiatry 33, 1270-1274 (2009).

135. Lind,P.A. et al. The role of GABRA2 in alcohol dependence, smoking, and illicit drug use in an Australian population sample. Alcoholism: Clinical and Experimental Research 32, 1721-1731 (2008).

136. Haughey,H.M., Marshall,E., Schacht,J.P., Louis,A., & Hutchison,K.E. Marijuana withdrawal and craving: influence of the cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes. Addiction 103, 1678-1686 (2008).

137. Verweij,K.J. et al. No association of candidate genes with cannabis use in a large sample of Australian twin families. Addiction Biology 17, 687-690 (2012).

Page 15: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

212

138. Agrawal,A. et al. A genome wide association study of DSM IV cannabis dependence. Addiction Biology 16, 514-518 (2011).

139. Verweij,K.J. et al. The genetic aetiology of cannabis use initiation: a meta analysis of genome wide association studies and a SNP based heritability estimation. Addiction Biology 18, 846-850 (2013).

140. Pietrzykowski,A.Z. The role of microRNAs in drug addiction: a big lesson from tiny molecules. International Review of Neurobiology 91, 1-24 (2010).

141. Vrieze,S.I., McGue,M., Miller,M.B., Hicks,B.M., & Iacono,W.G. Three mutually informative ways to understand the genetic relationships among behavioral disinhibition, alcohol use, drug use, nicotine use/dependence, and their co-occurrence: Twin biometry, GCTA, and genome-wide scoring. Behavior Genetics 43, 97-107 (2013).

142. Tobacco and Genetics Consortium Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nature Genetics 42, 441-447 (2010).

143. Liu,J.Z. et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nature Genetics 42, 436-440 (2010).

144. Thorgeirsson,T.E. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nature Genetics 42, 448-453 (2010).

145. Bierut,L.J. Genetic vulnerability and susceptibility to substance dependence. Neuron 69, 618-627 (2011).

146. Sherva,R. et al. Variation in nicotinic acetylcholine receptor genes is associated with multiple substance dependence phenotypes. Neuropsychopharmacology 35, 1921-1931 (2010).

147. Amos,C.I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25. 1. Nature Genetics 40, 616-622 (2008).

Page 16: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

213

148. Hung,R.J. et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452, 633-637 (2008).

149. Thorgeirsson,T.E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638-642 (2008).

150. Grucza,R.A. et al. A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence. Biological Psychiatry 64, 922-929 (2008).

151. Purcell,S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559-575 (2007).

152. Willer,C.J., Li,Y., & Abecasis,G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190-2191 (2010).

153. Li,M.X., Gui,H.S., Kwan,J.S., & Sham,P.C. GATES: a rapid and powerful gene-based association test using extended Simes procedure. The American Journal of Human Genetics 88, 283-293 (2011).

154. Li,M.X., Kwan,J.S., & Sham,P.C. HYST: a hybrid set-based test for genome-wide association studies, with application to protein-protein interaction-based association analysis. The American Journal of Human Genetics 91, 478-488 (2012).

155. Benjamini,Y. & Hochberg,Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 289-300 (1995).

156. Fox,C.S. et al. Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project. BMC Medical Genetics 8, S18 (2007).

157. Fride,E., Bregman,T., & Kirkham,T.C. Endocannabinoids and food intake: newborn suckling and appetite regulation in adulthood. Experimental Biology and Medicine 230, 225-234 (2005).

Page 17: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

214

158. Kirkham,T.C. Endocannabinoids in the regulation of appetite and body weight. Behavioural pharmacology 16, 297-313 (2005).

159. Farrimond,J.A., Mercier,M.S., Whalley,B.J., & Williams,C.M. Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation. Phytotherapy Research 25, 170-188 (2011).

160. Dean,K.A., von Ahsen,O., Görlich,D., & Fried,H.M. Signal recognition particle protein 19 is imported into the nucleus by importin 8 (RanBP8) and transportin. Journal of cell science 114, 3479-3485 (2001).

161. Jin,W. & Dong,C. IL-17 cytokines in immunity and inflammation. Emerging Microbes & Infections 2, e60 (2013).

162. Tan,H.L. & Rosenthal,M. IL-17 in lung disease: friend or foe? Thorax 68, 788-790 (2013).

163. Ryan,A.W. et al. Chromosome 5q candidate genes in coeliac disease: genetic variation at IL4, IL5, IL9, IL13, IL17B and NR3C1. Tissue Antigens 65, 150-155 (2005).

164. Hartz,S.M. et al. Increased genetic vulnerability to smoking at CHRNA5 in early-onset smokers. Archives of General Psychiatry 69, 854-860 (2012).

165. Ware,J.J., van den Bree,M., & Munafò,M.R. From men to mice: CHRNA5/CHRNA3, smoking behavior and disease. Nicotine & Tobacco Research 14, 1291-1299 (2012).

166. Agrawal,A. et al. Risk for initiation of substance use as a function of age of onset of cigarette, alcohol and cannabis use: findings in a Midwestern female twin cohort. Preventive Medicine 43, 125-128 (2006).

167. Agrawal,A. et al. Early cannabis use and DSM-IV nicotine dependence: a twin study. Addiction 103, 1896-1904 (2008).

168. Bracken,B.K., Rodolico,J., & Hill,K.P. Sex, Age, and Progression of Drug Use in Adolescents Admitted for Substance Use Disorder Treatment in the Northeastern United States: Comparison With a National Survey. Substance Abuse 34, 263-272 (2013).

Page 18: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

215

169. Grant,J.D. et al. A cotwin-control analysis of drug use and abuse/dependence risk associated with early-onset cannabis use. Addictive Behaviors 35, 35-41 (2010).

170. Lynskey,M.T., Vink,J.M., & Boomsma,D.I. Early onset cannabis use and progression to other drug use in a sample of Dutch twins. Behavior Genetics 36, 195-200 (2006).

171. Lynskey,M.T. et al. An Australian twin study of cannabis and other illicit drug use and misuse, and other psychopathology. Twin Research and Human Genetics 15, 631-641 (2012).

172. Eaton,W.W. et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. American Journal of Psychiatry 163, 521-528 (2006).

173. Leucht,S., Burkard,T., Henderson,J., Maj,M., & Sartorius,N. Physical illness and schizophrenia: a review of the literature. Acta Psychiatrica Scandinavica 116, 317-333 (2007).

174. Eaton,W.W., Pedersen,M.G., Nielsen,P.R., & Mortensen,P.B. Autoimmune diseases, bipolar disorder, and non affective psychosis. Bipolar disorders 12, 638-646 (2010).

175. Gilvarry,C.M. et al. Family history of autoimmune diseases in psychosis. Schizophrenia Research 19, 33-40 (1996).

176. Chen,S.J. et al. Prevalence of autoimmune diseases in in-patients with schizophrenia: nationwide population-based study. British Journal of Psychiatry 200, 374-380 (2012).

177. Schwab,S.G. et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Molecular Psychiatry 5, 638-649 (2000).

178. Rioux,J.D. et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nature Genetics 29, 223-228 (2001).

179. Goris,A. & Liston,A. The immunogenetic architecture of autoimmune disease. Cold Spring Harbor Perspectives in Biology 4, a007260 (2012).

Page 19: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

216

180. Parkes,M., Cortes,A., van Heel,D.A., & Brown,M.A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature Reviews Genetics 14, 661-673 (2013).

181. The Welcome Trust Case Control Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678 (2007).

182. Price,A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 38, 904-909 (2006).

183. Browning,S.R. & Browning,B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics 81, 1084-1097 (2007).

184. van Welie,H. et al. The prevalence of diabetes mellitus is increased in relatives of patients with a non-affective psychotic disorder. Schizophrenia Research 143, 354-357 (2013).

185. Liu,Y. et al. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Medical Genomics 6, S17 (2013).

186. Winer,S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine 15, 921-929 (2009).

187. Lees,C.W., Barrett,J.C., Parkes,M., & Satsangi,J. New IBD genetics: common pathways with other diseases. Gut 60, 1739-1753 (2011).

188. Franke,A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genetics 42, 1118-1125 (2010).

189. Stahl,E.A. et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature Genetics 42, 508-514 (2010).

Page 20: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

217

190. Bradfield,J.P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genetics 7, e1002293 (2011).

191. Kato,A. et al. Anti-Inflammatory properties of antipsychotics via microglia modulations: are antipsychotics a 'fire extinguisher' in the brain of schizophrenia? Mini Reviews in Medicinal Chemistry 11, 565-574 (2011).

192. Laan,W. et al. Glucocorticosteroids associated with a decreased risk of psychosis. Journal of clinical Psychopharmacology 29, 288-290 (2009).

193. Sainz,J. et al. Inflammatory and immune response genes have significantly altered expression in schizophrenia. Molecular Psychiatry 18, 1056-1057 (2012).

194. Horváth,S. & Mirnics,K. Immune system disturbances in schizophrenia. Biological Psychiatry 75, 316-323 (2014).

195. Müller,N. & Schwarz,M.J. Immune system and schizophrenia. Current Immunology Reviews 6, 213-220 (2010).

196. Gardiner,E.J. et al. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research 47, 425-437 (2013).

197. Klein,R.J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385-389 (2005).

198. Ku,C.S., Loy,E.Y., Pawitan,Y., & Chia,K.S. The pursuit of genome-wide association studies: where are we now? Journal of Human Genetics 55, 195-206 (2010).

199. Cardno,A.G. & Gottesman,I.I. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics 97, 12-17 (2000).

200. Zondervan,K.T. & Cardon,L.R. The complex interplay among factors that influence allelic association. Nature Reviews Genetics 5, 89-100 (2004).

Page 21: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

218

201. Gail,M.H., Wieand,S., & Piantadosi,S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-444 (1984).

202. Robinson,L.D. & Jewell,N.P. Some surprising results about covariate adjustment in logistic regression models. International Statistical Review 58, 227-240 (1991).

203. Neuhaus,J.M. & Jewell,N.P. A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika 80, 807-815 (1993).

204. Simpson,E.H. The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B (Methodological) 13, 238-241 (1951).

205. Greenland,S., Robins,J.M., & Pearl,J. Confounding and collapsibility in causal inference. Statistical Science 14, 29-46 (1999).

206. Hernán,M., Clayton,D., & Keiding,N. The Simpson's paradox unraveled. International Journal of Epidemiology 40, 780-785 (2011).

207. Guo,J. & Geng,Z. Collapsibility of logistic regression coefficients. Journal of the Royal Statistical Society, Series B (Methodological) 57, 263-267 (1995).

208. Wray,N.R., Goddard,M.E., & Visscher,P.M. Prediction of individual genetic risk of complex disease. Current Opinion in Genetics & Development 18, 257-263 (2008).

209. Janssens,A.C. et al. Predictive testing for complex diseases using multiple genes: fact or fiction? Genetics in Medicine 8, 395-400 (2006).

210. Flint,J. & Mackay,T.F.C. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Research 19, 723-733 (2009).

211. McKelvey,R.D. & Zavoina,W. A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology 4, 103-120 (1975).

Page 22: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

219

212. DeMaris,A. Explained variance in logistic regression: A Monte Carlo study of proposed measures. Sociological Methods & Research 31, 27-74 (2002).

213. Sawcer,S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214-219 (2011).

214. Hakonarson,H. et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 448, 591-594 (2007).

215. Cardon,L.R. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661-678 (2007).

216. van Heel,D.A. et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nature Genetics 39, 827-829 (2007).

217. Wray,N.R. et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Molecular Psychiatry 37, 1-13 (2010).

218. Cantor,R.M., Lange,K., & Sinsheimer,J.S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application. American Journal of Human Genetics 86, 6-22 (2010).

219. Hoggart,C.J., Whittaker,J.C., De Iorio,M., & Balding,D.J. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genetics 4, e1000130 (2008).

220. Wei,Y.C., Wen,S.H., Chen,P.C., Wang,C.H., & Hsiao,C.K. A simple Bayesian mixture model with a hybrid procedure for genome-wide association studies. European Journal of Human Genetics 18, 942-947 (2010).

221. Stephens,M. & Balding,D.J. Bayesian statistical methods for genetic association studies. Nature Reviews Genetics 10, 681-690 (2009).

222. Lee,S.H., Wray,N.R., Goddard,M.E., & Visscher,P.M. Estimating missing heritability for disease from genome-wide

Page 23: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

220

association studies. American Journal of Human Genetics 88, 294-305 (2011).

223. Garner,C. Upward bias in odds ratio estimates from genome-wide association studies. Genetic Epidemiology 31, 288-295 (2007).

224. Kraft,P. Curses -- winner's and otherwise -- in genetic epidemiology. Epidemiology 19, 649-651 (2008).

225. Neale,B.M. et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry 49, 884-897 (2010).

226. Sklar,P. et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics 43, 977-983 (2011).

227. Ripke,S. et al. A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry 18, 497-511 (2012).

228. Bergen,S.E. et al. Genetic modifiers and subtypes in schizophrenia: Investigations of age at onset, severity, sex and family history. Schizophrenia Research 154, 48-53 (2014).

229. Othus,M., Barlogie,B., LeBlanc,M.L., & Crowley,J.J. Cure models as a useful statistical tool for analyzing survival. Clinical Cancer Research 18, 3731-3736 (2012).

230. Prasad,V. Use of the Word "Cure" in the Oncology Literature. American Journal of Hospice and Palliative Care advance online publication, (2014).

231. Gratten,J., Wray,N.R., Keller,M.C., & Visscher,P.M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nature Neuroscience 17, 782-790 (2014).

232. Stringer,S., Wray,N.R., Kahn,R.S., & Derks,E.M. Underestimated effect sizes in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS One. 6, e27964 (2011).

Page 24: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

221

233. R Core Team R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2012).

234. Borecki,I.B. & Province,M.A. Genetic and genomic

discovery using family studies. Circulation 118, 1057-1063 (2008).

235. Diggle,P., Heagerty,P., Liang,K.Y., & Zeger,S. Analysis of longitudinal data(Oxford University Press, 2002).

236. Clarke,A.J. & Cooper,D.N. GWAS: heritability missing in action? European Journal of Human Genetics 18, 859-861 (2010).

237. Falconer,D.S. & Mackay,T.F.C. Introduction to quantitative genetics (Longmans Green, Harlow, Essex, UK, 1996).

238. Lynch,M. & Walsh,B. Genetics and analysis of quantitative traits (Sinauer Associates, Sunderland, MA, 1998).

239. Visscher,P.M., Hill,W.G., & Wray,N.R. Heritability in the genomics era - concepts and misconceptions. Nature Reviews Genetics 9, 255-266 (2008).

240. Sham,P. Statistics in Human Genetics (Wiley, London, 1998).

241. Haenszel,W. Some problems in the estimation of familial risks of disease. Journal of the National Cancer Institute 23, 487-505 (1959).

242. Wray,N.R. & Gottesman,I.I. Using summary data from the Danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers in Genetics 3, 1-12 (2012).

243. Sigal,A. et al. Variability and memory of protein levels in human cells. Nature 444, 643-646 (2006).

244. Hill,W.G. & Zhang,X.S. On the pleiotropic structure of the genotype-phenotype map and the evolvability of complex organisms. Genetics 190, 1131-1137 (2012).

Page 25: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

222

245. Mackay,T.F.C. Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical Transactions of the Royal Society B 365, 1229-1239 (2010).

246. van Dongen,J., Slagboom,P.E., Draisma,H.H.M., Martin,N.G., & Boomsma,D.I. The continuing value of twin studies in the omics era. Nature Reviews Genetics 13, 640-653 (2012).

247. Silventoinen,K. Determinants of variation in adult body height. Journal of Biosocial Science 35, 263-285 (2003).

248. Rahman,I. et al. Genetic dominance influences blood biomarker levels in a sample of 12,000 Swedish elderly twins. Twin Research and Human Genetics 12, 286-294 (2009).

249. Teucher,B. et al. Dietary patterns and heritability of food choice in a UK female twin cohort. Twin Research and Human Genetics 10, 734-748 (2007).

250. Petersen,L. & Sørensen,T.I.A. The Danish adoption register. Scandinavian Journal of Public Health 39, 83-86 (2011).

251. Wright,S. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. Journal of Genetics 30, 243-256 (1935).

252. Phillips,P.C. Epistasis -- the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics 9, 855-867 (2008).

253. Barton,N.H. & Keightley,P.D. Understanding quantitative genetic variation. Nature Reviews Genetics 3, 11-21 (2002).

254. Carlborg,O. & Haley,C.S. Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics 5, 618-625 (2004).

255. Crow,J.F. Maintaining evolvability. Journal of Genetics 87, 349-353 (2008).

256. Eyre-Walker,A. Genetic architecture of a complex trait and its implications for fitness and genome-wide association

Page 26: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

223

studies. Proceedings of the National Academy of Sciences of the United States of America 107, 1752-1756 (2010).

257. Hill,W.G., Goddard,M.E., & Visscher,P.M. Data and theory point to mainly additive genetic variance for complex traits. PLoS genetics 4, e1000008 (2008).

258. Mackay,T.F. & Lyman,R.F. Drosophila bristles and the nature of quantitative genetic variation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1513-1527 (2005).

259. Huang,W. et al. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences of the United States of America 109, 15553-15559 (2012).

260. Mackay,T.F.C. et al. The drosophila melanogaster genetic reference panel. Nature 482, 173-178 (2012).

261. Kacser,H. & Burns,J.A. Molecular democracy: Who shares the controls? Biochemical Society Transactions 7, 1149-1160 (1979).

262. Suarez,R.K. & Moyes,C.D. Metabolism in the age of 'omes'. The Journal of Experimental Biology 215, 2351-2357 (2012).

263. Fell,D.A. Metabolic control analysis: experimental development of its theoretical and experimental development. Biochemical Journal 286, 313-330 (1992).

264. Keightley,P.D. Models of quantitative variation of flux in metabolic pathways. Genetics 121, 869-876 (1989).

265. Zaitlen,N. & Kraft,P. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Human Genetics 131, 1655-1664 (2012).

266. Jostins,L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119-124 (2012).

Page 27: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

224

267. Bloom,J.S., Ehrenreich,I.M., Loo,W.T., Lite,T.y.L.V., & Kruglyak,L. Finding the sources of missing heritability in a yeast cross. Nature 494, 234-237 (2013).

268. Kemper,K.E. & Goddard,M.E. Understanding and predicting complex traits: knowledge from cattle. Human Molecular Genetics 21, 45 (2012).

269. Haile-Mariam,M., Nieuwhof,G.J., Beard,K.T., Konstatinov,K.V., & Hayes,B.J. Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic evaluations. Journal of Animal Breeding and Genetics 130, 20-31 (2013).

270. Michailidou,K. et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics 45, 353-361 (2013).

271. Kendler,K.S. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Molecular Psychiatry 18, 1058-1066 (2013).

272. Visscher,P.M. & Goddard,M.E. Systems genetics: the added value of gene expression. HFSP Journal 4, 6-10 (2010).

273. Vineis,P. & Pearce,N. Missing heritability in genome-wide association study research. Nature Reviews Genetics 11, 589 (2010).

274. Galvan,A., Ioannidis,J., & Dragani,T.A. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. Trends in Genetics 26, 132-141 (2010).

275. Rung,J. & Brazma,A. Reuse of public genome-wide gene expression data. Nature Reviews Genetics 14, 89-99 (2012).

276. Kodama,Y. et al. The DNA Data Bank of Japan launches a new resource, the DDBJ Omics Archive of functional genomics experiments. Nucleic Acids Research 40, D38-D42 (2012).

277. Parkinson,H. et al. ArrayExpress update--an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Research 39, D1002-1004 (2010).

Page 28: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

225

278. Barrett,T. et al. NCBI GEO: archive for functional genomics data sets 10 years on. Nucleic Acids Research 39, D1005-D1010 (2011).

279. Marx,V. Biology: The big challenges of big data. Nature 498, 255-260 (2013).

280. Gerstein,M. Genomics: ENCODE leads the way on big data. Nature 489, 208 (2012).

281. Roosenbloom,K.R. et al. The UCSC genome browser database: 2015 update. Nucleic Acids Research advance online publication, (2014).

282. Zhong,H. & Prentice,R.L. Correcting "winner's curse" in odds ratios from genomewide association findings for major complex human diseases. Genetic epidemiology 34, 78-91 (2010).

283. Zuk,O. et al. Searching for missing heritability: Designing rare variant association studies. Proceedings of the National Academy of Sciences 111, E455-E464 (2014).

284. McCarthy,M.I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics 9, 356-369 (2008).

285. Pirooznia,M. et al. Data mining approaches for genome-wide association of mood disorders. Psychiatric Genetics 22, 55-61 (2012).

286. Gusev,A. et al. Regulatory variants explain much more heritability than coding variants across 11 common diseases. American Journal of Human Genetics 95, 535-552 (2014).

287. Ruano,D. et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. American Journal of Human Genetics 86, 113-125 (2010).

288. Blake,B.J. Australian Aboriginal languages: A general introduction(University of Queensland Press St. Lucia, Queensland,1991).

Page 29: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

226

289. Thornton-Wells,T.A., Moore,J.H., & Haines,J.L. Genetics, statistics and human disease: analytical retooling for complexity. Trends in Genetics 20, 640-647 (2004).

290. Garnier,S., Gautrais,J., & Theraulaz,G. The biological principles of swarm intelligence. Swarm Intelligence 1, 3-31 (2007).

291. Markov,M.A. & Markov,A.V. Self-organization in the ontogeny of multicellular organisms: A computer simulation. Biology Bulletin Reviews 2, 76-88 (2012).

292. Kaprio,J., Koskenvuo,M., & Rose,R.J. Population-based twin registries: illustrative applications in genetic epidemiology and behavioral genetics from the Finnish Twin Cohort Study. Acta Geneticae Medicae et Gemellologiae 39, 427-439 (1989).

293. Munk-Jørgensen,P., Kastrup,M., & Mortensen,P.B. The Danish psychiatric register as a tool in epidemiology. Acta Psychiatrica Scandinavica 87, 27-32 (1993).

294. Murphy,J. et al. Public expectations for return of results from large-cohort genetic research. American Journal of Bioethics 8, 36-43 (2008).

295. Cambon-Thomsen,A., Rial-Sebbag,E., & Knoppers,B.M. Trends in ethical and legal frameworks for the use of human biobanks. European Respiratory Journal 30, 373-382 (2007).

296. Hoeyer,K., Olofsson,B.O., Mjörndal,T., & Lynöe,N. The ethics of research using biobanks: reason to question the importance attributed to informed consent. Archives of Internal Medicine 165, 97-100 (2005).

297. Brennand,K.J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221-225 (2011).

298. Wray,N.R. et al. Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics 14, 507-515 (2013).

299. Saha,S., Chant,D., Welham,J., & McGrath,J. A systematic review of the prevalence of schizophrenia. PLoS Medicine 2, e141 (2005).

Page 30: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

227

300. Zhang,T.Y. & Meaney,M.J. Epigenetics and the environmental regulation of the genome and its function. Annual Review of Psychology 61, 439-466 (2010).

Page 31: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

228

Page 32: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

229

Nederlandse samenvatting Zoals besproken in Hoofdstuk 1, hebben genoomwijde associatie (GWA)

studies bevestigd dat veel psychiatrische stoornissen, in het bijzonder

schizofrenie, sterk erfelijk zijn. Belangrijker nog, deze studies hebben

laten zien dat de relatie tussen genetische en psychiatrische stoornissen

uiterst complex is. Duizenden genetische varianten, elk met een klein

individueel effect, dragen samen bij aan de relatief grote erfelijkheid van

veel psychiatrische stoornissen. In dit proefschrift ligt de nadruk op een

specifiek type genetische variant, SNPs genaamd, waarbij een enkele

letter in de genetische code varieert.

Waar in GWA studies alle gangbare genetische varianten onderzocht

worden, focussen kandidaat-gen studies op één of enkele genen

(Hoofdstuk 3). De grootte van de benodigde steekproef in een kandidaat

gen studie is veel kleiner dan die in een GWA studie, omdat een veel

minder strikte correctie nodig is voor het aantal statistische testen dat

wordt uitgevoerd. Desondanks laten simulaties van statische power zien

dat in veel gevallen honderden proefpersonen nodig zijn, doordat de

individuele genetische effecten zo klein zijn. In Hoofdstuk 3 zijn ook

twee websites besproken die gebruikt kunnen worden bij het selecteren

van kandidaat genen in een kandidaat gen studie.

Een grote steekproef is echter geen garantie voor significante

resultaten. Een uitgebreide meta-analyse met meer dan 24.000

proefpersonen was niet genoeg om genetische varianten te detecteren

die geassocieerd zijn met cannabisgebruik, hoewel een statistische test

gebaseerd op genen wel twee genen detecteerde. Deze kon echter niet

gerepliceerd worden in een kleine onafhankelijke steekproef (Hoofdstuk

4). Toch blijken meer genetische varianten een p-waarde kleiner dan

Page 33: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

230

0.05 te vertonen dan verwacht op basis van kans alleen. Dit duidt er op

dat genetische factoren wel degelijk een rol spelen in het gebruik van

cannabis, maar dat grotere steekproeven nodig zijn om significante

genetische varianten te vinden. Zodra een grote GWA studie

gepubliceerd is, kunnen de resultaten een belangrijke bijdrage leveren

aan toekomstige studies. Zo kunnen bijvoorbeeld in een polygene risk

score analyse ook niet-significante resultaten gebruikt worden om de

genetische overlap tussen ziekten te onderzoeken. In Hoofdstuk 5 werd

op die manier de genetische overlap tussen schizofrenie en drie immuun

ziekten onderzocht: type 1 diabetes, reumatoïde artritis, and de ziekte

van Crohn. Polygene risk score analyse toonde aan dat schizofrenie een

significante genetische overlap vertoont met deze drie immuunziekten.

De genetische overlap tussen schizofrenie en deze drie immuun-

gerelateerde ziekten was significant groter dan de genetische overlap

tussen schizofrenie en type 2 diabetes, dat niet in eerste instantie

gekenmerkt wordt door slecht functioneren van het immuunsysteem.

Statistische modellen zijn altijd gebaseerd op assumpties. Wanneer niet

aan deze assumpties voldaan wordt, kunnen de schattingen van effecten

onzuiver zijn. Over het algemeen wordt in GWA studies één genetische

variant per keer geanalyseerd. Daarbij wordt er impliciet van uitgegaan

dat andere genetische varianten niet bijdragen aan het risico voor

ziekte. Voor genetisch complexe ziekten geldt deze assumptie duidelijk

niet, aangezien zulke ziekten per definitie beïnvloed worden door vele

genetische varianten. Hoofdstuk 6 liet zien dat in lineaire en log-lineaire

modellen, een SNP-per-SNP analyse geen probleem is. Daar staat

tegenover dat in studies waarin zieke en gezonde proefpersonen worden

vergeleken een SNP-per-SNP analyse kan leiden tot onderschatting van

de effectgrootte. Hoofdstuk 7 illustreerde dat een soortgelijk probleem

Page 34: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

231

optreedt wanneer een genoomwijde Cox PH survival analyse wordt

uitgevoerd.

In genetische survival analyse wordt vaak ook een andere aanname

geschonden. Over het algemeen zullen niet alle proefpersonen tijdens

hun leven de te onderzoeken ziekte oplopen. Dit feit wordt genegeerd in

een traditionele survival analyse, zoals Cox PH regressie, en kan leiden

tot onzuivere schatters. Zoals Hoofdstuk 7 aantoonde, leidt een cure

survival analyse wel tot zuivere schatters, omdat het expliciet twee

groepen modelleert: proefpersonen die wel de ziekte zullen ontwikkelen

en proefpersonen die dat niet doen.

Model-misspecificatie is soms moeilijk empirisch te toetsen. Het

wetenschappelijk debat over het belang van statische epistase is daar

een voorbeeld van (zie Hoofdstuk 8). Een grote mate van epistase kan

van invloed zijn op de erfelijkheidsschattingen van tweelingstudies.

Hoewel het niet mogelijk is de mate van epistase empirisch te toetsen,

aangezien het betreffende model te complex is, suggereren

simulatiestudies dat de schattingen van tweeling studies alleen onzuiver

zijn als uitgegaan wordt van een groot effect van de gedeelde

omgeving.

Het moge duidelijk zijn dat de wereld van genetisch onderzoek divers is

en vele uitdagingen kent. Door grotere steekproeven en technologische

ontwikkelingen zal langzaam maar zeker steeds meer duidelijk worden

over de complexe relatie tussen genetische code en de ontwikkeling van

psychiatrische stoornissen.

Page 35: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

232

Page 36: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

233

Acknowledgements First of all, I would like to thank Eske Derks for her supervision,

patience, and advice during the past four years. Eske also encouraged

me to visit Australia when Peter Visscher and Naomi Wray were so kind

to invite me to their lab at QBI as a visiting scholar. I would like to

thank Peter and Naomi and the members of their lab for their

hospitality. René Kahn and Damiaan Denys have also supported my

work in many ways. Not the least by allowing me to visit Australia as a

visiting researcher during my PhD. I am also grateful for the valuable

feedback that my coauthors and reviewers have provided over the years

and of course the time spent by the reading committee. Last, but

certainly not least, I would like to thank my roommates and other

colleagues whose company I have enjoyed at the University Medical

Center Utrecht, Queensland Brain Institute, and Academic Medical

Center Amsterdam for their support, friendship, and many lunches spent

together.

Page 37: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

234

Curriculum vitae

In 2004 I obtained a master degree in Computer Science at Utrecht

University, with a specialization in Computational Intelligence. Being

interested in methodology as well as cognitive and social psychology, I

also obtained a research master degree in Psychology (2010). My

master thesis on the mathematical modeling of judgment revisions in

response to anonymous advice was a result of my visit as a visiting

student at the department of Cognitive Sciences at the University of

California Irvine.

When I started my PhD project at the Department of Psychiatry at the

University Medical Center, I focused on the effect of genetics on

psychiatric disorders. In 2011 I had the opportunity to do part of my

PhD research at the Complex Trait Genomics Group at the Queensland

Brain Institute. In 2011 I also partly moved to the Department of

Psychiatry at the Academic Medical Center Amsterdam. Currently I am

working as a postdoc in the Complex Trait Genetics Lab at the VU

University. My current interest lies in the use of additional biological

information to identify reliable statistical patterns in genome-wide

association data.

Page 38: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

235

List of publications Stringer S, Kahn RS, de Witte LD, Ophoff R, & Derks EM (2014). Genetic

liability for schizophrenia predicts risk of immune disorders.

Schizophrenia Research.

Stringer S, Nieman DH, Kahn RS, & Derks EM (in press). Genome-wide

association analysis in schizophrenia. In Genome-Wide

Association Studies: From Polymorphism to Personalized

Medicine.

Wray NR, Byrne EM, Stringer S, & Mowry BJ (2014). Future Directions in

Genetics of Psychiatric Disorders. In Behavior Genetics of

Psychopathology (pp. 311-337). Springer, New York.

Stringer S, Derks EM, Kahn RS, Hill WG, & Wray NR (2013).

Assumptions and properties of limiting pathway models for

analysis of epistasis in complex traits. PLoS One, 8, e68913

Spanagel R, Durstewitz D, Hannsson, … , Stringer S, Smits Y, & Derks

EM (2013). A systems medicine research approach for studying

alcohol addiction. Addiction Biology, 18, 883-896.

Stringer S, Wray NR, Kahn RS, Derks EM (2011). Underestimated effect

sizes in GWAS: fundamental limitations of single SNP analysis for

dichotomous phenotypes. PLoS One, 6, e27964

Page 39: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation

236

Stringer S, Borsboom D, & Wagenmakers, E-J (2011). Bayesian

inference for the information gain model. Behavioral Research

Methods, 43, 297-309.

Stringer S, Ouweneel APE & Le Blanc PM (2009). Emotionele arbeid en

psychologisch welzijn van docenten [Emotional labour and

teacher well-being]. Gedrag en Organisatie [Behavior and

Organisation], 22, 214-231.

Page 40: UvA-DARE (Digital Academic Repository) Breaking the code ... · associated genetic loci. Nature 511 , 421-427 (2014). 6. International Schizophrenia Consortium Common polygenic variation