uva-dare (digital academic repository) the …...various stages of star formation are represented:...

37
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A.G.G.M.; Alonso-Albi, T. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361/201219431 Link to publication Citation for published version (APA): Kama, M., López-Sepulcre, A., Dominik, C., Ceccarelli, C., Fuente, A., Caux, E., ... Alonso-Albi, T. (2013). The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range. Astronomy & Astrophysics, 556, A57. https://doi.org/10.1051/0004-6361/201219431 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 08 Feb 2020

Upload: others

Post on 22-Jan-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902GHz range

Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.;Tielens, A.G.G.M.; Alonso-Albi, T.Published in:Astronomy & Astrophysics

DOI:10.1051/0004-6361/201219431

Link to publication

Citation for published version (APA):Kama, M., López-Sepulcre, A., Dominik, C., Ceccarelli, C., Fuente, A., Caux, E., ... Alonso-Albi, T. (2013). TheHerschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range. Astronomy& Astrophysics, 556, A57. https://doi.org/10.1051/0004-6361/201219431

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 08 Feb 2020

Page 2: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)DOI: 10.1051/0004-6361/201219431c© ESO 2013

Astronomy&

Astrophysics

The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS)An overview of the 480 to 1902 GHz range?

M. Kama1,2, A. López-Sepulcre3, C. Dominik2,4, C. Ceccarelli3, A. Fuente5, E. Caux6,7, R. Higgins8,A. G. G. M. Tielens1, and T. Alonso-Albi5

1 Leiden Observatory, PO Box 9513, 2300 RA, Leiden, The Netherlandse-mail: [email protected]

2 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands3 UJF−Grenoble 1/CNRS−INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), UMR 5274, 38041 Grenoble,

France4 Department of Astrophysics/IMAPP, Radboud University Nijmegen, Mailbox 79, Po Box 9010, 6525 AJ, Nijmegen,

The Netherlands5 Observatorio Astronómico Nacional, PO Box 112, 28803 Alcalá de Henares, Madrid, Spain6 Université de Toulouse, UPS−OMP, IRAP, 31400 Toulouse, France7 CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France8 KOSMA, I. Physik. Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

Received 17 April 2012 / Accepted 2 May 2013

ABSTRACT

Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolutionof star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the funda-mental transitions of many hydrides and to the high-energy transitions of many other species.Aims. A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses andevolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusseson the intermediate-mass protostar, OMC-2 FIR 4.Methods. We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel andcarried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling.Results. We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. Theline profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broadcomponent likely due to an outflow, and a foreground cloud.Conclusions. We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2%of the 7 L� luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2Oand 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formationregions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line coolingof Orion KL and OMC-2 FIR 4.

Key words. Astrochemistry – stars: formation – stars: protostars

1. Introduction

With the proliferation of high-sensitivity broadband receivers,wide frequency coverage spectral surveys covering >10 GHzare becoming the norm (e.g. Johansson et al. 1985; Blake et al.1986b; Cernicharo et al. 1996; Schilke et al. 1997; Cernicharoet al. 2000; Caux et al. 2011). Such surveys provide compre-hensive probes of the chemical inventory, excitation conditionsand kinematics of sources such as protostars. Here, we presentthe first Herschel/HIFI spectral survey of an intermediate-massprotostellar core, OMC-2 FIR 4 in the Orion A molecular cloud,covering 480 to 1902 GHz.

The chemical composition of a protostar is linked to its evo-lutionary state and history, for example the relative abundancesof the sulphur-bearing species in a protostellar core depend onthe gas temperature and density, as well as the composition of

? Appendix A is available in electronic form athttp://www.aanda.org

the ices formed during the prestellar core phase (e.g. Wakelamet al. 2005). The chemical makeup of the gas also plays a rolein the physical evolution of the protostar, for example by cou-pling with the magnetic field or by its role in the cooling of thegas (e.g. Goldsmith 2001). The large number of spectral linescaptured by a survey places strong constraints on the excitationconditions and even spatially unresolved physical structure.

The HIFI spectrometer (de Graauw et al. 2010) onboard theHerschel Space Observatory (Pilbratt et al. 2010) made a largepart of the far-infrared or terahertz-frequency regime accessibleto spectral surveys (Bergin et al. 2010; Ceccarelli et al. 2010;Crockett et al. 2010; Zernickel et al. 2012; Neill et al. 2012;van der Wiel et al. 2013). Previous studies at these frequencieshave been mostly limited to small frequency windows on theground or, for space missions such as ISO, orders of magnitudelower spectral resolution and sensitivity than HIFI. Many hy-drides and high-excitation lines of key molecules such as COand H2O are routinely observable while Herschel is operational.

Article published by EDP Sciences A57, page 1 of 36

Page 3: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Spectral surveys of star forming regions with HIFI are the focusof the CHESS1 (Ceccarelli et al. 2010) and HEXOS2 (Berginet al. 2010) key programs. A comparison of low- to high-massprotostars, a key goal of CHESS, offers insight into the physicsand chemistry of star formation through the entire stellar massrange. The intermediate-mass protostar in the CHESS sample isOMC-2 FIR 4 in Orion.

Orion is a giant molecular cloud complex at a distanceof ∼420 pc (Menten et al. 2007 found 414 ± 7 pc to the OrionNebula Cluster and Hirota et al. 2007 437± 19 pc to Orion KL).Various stages of star formation are represented: Orion Ia and Ibare 10 Myr old clusters, while Class 0 protostars are still abun-dant in the OMC-1, -2 and -3 subclouds. The OMC-2 cloud corecontains a number of protostars, including OMC-2 FIR 4 as thedominant Class 0 object. It is among the closest intermediate-mass protostellar cores and possibly an example of triggered starformation (Shimajiri et al. 2008).

While earlier studies attributed a luminosity of 400or 1000 L� to OMC-2 FIR 4 (Mezger et al. 1990; Crimieret al. 2009), recent Herschel and SOFIA observations found 30to 50 L� (Adams et al. 2012). Adams et al. (2012) further foundan envelope mass of 10 M� for FIR 4, while previous authorsfound it to be ∼30 M� (Mezger et al. 1990; Crimier et al. 2009)and continuum interferometry has yielded even larger estimates,60 M� (Shimajiri et al. 2008). The factor of 20 difference inluminosity is apparently related to the improved spatial reso-lution of the Herschel and SOFIA data used by Adams et al.(2012) compared to that used in earlier work, as well as to dif-ferences in the SED integration annuli, with one focusing on themid-infrared peak and the other covering the whole millimetresource, as discussed elsewhere (López-Sepulcre et al. 2013b).Our results do not depend on the exact value of the luminosity,although eventually this issue will require a dedicated analysisto facilitate a proper classification of OMC-2 FIR 4.

This paper is structured as follows: the observations, theircalibration and reduction are discussed in Sect. 2; we summarizethe quality and molecular inventory of the data and present arotational diagram analysis in Sect. 3; line profile componentsand energetics are discussed in Sect. 4; and the conclusions aresummarized in Sect. 5.

The reduced data and the list of line detections presented inthis paper will be available on the CHESS key program web-site1. The data can also be downloaded via the Herschel ScienceArchive3.

2. Observations and data reduction

The data, presented in Fig. 1, were obtained with the HIFIspectrometer on the Herschel Space Observatory in 2010 and2011, as part of the Herschel/HIFI guaranteed-time key programCHESS (Ceccarelli et al. 2010). The spectral scan observationswere carried out in dual beam switch (DBS) mode, usingthe Wide Band Spectrometer (WBS) with a native resolutionof 1.1 MHz (0.7 to 0.2 km s−1). The data were downloaded fromthe Herschel Science Archive, re-pipelined, reduced, and thendeconvolved with the HIPE software (Ott 2010, version 6.2.0for the SIS bands and 8.0.1 for the HEB bands). Kelvin-to-Jansky conversions were carried out with the factors given by

1 http://www-laog.obs.ujf-grenoble.fr/heberges/hs3f/;PI Cecilia Ceccarelli.2 http://www.hexos.org; PI Edwin A. Bergin3 http://herschel.esac.esa.int/Science_Archive.shtml

Table 1. Summary of the full-band HIFI observations and of fluxes atselected standard wavelengths.

Band νbanda HPBWb rmsobs

c Lines Fluxd Fνe

GHz ′′ mK GHz−1 W m−2 Jy1a 520 41 16 1.9 5.2(−14) 631b 595 36 16 1.4 7.1(−14) 842a 675 31 30 1.2 1.1(−13) 1062b 757 28 34 1.1 1.3(−13) 1453a 830 26 45 0.7 9.3(−14) 1343b 909 23 40 0.7 2.0(−13) 1564a 1005 21 70 0.7 2.5(−13) 1964b 1084 20 85 0.4 1.7(−13) 2175a 1176 18 158 0.3 3.4(−13) 272158 µm 1902 11 – 153194 µm 1545 14 – 256350 µm 857 25 – 173450 µm 666 32 – 1071a to 5a 1.3(−12)

Notes. (a) The central frequency of the band. (b) Beam size around theband center. (c) rms noise around the band center. (d) Band-integratedflux, in W m−2. The notation is f (g) = f × 10g. Due to overlap betweenthe bands, the sum of band-integrated fluxes exceeds the total at thebottom. (e) Flux at the band center, in Jy.

Roelfsema et al. (2012), which is also the standard reference forother instrumental parameters.

The spectrum on which line identification was carried outwas obtained by stitching together the deconvolved spectralscans and single-setting observations. In case of band overlap,the spectra were cut and stitched at the central frequency of theoverlap. In principle, a lower rms noise could be obtained forthe band overlap regions by combining the data from adjacentbands, but this requires corrections for sideband gain ratio vari-ations, which are still being characterized (see also Sect. 2.3).

2.1. Data quality after reduction

After default pipelining, the data quality is already very high.However, in several bands unflagged spurious features (spurs)prevent the deconvolution algorithm from converging. Thisproblem is resolved by manually flagging the spurs missed bythe pipeline. The baseline level in all bands is mostly gently slop-ing, but has occasional noticeable ripples. The data quality afterspur flagging and baseline subtraction is excellent, as seen inFig. 1. Updated reductions will be provided on the CHESS KPand Herschel Science Center websites.

In bands 1 through 5, an important concern is ghosts frombright (Ta ≥ 3 K) lines (Comito & Schilke 2002). The effect ofghosts on the overall noise properties is negligible, but they maylocally imitate or damage true lines. To check this, we performeda separate reduction where bright lines are masked out and notused in the deconvolution. In bands 6 and 7, we have no ghostproblems, as the signal to noise ratio of even the strongest lines issmall, and ghosts are typically at the scale of double sideband in-tensity variations, which are ≤10% of the peak intensity. Table 1lists the measured root-mean-square (rms) noise for the centralpart of each full band at 1.1 MHz resolution. Bands 6 and 7 wereobserved only partially, their rms noise values can be seen in thebottom panel of Fig. 1.

A57, page 2 of 36

Page 4: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 1. Upper panel: full baseline-subtracted spectral survey (black line) at 1.1 MHz resolution. The set of bright lines towering above the rest isCO, the feature at 1901 GHz is CII. Second panel: full baseline-subtracted spectral survey (black line) on a blown-up y-scale to emphasize weaklines and a second-order polynomial fit (red) to the subtracted continuum in bands 1a through 5a (red). Third panel: Tmb scale integrated intensityof each detected transition. Lower panel: the local rms noise around each detected transition.

A57, page 3 of 36

Page 5: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

2.2. Line identification

All the lines detected in the survey are summarized in Fig. 1,where we show the full HIFI spectrum, and the integrated fluxand corresponding rms noise level of each line. As the main de-tection criterion, we adopted a limit of S ≥ 5 for the signal tonoise (significance) of the integrated line flux. We use a localdefinition of the signal to noise ratio:

S =

∣∣∣∣∣∣∣∣∫ N

i=1 Tmb,idv

rms · dv ·√

N

∣∣∣∣∣∣∣∣ , (1)

where S is the significance, the integral gives the integrated in-tensity, i is the channel index, Tmb,i is the main beam temperatureof channel i and dv the channel width, N is the number of chan-nels covered by the line, and rms is the local rms noise aroundthe line, measured at a resolution of 1.1 MHz. Given ∼106 chan-nels in the data and a typical extent of 10 . . . 100 channels perline, the total number of false-positives for a flux detection limitof S = 5 in the entire survey is negligible.

Lines in the survey were mostly identified using the JPL4

(Pickett et al. 1998) and CDMS5 (Müller et al. 2005) catalogs.The literature was consulted for H2O+. The line identificationwas carried out in two phases and relied on the fact that theOMC-2 FIR 4 spectrum, while relatively rich in lines, is suffi-ciently sparse at our sensitivity that most lines can be individu-ally and unambiguously identified.

In phase 1, we employed the CASSIS6 software to look fortransitions of more than 80 molecules or isotopologs that hadbeen previously reported in spectral surveys or were expectedto be seen in the HIFI data. Reasonable cutoffs were appliedto limit the number of transitions investigated. For example, forCH3OH, we set Eu < 103 K, Aul > 10−4s−1 and |Ku| ≤ 5, yield-ing >2000 transitions in the HIFI range. The location of each ofthese transitions was then visually inspected in the survey data.Once marked as a potential detection, a feature was not excludedfrom re-examination as a candidate for another species, with theintention of producing a conservative list of blend candidates.For suspected detections, the line flux was measured in a rangecovering the line and accommodating potential weak wings (typ-ically ∼20 km s−1 in total). The local rms noise was determinedfrom two line-free nearby regions for each line, and the line fluxsignal-to-noise ratio was calculated from Eq. (1). The majorityof the investigated transitions were not deemed even candidatedetections, and ∼10% of all chosen candidates turned out to bebelow the S = 5 limit. The identification process was greatlysped up by the use of the CASSIS software as well as customHIPE scripts. Nearly all the lines reported in this paper wereidentified in phase 1.

In phase 2, we performed an unbiased visual inspection ofall the data, looking for features significantly exceeding the lo-cal rms noise level and not yet marked as detections in Phase 1.This process was aided by an automated line-finder that usesa sliding box to identify features exceeding S = 3 and 5 inthe spectral data and also labels all previously identified lines.Phase 2 yielded a large number of candidates, of which only asubset were confirmed as line detections, while the rest failedour signal-to-noise test.

4 http://spec.jpl.nasa.gov/5 http://www.astro.uni-koeln.de/cdms/6 CASSIS has been developed by IRAP-UPS/CNRS,see http://cassis.irap.omp.eu

Fig. 2. Fractional difference of the double-sideband CO line fluxes fromtheir mean for each rotational line. The H polarization is shown inblue (x) and V in red (+). The inset shows the peak line intensity ofthe CO (5−4) transition, highlighted in the main plot with a box, ver-sus intermediate frequency (IF) position. Negative IF frequency denoteslower side band (LSB).

A summary of the detections is given in Sect. 3.1. The bot-tom two panels of Fig. 1 summarize the absolute line fluxes andrms noise values of the detected lines.

2.3. Flux calibration accuracy

For HIFI, instrumental effects such as the sideband gain ratiosand standing waves play a dominant role in the calibration accu-racy and precision (Roelfsema et al. 2012). Standing waves arisefrom internal reflections in the instrument and, to first order, con-tribute a constant .4% to the flux calibration uncertainty acrosseach band. The sideband gain ratio (SBR) characterizes the frac-tion of the total double-sideband intensity that comes from theupper or lower side band (USB, LSB). In an ideal mixer, theUSB and LSB contributions are equal, however in reality thisis not exactly the case, particularly toward the edges of the re-ceiver bands. Here, we discuss the flux calibration uncertainty inthe data, using the overlaps of adjacent HIFI bands, as well as ananalysis of the CO line properties at the double-sideband stage.

Of all the lines in our survey, 10% are in overlapping sectionsof HIFI bands, which we use to obtain a repeat measurement oftheir fluxes after deconvolution, and thus an estimation of thecalibration and processing uncertainties. Focussing on the over-lap of bands 1b and 2a, where the SBR variations are known tobe large (Higgins 2011), we find that the line flux uncertaintyis at the ∼10% level, although this may depend to a substantialdegree on how the data reduction is carried out.

To estimate the SBR impact in the centers of the HIFI bands,we analyze the fluxes of 12CO lines in the double sideband data.In Fig. 2, we show the fractional difference from the mean for theintegrated intensity of each CO line observed in Spectral Scanmode, i.e. with multiple LO settings. H and V polarization areshown in blue (x) and red (+), respectively. The inset in Fig. 2shows the variations of the CO (5−4) line peak intensity with LOsetting, revealing a correlation with the distance of the line fromthe center of the intermediate frequency (IF) range, consistentwith a SBR variation across the band. This correlation is similarfor the other CO lines. There is also a systematic offset between

A57, page 4 of 36

Page 6: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

the intensities in the H and V polarizations, which we do notconsider. We find the relative variations from uncorrected SBRswithin a band to be .4%, although other factors may contributeto the total flux uncertainty budget.

Corrections for the SBR variations are already in the pipelinefor band 2a and are being characterized for all bands (Higginset al. 2009; Higgins 2011). A more thorough analysis of the im-pact of SBRs as well as operations such as baselining and decon-volution on the line fluxes is needed to exploit the full potentialof HIFI. This is particularly important for absorption and weakemission lines.

3. Overview and results

3.1. Detected lines and species

We found and identified a total of 719 lines from 26 molec-ular and atomic species and 14 secondary isotopologs at orabove a flux signal to noise level of 5. All the detected fea-tures were identified, i.e. no unidentified lines remained. Thedetections are summarized in Table 2, and a full list of lines, in-cluding a description of potential blends, is given in Table A.1,in Appendix A. Of the detected lines, 431 or 60% belong toCH3OH. Another 74 or 10% belong to H2CO. In comparison,from SO and SO2 we detect only twelve and two transitions,respectively. Four deuterated isotopologs are detected: HDO,DCN, NH2D and ND. The molecular ions include HCO+, N2H+,CH+, SH+, H2Cl+, OH+ and H2O+.

The upper level energies of the detected transitions rangefrom 24 to 752 K and the typical value is Eu ∼ 100 K, indi-cating that much of the emitting gas in the beam is warm orhot. Many of the transitions have very high critical densities,ncr > 108 cm−3, suggesting that much of the emission originatesin dense gas, probably a compact region. Self-absorption in CO,H2O and NH3 indicates that foreground material is present atthe source velocity, while blueshifted continuum absorption inOH+, CH+, HF and other species points to another foregroundcomponent.

In terms of integrated line intensity, CO dominates with 60%of the total line flux, H2O is second with 13% and CH3OH thirdwith 9%. The line and continuum cooling are discussed in moredetail in Sect. 4.2.

3.2. Line profiles

There is a wealth of information in the line profiles of the de-tected species. Two striking examples are the different line pro-file components revealed by the different molecules and substan-tial changes in line parameters such as vlsr and full-width halfmaximum (FWHM) with changing upper level energy or fre-quency for some molecules.

The statistical significance of the flux of each detected line,by definition, is at least 5σ. For some lines, this makes a vi-sual confirmation unintuitive, however for clarity we preferthe formal signal-to-noise cutoff. As an example, the weakestCS lines are consistent with the intensity as modeled basedon the stronger lines in the rotational ladder. The fluxes inAppendix A originate in channel-by-channel integration, whilethe velocity is given both from the first moment as well as aGaussian fit to the profile, and the FWHM is given only fromGaussian fitting.

The parameters and uncertainties for each transition aregiven in Appendix A. We give here typical uncertainties ofthe Gaussian parameters for the 479 unblended lines. For

vlsr, a cumulative 82% of the lines have uncertainties be-low 0.1 km s−1, 98% fall below 0.5 km s−1 and only one linehas δvlsr > 1 km s−1. This is an H37

2 Cl+ line, which represents aweak set of blended hyperfine components. For FWHM, a cumu-lative 46% of lines have uncertainties below 0.1 km s−1 and 91%are below 0.5 km s−1. Fourteen lines have δFWHM > 1 km s−1,but none of these have FWHM/δFWHM < 5, except for oneweak CH3OH line and the H37

2 Cl+ feature mentioned above.For the purposes of this paper, we distinguish the following

line profile components, as illustrated in Figs. 4 and 3: the qui-escent gas, wings, broad blue, foreground slab, and other. Theirnature is discussed in Sect. 4.1. We emphasize that this is firstand foremost a morphological classification, and that the under-lying spatial source structure may be more complex than is im-mediately apparent from the emergent line profiles.

The quiescent gas refers to relatively narrow lines, FWHM ∼2 . . . 6 km s−1. While it is not clear that 6 km s−1 really orig-inates in quiescent material, currently we lump these veloci-ties together to denote material likely related to various partsof the envelope, to distinguish them from broad lines tracingoutflowing gas. Quiescent gas may have at least two subcom-ponents, one at the source velocity of 11.4 km s−1 and another at12.2 km s−1. The wings refers to a broad component, difficult tofully disentangle but apparently centered around ∼13 km s−1 andwith FWHM ≥ 10 km s−1. The broad blue is traced by SO andis unique for its combination of blueshifted velocity and largelinewidth, both ∼9 km s−1. Other species may have contributionsfrom this component. The foreground slab refers to narrow linesat ∼9 km s−1, most of them in absorption. We use the term otherfor line profile features which do not fall in the above categories.The velocities of all components shift around by ∼1 km s−1 withspecies and excitation energy, pointing to further substructure inthe emitting regions, although part of this variation is certainlydue to measurement uncertainties and could also be due to un-certainties of order 1 MHz in the database frequencies of somespecies.

Using the HIPI7 plugin for HIPE, we inspected severalspecies for contaminating emission in the reference spectra ofthe dual beam switch observations. The species were those withthe strongest lines or where contamination might be suspected.For CO, CI and CII strong emission in one or, in the case of CO,both of the HIFI dual beam switch reference positions createsartificial absorption-like features where emission is subtractedout of the on-source signal. This is evident for CO as deep, nar-row dips in the line profiles, and makes determining the quies-cent gas contribution to these lines very inaccurate. In the caseof CII, the line itself peaks to the blue of the reference positionemission and we judge the problem to be less severe, similarly toCI where only one reference position appears to be substantiallyaffected. The deep self-absorption in several H2O lines appearsto be related to the source. Extended weak H2O 11,0−10,1 emis-sion is present on ∼5′ scales in OMC-2 (Snell et al. 2000), butthis emission seems to peak strongly on OMC-2. Previous obser-vations have demonstrated the large extent of uniform CO 1−0(Shimajiri et al. 2011) and CII emission (Herrmann et al. 1997),consistent with the contamination seen in the HIFI spectra.

3.3. Line density

In Table 1, we give the line density per GHz measured in eachband. The typical value is 1 line GHz−1. At 500 GHz, withrms noise levels of 16 mK, the line density is 1.9 GHz−1, and

7 nhscsci.ipac.caltech.edu/sc/index.php/Hifi/HIPI

A57, page 5 of 36

Page 7: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Table 2. Summary of the detected species.

Species # Eu range vlsr FWHM∫

Tmbdv Flux Line componentsK km s−1 km s−1 K km s−1 W m−2

COs1 11 83 . . . 752 11.8 12.3 2.2(3) 2.9(−14) Quiescent gas, wings.13COs2 8 79 . . . 719 11.9 4.7 1.3(2) 1.2(−15) Quiescent gas, wings.C18Os3 5 79 . . . 237 11.3 2.8 1.3(1) 1.1(−16) Quiescent gas.C17Os4 3 81 . . . 151 10.8 3.2 1.6(0) 1.0(−17) Quiescent gas.

H2Os5 11 53 . . . 305 13.1 15.2 4.4(2) 6.2(−15) Quiescent gas, wings.H18

2 Os6 1 61 13.7 19.2 1.1(0) 6.9(−18) Wings.OHs7 6 270 12.7 19.1 8.9(0) 1.9(−16) Wings.OH+ s8 8 44 . . . 50 – – −6.2(0) −7.2(−17) Foreground slab.H2O+ s9 1 54 8.4 2.5 −8.9(−1) −1.2(−17) Foreground slab.

CH3OHs10 431 33 . . . 659 12.2 4.7 5.1(2) 4.5(−15) Quiescent gas.H2COs11 74 97 . . . 732 11.9 4.7 9.5(1) 7.0(−16) Quiescent gas.

HCO+ s12 8 90 . . . 389 11.5 5.4 1.1(2) 9.3(−16) Quiescent gas, wings(?).H13CO+ s12 2 87 . . . 117 11.4 2.2 7.0(−1) 4.4(−18) Quiescent gas.N2H+ s13 7 94 . . . 349 11.7 3.0 2.6(1) 2.2(−16) Quiescent gas.

CIs14 2 24 . . . 63 11.9 1.8 9.6(0) 7.3(−16) Quiescent gas.CIIs15 1 91 9.1 2.1 2.4(1) 5.4(−16) Foreground slab.CH+ s16 1 40 9.8 6.0 −2.8(0) −2.8(−17) Foreground slab.CHs17 3 26 12.7 2.5 4.4(−1) 3.6(−18) Quiescent gas.CCHs18 20 88 . . . 327 – – 1.1(1) 9.0(−17) Quiescent gas, wings.

HCN s19 9 89 . . . 447 12.3 12.1 1.1(2) 9.8(−16)a Quiescent gas, wings.H13CNs20 2 87 . . . 116 12.7 10.0 1.6(0) 1.0(−17) Quiescent gas, wings.HNC s21 2 91 . . . 122 11.6 2.6 2.0(0) 1.3(−17) Quiescent gas.CNs22 20 82 . . . 196 12.5 8.1 1.0(1) 7.5(−17) Quiescent gas, wings.NHs23 5 47 – – –a –a Quiescent gas?NH3

s25 7 28. . . 286 13.3 4.5 2.6(1) 3.2(−16) Quiescent gas, wings.15NH3

s26 1 28 11.3 5.8 1.4(−1) 1.0(−18) Quiescent gas.

CSs27 12 129 . . . 543 12.2 10.3 2.0(1) 1.5(−16) Quiescent gas, wings.C34Ss27 1 127 10.0 1.7 2.1(−1) 1.2(−18) Quiescent gas?H2Ss28 6 55 . . . 103 11.6 5.0 1.4(1) 1.4(−16) Quiescent gas, wings?SOs29 12 166 . . . 321 9.4 9.3 5.5(0) 3.7(−17) Broad blue.SO2

s30 2 65 . . . 379 11.1 10.0 2.7(−1) 1.7(−18) Broad blue, quiescent gas, wings?SH+ s31 2 25 12.6 2.8 2.0(−1) 1.2(−18) Quiescent gas, wings?

HCls32 10 30 . . . 90 11.4 – 4.9(0) 9.8(−17) Quiescent gas, wings.H37Cls32 10 30 . . . 90 11.4 – 9.5(−1) 8.6(−18)b Quiescent gas, wings.H2Cl+ s33 5 23 . . . 58 9.4 1.3 -8.2(−1) 9.3(−18) Foreground slab.H37

2 Cl+ s33 1 58 9.4 1.3 −3.6(−1) −4.4(−18) Foreground slab.

HDOs6 3 43 . . . 95 12.7 3.8 6.5(−1) 6.0(−18) Quiescent gas, wings?DCN s34 2 97 . . . 125 12.0 4.9 3.6(−1) 2.2(−18) Quiescent gas.NDs35 1 25 11.2 2.5 2.6(−1) 1.6(−18) Quiescent gas?NH2Ds36 2 24 11.3 2.6 6.2(−1) 3.6(−18) Quiescent gas.

HFs32 1 59 10.0 2.8 −2.0(0) −2.9(−17) Foreground slab, quiescent gas.Allc 719 23 . . . 752 12.0 5.4 4.0(3) 4.8(−14)

Notes. The table gives the number of detected transitions for each species, the range of upper level energies, the typical vlsr and FWHM, the totalline flux in K km s−1 and in Wm−2, where the exponential is given in brackets, and a note on the dominant line profile components. The line countsinclude hyperfine components and blends. Blends between species are excluded from the per-species flux sums, but included in the total line fluxmeasured in the survey. The species are grouped similarly to Sect. 3.6. Dashes represent cases where a good single Gaussian fit was not obtained,mostly due to blending. (a) NH is unambiguously detected in absorption on the HCN 11 − 10 line.; (b) due to a blend with CH3OH on the 2−1 line,only the H37Cl 1 − 0 flux is given; (c) excluding some blended lines.

References. s1Winnewisser et al. (1997); s2Cazzoli et al. (2004); s3Klapper et al. (2001); s4Klapper et al. (2003); s5Pickett et al. (2005); s6Johns(1985); s7Blake et al. (1986a); s8Müller et al. (2005); s9Mürtz et al. (1998); s10Müller et al. (2004); s11Müller et al. (2000b); s12Lattanzi et al. (2007);s13Pagani et al. (2009); s14Cooksy et al. (1986b); s15Cooksy et al. (1986a); s16Müller (2010); s17McCarthy et al. (2006); s18Padovani et al. (2009);s19Thorwirth et al. (2003); s20Cazzoli & Puzzarini (2005); s21Thorwirth et al. (2000); s22Klisch et al. (1995); s23Flores-Mijangos et al. (2004);s24Müller et al. (1999); s25Yu et al. (2010); s26Huang et al. (2011); s27Kim & Yamamoto (2003); s28Belov (1995); s29Bogey et al. (1997); s30Mülleret al. (2000a); s31Brown & Müller (2009); s32Nolt et al. (1987); s33Araki et al. (2001); s34Brünken et al. (2004); s35Takano et al. (1998); s36Fusinaet al. (1988).

at 1 THz, with rms noise levels of 70 mK, it is 0.7 GHz−1.At 1200 GHz, with and rms noise of 158 mK, the line density

is only 0.3 GHz−1. The frequency resolution is 1.1 MHz inall cases. Clearly, the line density decreases markedly with

A57, page 6 of 36

Page 8: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Table 3. Results of rotational diagram analyses for isotopologs of CO in two upper level energy ranges, Eu < 200 K and Eu > 200 K.

Species Size Eu < 200 K Eu > 200 K Notes

Trot [K] N [cm−2] Trot [K] N [cm−2]

CO beam-filling 208 6.0 × 1016 226 6.6 × 1016 Only wings, |v − vlsr| ≥ 2.5 km s−1.CO beam-filling 67 5.1 × 1017 149 2.4 × 1017 Only wings, optical depth corrected.13CO beam-filling 68 1.3 × 1016 152 4.8 × 1015

C18O beam-filling 52 2.2 × 1015 – –C17O beam-filling 36 1.0 × 1015 – – Two lines (7−6 is excluded).

CO 15” 89 3.4 × 1017 177 2.1 × 1017 Only wings, |v − vlsr| ≥ 2.5 km s−1.CO 15” 45 5.0 × 1018 124 8.7 × 1017 Only wings, optical depth corrected.13CO 15” 46 1.3 × 1017 126 1.8 × 1016

C18O 15” 38 2.3 × 1016 – –C17O 15” 27 1.4 × 1016 – – Two lines (7−6 is excluded).

Notes. Uncertainties for the parameters were calculated including the effects of rms noise and the relative flux calibration errors (10%), and werefound to always be <10%.

frequency. This is due to the decreasing sensitivity of our surveyand the increasing demands on temperature and density to excitehigh-lying rotational levels. A similar decrease for Orion KL wasdiscussed by Crockett et al. (2010). As the line detections coveronly 7% of all frequency channels at 500 GHz, a range wherethe highest number of transitions from CH3OH, SO2 and other“weed” molecules is expected, we conclude that our survey isfar from the line confusion limit.

3.4. The continuum

While continuum emission studies are not the main goal of ourHIFI survey, the high quality of the spectra allows a continuumlevel to be determined for use in line modeling. For example,local wiggles in the baseline can mimick a continuum and dis-tort the absorption line to continuum ratio. We provide here aglobal second-order polynomial fit to the continuum in bands 1athrough 5a, where the data quality is highest and the frequencycoverage is complete. We stitched the spectra with baselines in-tact and sampled every 10th channel to reduce the data volume.All spectral regions containing line detections were excludedfrom the fit. For a polynomial of the formTmb[K] = a + b · ν[GHz] + c · (ν[GHz])2, (2)we find the parameters to be a = − 0.51979, b = 0.0015261and c = −4.1104×10−7. This fit is displayed in the second panelof Fig. 1 and is valid in the range 480 to 1250 GHz.

3.5. Rotational diagrams for CO isotopologs

We performed a basic rotational diagram (Goldsmith & Langer1999) analysis for CO. This is more straightforward than formany other species due to the detection of several isotopologsas well as the low critical density. The results are summarized inTable 3, with rotational excitation temperatures and local ther-modynamic equilibrium (LTE) column densities. The rotationaltemperature, Trot, equals the kinetic one if the emitting mediumis in LTE, and if optical depth effects and the source size areaccounted for. For subthermal excitation, if the source size isknown, Trot gives an upper limit on Tkin, and the obtained col-umn density is a lower limit on the true value. We provide resultsfor two source sizes: beam-filling and 15”. The latter is consis-tent with the dense core (Shimajiri et al. 2008; López-Sepulcreet al. 2013b).

For 12CO, we used only the flux more than 2.5 km s−1 awayfrom the line centre, to avoid the reference contamination thataffects the lower lines. Thus, effectively the 12CO diagram re-sults are for the line wings. In each velocity bin, the 12CO lineswere corrected for optical depth using 13CO, yielding results thatmatch those of 13CO very well. Assuming an isotopolog ratio of63, the 12CO optical depth away from the line centre is foundto be ≤2 and the value decreases with increasing Ju. We expectthe C18O and C17O isotopologs to be optically thin, and a com-parison of their column densities with that of 13CO shows thatthe latter is only slightly optically thick at the line center, whichdominates the flux of this species. For 13CO and C18O, we finda column density ratio of 6, while 7 is expected.

To look for changes with increasing Eu, we perform the anal-ysis in two excitation regimes: Eu < 200 K and Eu > 200 K.We find that Trot increases by a factor of 2−3 with Ju, in otherwords higher-lying transitions have a higher excitation temper-ature. Thus, while the results in Table 3 show that a somewhathigher Trot is found for C18O than for C17O, more lines are de-tected for the former, and fitting the same transitions for bothspecies gives a better match.

Due to its low critical density (n . 106 cm−3 up to Ju = 16),CO is easily thermalized at densities typical of protostellar cores,∼106 cm−3. Such densities may not exist in the regions that emitin the line wings. Therefore, the temperature values in Table 3are upper limits on the kinetic temperature.

Analyses of ground-based observations of C18O inOMC-2 FIR 4 are consistent with our results. The column den-sity we find assuming a beam-filling source, N = 2.2 ×1015 cm−2, is almost exactly the same as that found by Castets& Langer (1995) from the 1−0 and 2−1 lines with with the 15 mSEST telescope, N = 2.5 × 1015 cm−2. Using the IRAM 30 mtelescope and the same transitions, Alonso-Albi et al. (2010)found Trot = 22 K and N = 4.8 × 1015 cm−2. For a centrallyconcentrated source, such an increase of average column densitywith decreasing beam size (θSEST ≈ 2 · θIRAM) is expected, al-though given that the true uncertainties on any column densitydetermination are likely around a factor of two, the differencemay be insignificant. The different C18O rotational temperatures,52 K from HIFI and 22 K from IRAM, again assuming beam-filling, indicate that the high-J lines preferentially probe warmergas, consistent with our rotational diagram results in the low andhigh Eu regimes.

A57, page 7 of 36

Page 9: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Fig. 3. Mean velocities and linewidths from Gaussian fits to lines of representative species. Several groups emerge, these are labeled in gray andreferred to in the text. The orange bars give the range of fit parameters of the full set of lines of each species. The black bars, at top left, showthe conservative Gaussian parameter fit uncertainties (see also Sect. 3.2). Where the orange bars are one-sided, showing the conservative fit errors,only a single line was detected or simultaneous fitting of multiple lines forced the species to appear at a single vlsr. For a discussion, see Sect. 4.1.

3.6. Comments on individual species

Here, we comment on each detected species. All quoted line pa-rameters are from single-Gaussian fits, unless explicitly statedotherwise.

3.6.1. CO, 13CO, C18O, C17O

The stitched spectrum of OMC-2 FIR 4 is dominated bythe CO ladder, towering above the other lines in Fig. 1 andshown individually in Fig. 5. The peak Tmb values are in therange 4.4 . . . 20.1 K. The lines are dominated by emission in thewings and quiescent gas velocities, but up to Ju = 11, emis-sion from the reference beams masks the narrower componentand results in fake absorption features due to signal subtraction.With increasing Ju, the Gaussian fit velocity shifts from 11.9to 13.3 km s−1.

As the relative contribution of the wings increases with in-creasing Ju level, or equivalently with decreasing beam size, thewing component likely traces gas that is hotter than any otherimportant CO-emitting region in OMC-2 FIR 4. On the otherhand, referring to the rotational temperatures in Table 3, we seethat the optical depth corrected 12CO wing Trot matches that of

the entire 13CO line very well – there is a correlation betweenthe fluxes in the line wings and centres.

We also detect several lines of the isotopologs 13CO, C18Oand C17O. While C18O and C17O trace the quiescent gas compo-nent, the 13CO lines contain hints of the wings as seen in Fig. 7.From Ju = 5 to 11, the Gaussian linewidth of 13CO increasesnear-linearly from 3 km s−1 to 9 km s−1. With increasing Ju, thewidth of the C18O lines changes from 2 to 3.4 km s−1, a lesspronounced change than 13CO but similar to N2H+.

We list the C17O 6−5 line as blended with CH3OH, but sim-ilar methanol transitions are not detected and the line is un-usually narrow and redshifted to be a CH3OH detection, sug-gesting the flux originates purely in the CO isotopolog. TheC17O 7−6, however, has a significant flux contribution from ablended H2CO line, as evidenced by the detection of formalde-hyde transitions similar to the blended one.

3.6.2. Water: H2O, OH, OH+, H2O+

One of the key molecules observable with HIFI, water, iswell detected in OMC-2 FIR 4, as seen in Figs. 6 and 8.Similarly to CO, the H2O lines are self-absorbed within a∼0.5 km s−1 blueshift from the source velocity, corresponding

A57, page 8 of 36

Page 10: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 4. Main components of the line profiles. The solid vertical lineshows the source velocity, 11.4 km s−1. The two velocity regimes ofquiescent gas are illustrated by C18O and CH3OH. The deep, narrowabsorption feature in CO is due to emission in the reference beams,while the absorption in H2O appears to be source-related. The broadblue component is represented by SO. The HF line traces foregroundmaterial in the foreground slab, at 9 km s−1, with another contributionfrom the quiescent gas.

to the quiescent gas but in absorption. They also clearly dis-play the wings component, Fig. 3 shows the H2O wings arebroader than those of CO and the lines are typically centerednear 13 km s−1. The peak intensity of the lines does not exceed∼4.5 K. The single-Gaussian fit linewidths vary considerably,from 9.9 to 20.5 km s−1, although it must be kept in mind the lineprofiles are complex. The isotopolog H18

2 O, weakly detected, is

Fig. 5. Normalized profiles of the CO lines detected in the survey, dis-played with a vertical offset of unity between each profile. The solidvertical line marks the source velocity of 11.4 km s−1. The wings areincreasingly important toward high rotational levels. Up to Ju = 11,the quiescent gas is masked by contamination in the reference beams,which causes absorption-like dips in the profiles.

centered at vlsr = 13.7 km s−1 and 19.2 km s−1 wide. As seenin the top panel of Fig. 6, the isotopolog profile is flat and weak,

A57, page 9 of 36

Page 11: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Fig. 6. Normalized profiles of the H2O lines detected in the survey, dis-played with a vertical offset of 1 between each profile. The solid verticalline marks the source velocity of 11.4 km s−1. The narrow dips are dom-inated by self-absorption.

and thus difficult to interpret, but it appears to be as broad as H2Oitself. The H2O lines point to a complex underlying velocity andexcitation structure within the envelope.

Fig. 7. Normalized line profiles of carbon-bearing species, illustratingtheir different kinematics. The solid vertical line marks the source ve-locity of 11.4 km s−1. The short vertical dashed lines show the CH hy-perfine components except the one the vlsr is centered on. No CASSISmodel was made for CH, see text. The CII absorption at 11 . . . 15 km s−1

is an artefact due to contamination in the reference spectra. The dip inCI at ∼10 km s−1 as also due to reference beam contamination.

The 3/2−1/2 transition of OH, comprizing six hyperfinecomponents, is detected in emission and one set of hyperfinecomponents is shown in Fig. 8. An LTE fit with CASSIS,

A57, page 10 of 36

Page 12: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 8. Normalized line profiles of some oxygen-bearing species, inparticular relating to H2O chemistry. The solid vertical line marks thesource velocity of 11.4 km s−1. The OH, OH+ and H2O+ spectra havebeen gaussian-smoothed to 4 MHz for clarity.

including the hyperfine structure, yields vlsr = 12.7 andFWHM = 19.1 km s−1. This is consistent with the wings com-ponent, of which OH may be the best tracer in terms of lineprofile complexity. The fit is mostly useful for constraining thekinematic parameters of this species – the source size, columndensity and excitation temperature are not well constrained. Inthe best-fit model, the hyperfine components are optically thin(τ . 0.01). The OH line parameters are very similar to thosetypical for H2O and for high-J CO lines.

Multiple OH+ transitions are detected in absorptionat 9.3 km s−1, part of the foreground slab component. We also de-tect the H2O+ 11,1−00,0 line at 8.4 km s−1. Selected lines are pre-sented in Fig. 8. These ions and the tenuous gas they probe areanalyzed in a companion paper (López-Sepulcre et al. 2013a).

3.6.3. CH3OH and H2CO

Lines of CH3OH and H2CO are shown in Fig. 9, although dueto the enormous number of detections the only criterion for thedisplayed subset is to cover upper level energies from ∼100 Kthrough 200 K to 400 K for both species.

CH3OH dominates the number of detected lines inOMC-2 FIR 4 with 431 lines, and H2CO is second with 74.While the median CH3OH velocity is vlsr = 12.2 km s−1 andFWHM = 4.7 km s−1, the lines display a significant trendin vlsr with upper level energy: at Eu = 50 K, they peakat 11.8 km s−1, while by Eu = 450 K, the typical peak hasshifted to 12.5 km s−1. This suggests the low-excitation lines are

Fig. 9. Normalized line profiles of some CH3OH and H2CO lines, rep-resenting, from bottom to top, upper level energies Eu ≈ 100 K, 200 Kand 400 K for both species. The solid vertical line marks the sourcevelocity of 11.4 km s−1.

dominated by the source velocity component of the quiescentgas, while the redshifted (∼12 km s−1) component becomes in-creasingly dominant at high excitation energies. This dominanceof an underlying hot component is in line with the conclusion ofour previous CH3OH analysis (Kama et al. 2010), where a subsetof the lines was presented, including line profiles and rotationaldiagrams.

The H2CO lines range in upper level energy from 97 Kto 732 K, and the median parameters, vlsr = 11.9 km s−1 andFWHM = 4.7 km s−1, are statistically indistinguishable fromthose of CH3OH. The line of sight velocity trend of H2CO alsoresembles that of CH3OH.

As no isotopologs of CH3OH and H2CO are detected andbecause their excitation will be analyzed in a separate paper,we do not give rotational diagram results for these species inTable 3. However, the shifting of the emission peaks with upperlevel energy and frequency suggests these species probe multipleregions of OMC-2 FIR 4.

3.6.4. HCO+ and N2H+

The HCO+ and N2H+ lines, an overview of which can be seenin Fig. 10, are dominated by the quiescent gas component.

A57, page 11 of 36

Page 13: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Fig. 10. Selection of normalized line profiles of HCO+ and N2H+, illus-trating trends in the line kinematics. The solid vertical line marks thesource velocity of 11.4 km s−1.

The wings component appears to contribute at a low level toHCO+ emission. Toward higher J levels, the HCO+ lines be-come double-peaked, with one component near 10 km s−1 andanother at 12 km s−1. An examination of Fig. 10 shows that thedouble peak is relevant mostly for the highest HCO+ lines, forwhich the critical densities are ∼108 cm−3 and lower level en-ergies >200 K. The apparent double peak may be due to self-absorption at ∼10 km s−1. There is no indication in the refer-ence spectra of contamination problems for HCO+. H13CO+ is aprime example of the quiescent gas component.

The N2H+ stays single-peaked, but at Eu > 200 K (Ju > 9),the peak redshifts to 12 km s−1. While the N2H+ lines are nar-rower than those of HCO+ by roughly a factor of two, theirwidths and velocities are similar to the H13CO+, C18O andC17O lines.

3.6.5. Carbon: CI, CII, CH, CCH, CH+

Aside from CO, a number of simple carbon-bearing species aredetected. A comparison of some lines of 13CO, CI, CII, CCH,CH and CH+ is given in Fig. 7, indicating substantial variationsin the line profiles.

The CI and 13CO lines also correspond to the quiescent gas.The highest-J 13CO lines show a broad base, likely the wings.The CI lines show an absorption dip at around 10 km s−1, whichis due to emission in the reference positions and may be thecause of the slight redshift observed for CI in Fig. 3. The CI linefluxes from the bulk of OMC-2 FIR 4 are underestimated due tothe self-absorption.

The CII line peaks at 9.5 km s−1 and likely representsemission from the foreground slab. The CII absorption inthe 11 . . . 15 km s−1 velocity range is an artefact caused by emis-sion in the reference position spectra. To estimate the amountof flux lost due to this at the line peak, we reprocessed the datawith one DBS reference spectrum at a time. We established that,while the 11 . . . 15 km s−1 absorption features vary strongly withthe choice of reference spectrum, the 9.5 km s−1 peak variesonly by ∼10%, suggesting that the amount of line flux lost inthis component through reference subtraction is small or that thelarge-scale emission at this velocity around OMC-2 is remark-ably uniform. The latter is unlikely as the difference spectrumof the two reference positions shows a strong positive-negativeresidual, indicating a velocity offset between the components. Ifthe extended CII emission at 9.5 km s−1 in OMC-2 is of com-parable intensity to the detected peak, any intensity fluctuationsmust be at the ≤10% level on a scale of 6′, given a resolutionof 12′′. Accounting for only the upper level population, we ob-tain a lower limit of 3.4 × 1016 cm−2 on the CII column densitytoward FIR 4.

CCH is dominated by the quiescent gas component, butshows evidence for other components. The lines have a broadbase which appears redshifted, perhaps indicating a contributionfrom the wings. The CH lines are slightly redshifted and corre-spond to the quiescent gas emission. No CASSIS model fittingwas done, the line parameters were obtained from a Gaussian fitto a detected isolated hyperfine component. The parameters aresimilar to those of SH+ and HDO. The CH+ ion absorption lineis strongly saturated, leading to the increased linewidth seen inFig. 3, but it is centered on the foreground slab component. Wecompare CH+ and SH+ in Sect. 3.6.7.

3.6.6. Nitrogen-bearing molecules

Aside form N2H+, which is covered in Sect. 3.6.4, the main de-tected nitrogen-bearing species are HCN, CN, HNC and the ni-trogen hydrides. There are substantial differences in the profileswith species as well as with upper level energy for the nitrogen-bearing species, similarly to carbon and sulphur. In Fig. 11, linesof several representative nitrogen-bearing molecules are shownon a common velocity scale.

HCN, CN and HNC. Gaussian fits to the HCN lines peakat 12.1 km s−1. Their large linewidth, characteristic of the wingscomponent, puts them close to CO and H2O in Fig. 3. Theupper level energies of the detected HCN lines range from 89to 447 K. The high-lying lines, in particular, have critical den-sities around 1010 cm−3, indicating that the emitting regionscontain very dense and hot gas. The H13CN profiles are alsobroad, although they show a peak corresponding to the quies-cent gas.

A57, page 12 of 36

Page 14: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 11. Examples of normalized line profiles of nitrogen-bearingspecies. The solid vertical line marks the source velocity of 11.4 km s−1.The top line profile is centered on HCN and the dashed vertical linesmark the locations of the strongest NH hyperfine components.

The two detected HNC lines trace the quiescent gas compo-nent. The CN line profiles are dominated by the quiescent gascomponent, but there is also a contribution from the wings, asseen in Fig. 11.

NH and NH3. We detect some hyperfine components of theNH 12−01 transition in absorption on the HCN 11−10 emis-sion line, as shown in Fig. 11. The lines are close to the qui-escent gas component velocity. The dominant hyperfine com-ponents are in absorption until below the continuum level. TheND (12,3,4−01,2,3) transition is detected in emission and is shownin Fig. 14.

Seven transitions of NH3 are detected, covering 28 through286 K in upper level energy. As seen in Fig. 11, the lines have

Fig. 12. Examples of normalized line profiles of sulphur-bearingspecies. The solid vertical line marks the source velocity of 11.4 km s−1.The CASSIS model for SH+, showing two hyperfine components, isgiven by the dashed red line.

a broad base, consistent with the wings, and they show narrowself-absorption near the quiescent gas component. We find noevidence for emission in the reference positions to be causingthe absorption, but due to the relative weakness of the featuresthis cannot be fully excluded at present. While the lines havea similar appearance to CO, H2O and OH, and are centeredat the same velocity, they are typically a factor of four nar-rower, as seen in Fig. 3. We return to this point in Sect. 4.1.The fundamental ortho-NH3 line has a particularly interest-ing profile, with a sharp peak at 12.5 km s−1 and a plateauat 10 . . . 12 km s−1.

A57, page 13 of 36

Page 15: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

3.6.7. Sulphur-bearing molecules

The detected sulphur-bearing species are CS, C34S, H2S, SO,SO2 and SH+. As seen from the selection of lines in Fig. 12,there are significant differences between their line profiles.

The detected CS lines cover an upper level energy range of129 K ≤ Eu ≤ 543 K and seem similar to CO in that they mayhave contributions from the quiescent gas and the wings. Thecritical densities of the high-lying lines are n > 108 cm−3, indi-cating the presence of dense and hot gas in the emitting regions.The C34S 10−9 line is narrow and peaks at around 10 km s−1,likely tracing a dense, warm clump with a high CS abundance, atthat velocity. The clumpy distribution of C34S in OMC-2 FIR 4is explored further by López-Sepulcre et al. (2013b).

The H2S lines are dominated by the quiescent gas compo-nent, but the wings or broad blue components may be present ata low level.

The SO lines are the sole clear tracer of the broad blue com-ponent. They cover an upper level energy range of 165 to 321 Kand have critical densities of order 108 cm−3, suggesting denseand hot gas in the emission region. It is notable that the SO linesare 9.3 km s−1 broad and peak at 9.4 km s−1, 2 km s−1 to the bluefrom the OMC-2 systemic velocity. We detect only two transi-tions of SO2, which are similar in their median properties to CO,perhaps having contributions from the broad blue, quiescent gasand wings components.

The detected SH+ hyperfine line emission is shown in thelowest part of Fig. 12. The line profiles are very similar to CH,as seen in Fig. 3 and by comparing with the second-to-lowestpanel in Fig. 7. The line parameters were obtained by fitting thehyperfine structure with the CASSIS software, and found to bevlsr = (12.6 ± 0.3) km s−1 and FWHM = (2.8 ± 0.3) km s−1.The central velocity of SH+ matches that of the wings compo-nent, but the linewidth resembles the quiescent gas. It is inter-esting to note that we detect CH+ in absorption at 9.8 km s−1

and SH+ in emission around 12.2 km s−1, contrary to the strongcorrelation between these species seen in a sample of galacticsight-lines by Godard et al. (2012). The synthesis path of SH+

is S+ + H2 → SH+ + H, which has an activation barrierof 9860 K, more than twice the 4640 K barrier to the productionof CH+ via an analogous path. This may offer an explanation toour nondetection of SH+ in the foreground slab component, butit is not immediately clear why we do not detect CH+ at the samevelocity as SH+ – excitation and chemistry may both play a role.In the models of Bruderer et al. (2010), there are regions near aprotostellar outflow base where the SH+ abundance is elevatedby several orders of magnitude with respect to that of CH+ dueto sulphur evaporation from grains.

3.6.8. Chlorine-bearing molecules

Lines of isotopologs containing 35Cl and 37Cl of two of themain chlorine-bearing molecules are detected: HCl 1−0 and2−1, and H2Cl+ 1−0 and 2−1. For HCl, the line peak is at∼11.4 km s−1, the quiescent gas velocity. There is a broadbase which may be identified with the wings component. ForH2Cl+, we fitted the hyperfine structure with CASSIS, obtainingvlsr = (9.4 ± 0.2) km s−1 and FWHM = (1.8 ± 0.5) km s−1.Several examples of transitions of chlorine-bearing species areshown in Fig. 13.

Hydrogen chloride is predicted to be the dominant gas-phase chlorine reservoir in high-extinction regions (Blake et al.1986b; Neufeld & Wolfire 2009), consistent with the expectationthat the 11.4 km s−1 component traces the large-scale envelope.

Fig. 13. Normalized line profiles of the main detected HCl andH2Cl+ transitions. The solid vertical line marks the source velocity of11.4 km s−1. The CASSIS models for each species, used to obtain thevlsr and width of the lines, are shown with red dashed lines.

On the other hand, H2Cl+ is predicted to be a significant car-rier in photon-dominated regions, and correspondingly H2Cl+ isdetected in absorption in the blue-shifted foreground slab com-ponent. The chlorine-bearing species will be the focus of an up-coming paper (Kama et al., in prep.).

3.6.9. Deuterated species

Our HIFI survey is poor in deuterated species, the only de-tections are HDO, DCN, NH2D and ND. The strongest linesare shown in Fig. 14. The HDO lines are very weak, there-fore firm conclusions cannot be drawn, but the 11,1−00,0 lineshown in Fig. 14 suggests similarities with H18

2 O in velocity,and our tests with Gaussian decomposition of the H2O linesalso suggest a similar emission peak location. The DCN me-dian vlsr is 12 km s−1, consistent within the errors with HCN butwith the linewidth again much narrower and corresponds to theredshifted side of the quiescent gas component, also traced byCH3OH and H2CO. Singly deuterated ammonia, NH2D, peaksat vlsr ≈ 11.2 km s−1 and corresponds well to other tracers of thequiescent gas component. The ND line is centered near the qui-escent gas velocity but its width corresponds better to the wingsor broad blue component. However, the line is weak and shouldbe interpreted with caution.

3.6.10. HF

The J = 1−0 transition of hydrogen fluoride is detected in ab-sorption at 10.0 km s−1, and is shown in Fig. 4. The linewidthis 2.8 km s−1 and the estimated column density (1.2 ± 0.3) ×1013 cm−2. Modeling by López-Sepulcre et al. (2013a) sug-gests the presence of two different velocity components: one at9 km s−1, corresponding to the foreground slab, and a dominantcomponent around 11 km s−1, roughly the quiescent gas velocity.

A57, page 14 of 36

Page 16: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 14. Selection of lines of deuterated species. A water line has beenadded for comparison with HDO. The solid vertical line marks thesource velocity of 11.4 km s−1. The CASSIS model for ND is markedwith a dashed red line.

4. Discussion

Much information about the kinematic, excitation and abun-dance structure of OMC-2 FIR 4 is encoded into the roughly700 detected spectral lines. The source is kinematically andchemically complex. Substantial amounts of molecular gas arepresent in the HIFI beam at all probed scales (40′′. . . 11′′or 17 000 AU. . . 5000 AU). We detect emission from high-J tran-sitions of CO, CS, HCN, HCO+ and other species. The high crit-ical densities (up to n ∼ 109 cm−3) and excitation energies indi-cate that at least some of the emitting regions are very dense andhot or able to excite some transitions via infrared pumping. Wefocus below on the kinematical components and the energetics,deferring more detailed analyses to future papers.

4.1. Interpretation of the kinematic components

We now discuss the characteristics and possible nature of thekinematic components defined in Sect. 3.2. We emphasize againthat the features discussed are predominantly line profile com-ponents and need not have a one-to-one correspondonence withactual source components. The diversity of line profile shapes is,in any case, a clear indication of the complexity of the underly-ing spatial variations of composition, density, temperature andvelocity.

A correlation between the rotational temperature of the12CO line wings and entire 13CO lines was pointed out inSect. 3.6.1. This is based on a 12CO flux integration starting from±2.5 km s−1 from the line centre, and it is not clear if the sameresult would be found if the integration only included emissionfrom much higher velocities, e.g. starting from ±10 km s−1. If thecorrelation holds, it implies that there is a physical connectionbetween the emission in the CO line centre and high-velocitywings and a Gaussian decomposition into a narrow and broadcomponent may not be useful. This may contribute to a betterunderstanding of the origin of the CO emission. The results of adetailed study of the CO and H2O line wings will be presented ina separate paper (Kama et al., in prep.). For the moment, we pro-ceed with describing the morphological components proposedearlier in this paper.

Quiescent gas. This line profile component may have sev-eral subcomponents. One, centered around 11.0 . . . 11.5 km s−1,likely corresponds to the large-scale (∼104 AU or 25′′) envelopeof OMC-2 FIR 4 and matches the velocity of the bulk OMC-2cloud (Castets & Langer 1995; Aso et al. 2000). This componentis most clearly seen in C18O, C17O, N2H+ and NH2D, and it ap-pears to contribute to the emission of most detected species. Theother component is centered near 12.2 km s−1 and is best tracedby CH3OH, H2CO and DCN. We reiterate that some of the linesclassified as quiescent gas have substantial widths, >5 km s−1,however we lump them together with other lines which are rela-tively narrow when compared to the broadest lines, which musttrace outflowing rather than envelope material.

The H2O, NH3 and high-J HCO+ self-absorption (if HCO+

is indeed self-absorbed) is blueshifted with respect to the sourcerest frame. One hypothesis for explaining this blueshifted self-absorption feature is a slowly expanding layer of warm gas in theinner envelope. Similar absorption features on broad H2O lineprofiles in a sample of protostars are discussed as originating inthe inner envelope by Kristensen et al. (2012), who successfullyreproduced such line profiles with an adaptation of the Myerset al. (1996) model, incorporating outflow emission partially ob-scured by an expanding layer of less excited gas.

Our previous analysis of CH3OH lines in a subset of thepresent data revealed that the quiescent gas component is domi-nated at high upper level energies by a compact, hot component,which we identified with a hot core (Kama et al. 2010). The rota-tional diagram results for other species in Table 3 provide furtherevidence for the importance of an underlying hot component.

Wings. The broad wings are seen most clearly in OH, H2Oand CO, and likely trace at least one outflow. The existence ofa broad component in the CO 3−2 line was noted already byJohnstone et al. (2003). An interpretation of this component ismade difficult by the projected overlap of OMC-2 FIR 4 and onelobe of an outflow from the nearby source, FIR 3 (Shimajiri et al.2008). Given the prominence and symmetry of the wings in thehigh rotational lines of CO, and the broadness of the HCN andCS lines – all indicative hot or dense emitting material – the wing

A57, page 15 of 36

Page 17: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

emission may originate in a compact outflow from FIR 4 itself(Kama et al., in prep.).

Broad lines of OH correlate well with water and are as-sociated with outflow shocks (Wampfler et al. 2010) and inOMC-2 FIR 4, the large width of the OH lines (FWHM =19.1 km s−1) is consistent with an outflow shock origin.Furthermore, our modeling finds the OH lines to be opticallythin, so together with the highest-J CO lines, OH may be themost straightforward tracer of this outflow.

In Fig. 3, NH3 corresponds to the outflow tracers CO, H2Oand OH in terms of vlsr, but has a typical linewidth a factor offour smaller. In the L1157-B1 outflow context, similar observa-tions have been explained with a model where NH3 is destroyedin a shock at velocities >15 km s−1, while H2O, for example,maintains its high abundance (Viti et al. 2011). Other species,such as CH3OH and H2CO, should also show emission at theoutflow velocity, and a weak wing seems to indeed be present.

Broad blue. This component only appears clearly in linesof SO, although other species such as CO and CS do have ablue wing component that may be related. Its nature is unclear.It may be related to the compact blueshifted spot seen in low-frequency interferometry of SiO and other species by Shimajiriet al. (2008). Indeed, the SiO lines in our follow-up survey withthe IRAM 30 m telescope also show a blueshifted emissioncomponent.

Foreground slab. The slab component, at vlsr ∼ 9.5 km s−1,is traced almost exclusively by absorption lines of molecularions associated with photon-dominated regions (PDRs), suchas OH+, H2O+ and H2Cl+. The CII emission peak also corre-sponds to this component, as does part of the absorption in thefundamental line of HF. In addition to the set of species trac-ing the component, the fact that absorption is seen in low-lyinglines suggests a very tenuous medium. In a companion paper(López-Sepulcre et al. 2013a), we present a detailed analysis ofthis component, finding it to be a low-density and low-extinction(Av ≈ 1 mag) PDR cloud in front of OMC-2, irradiated on oneside by a heavily enhanced FUV field.

Other. Aside from the above four components, there is vari-ation in line profiles between different species, upper level en-ergies and observing frequencies. This includes the evolution ofN2H+ and especially HCO+ line profiles with increasing J level(Fig. 10) and the plateau-and-peak profile of the fundamentalortho-NH3 line (Fig. 11). Many of these line profile aspectsmay be subcomponents of the quiescent gas and other afore-mentioned categories. A full interpretation of this variety of fea-tures, while important, is outside the scope of this paper. Pendingfurther analyses of the HIFI data, we refer the reader to pre-vious (Shimajiri et al. 2008) and upcoming (López-Sepulcreet al. 2013b) papers for interferometric results on the small-scalestructure of OMC-2 FIR 4.

4.2. Line and continuum cooling

We investigated the role of molecular line emission in gas cool-ing by summing the integrated intensities of the detected transi-tions of each species. The results are given in the second-to-lastcolumn of Table 2, and in Fig. 15, we show the 11 dominantcooling molecules. Within the frequency coverage of the survey,CO is the dominant molecular coolant, emitting 60% of the totalenergy in the detected lines. The second most important is H2Owith 13% and the third is CH3OH with 9%. Two other notablecoolants are HCO+ and HCN, both contributing 2% of the totalline flux.

Fig. 15. Fractional contribution of various species to the line emissionfrom OMC-2 FIR 4. The 11 dominant cooling species, integrated acrossthe entire 480 to 1902 GHz HIFI survey, are displayed. Note that theunits are in percent of the total line flux in the HIFI survey, excludingcontinuum emission.

Due to contamination in the reference positions, the total fluxin CO lines is likely underestimated by a few tens of percent, asestimated from the lack of contamination in Ju > 11 and amulticomponent analysis of the lower-J lines. Thus, the true COto total line flux ratio may be as high as ∼70 . . . 80%.

To measure the relative importance of line and contin-uum cooling, we integrated the spectra with baselines intactin the fully frequency sampled region of the survey (bands 1athrough 5a or 480 to 1250 GHz), obtaining a flux of 1.3 ×10−12 W × m−2. Of this, 2.7 × 10−14 W × m−2 or 2% is inlines. In their 300 GHz range study of five low- to intermediate-luminosity protostars including OMC-2 FIR 4, Johnstone et al.(2003) found lines to contribute <8% of the measured contin-uum in their entire sample, consistent with our terahertz-rangeresult. Assuming a distance of 420 pc, the flux we measure withHIFI between 480 and 1250 GHz corresponds to a luminosity of∼7 L�, of which 0.1 L� is line emission.

It is remarkable that the sulphur oxides, SO and SO2, con-tribute negligibly to the line cooling in OMC-2 FIR 4, in strikingcontrast to Orion KL, as discussed in Sect. 4.2.1.

As the frequency coverage above 1250 GHz is not complete,the cooling contributions of some species in the HIFI range maydiffer from those given in Table 2, but for most species the to-tal line fluxes should not differ much from their total 480 to1902 GHz fluxes. Undetected weak lines contributing to the con-tinuum may also introduce a small correction to the quoted num-bers. The total line emission from OMC-2 FIR 4 may have alarge contribution from CO, H2O and OI lines outside the highend of the HIFI frequency range, toward the mid- and near-infrared. A study of the spectrally unresolved CO lines seen to-ward OMC-2 FIR 4 with Herschel/PACS by Manoj et al. (2013)determined the CO luminosity between Ju = 14 and 46 to be0.3 L�. A comparison of this with our HIFI CO line luminosityof 0.1 L� shows that transitions at frequencies within the HIFIrange contribute roughly the same total flux as those at higherfrequencies. As the HIFI and PACS ranges overlap, the total COluminosity from this region cannot be much above 0.4 , which isbetween 0.04% and 0.8% of the total luminosity, depending onthe source luminosity estimate (50 to 1000 L�, as discussed inSect. 1).

A57, page 16 of 36

Page 18: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Fig. 16. Line cooling in the 795−903 GHz range in two sources inOrion. The symbols mark the percentage of line emission in each dom-inant cooling species in OMC-2 FIR 4 (crosses, this work) and inOrion KL (circles, Comito et al. 2005). The upper limits are 5σ. Notethat the units are in percent of all line flux within the 795 to 903 GHzrange, excluding continuum emission.

4.2.1. Comparison with other sources

As a detailed comparison with other sources is outside the scopeof this paper, we provide here an initial view.

In Fig. 16, we compare the relative line cooling in the 795through 903 GHz range in OMC-2 FIR 4 and Orion KL, a well-studied strong line and continuum emitter. The numbers hereare not to be confused with the results for the entire surveygiven above, furthermore the units here are K km s−1, while thefull-survey fluxes were compared on the W m−2 scale. The se-lected species contain the seven most important coolants for ei-ther source. H2O is not considered in this comparison as it hasno lines in the 795 to 903 GHz range. In OMC-2 FIR 4 in thisrange, CO emission contains 61% of the line energy, followedby CH3OH with 20%, HCN with 8% and HCO+ with 7%. InOrion KL, SO2 dominates with 24% of the energy, followed byCH3OH with 22%, CO with 16% and SO with 12%.

While the sulphur oxides contribute at the 10 . . . 20% levelto line cooling in Orion KL, in OMC-2 FIR 4 both con-tribute ≤0.1% in the 795 to 903 GHz range, a difference of atleast two orders of magnitude. This may be due to an excep-tional contribution of energetic shocks in Orion KL. A simi-lar scarcity of sulphur oxides in comparison to Orion KL hasbeen reported before in samples of low- as well as high-massprotostars (Johnstone et al. 2003; Schilke et al. 2006). In addi-tion to shocks, factors such as the thermal evolution of the gasand dust may also play an important role in abundance varia-tions of sulphur-bearing molecules (Wakelam et al. 2004, 2005).The difference of peak velocity we observe between SO andCH3OH, ∼2 km s−1, suggests that SO emission in OMC-2 FIR 4is dominated by a spatially distinct region, a result seen also inSagittarius B2 (Nummelin et al. 2000).

The nature and heating processes of Orion KL are currentlyunder debate in the community and our comparison once againconfirms the exceptional nature of this source. It must be keptin mind that the quoted Orion KL observations were carriedout with the Caltech Submillimeter Observatory, with a beamroughly a third the size of that of Herschel at equivalent fre-quencies, therefore beam dilution effects may be important and

the above comparison should be repeated with the HIFI sur-vey of that source (Crockett et al., in prep.). The acceleratingpublication of HIFI spectral surveys and line observations ofa number of other protostars (e.g. Zernickel et al. 2012; Neillet al. 2012; Caux et al., in prep., see also other papers fromthe CHESS, HEXOS, and WISH key programs) will soon al-low more, and more detailed, comparative analyses to be made,across molecular species as well as protostellar properties. Forexample, the number of species found in the HIFI spectral sur-vey of OMC-2 FIR 4, 26 excluding isotopologs, is smallerthan that found in similar data for the high-mass star form-ing regions NGC 6334I (46 species, Zernickel et al. 2012) andSagittarius B2(N) (≥40 species, Neill et al. 2012). This may berelated to the substantially lower luminosity of OMC-2 FIR 4compared to the more massive sources.

5. Conclusions

– We present a Herschel/HIFI spectral survey of OMC-2 FIR 4in the range 480 to 1901 GHz, one of the first spectral sur-veys of a protostar in the terahertz regime.

– We find 719 lines in the survey, originating from 26 differentmolecular and atomic species and tracing a large range ofexcitation conditions, with 24 ≤ Eu ≤ 752 K.

– The line profiles have contributions from the large-scale en-velope of OMC-2 FIR 4, at least one outflow, a newly dis-covered foreground PDR and other components. The broadoutflow emission has a redshifted offset of 1.5 km s−1 fromthe source velocity. Narrow, blue-shifted self-absorption onbroad emission lines of H2O, NH3, and possibly HCO+,may originate in an expanding layer in the inner envelope.Broad, blue-shifted SO lines trace a new component of un-clear nature.

– The cooling budget of OMC-2 FIR 4 between 480 and1250 GHz is dominated by continuum radiation, with linescontributing 2%. The total flux received in this range is1.3 × 10−12 Wm−2 or ∼7 L� at 420 pc.

– Of all the detected line flux in W×m−2, 60% is from 12CO,13% from H2O and 9% from CH3OH. Every other speciescontributes at the ≤2% level.

– The dominant cooling molecules in OMC-2 FIR 4 andOrion KL are similar, but the relative role of SO and SO2in the energy budget of OMC-2 FIR 4 is two orders of mag-nitude smaller than in Orion KL, indicating a substantial dif-ference in the role of shocks or in the thermal evolution.

– In terms of composition and dominant chemical species,OMC-2 FIR 4 is well in line with results for other pro-tostars from ground-based instruments. It is thus a nearbyintermediate-mass star formation laboratory for which an ex-ceptional spectral dataset is now available.

Acknowledgements. The authors would like to thank Charlotte Vastel for helpwith the spectroscopic data; our CHESS, HEXOS and WISH colleagues for use-ful discussions; and the HIFI Instrument Control Center and Herschel ScienceCenter teams for their efforts. M.K. gratefully acknowledges funding from theNetherlands Organisation for Scientific Research (NWO) Toptalent grant num-ber 021.002.081, the Leids Kerkhoven-Bosscha Fonds and the COST Actionon Astrochemistry. A.L.S. and C.C. acknowledge funding by the French SpaceAgency CNES and from ANR contract ANR-08-BLAN-022. A.F. acknowledgessupport from the CONSOLIDER INGENIO 2010 program, grant CSD2009-00038. Herschel is an ESA space observatory with science instruments providedby European-led Principal Investigator consortia and with important participa-tion from NASA. This work is based on analysis carried out with the CASSISsoftware, developed by IRAP-UPS/CNRS (http://cassis.irap.omp.eu).

A57, page 17 of 36

Page 19: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

References

Adams, J. D., Herter, T. L., Osorio, M., et al. 2012, ApJ, 749, L24Alonso-Albi, T., Fuente, A., Crimier, N., et al. 2010, A&A, 518, A52Araki, M., Furuya, T., & Saito, S. 2001, J. Mol. Spectr., 210, 132Aso, Y., Tatematsu, K., Sekimoto, Y., et al. 2000, ApJS, 131, 465Belov, S. 1995, J. Mol. Spectr., 173, 380Bergin, E. A., Phillips, T. G., Comito, C., et al. 2010, A&A, 521, L20Blake, G. A., Farhoomand, J., & Pickett, H. M. 1986a, J. Mol. Spectr., 115, 226Blake, G. A., Masson, C. R., Phillips, T. G., & Sutton, E. C. 1986b, ApJS, 60,

357Bogey, M., Civiš, S., Delcroix, B., et al. 1997, J. Mol. Spectr., 182, 85Brown, J. M., & Müller, H. S. P. 2009, J. Mol. Spectr., 255, 68Bruderer, S., Benz, A. O., Stäuber, P., & Doty, S. D. 2010, ApJ, 720, 1432Brünken, S., Fuchs, U., Lewen, F., et al. 2004, J. Mol. Spectr., 225, 152Castets, A., & Langer, W. D. 1995, A&A, 294, 835Caux, E., Kahane, C., Castets, A., et al. 2011, A&A, 532, A23Cazzoli, G., & Puzzarini, C. 2005, J. Mol. Spectr., 233, 280Cazzoli, G., Puzzarini, C., & Lapinov, A. V. 2004, ApJ, 611, 615Ceccarelli, C., Bacmann, A., Boogert, A., et al. 2010, A&A, 521, L22Cernicharo, J., Barlow, M. J., Gonzalez-Alfonso, E., et al. 1996, A&A, 315,

L201Cernicharo, J., Guélin, M., & Kahane, C. 2000, A&AS, 142, 181Comito, C., & Schilke, P. 2002, A&A, 395, 357Comito, C., Schilke, P., Phillips, T. G., et al. 2005, ApJS, 156, 127Cooksy, A. L., Blake, G. A., & Saykally, R. J. 1986a, ApJ, 305, L89Cooksy, A. L., Saykally, R. J., Brown, J. M., & Evenson, K. M. 1986b, ApJ,

309, 828Crimier, N., Ceccarelli, C., Lefloch, B., & Faure, A. 2009, A&A, 506, 1229Crockett, N. R., Bergin, E. A., Wang, S., et al. 2010, A&A, 521, L21de Graauw, T., Helmich, F. P., Phillips, T. G., et al. 2010, A&A, 518, L6Flores-Mijangos, J., Brown, J. M., Matsushima, F., et al. 2004, J. Mol. Spectr.,

225, 189Fusina, L., di Lonardo, G., Johns, J. W. C., & Halonen, L. 1988, J. Mol. Spectr.,

127, 240Godard, B., Falgarone, E., Gerin, M., et al. 2012, A&A, 540, A87Goldsmith, P. F. 2001, ApJ, 557, 736Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209Herrmann, F., Madden, S. C., Nikola, T., et al. 1997, ApJ, 481, 343Higgins, R. 2011, Ph.D. Thesis, NUI MaynoothHiggins, R. D., Pearson, J. C., Lord, S. D., & Teyssier, D. 2009, in 64th

International Symposium On Molecular SpectroscopyHirota, T., Bushimata, T., Choi, Y. K., et al. 2007, PASJ, 59, 897Huang, X., Schwenke, D. W., & Lee, T. J. 2011, J. Chem. Phys., 134, 4321Johansson, L. E. B., Andersson, C., Elder, J., et al. 1985, A&AS, 60, 135Johns, J. W. C. 1985, J. Opt. Soc. Am. B Opt. Phys., 2, 1340Johnstone, D., Boonman, A. M. S., & van Dishoeck, E. F. 2003, A&A, 412, 157Kama, M., Dominik, C., Maret, S., et al. 2010, A&A, 521, L39Kim, E., & Yamamoto, S. 2003, J. Mol. Spectr., 219, 296Klapper, G., Lewen, F., Gendriesch, R., Belov, S. P., & Winnewisser, G. 2001,

Z. Naturforschung Teil A, 56, 329Klapper, G., Surin, L., Lewen, F., et al. 2003, ApJ, 582, 262Klisch, E., Klaus, T., Belov, S. P., Winnewisser, G., & Herbst, E. 1995, A&A,

304, L5Kristensen, L. E., van Dishoeck, E. F., Bergin, E. A., et al. 2012, A&A, 542, A8Lattanzi, V., Walters, A., Drouin, B. J., & Pearson, J. C. 2007, ApJ, 662, 771López-Sepulcre, A., Kama, M., Ceccarelli, C., et al. 2013a, A&A, 549, A114

López-Sepulcre, A., Taquet, V., Sánchez-Monge, Á., et al. 2013b, A&A, in press,DOI: 10.1051/0004-6361/201220905

Manoj, P., Watson, D. M., Neufeld, D. A., et al. 2013, ApJ, 763, 83McCarthy, M. C., Mohamed, S., Brown, J. M., & Thaddeus, P. 2006, Proc. Nat.

Acad. Sci., 103, 12263Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515Mezger, P. G., Zylka, R., & Wink, J. E. 1990, A&A, 228, 95Müller, H. S. P. 2010, A&A, 514, L6Müller, H. S. P., Klein, H., Belov, S. P., et al. 1999, J. Mol. Spectr., 195, 177Müller, H. S. P., Farhoomand, J., Cohen, E. A., et al. 2000a, J. Mol. Spectr., 201,

1Müller, H. S. P., Winnewisser, G., Demaison, J., Perrin, A., & Valentin, A.

2000b, J. Mol. Spectr., 200, 143Müller, H. S. P., Menten, K. M., & Mäder, H. 2004, A&A, 428, 1019Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, J. Mol.

Spectr., 742, 215Mürtz, P., Zink, L. R., Evenson, K. M., & Brown, J. M. 1998, J. Chem. Phys.,

109, 9744Myers, P. C., Mardones, D., Tafalla, M., Williams, J. P., & Wilner, D. J. 1996,

ApJ, 465, L133Neill, J. L., Bergin, E. A., Lis, D. C., et al. 2012, J. Mol. Spectr., 280, 150Neufeld, D. A., & Wolfire, M. G. 2009, ApJ, 706, 1594Nolt, I. G., Radostitz, J. V., Dilonardo, G., et al. 1987, J. Mol. Spectr., 125,

274Nummelin, A., Bergman, P., Hjalmarson, Å., et al. 2000, ApJS, 128, 213Ott, S. 2010, in Astronomical Data Analysis Software and Systems XIX, eds. Y.

Mizumoto, K.-I. Morita, & M. Ohishi, ASP Conf. Ser., 434, 139Padovani, M., Walmsley, C. M., Tafalla, M., Galli, D., & Müller, H. S. P. 2009,

A&A, 505, 1199Pagani, L., Daniel, F., & Dubernet, M.-L. 2009, A&A, 494, 719Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, J. Quant. Spec. Radiat.

Transf., 60, 883Pickett, H. M., Pearson, J. C., & Miller, C. E. 2005, J. Mol. Spectr., 233, 174Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1Roelfsema, P. R., Helmich, F. P., Teyssier, D., et al. 2012, A&A, 537, A17Schilke, P., Groesbeck, T. D., Blake, G. A., & Phillips, T. G. 1997, ApJS, 108,

301Schilke, P., Comito, C., Thorwirth, S., et al. 2006, A&A, 454, L41Shimajiri, Y., Takahashi, S., Takakuwa, S., Saito, M., & Kawabe, R. 2008, ApJ,

683, 255Shimajiri, Y., Kawabe, R., Takakuwa, S., et al. 2011, PASJ, 63, 105Snell, R. L., Howe, J. E., Ashby, M. L. N., et al. 2000, ApJ, 539, L93Takano, S., Klaus, T., & Winnewisser, G. 1998, J. Mol. Spectr., 192, 309Thorwirth, S., Müller, H. S. P., Lewen, F., Gendriesch, R., & Winnewisser, G.

2000, A&A, 363, L37Thorwirth, S., Müller, H. S. P., Lewen, F., et al. 2003, ApJ, 585, L163van der Wiel, M. H. D., Pagani, L., van der Tak, F. F. S., Kazmierczak, M., &

Ceccarelli, C. 2013, A&A, 553, A11Viti, S., Jimenez-Serra, I., Yates, J. A., et al. 2011, ApJ, 740, L3Wakelam, V., Caselli, P., Ceccarelli, C., Herbst, E., & Castets, A. 2004, A&A,

422, 159Wakelam, V., Ceccarelli, C., Castets, A., et al. 2005, A&A, 437, 149Wampfler, S. F., Herczeg, G. J., Bruderer, S., et al. 2010, A&A, 521, L36Winnewisser, G., Belov, S. P., Klaus, T., & Schieder, R. 1997, J. Mol. Spectr.,

184, 468Yu, S., Pearson, J. C., Drouin, B. J., et al. 2010, J. Chem. Phys., 133, 174317Zernickel, A., Schilke, P., Schmiedeke, A., et al. 2012, A&A, 546, A87

Pages 19 to 36 are available in the electronic edition of the journal at http://www.aanda.org

A57, page 18 of 36

Page 20: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Appendix A: Detected transitions

In Table A.1, we present a frequency-sorted table of the tran-sitions detected in the survey. In the first six columns, we givethe database properties of each transition. Columns 7−10 givethe Gaussian fit velocity and width, and their associated formaluncertainties. Columns 11−14 give the peak and integrated in-tensity, and associated uncertainty. Blending is indicated in col-umn 15, by a B: followed by an identification of the blended line(only one B: line is given also for multiple overlapping blends).Line profile parameters (vlsr, FWHM, Tmb) are not given for thelines which are blended. For some species, such as OH and SH+,the line parameters were determined by fitting models of the hy-perfine line profile to the data, these results can be seen in Table 2and Fig. 3 and plotted with red dashed lines in figures showingexamples of the data.

A57, page 19 of 36

Page 21: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.Tra

nsiti

ons

dete

cted

inth

eH

IFIs

pect

rals

urve

yof

OM

C-2

FIR

4.

Gau

ssia

nfit

From

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

480.

269

CH

3OH

3 2−

3 148

0.26

951

.64

4.89

e-04

12.2

60.

185.

200.

420.

1722

1.01

0.04

481.

504

CH

3OH

2 2−

2 148

1.50

444

.67

3.94

e-04

11.3

60.

143.

640.

340.

1423

0.42

0.04

481.

916

C34

S10

0−9 0

481.

916

127.

232.

38e-

0310

.01

0.10

1.68

0.24

0.05

190.

210.

0348

2.28

2C

H3O

H10

0−9 0

482.

282

140.

605.

02e-

0411

.80

0.06

3.61

0.13

0.37

161.

930.

0348

2.95

9C

H3O

H10−

1−9 −

148

2.95

913

3.15

5.00

e-04

11.8

20.

023.

820.

040.

6415

3.09

0.03

483.

141

CH

3OH

100−

9 048

3.14

112

7.60

5.05

e-04

11.7

30.

023.

720.

040.

6817

3.48

0.04

483.

389

CH

3OH

102−

9 248

3.38

916

5.35

4.89

e-04

12.2

20.

125.

070.

270.

1220

0.81

0.04

483.

472

CH

3OH

10−

4−9 −

448

3.47

221

5.55

6.30

e-04

12.6

50.

255.

210.

700.

0415

0.18

0.02

483.

539

CH

3OH

104−

9 448

3.53

920

7.99

6.31

e-04

14B

:CH

3OH

(10 4−

9 4)

483.

539

CH

3OH

104−

9 448

3.53

920

7.99

6.31

e-04

14B

:CH

3OH

(10 4−

9 4)

483.

551

CH

3OH

103−

9 348

3.55

117

7.46

6.82

e-04

14B

:CH

3OH

(10 4−

9 4)

483.

556

CH

3OH

10−

3−9 −

348

3.55

619

0.37

6.87

e-04

14B

:CH

3OH

(10 4−

9 4)

483.

566

CH

3OH

103−

9 348

3.56

617

7.46

6.82

e-04

14B

:CH

3OH

(10 4−

9 4)

483.

686

CH

3OH

101−

9 148

3.68

614

8.73

7.60

e-04

13B

:CH

3OH

(10 3−

9 3)

483.

697

CH

3OH

103−

9 348

3.69

717

5.39

6.85

e-04

13B

:CH

3OH

(10 1−

9 1)

483.

761

CH

3OH

102−

9 248

3.76

116

5.40

4.90

e-04

12.1

60.

114.

090.

260.

1116

0.51

0.02

484.

005

CH

3OH

2 2−

2 148

4.00

544

.67

4.01

e-04

14B

:CH

3OH

(10 2−

9 2)

484.

023

CH

3OH

102−

9 248

4.02

314

9.97

4.83

e-04

12B

:CH

3OH

(22−

2 1)

484.

072

CH

3OH

10−

2−9 −

248

4.07

215

3.63

4.89

e-04

11.9

20.

064.

250.

140.

1813

0.94

0.02

485.

263

CH

3OH

3 2−

3 148

5.26

351

.64

5.05

e-04

11.7

40.

034.

330.

060.

2016

1.10

0.03

485.

418

H2C

l+1 1

,1,5/2−

0 0,0,3/2

485.

418

23.3

01.

59e-

038.

260.

162.

820.

38−

0.03

11−

0.18

0.01

486.

941

CH

3OH

4 2−

4 148

6.94

160

.92

5.51

e-04

11.5

70.

034.

400.

060.

2416

1.27

0.03

487.

532

CH

3OH

101−

9 148

7.53

214

3.28

5.15

e-04

12.0

20.

023.

840.

050.

3817

2.00

0.03

489.

037

CH

3OH

5 2−

5 148

9.03

772

.53

5.79

e-04

11.9

00.

033.

880.

080.

2317

1.27

0.04

489.

751

CS

10−

948

9.75

112

9.29

2.51

e-03

11.8

50.

098.

280.

210.

5117

4.34

0.04

491.

551

CH

3OH

6 2−

6 149

1.55

186

.46

6.00

e-04

11.8

80.

064.

650.

150.

2118

1.11

0.04

491.

935

SO2

7 4,4−

6 3,3

491.

935

65.0

19.

49e-

0417

B:H

2CO

(71,

7−6 1

,6)

491.

968

H2C

O7 1

,7−

6 1,6

491.

968

106.

313.

44e-

0318

B:S

O2

(74,

4−6 3

,3)

492.

161

C1−

049

2.16

123

.62

7.99

e-08

11.9

00.

021.

810.

051.

3018

4.74

0.04

492.

279

CH

3OH

4 1−

3 049

2.27

937

.55

3.83

e-04

11.6

90.

024.

150.

040.

6617

3.47

0.04

493.

699

CH

3OH

5 3−

4 249

3.69

984

.62

6.62

e-04

11.6

70.

023.

720.

050.

4914

2.44

0.03

493.

734

CH

3OH

5 3−

4 249

3.73

484

.62

6.62

e-04

11.5

90.

023.

710.

050.

5015

2.56

0.03

494.

455

NH

2D1 1

,0,1−

0 0,0,0

494.

455

23.7

39.

95e-

0411

.19

0.03

2.21

0.08

0.14

140.

420.

0249

4.48

2C

H3O

H7 2−

7 149

4.48

210

2.70

6.18

e-04

11.7

90.

025.

060.

060.

2114

1.30

0.03

495.

173

CH

3OH

7 0−

6 −1

495.

173

78.0

83.

21e-

0411

.71

0.02

3.68

0.05

0.40

151.

940.

0349

6.92

4C

H3O

H14

0−13

149

6.92

425

6.14

3.26

e-04

12.3

40.

144.

620.

320.

0813

0.35

0.03

497.

828

CH

3OH

8 2−

8 149

7.82

812

1.27

6.36

e-04

11.9

00.

044.

610.

080.

2014

1.29

0.03

501.

589

CH

3OH

9 2−

9 150

1.58

914

2.15

6.54

e-04

11.9

30.

073.

980.

150.

1614

0.87

0.03

504.

294

CH

3OH

7 1−

6 050

4.29

486

.05

3.53

e-04

11.7

20.

024.

010.

060.

3915

2.09

0.03

Not

es.T

hefir

stsi

xco

lum

nsgi

veth

eda

taba

sepr

oper

ties

ofea

chtr

ansi

tion.

Col

umns

7−10

give

the

Gau

ssia

nfit

velo

city

and

wid

th,a

ndth

eira

ssoc

iate

dfo

rmal

unce

rtai

ntie

s.C

olum

ns11−

14gi

veth

epe

akan

din

tegr

ated

inte

nsity

,and

asso

ciat

edun

cert

aint

y.B

lend

ing

isin

dica

ted

inC

ol.1

5,by

aB:

follo

wed

byan

iden

tifica

tion

ofth

ebl

ende

dlin

e(o

nly

oneB:

line

isgi

ven

also

for

mul

tiple

over

lapp

ing

blen

ds).

Lin

epr

ofile

para

met

ers

(vls

r,FW

HM

,Tm

b)ar

eno

tgiv

enfo

rthe

lines

whi

char

ebl

ende

d.Fo

rsom

esp

ecie

s,su

chas

OH

and

SH+,t

helin

epa

ram

eter

sw

ere

dete

rmin

edby

fittin

gm

odel

sof

the

hype

rfine

line

profi

leto

the

data

,the

sere

sults

are

plot

ted

with

red

dash

edlin

esin

figur

essh

owin

gex

ampl

esof

the

data

.

A57, page 20 of 36

Page 22: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

505.

565

H2S

2 2,1−

2 1,2

505.

565

79.3

72.

40e-

0411

.29

0.04

3.83

0.10

0.11

160.

480.

0350

5.76

2C

H3O

H10

2−10

150

5.76

216

5.35

6.73

e-04

11.9

50.

034.

160.

070.

1418

0.62

0.03

505.

834

H2C

O7 0

,7−

6 0,6

505.

834

97.4

43.

82e-

0311

.75

0.02

4.42

0.04

0.74

184.

030.

0450

6.15

3C

H3O

H11

1−10

250

6.15

317

4.27

2.34

e-04

12.0

50.

144.

160.

320.

0918

0.32

0.03

506.

825

DC

N7−

650

6.82

597

.30

6.33

e-03

12.0

40.

376.

780.

870.

0415

0.24

0.03

509.

146

H2C

O7 2

,6−

6 2,5

509.

146

144.

933.

58e-

0311

.70

0.02

4.51

0.05

0.39

162.

280.

0350

9.29

2H

DO

1 1,0−

1 0,1

509.

292

46.7

62.

32e-

0316

B:H

2CO

(76,

1−6 6

,0)

509.

306

H2C

O7 6

,1−

6 6,0

509.

306

520.

811.

03e-

0317

B:H

DO

(11,

0−1 0

,1)

509.

306

H2C

O7 6

,2−

6 6,1

509.

306

520.

811.

03e-

0316

B:H

DO

(11,

0−1 0

,1)

509.

562

H2C

O7 5

,3−

6 5,2

509.

562

391.

841.

91e-

0317

B:H

2CO

(75,

2−6 5

,1)

509.

562

H2C

O7 5

,2−

6 5,1

509.

562

391.

841.

91e-

0317

B:H

2CO

(75,

3−6 5

,2)

509.

565

CH

3OH

102−

9 150

9.56

514

9.97

4.07

e-04

17B

:H2C

O(7

5,3−

6 5,2

)50

9.83

0H

2CO

7 4,4−

6 4,3

509.

830

286.

172.

63e-

0319

B:H

2CO

(74,

3−6 4

,2)

509.

830

H2C

O7 4

,3−

6 4,2

509.

830

286.

172.

63e-

0319

B:H

2CO

(74,

4−6 4

,3)

510.

156

H2C

O7 3

,5−

6 3,4

510.

156

203.

893.

20e-

0311

.88

0.02

4.08

0.04

0.55

162.

890.

0351

0.23

8H

2CO

7 3,4−

6 3,3

510.

238

203.

903.

20e-

0311

.93

0.02

4.19

0.04

0.54

162.

770.

0351

0.34

5C

H3O

H11

2−11

151

0.34

519

0.86

6.94

e-04

12.0

20.

104.

280.

240.

1015

0.44

0.03

512.

427

NH

2D2 0

,2,1−

1 1,0,0

512.

427

47.7

51.

57e-

0411

.49

0.09

3.00

0.22

0.07

170.

190.

0351

3.07

6H

2CO

7 2,5−

6 2,4

513.

076

145.

353.

66e-

0311

.92

0.02

4.40

0.05

0.39

182.

260.

0351

4.85

3SO

1211−

1110

514.

853

167.

591.

82e-

039.

300.

0812

.17

0.19

0.06

160.

680.

0451

5.17

0C

H3O

H16

0−15

151

5.17

031

5.21

4.10

e-04

12.0

50.

084.

310.

180.

2217

1.08

0.04

515.

335

CH

3OH

122−

121

515.

335

218.

697.

16e-

0412

.57

0.15

5.69

0.34

0.09

150.

530.

0351

6.33

5SO

1212−

1111

516.

335

174.

221.

83e-

039.

320.

067.

380.

150.

0616

0.45

0.03

517.

354

SO12

13−

1112

517.

354

165.

781.

86e-

039.

050.

0612

.09

0.14

0.07

170.

730.

0451

7.97

0H

13C

N6−

551

7.97

087

.01

6.65

e-03

12.1

40.

058.

870.

110.

1116

0.96

0.03

519.

188

SO2

291,

29−

280,

2851

9.18

837

9.20

1.91

e-03

11.5

00.

4212

.03

1.00

0.02

160.

270.

0352

0.17

9C

H3O

H2 −

2−1 −

152

0.17

932

.86

9.76

e-04

11.7

80.

054.

780.

110.

4317

2.39

0.03

520.

460

H13

CO

+6−

552

0.46

087

.43

1.14

e-02

11.3

80.

042.

420.

090.

1216

0.45

0.03

520.

728

CH

3OH

132−

131

520.

728

248.

847.

40e-

0411

.73

0.13

2.85

0.31

0.08

190.

490.

0352

2.07

7N

D1 2

,3,4−

0 1,2,3

522.

077

25.0

61.

07e-

0311

.17

0.11

10.6

70.

260.

0316

0.27

0.02

523.

274

CH

3OH

14−

1−13

052

3.27

424

8.93

6.27

e-04

11.9

10.

023.

700.

040.

3517

1.63

0.04

523.

972

CC

H6 1

3/2,

7−5 1

1/2,

652

3.97

288

.02

4.58

e-04

18B

:CC

H(6

13/2,6−

5 11/

2,5)

523.

972

CC

H6 1

3/2,

6−5 1

1/2,

552

3.97

288

.02

4.53

e-04

17B

:CC

H(6

13/2,7−

5 11/

2,6)

524.

003

CH

3OH

15−

4−15−

352

4.00

336

6.32

1.06

e-03

13.4

60.

132.

910.

300.

0316

0.13

0.02

524.

034

CC

H6 1

1/2,

6−5 9

/2,5

524.

034

88.0

44.

51e-

0418

B:C

CH

(611/2,5−

5 9/2,4

)52

4.03

5C

CH

6 11/

2,5−

5 9/2,4

524.

035

88.0

44.

43e-

0418

B:C

CH

(611/2,6−

5 9/2,5

)52

4.26

9C

H3O

H13−

4−13−

352

4.26

929

9.06

7.10

e-04

11.2

70.

213.

180.

500.

0416

0.27

0.03

524.

385

CH

3OH

12−

4−12−

352

4.38

526

8.91

7.03

e-04

11.7

50.

569.

291.

320.

0417

0.30

0.03

524.

489

CH

3OH

11−

4−11−

352

4.48

924

1.07

6.94

e-04

12.5

80.

235.

520.

530.

0517

0.29

0.03

524.

666

CH

3OH

9 −4−

9 −3

524.

666

192.

346.

64e-

0411

.60

0.12

3.35

0.29

0.06

160.

250.

0252

4.74

0C

H3O

H8 −

4−8 −

352

4.74

017

1.46

6.39

e-04

12.1

10.

065.

900.

130.

0816

0.46

0.03

524.

805

CH

3OH

7 −4−

7 −3

524.

805

152.

906.

03e-

0411

.85

0.04

4.81

0.10

0.08

170.

490.

0252

4.86

1C

H3O

H6 −

4−6 −

352

4.86

113

6.65

5.49

e-04

11.7

90.

133.

960.

320.

1015

0.56

0.02

524.

908

CH

3OH

5 −4−

5 −3

524.

908

122.

724.

62e-

0412

.01

0.16

3.85

0.38

0.08

150.

400.

02

A57, page 21 of 36

Page 23: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

524.

947

CH

3OH

4 −4−

4 −3

524.

947

111.

123.

08e-

0411

.81

0.14

4.16

0.33

0.06

160.

240.

0252

5.66

6H

2CO

7 1,6−

6 1,5

525.

666

112.

794.

20e-

0311

.82

0.01

4.92

0.03

1.22

167.

140.

0352

6.03

9SH

+1 2

,3/2−

0 1,1/2

526.

039

25.2

57.

99e-

0413

B:S

H+

(12,

5/2−

0 1,3/2

)52

6.04

8SH

+1 2

,5/2−

0 1,3/2

526.

048

25.2

59.

59e-

0413

B:S

H+

(12,

3/2−

0 1,1/2

)52

6.52

0C

H3O

H14

2−14

152

6.52

028

1.29

7.66

e-04

12.5

10.

075.

670.

160.

0613

0.37

0.02

527.

053

CH

3OH

111−

101

527.

053

166.

376.

54e-

0411

.97

0.04

3.86

0.10

0.31

161.

410.

0352

7.17

1C

H3O

H15

3−15

252

7.17

132

6.28

8.92

e-04

13.0

70.

384.

810.

890.

0317

0.14

0.02

527.

658

CH

3OH

143−

142

527.

658

291.

468.

88e-

0411

.99

0.36

8.39

0.86

0.04

170.

340.

0352

8.17

7C

H3O

H13

3−13

252

8.17

725

8.96

8.81

e-04

12.5

10.

153.

740.

360.

0517

0.24

0.03

528.

683

CH

3OH

123−

122

528.

683

228.

788.

74e-

0412

.10

0.21

4.01

0.50

0.05

170.

250.

0352

9.14

3C

H3O

H11

3−11

252

9.14

320

0.92

8.64

e-04

12.5

30.

144.

110.

330.

0715

0.37

0.03

529.

540

CH

3OH

103−

102

529.

540

175.

398.

52e-

0412

.15

0.12

5.06

0.29

0.09

160.

480.

0352

9.86

7C

H3O

H9 3−

9 252

9.86

715

2.17

8.37

e-04

12.3

70.

045.

200.

100.

1116

0.64

0.03

530.

123

CH

3OH

8 3−

8 253

0.12

313

1.28

8.18

e-04

11.8

10.

094.

890.

200.

1114

0.63

0.02

530.

184

CH

3OH

110−

100

530.

184

166.

056.

69e-

0412

.00

0.04

3.72

0.11

0.38

161.

800.

0353

0.31

6C

H3O

H7 3−

7 253

0.31

611

2.71

7.93

e-04

12.3

30.

084.

760.

200.

1615

0.74

0.03

530.

455

CH

3OH

6 3−

6 253

0.45

596

.46

7.58

e-04

12.1

30.

074.

780.

160.

1613

0.78

0.02

530.

549

CH

3OH

5 3−

5 253

0.54

982

.53

7.04

e-04

12.1

70.

095.

770.

220.

1613

0.91

0.02

530.

610

CH

3OH

4 3−

4 253

0.61

070

.93

6.14

e-04

12.1

80.

035.

040.

070.

1414

0.79

0.02

530.

647

CH

3OH

3 3−

3 253

0.64

761

.64

4.37

e-04

12.3

70.

126.

050.

280.

1215

0.78

0.03

531.

079

CH

3OH

11−

1−10−

153

1.07

915

8.64

6.69

e-04

11.8

90.

043.

980.

090.

6914

3.48

0.03

531.

319

CH

3OH

110−

100

531.

319

153.

106.

75e-

0411

.87

0.02

4.02

0.04

0.74

183.

670.

0353

1.63

6C

H3O

H11

2−10

253

1.63

619

0.87

6.58

e-04

12.2

50.

024.

230.

060.

1419

0.70

0.03

531.

716

HC

N6−

553

1.71

689

.32

7.20

e-03

12.0

40.

059.

010.

122.

2319

21.0

70.

0553

1.77

2C

H3O

H11−

4−10−

453

1.77

224

1.07

8.70

e-04

12.5

60.

315.

970.

750.

0417

0.15

0.01

531.

829

CH

3OH

114−

104

531.

829

249.

188.

75e-

0412

.27

0.56

5.90

1.33

0.03

180.

130.

0253

1.86

6C

H3O

H11−

3−10−

353

1.86

621

5.90

9.34

e-04

17B

:CH

3OH

(11 3−

103)

531.

869

CH

3OH

113−

103

531.

869

202.

989.

27e-

0417

B:C

H3O

H(1

1 −3−

10−

3)53

1.87

0C

H3O

H11

4−10

453

1.87

023

3.52

8.72

e-04

16B

:CH

3OH

(11 −

3−10−

3)53

1.87

1C

H3O

H11

4−10

453

1.87

123

3.52

8.72

e-04

15B

:CH

3OH

(11 −

3−10−

3)53

1.89

3C

H3O

H11

3−10

353

1.89

320

2.98

6.26

e-04

18B

:CH

3OH

(11 −

3−10−

3)53

2.03

1C

H3O

H11

1−10

153

2.03

117

4.27

6.86

e-04

11.9

40.

034.

000.

070.

2717

1.37

0.03

532.

069

CH

3OH

113−

103

532.

069

200.

926.

28e-

0411

.98

0.08

4.38

0.20

0.09

160.

480.

0253

2.13

3C

H3O

H11

2−10

253

2.13

319

0.94

6.60

e-04

11.7

70.

043.

680.

100.

1215

0.45

0.02

532.

466

CH

3OH

112−

102

532.

466

175.

536.

51e-

0412

.00

0.02

4.14

0.04

0.37

141.

750.

0353

2.56

7C

H3O

H11−

2−10−

253

2.56

717

9.19

6.58

e-04

12.0

00.

033.

740.

060.

1914

0.92

0.02

532.

707

CH

3OH

152−

151

532.

707

316.

051.

18e-

0317

B:C

H(2 Π

1 1,0,3/2,1−

1 −1,

0,1/

2,1)

532.

722

CH

2 Π1 1

,0,3/2,1−

1 −1,

0,1/

2,1

532.

722

25.7

32.

07e-

0419

B:C

H(2 Π

1 1,0,3/2,2−

1 −1,

0,1/

2,1)

532.

724

CH

2 Π1 1

,0,3/2,2−

1 −1,

0,1/

2,1

532.

724

25.7

36.

21e-

0419

B:C

H(2 Π

1 1,0,3/2,1−

1 −1,

0,1/

2,1)

535.

062

HC

O+

6−5

535.

062

89.8

81.

25e-

0211

.46

0.03

3.81

0.07

4.27

1422

.76

0.04

536.

191

CH

3OH

111−

101

536.

191

169.

016.

89e-

0412

.01

0.02

4.05

0.04

0.44

152.

230.

0353

6.76

1C

H2 Π

1 −1,

0,3/

2,2−

1 1,0,1/2,1

536.

761

25.7

66.

38e-

0412

.74

0.08

2.48

0.18

0.06

180.

210.

0253

8.57

1C

H3O

H5 1−

4 053

8.57

149

.06

4.93

e-04

11.8

00.

024.

470.

040.

7814

4.19

0.03

538.

689

CS

11−

1053

8.68

915

5.15

3.35

e-03

12.2

10.

079.

380.

170.

4514

4.07

0.03

A57, page 22 of 36

Page 24: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Tabl

eA

.1.c

ontin

ued.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

539.

282

CH

3OH

162−

161

539.

282

353.

128.

24e-

0412

.33

0.28

4.79

0.73

0.03

120.

220.

0254

0.92

2C

H3O

H15

0−14

154

0.92

229

0.74

4.21

e-04

12.6

30.

054.

120.

120.

0717

0.35

0.03

542.

001

CH

3OH

6 3−

5 254

2.00

198

.55

7.93

e-04

11.8

50.

023.

990.

050.

5415

2.73

0.03

542.

082

CH

3OH

6 3−

5 254

2.08

298

.55

7.93

e-04

11.7

90.

023.

990.

040.

5414

2.60

0.02

543.

076

CH

3OH

8 0−

7 −1

543.

076

96.6

14.

54e-

0411

.89

0.02

3.92

0.05

0.45

132.

310.

0354

3.89

8H

NC

6 0,0−

5 0,0

543.

898

91.3

78.

04e-

0311

.54

0.04

2.20

0.09

0.38

141.

620.

0254

6.23

9C

H3O

H17

2−17

154

6.23

939

2.50

1.27

e-03

12.0

60.

868.

992.

100.

0316

0.17

0.02

547.

676

H218

O1 1

,0−

1 0,1

547.

676

60.4

63.

29e-

0313

.69

0.08

19.1

90.

200.

0719

1.09

0.05

548.

831

C18

O5−

454

8.83

179

.02

1.06

e-05

11.3

40.

012.

020.

031.

3616

5.10

0.03

550.

926

13C

O5−

455

0.92

679

.33

1.07

e-05

11.6

00.

023.

090.

046.

9416

31.3

30.

0455

3.14

6C

H3O

H8 1−

7 055

3.14

610

4.62

4.63

e-04

11.7

30.

024.

200.

060.

3816

1.82

0.03

554.

055

CH

3OH

121−

112

554.

055

202.

124.

63e-

0412

.09

0.10

3.28

0.23

0.08

150.

410.

0255

6.93

6H

2O1 1

,0,0−

1 0,1,0

556.

936

60.9

63.

46e-

0311

.36

0.04

20.5

40.

102.

1219

33.7

20.

0655

8.08

7SO

1312−

1211

558.

087

194.

372.

32e-

039.

780.

079.

170.

170.

0720

0.59

0.04

558.

345

CH

3OH

112−

101

558.

345

175.

535.

16e-

0412

.10

0.02

3.66

0.05

0.39

171.

760.

0355

8.96

7N

2H+

6−5

558.

967

93.9

01.

16e-

0211

.55

0.01

2.24

0.02

2.28

167.

710.

0355

9.31

9SO

1313−

1212

559.

319

201.

072.

34e-

039.

980.

085.

490.

190.

0516

0.40

0.03

560.

178

SO13

14−

1213

560.

178

192.

662.

37e-

0310

.93

0.07

11.1

50.

170.

0517

0.60

0.04

561.

712

C17

O5 5

/2−

4 7/2

561.

712

80.8

81.

20e-

0711

.18

0.02

2.52

0.05

0.35

151.

580.

0356

1.89

9H

2CO

8 1,8−

7 1,7

561.

899

133.

285.

20e-

0311

.98

0.02

4.74

0.04

1.47

378.

380.

0856

6.73

0C

N5 9

/2,1

1/2−

4 7/2,9/2

566.

730

81.5

91.

98e-

0316

B:C

N(5

9/2,

7/2−

4 7/2,5/2

)56

6.73

1C

N5 9

/2,7/2−

4 7/2,5/2

566.

731

81.5

91.

86e-

0316

B:C

N(5

9/2,

11/2−

4 7/2,9/2

)56

6.73

1C

N5 9

/2,9/2−

4 7/2,7/2

566.

731

81.5

91.

88e-

0316

B:C

N(5

9/2,

11/2−

4 7/2,9/2

)56

6.94

7C

N5 1

1/2,

11/2−

4 9/2,9/2

566.

947

81.6

41.

96e-

0318

B:C

N(5

11/2,1

3/2−

4 9/2,1

1/2)

566.

947

CN

5 11/

2,13/2−

4 9/2,1

1/2

566.

947

81.6

42.

03e-

0324

B:C

N(5

11/2,1

1/2−

4 9/2,9/2

)56

6.94

7C

N5 1

1/2,

9/2−

4 9/2,7/2

566.

947

81.6

51.

95e-

0316

B:C

N(5

11/2,1

1/2−

4 9/2,9/2

)56

8.56

6C

H3O

H3 −

2−2 −

156

8.56

639

.83

1.01

e-03

11.9

00.

054.

960.

120.

5116

2.87

0.03

568.

783

CH

3OH

170−

161

568.

783

354.

545.

62e-

0412

.09

0.03

3.84

0.07

0.20

151.

000.

0357

2.11

315

NH

31 0

,0−

0 0,1

572.

113

28.0

01.

57e-

0312

.83

0.38

5.76

0.90

0.02

130.

150.

0257

2.49

8o-

NH

31 0

,0−

0 0,1

572.

498

27.4

81.

57e-

0311

.79

0.02

5.28

0.04

1.76

1410

.80

0.03

572.

899

CH

3OH

15−

1−14

057

2.89

928

3.64

8.61

e-04

12.0

20.

023.

920.

040.

3114

1.55

0.03

574.

868

CH

3OH

121−

111

574.

868

193.

968.

53e-

0412

.24

0.02

4.44

0.04

0.28

131.

480.

0257

6.26

8C

O5−

457

6.26

882

.98

1.22

e-05

11.3

70.

1411

.91

0.32

15.3

620

171.

010.

0757

6.70

8H

2CO

8 0,8−

7 0,7

576.

708

125.

125.

70e-

0311

.94

0.02

4.76

0.04

0.59

133.

320.

0357

8.00

6C

H3O

H12

0−11

057

8.00

619

3.79

8.70

e-04

12.1

20.

023.

900.

040.

4013

1.87

0.02

579.

085

CH

3OH

2 2−

1 157

9.08

544

.67

1.23

e-03

11.8

00.

024.

710.

050.

3914

2.15

0.02

579.

151

CH

3OH

12−

1−11−

157

9.15

118

6.43

8.72

e-04

12.0

60.

023.

770.

050.

7213

3.43

0.02

579.

201

DC

N8−

757

9.20

112

5.10

9.52

e-03

12.0

40.

202.

930.

480.

0312

0.11

0.01

579.

460

CH

3OH

120−

110

579.

460

180.

918.

79e-

0411

.96

0.02

3.98

0.04

0.72

123.

470.

0257

9.85

8C

H3O

H12

2−11

257

9.85

821

8.69

8.62

e-04

12.2

60.

084.

670.

180.

1413

0.80

0.02

579.

921

CH

3OH

2 2−

1 157

9.92

144

.67

1.24

e-03

11.7

10.

075.

070.

150.

3913

2.31

0.02

580.

033

CH

3OH

12−

5−11−

558

0.03

330

5.00

1.08

e-03

14B

:CH

3OH

(12 5−

115)

580.

058

CH

3OH

125−

115

580.

058

318.

901.

09e-

0313

B:C

H3O

H(1

2 −5−

11−

5)58

0.05

8C

H3O

H12

5−11

558

0.05

831

8.90

1.09

e-03

13B

:CH

3OH

(12 −

5−11−

5)58

0.05

9C

H3O

H12−

4−11−

458

0.05

926

8.91

1.16

e-03

14B

:CH

3OH

(12 −

5−11−

5)

A57, page 23 of 36

Page 25: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

580.

126

CH

3OH

124−

114

580.

126

277.

021.

17e-

0316

B:C

H3O

H(1

2 −3−

11−

3)58

0.16

3C

H3O

H12−

3−11−

358

0.16

324

3.74

1.23

e-03

14B

:CH

3OH

(12 4−

114)

580.

176

CH

3OH

123−

113

580.

176

230.

831.

22e-

0313

B:C

H3O

H(1

2 −3−

11−

3)58

0.19

5C

H3O

H12

4−11

458

0.19

526

1.37

1.16

e-03

17B

:CH

3OH

(12 −

3−11−

3)58

0.19

6C

H3O

H12

4−11

458

0.19

626

1.37

1.16

e-03

16B

:CH

3OH

(12 −

3−11−

3)58

0.21

3C

H3O

H12

3−11

358

0.21

323

0.83

1.22

e-03

15B

:CH

3OH

(12 4−

114)

580.

369

CH

3OH

121−

111

580.

369

202.

128.

94e-

0412

.02

0.02

4.16

0.04

0.25

151.

330.

0358

0.44

2C

H3O

H12

3−11

358

0.44

222

8.78

8.29

e-04

11.9

90.

054.

510.

120.

0716

0.37

0.02

580.

502

CH

3OH

122−

112

580.

502

218.

808.

64e-

0412

.10

0.03

3.95

0.08

0.13

150.

540.

0258

0.90

3C

H3O

H12

2−11

258

0.90

320

3.41

8.53

e-04

11.9

40.

024.

060.

040.

3614

1.84

0.03

581.

092

CH

3OH

12−

2−11−

258

1.09

220

7.08

8.63

e-04

12.0

20.

034.

770.

060.

1915

1.10

0.03

581.

612

H2C

O8 2

,7−

7 2,6

581.

612

172.

845.

49e-

0311

.83

0.02

4.42

0.04

0.34

161.

740.

0358

1.75

0H

2CO

8 7,2−

7 7,1

581.

750

700.

861.

37e-

0317

B:H

2CO

(87,

1−7 7

,0)

581.

750

H2C

O8 7

,1−

7 7,0

581.

750

700.

861.

37e-

0317

B:H

2CO

(87,

2−7 7

,1)

582.

071

H2C

O8 6

,3−

7 6,2

582.

071

548.

742.

57e-

0314

B:H

2CO

(86,

2−7 6

,1)

582.

071

H2C

O8 6

,2−

7 6,1

582.

071

548.

742.

57e-

0315

B:H

2CO

(86,

3−7 6

,2)

582.

382

H2C

O8 5

,4−

7 5,3

582.

382

419.

793.

58e-

0315

B:H

2CO

(85,

3−7 5

,2)

582.

382

H2C

O8 5

,3−

7 5,2

582.

382

419.

793.

58e-

0316

B:H

2CO

(85,

4−7 5

,3)

582.

723

H2C

O8 4

,5−

7 4,4

582.

723

314.

144.

42e-

0318

B:H

2CO

(84,

4−7 4

,3)

582.

724

H2C

O8 4

,4−

7 4,3

582.

724

314.

144.

42e-

0318

B:H

2CO

(84,

5−7 4

,4)

583.

145

H2C

O8 3

,6−

7 3,5

583.

145

231.

885.

07e-

0312

.02

0.02

4.38

0.04

0.48

162.

600.

0358

3.30

9H

2CO

8 3,5−

7 3,4

583.

309

231.

895.

08e-

0311

.96

0.02

4.60

0.04

0.48

172.

700.

0358

4.14

7C

H3O

H16

0−15

158

4.14

732

7.63

7.81

e-04

12.5

10.

134.

520.

320.

0717

0.32

0.03

584.

450

CH

3OH

6 1−

5 058

4.45

062

.87

6.25

e-04

11.9

80.

024.

280.

040.

9316

4.59

0.03

584.

822

CH

3OH

121−

111

584.

822

197.

088.

98e-

0412

.03

0.02

4.09

0.04

0.44

182.

220.

0358

7.45

4H

2CO

8 2,6−

7 2,5

587.

454

173.

555.

66e-

0311

.96

0.02

4.35

0.05

0.31

161.

680.

0358

7.61

6C

S12−

1158

7.61

618

3.35

4.36

e-03

12.1

90.

0810

.32

0.20

0.36

173.

750.

0459

0.27

8C

H3O

H7 3−

6 259

0.27

811

4.79

9.50

e-04

11.7

80.

024.

080.

040.

5516

2.52

0.03

590.

440

CH

3OH

7 3−

6 259

0.44

011

4.79

9.50

e-04

11.8

40.

024.

130.

040.

5415

2.67

0.03

590.

791

CH

3OH

9 0−

8 −1

590.

791

117.

466.

23e-

0412

.01

0.02

4.15

0.04

0.49

162.

540.

0359

9.92

7H

DO

2 1,1−

2 0,2

599.

927

95.2

33.

45e-

0312

.03

0.09

5.05

0.21

0.04

150.

250.

0260

0.33

1H

2CO

8 1,7−

7 1,6

600.

331

141.

616.

34e-

0312

.00

0.01

5.14

0.03

1.05

176.

120.

0360

1.25

8SO

1413−

1312

601.

258

223.

232.

92e-

037.

390.

5211

.75

1.22

0.04

170.

360.

0360

1.84

9C

H3O

H13

1−12

260

1.84

923

2.29

4.07

e-04

11.9

10.

175.

350.

400.

0915

0.58

0.03

602.

233

CH

3OH

9 1−

8 060

2.23

312

5.52

5.95

e-04

11.8

60.

023.

840.

050.

3719

1.68

0.03

602.

292

SO14

14−

1313

602.

292

229.

972.

93e-

039.

580.

088.

560.

190.

0417

0.27

0.02

603.

021

SO14

15−

1314

603.

021

221.

612.

96e-

038.

390.

109.

410.

240.

0314

0.32

0.02

604.

268

H13

CN

7−6

604.

268

116.

011.

07e-

0213

.24

0.10

11.1

00.

240.

0716

0.62

0.04

607.

175

H13

CO

+7−

660

7.17

511

6.57

1.84

e-02

11.4

80.

032.

070.

080.

0817

0.24

0.02

607.

216

CH

3OH

122−

111

607.

216

203.

416.

42e-

0412

.07

0.02

3.75

0.05

0.32

161.

430.

0361

1.26

7C

CH

7 15/

2,7−

6 13/

2,6

611.

267

117.

357.

29e-

0415

B:C

CH

(715/2,8−

6 13/

2,7)

611.

267

CC

H7 1

5/2,

8−6 1

3/2,

761

1.26

711

7.36

7.36

e-04

15B

:CC

H(7

15/2,7−

6 13/

2,6)

611.

330

CC

H7 1

3/2,

7−6 1

1/2,

661

1.33

011

7.38

7.27

e-04

16B

:CC

H(7

13/2,6−

6 11/

2,5)

611.

330

CC

H7 1

3/2,

6−6 1

1/2,

561

1.33

011

7.38

7.18

e-04

15B

:CC

H(7

13/2,7−

6 11/

2,6)

A57, page 24 of 36

Page 26: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Tabl

eA

.1.c

ontin

ued.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

616.

980

CH

3OH

4 −2−

3 −1

616.

980

49.1

21.

11e-

0312

.00

0.05

5.09

0.13

0.54

123.

160.

0262

0.30

4H

CN

7−6

620.

304

119.

091.

16e-

0212

.26

0.01

10.1

30.

032.

0312

21.2

30.

0362

2.56

8C

H3O

H18

0−17

162

2.56

839

6.17

7.52

e-04

12.2

20.

034.

980.

060.

1814

1.07

0.02

622.

659

CH

3OH

131−

121

622.

659

223.

851.

09e-

0312

.33

0.02

4.62

0.05

0.29

141.

570.

0262

2.77

4C

H3O

H16−

1−15

062

2.77

432

0.63

1.16

e-03

12.1

60.

024.

180.

050.

2915

1.50

0.03

624.

208

HC

O+

7−6

624.

208

119.

842.

01e-

0211

.36

0.01

4.32

0.03

3.72

1621

.10

0.05

624.

964

H37

Cl

1 3/2−

0 3/2

624.

964

29.9

91.

16e-

0315

B:H

37C

l(1 5

/2−

0 3/2

)62

4.97

8H

37C

l1 5

/2−

0 3/2

624.

978

29.9

91.

16e-

0314

B:H

37C

l(1 3

/2−

0 3/2

)62

4.98

8H

37C

l1 1

/2−

0 3/2

624.

988

30.0

01.

16e-

0315

B:H

37C

l(1 5

/2−

0 3/2

)62

5.74

9C

H3O

H13

0−12

062

5.74

922

3.82

1.11

e-03

12.1

40.

033.

790.

070.

3715

1.58

0.03

625.

902

HC

l1 3

/2−

0 3/2

625.

902

30.0

41.

17e-

0313

B:H

Cl(

1 5/2−

0 3/2

)62

5.91

9H

Cl

1 5/2−

0 3/2

625.

919

30.0

41.

17e-

0315

B:H

Cl(

1 3/2−

0 3/2

)62

5.93

2H

Cl

1 1/2−

0 3/2

625.

932

30.0

41.

17e-

0314

B:H

Cl(

1 3/2−

0 3/2

)62

6.55

5C

H3O

H17

0−16

162

6.55

536

6.79

9.51

e-04

15B

:CH

3OH

(13 4−

124)

626.

555

CH

3OH

134−

124

626.

555

573.

971.

49e-

0315

B:C

H3O

H(1

7 0−

161)

626.

626

CH

3OH

3 2−

2 162

6.62

651

.64

1.23

e-03

11.7

00.

024.

870.

040.

4719

2.52

0.03

627.

170

CH

3OH

13−

1−12−

162

7.17

021

6.53

1.11

e-03

12.0

40.

044.

140.

090.

6415

3.24

0.03

627.

558

CH

3OH

130−

120

627.

558

211.

031.

12e-

0311

.97

0.03

4.14

0.08

0.65

143.

170.

0362

8.05

2C

H3O

H13

2−12

262

8.05

224

8.84

1.10

e-03

12.1

50.

094.

730.

210.

1315

0.64

0.03

628.

330

CH

3OH

13−

4−12−

462

8.33

029

9.06

1.51

e-03

11.7

20.

062.

690.

140.

0513

0.40

0.02

628.

409

CH

3OH

134−

124

628.

409

307.

181.

02e-

0312

.42

0.46

3.89

1.07

0.02

140.

100.

0262

8.44

5C

H3O

H13−

3−12−

362

8.44

527

3.90

1.59

e-03

14B

:CH

3OH

(13 3−

123)

628.

470

CH

3OH

133−

123

628.

470

260.

991.

06e-

0313

B:C

H3O

H(1

3 −3−

12−

3)62

8.47

0C

H3O

H13

3−12

362

8.47

026

0.99

1.58

e-03

14B

:CH

3OH

(13 −

3−12−

3)62

8.51

2C

H3O

H13

4−12

462

8.51

229

1.53

1.51

e-03

14B

:CH

3OH

(13 4−

124)

628.

513

CH

3OH

134−

124

628.

513

291.

531.

51e-

0313

B:C

H3O

H(1

3 4−

124)

628.

525

CH

3OH

133−

123

628.

525

261.

001.

58e-

0313

B:C

H3O

H(1

3 4−

124)

628.

696

CH

3OH

131−

121

628.

696

232.

291.

14e-

0312

.12

0.03

4.12

0.06

0.24

141.

150.

0262

8.81

6C

H3O

H13

3−12

362

8.81

625

8.96

1.07

e-03

12.3

90.

176.

480.

410.

0813

0.46

0.02

628.

869

CH

3OH

132−

122

628.

869

248.

981.

11e-

0312

.04

0.11

4.66

0.25

0.12

140.

620.

0262

9.14

0C

H3O

H3 2−

2 162

9.14

051

.64

1.25

e-03

11.7

30.

054.

260.

110.

4817

2.35

0.03

629.

322

CH

3OH

132−

122

629.

322

233.

611.

09e-

0312

.05

0.05

4.25

0.12

0.34

171.

680.

0362

9.65

2C

H3O

H13−

2−12−

262

9.65

223

7.30

1.11

e-03

12.2

00.

034.

840.

070.

1716

0.90

0.02

629.

921

CH

3OH

7 1−

6 062

9.92

178

.97

7.78

e-04

12.0

20.

024.

180.

041.

0216

4.96

0.03

631.

703

H2C

O9 1

,9−

8 1,8

631.

703

163.

607.

46e-

0311

.95

0.02

4.86

0.04

0.86

444.

960.

0863

3.42

3C

H3O

H13

1−12

163

3.42

322

7.48

1.15

e-03

12.2

90.

043.

680.

100.

3443

1.66

0.07

634.

511

HN

C7 0

,0−

6 0,0

634.

511

121.

821.

29e-

0211

.66

0.06

2.95

0.15

0.11

330.

420.

0563

6.19

3C

H3O

H16

4−16

363

6.19

339

5.93

2.23

e-03

31B

:CH

3OH

(13 4−

133)

636.

197

CH

3OH

134−

133

636.

197

291.

532.

14e-

0332

B:C

H3O

H(1

6 4−

163)

636.

199

CH

3OH

174−

173

636.

199

435.

372.

25e-

0331

B:C

H3O

H(1

6 4−

163)

636.

274

CH

3OH

9 4−

9 363

6.27

418

4.79

1.95

e-03

35B

:CH

3OH

(10 4−

103)

636.

279

CH

3OH

104−

103

636.

279

207.

992.

02e-

0331

B:C

H3O

H(9

4−9 3

)63

6.28

1C

H3O

H11

4−11

363

6.28

123

3.52

2.07

e-03

30B

:CH

3OH

(94−

9 3)

636.

291

CH

3OH

9 4−

9 363

6.29

118

4.79

1.96

e-03

31B

:CH

3OH

(94−

9 3)

636.

299

CH

3OH

124−

123

636.

299

261.

362.

11e-

0332

B:C

H3O

H(9

4−9 3

)

A57, page 25 of 36

Page 27: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

636.

303

CH

3OH

8 4−

8 363

6.30

316

3.90

1.87

e-03

31B

:CH

3OH

(94−

9 3)

636.

312

CH

3OH

8 4−

8 363

6.31

216

3.90

1.87

e-03

31B

:CH

3OH

(94−

9 3)

636.

334

CH

3OH

7 4−

7 363

6.33

414

5.33

1.76

e-03

27B

:CH

3OH

(84−

8 3)

636.

337

CH

3OH

7 4−

7 363

6.33

714

5.33

1.76

e-03

33B

:CH

3OH

(84−

8 3)

636.

364

CH

3OH

6 4−

6 363

6.36

412

9.09

1.60

e-03

37B

:CH

3OH

(64−

6 3)

636.

366

CH

3OH

6 4−

6 363

6.36

612

9.09

1.60

e-03

37B

:CH

3OH

(74−

7 3)

636.

393

CH

3OH

5 4−

5 363

6.39

311

5.16

1.34

e-03

31B

:CH

3OH

(64−

6 3)

636.

394

CH

3OH

5 4−

5 363

6.39

411

5.16

1.34

e-03

34B

:CH

3OH

(64−

6 3)

636.

523

CH

3OH

154−

153

636.

523

358.

812.

21e-

0335

B:C

S(1

3−12

)63

6.53

2C

S13−

1263

6.53

221

3.90

5.56

e-03

35B

:CH

3OH

(15 4−

153)

638.

280

CH

3OH

100−

9 −1

638.

280

140.

608.

35e-

0412

.26

0.06

3.96

0.13

0.46

422.

050.

0763

8.52

4C

H3O

H8 3−

7 263

8.52

413

3.36

1.13

e-03

11.9

70.

053.

930.

120.

5141

2.45

0.06

638.

818

CH

3OH

8 3−

7 263

8.81

813

3.36

1.13

e-03

11.9

80.

063.

910.

140.

5735

2.80

0.06

645.

254

SO15

15−

1414

645.

254

260.

943.

62e-

0311

.61

0.09

9.64

0.20

0.05

360.

360.

0664

5.87

5SO

1516−

1415

645.

875

252.

603.

65e-

038.

790.

086.

640.

180.

0934

0.43

0.06

647.

082

H2C

O9 0

,9−

8 0,8

647.

082

156.

188.

10e-

0311

.80

0.02

4.91

0.05

0.55

283.

100.

0564

9.54

0C

H3O

H14

1−13

264

9.54

026

4.78

5.20

e-04

27B

:CH

3OH

(14 1−

132)

649.

540

CH

3OH

141−

132

649.

540

264.

787.

71e-

0426

B:C

H3O

H(1

4 1−

132)

651.

617

CH

3OH

101−

9 065

1.61

714

8.73

7.51

e-04

11.8

70.

034.

460.

060.

3725

1.93

0.04

652.

096

N2H

+7−

665

2.09

612

5.19

1.87

e-02

11.4

90.

022.

240.

051.

8030

5.79

0.05

653.

970

H2C

O9 2

,8−

8 2,7

653.

970

204.

237.

96e-

0311

.95

0.03

3.88

0.07

0.30

311.

580.

0565

4.46

3H

2CO

9 7,3−

8 7,2

654.

463

732.

273.

32e-

0332

B:H

2CO

(97,

2−8 7

,1)

654.

463

H2C

O9 7

,2−

8 7,1

654.

463

732.

273.

32e-

0332

B:H

2CO

(97,

3−8 7

,2)

655.

212

H2C

O9 5

,5−

8 5,4

655.

212

451.

245.

83e-

0331

B:H

2CO

(95,

4−8 5

,3)

655.

212

H2C

O9 5

,4−

8 5,3

655.

212

451.

245.

83e-

0330

B:H

2CO

(95,

5−8 5

,4)

655.

640

H2C

O9 4

,6−

8 4,5

655.

640

345.

606.

77e-

0328

B:H

2CO

(94,

5−8 4

,4)

655.

644

H2C

O9 4

,5−

8 4,4

655.

644

345.

606.

77e-

0328

B:H

2CO

(94,

6−8 4

,5)

656.

165

H2C

O9 3

,7−

8 3,6

656.

165

263.

377.

52e-

0330

B:C

H3O

H(1

3 2−

121)

656.

169

CH

3OH

132−

121

656.

169

233.

617.

87e-

0430

B:H

2CO

(93,

7−8 3

,6)

656.

465

H2C

O9 3

,6−

8 3,5

656.

465

263.

407.

53e-

0311

.85

0.02

4.78

0.05

0.44

292.

340.

0565

8.55

3C

18O

6−5

658.

553

110.

631.

86e-

0511

.39

0.02

2.22

0.04

0.93

273.

460.

0566

1.06

713

CO

6−5

661.

067

111.

051.

88e-

0511

.54

0.01

3.22

0.04

6.18

2828

.65

0.06

662.

209

H2C

O9 2

,7−

8 2,6

662.

209

205.

338.

27e-

0312

.09

0.04

5.29

0.10

0.23

261.

390.

0566

5.44

2C

H3O

H5 −

2−4 −

166

5.44

260

.73

1.27

e-03

12.0

00.

024.

910.

050.

6730

3.66

0.04

668.

117

CH

3OH

180−

171

668.

117

408.

237.

64e-

0412

.54

0.30

3.67

0.71

0.06

250.

250.

0467

0.42

3C

H3O

H14

1−13

167

0.42

325

6.02

1.36

e-03

12.0

40.

034.

710.

060.

2429

1.35

0.05

672.

903

CH

3OH

17−

1−16

067

2.90

335

9.92

1.53

e-03

12.1

00.

074.

250.

170.

2629

1.32

0.04

673.

416

CH

3OH

140−

130

673.

416

256.

141.

38e-

0312

.32

0.08

4.69

0.18

0.29

281.

520.

0467

3.74

6C

H3O

H4 2−

3 167

3.74

660

.92

1.34

e-03

11.7

00.

024.

620.

040.

5430

2.91

0.05

674.

009

C17

O6 7

/2−

5 9/2

674.

009

113.

238.

37e-

0832

B:C

H3O

H(1

4 1−

131)

674.

017

CH

3OH

141−

131

674.

017

568.

002.

06e-

0332

B:C

17O

(67/

2−5 9

/2)

674.

791

CH

3OH

142−

132

674.

791

541.

672.

02e-

0331

B:H

2CO

(91,

8−8 1

,7)

674.

810

H2C

O9 1

,8−

8 1,7

674.

810

173.

999.

09e-

0332

B:C

H3O

H(1

4 2−

132)

A57, page 26 of 36

Page 28: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

674.

991

CH

3OH

8 1−

7 067

4.99

197

.38

9.56

e-04

12.0

90.

024.

690.

041.

0633

5.55

0.06

675.

135

CH

3OH

14−

1−13−

167

5.13

524

8.94

1.39

e-03

12.1

30.

024.

250.

050.

5731

2.97

0.05

675.

613

CH

3OH

140−

130

675.

613

243.

451.

40e-

0312

.23

0.04

4.23

0.09

0.61

293.

070.

0567

5.77

3C

H3O

H3 3−

2 267

5.77

361

.64

2.56

e-03

12.3

50.

085.

220.

200.

4433

1.54

0.06

676.

215

CH

3OH

142−

132

676.

215

281.

291.

38e-

0312

.08

0.06

6.04

0.15

0.11

310.

650.

0567

6.49

5C

H3O

H14

5−13

567

6.49

537

9.68

1.23

e-03

32B

:CH

3OH

(19 0−

181)

676.

499

CH

3OH

190−

181

676.

499

440.

099.

84e-

0434

B:C

H3O

H(1

4 5−

135)

676.

585

CH

3OH

14−

4−13−

467

6.58

533

1.54

1.29

e-03

12.4

20.

084.

240.

180.

0731

0.40

0.04

676.

749

CH

3OH

143−

133

676.

749

293.

471.

34e-

0312

.17

0.06

4.18

0.14

0.12

280.

480.

0467

6.82

2C

H3O

H14

4−13

467

6.82

232

4.01

1.30

e-03

31B

:CH

3OH

(14 4−

134)

676.

824

CH

3OH

144−

134

676.

824

324.

011.

30e-

0331

B:C

H3O

H(1

4 4−

134)

676.

830

CH

3OH

143−

133

676.

830

293.

481.

34e-

0330

B:C

H3O

H(1

4 4−

134)

677.

013

CH

3OH

141−

131

677.

013

264.

781.

43e-

0312

.19

0.04

4.25

0.09

0.20

310.

930.

0567

7.19

1C

H3O

H14

3−13

367

7.19

129

1.46

1.35

e-03

29B

:CH

3OH

(14 2−

132)

677.

233

CH

3OH

142−

132

677.

233

281.

491.

39e-

0326

B:C

H3O

H(1

4 3−

133)

677.

710

CH

3OH

142−

132

677.

710

266.

141.

37e-

0312

.17

0.03

4.09

0.06

0.32

461.

530.

0767

8.25

3C

H3O

H14−

2−13−

267

8.25

326

9.85

1.39

e-03

12.0

90.

056.

150.

110.

2029

1.13

0.04

678.

785

CH

3OH

4 2−

3 167

8.78

560

.93

1.37

e-03

11.9

00.

024.

520.

050.

5827

2.78

0.03

680.

047

CN

6 11/

2,13/2−

5 9/2,1

1/2

680.

047

114.

233.

50e-

0331

B:C

N(6

11/2,9/2−

5 9/2,7/2

)68

0.04

7C

N6 1

1/2,

9/2−

5 9/2,7/2

680.

047

114.

223.

36e-

0331

B:C

N(6

11/2,1

3/2−

5 9/2,1

1/2)

680.

047

CN

6 11/

2,11/2−

5 9/2,9/2

680.

047

114.

223.

38e-

0331

B:C

N(6

11/2,1

3/2−

5 9/2,1

1/2)

680.

264

CN

6 13/

2,13/2−

5 11/

2,11/2

680.

264

114.

293.

47e-

0331

B:C

N(6

13/2,1

5/2−

5 11/

2,13/2

)68

0.26

4C

N6 1

3/2,

15/2−

5 11/

2,13/2

680.

264

114.

293.

56e-

0330

B:C

N(6

13/2,1

3/2−

5 11/

2,11/2

)68

0.26

4C

N6 1

3/2,

11/2−

5 11/

2,9/

268

0.26

411

4.29

3.46

e-03

31B

:CN

(613/2,1

3/2−

5 11/

2,11/2

)68

1.99

0C

H3O

H14

1−13

168

1.99

026

0.21

1.43

e-03

12.3

20.

034.

860.

070.

3829

2.06

0.04

685.

435

CS

14−

1368

5.43

524

6.79

6.96

e-03

31B

:CH

3OH

(11 0−

10−

1)68

5.50

5C

H3O

H11

0−10−

168

5.50

516

6.05

1.10

e-03

29B

:CS

(14−

13)

686.

732

CH

3OH

9 3−

8 268

6.73

215

4.25

1.34

e-03

12.1

00.

024.

160.

050.

5130

2.44

0.05

687.

225

CH

3OH

9 3−

8 268

7.22

515

4.25

1.34

e-03

11.8

30.

024.

450.

050.

5031

2.42

0.05

687.

303

H2S

2 0,2−

1 1,1

687.

303

54.7

09.

32e-

0411

.64

0.03

3.82

0.06

0.34

361.

590.

0569

1.47

3C

O6−

569

1.47

311

6.16

2.14

e-05

11.3

00.

0313

.00

0.07

19.5

031

204.

500.

1069

7.14

6C

H3O

H15

1−14

269

7.14

629

9.59

6.56

e-04

11.3

70.

071.

860.

150.

1237

0.25

0.05

698.

545

CC

H8 1

7/2,

8−7 1

5/2,

769

8.54

515

0.88

1.10

e-03

33B

:CC

H(8

17/2,9−

7 15/

2,8)

698.

545

CC

H8 1

7/2,

9−7 1

5/2,

869

8.54

515

0.88

1.11

e-03

31B

:CC

H(8

17/2,8−

7 15/

2,7)

698.

607

CC

H8 1

5/2,

8−7 1

3/2,

769

8.60

715

0.91

1.10

e-03

34B

:CC

H(8

17/2,8−

7 15/

2,7)

698.

607

CC

H8 1

5/2,

7−7 1

3/2,

669

8.60

715

0.91

1.09

e-03

33B

:CC

H(8

17/2,8−

7 15/

2,7)

701.

367

CH

3OH

111−

100

701.

367

174.

279.

33e-

0429

B:H

2CO

(10 1

,10−

9 1,9

)70

1.37

0H

2CO

101,

10−

9 1,9

701.

370

197.

261.

03e-

0231

B:C

H3O

H(1

1 1−

100)

705.

182

CH

3OH

142−

131

705.

182

266.

149.

56e-

0412

.09

0.04

4.56

0.09

0.23

331.

180.

0570

8.87

7H

CN

8−7

708.

877

153.

111.

74e-

0212

.37

0.04

11.0

10.

091.

6742

18.7

50.

0971

3.34

1H

CO

+8−

771

3.34

115

4.07

3.02

e-02

11.3

50.

014.

790.

032.

7933

16.6

90.

0871

3.98

2C

H3O

H6 −

2−5 −

171

3.98

274

.66

1.45

e-03

11.8

50.

024.

810.

050.

5639

2.92

0.06

716.

938

H2C

O10

0,10−

9 0,9

716.

938

190.

581.

11e-

0211

.97

0.05

3.99

0.12

0.29

481.

380.

0771

8.15

9C

H3O

H15

1−14

171

8.15

929

0.49

1.68

e-03

12.4

60.

064.

350.

140.

1543

0.78

0.06

A57, page 27 of 36

Page 29: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Tabl

eA

.1.c

ontin

ued.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

Tm

brm

sFl

uxδF

lux

Ble

nd(B

)/N

otes

GH

zG

Hz

Kra

d/s

kms−

1km

s−1

kms−

1km

s−1

Km

KK

kms−

1K

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

718.

436

CH

3OH

4 −4−

3 −3

718.

436

111.

123.

06e-

0311

.75

0.03

4.56

0.07

0.38

401.

900.

0671

9.66

5C

H3O

H9 1−

8 071

9.66

511

8.08

1.16

e-03

12.1

70.

024.

460.

041.

0427

5.38

0.05

720.

441

CH

3OH

5 2−

4 172

0.44

172

.53

1.50

e-03

11.9

20.

024.

900.

060.

6032

3.49

0.06

721.

011

CH

3OH

150−

140

721.

011

290.

741.

70e-

0312

.60

0.03

4.61

0.07

0.25

261.

230.

0472

3.04

0C

H3O

H15−

1−14−

172

3.04

028

3.64

1.71

e-03

12.2

10.

024.

250.

050.

5028

2.50

0.04

723.

280

CH

3OH

18−

1−17

072

3.28

040

1.50

1.98

e-03

12.4

80.

045.

370.

090.

2030

1.08

0.05

723.

619

CH

3OH

150−

140

723.

619

278.

181.

72e-

0312

.13

0.02

4.27

0.04

0.56

312.

520.

0572

4.12

2C

H3O

H4 3−

3 272

4.12

270

.93

2.56

e-03

12.2

60.

025.

380.

050.

4831

2.77

0.05

724.

345

CH

3OH

152−

142

724.

345

316.

051.

71e-

0312

.26

0.07

5.00

0.16

0.10

340.

510.

0572

5.01

3C

H3O

H15

3−14

372

5.01

332

8.26

2.47

e-03

12.6

70.

135.

120.

300.

0834

0.36

0.05

725.

122

CH

3OH

154−

144

725.

122

358.

812.

39e-

0331

B:C

H3O

H(1

5 4−

144)

725.

126

CH

3OH

154−

144

725.

126

358.

812.

39e-

0331

B:C

H3O

H(1

5 4−

144)

725.

126

CH

3OH

153−

143

725.

126

328.

282.

47e-

0331

B:C

H3O

H(1

5 4−

144)

725.

316

CH

3OH

151−

141

725.

316

299.

591.

76e-

0312

.15

0.08

3.98

0.20

0.18

320.

720.

0572

5.56

5C

H3O

H15

3−14

372

5.56

532

6.28

2.48

e-03

24B

:CH

3OH

(15 2−

142)

725.

594

CH

3OH

152−

142

725.

594

316.

311.

72e-

0326

B:C

H3O

H(1

5 3−

143)

726.

052

CH

3OH

152−

142

726.

052

300.

981.

70e-

0312

.47

0.03

4.62

0.08

0.30

281.

530.

0472

6.20

8H

2CO

102,

9−9 2

,872

6.20

823

9.08

1.11

e-02

12.2

30.

045.

160.

100.

1729

0.86

0.04

726.

899

CH

3OH

15−

2−14−

272

6.89

930

4.74

1.72

e-03

12.1

10.

164.

340.

380.

1332

0.44

0.05

728.

054

H2C

O10

5,6−

9 5,5

728.

054

486.

188.

72e-

0325

B:H

2CO

(10 5

,5−

9 5,4

)72

8.05

4H

2CO

105,

5−9 5

,472

8.05

448

6.18

8.72

e-03

26B

:H2C

O(1

0 5,6−

9 5,5

)72

8.58

3H

2CO

104,

7−9 4

,672

8.58

338

0.57

9.78

e-03

25B

:H2C

O(1

0 4,6−

9 4,5

)72

8.59

2H

2CO

104,

6−9 4

,572

8.59

238

0.57

9.78

e-03

25B

:H2C

O(1

0 4,7−

9 4,6

)72

8.86

2C

H3O

H5 2−

4 172

8.86

272

.53

1.55

e-03

11.8

20.

024.

850.

040.

6328

3.20

0.05

729.

213

H2C

O10

3,8−

9 3,7

729.

213

298.

361.

06e-

0212

.14

0.02

5.10

0.06

0.29

241.

480.

0472

9.72

5H

2CO

103,

7−9 3

,672

9.72

529

8.42

1.06

e-02

12.0

50.

024.

210.

050.

3225

1.56

0.04

730.

520

CH

3OH

151−

141

730.

520

295.

271.

77e-

0328

B:C

H3O

H(2

0 0−

191)

730.

550

CH

3OH

200−

191

730.

550

486.

301.

26e-

0326

B:C

H3O

H(1

5 1−

141)

731.

596

SO17

18−

1617

731.

596

320.

775.

32e-

038.

980.

108.

660.

230.

0524

0.33

0.04

732.

432

CH

3OH

120−

11−

173

2.43

219

3.79

1.42

e-03

12.2

10.

024.

380.

050.

4428

2.33

0.04

734.

324

CS

15−

1473

4.32

428

2.04

8.58

e-03

12.2

10.

1511

.05

0.35

0.17

261.

900.

0573

4.89

4C

H3O

H10

3−9 2

734.

894

177.

461.

58e-

0311

.88

0.06

5.03

0.14

0.46

252.

500.

0473

5.67

3C

H3O

H10

3−9 2

735.

673

177.

461.

58e-

0312

.06

0.05

4.47

0.11

0.46

252.

220.

0473

6.03

4H

2S2 1

,2−

1 0,1

736.

034

55.1

01.

33e-

0311

.65

0.07

5.27

0.16

0.92

295.

300.

0673

7.34

3H

2CO

102,

8−9 2

,773

7.34

324

0.72

1.16

e-02

11.8

40.

044.

940.

100.

1926

1.01

0.04

745.

210

N2H

+8−

774

5.21

016

0.96

2.81

e-02

11.5

10.

022.

600.

061.

1832

4.09

0.05

749.

072

H2C

O10

1,9−

9 1,8

749.

072

209.

941.

25e-

0212

.06

0.02

5.59

0.04

0.59

363.

490.

0675

1.55

1C

H3O

H12

1−11

075

1.55

120

2.12

1.14

e-03

12.1

60.

034.

380.

070.

3535

1.61

0.06

752.

033

H2O

2 1,1,0−

2 0,2,0

752.

033

136.

946.

98e-

0311

.91

0.06

14.8

80.

142.

1943

38.5

10.

1575

2.31

2C

H3O

H7 −

5−7 −

475

2.31

218

9.00

2.35

e-03

12.2

30.

117.

290.

250.

0641

0.37

0.05

754.

222

CH

3OH

152−

141

754.

222

300.

981.

15e-

0312

.14

0.04

3.83

0.11

0.21

361.

020.

0676

2.63

6C

H3O

H7 −

2−6 −

176

2.63

690

.91

1.66

e-03

12.0

40.

024.

960.

040.

6038

2.99

0.06

762.

676

CH

3OH

13−

3−13−

276

2.67

627

3.90

2.31

e-03

12.0

30.

294.

790.

690.

0739

0.31

0.04

763.

883

CH

3OH

12−

3−12−

276

3.88

324

3.74

2.32

e-03

12.6

70.

082.

800.

190.

1133

0.44

0.04

763.

951

CH

3OH

8 5−

9 476

3.95

122

1.45

4.87

e-04

38B

:CH

3OH

(85−

9 4)

A57, page 28 of 36

Page 30: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

763.

951

CH

3OH

8 5−

9 476

3.95

122

1.45

4.87

e-04

40B

:CH

3OH

(85−

9 4)

763.

953

CH

3OH

101−

9 076

3.95

314

1.08

1.39

e-03

40B

:CH

3OH

(85−

9 4)

764.

812

CH

3OH

11−

3−11−

276

4.81

221

5.90

2.31

e-03

12.0

20.

074.

950.

160.

1337

0.59

0.05

765.

513

CH

3OH

10−

3−10−

276

5.51

319

0.37

2.30

e-03

12.3

10.

0810

.55

0.18

0.12

340.

950.

0676

5.86

6C

H3O

H16

1−15

176

5.86

632

7.24

2.04

e-03

12.5

40.

055.

190.

120.

1542

0.87

0.06

766.

028

CH

3OH

9 −3−

9 −2

766.

028

167.

162.

28e-

0312

.19

0.06

5.33

0.15

0.18

380.

840.

0576

6.39

6C

H3O

H8 −

3−8 −

276

6.39

614

6.28

2.24

e-03

12.1

10.

056.

610.

120.

1942

1.16

0.07

766.

648

CH

3OH

7 −3−

7 −2

766.

648

127.

712.

18e-

0312

.28

0.05

5.61

0.13

0.21

391.

240.

0576

6.71

0C

H3O

H6 2−

5 176

6.71

086

.46

1.69

e-03

11.9

40.

034.

750.

060.

5942

2.69

0.06

766.

761

CH

3OH

5 −4−

4 −3

766.

761

122.

723.

13e-

0311

.67

0.03

3.99

0.07

0.43

421.

920.

0676

6.81

0C

H3O

H6 −

3−6 −

276

6.81

011

1.46

2.10

e-03

11.9

70.

045.

320.

100.

2045

1.03

0.06

766.

908

CH

3OH

5 −3−

5 −2

766.

908

97.5

31.

96e-

0311

.89

0.04

3.00

0.10

0.24

430.

750.

0576

6.96

0C

H3O

H4 −

3−4 −

276

6.96

085

.92

2.54

e-03

39B

:CH

3OH

(3−

3−3 −

2)76

6.98

2C

H3O

H3 −

3−3 −

276

6.98

276

.64

1.81

e-03

38B

:CH

3OH

(4−

3−4 −

2)76

8.25

2C

18O

7−6

768.

252

147.

502.

98e-

0511

.31

0.03

3.19

0.06

0.56

462.

510.

0776

8.54

0C

H3O

H16

0−15

076

8.54

032

7.63

2.06

e-03

12.3

10.

045.

030.

100.

2044

1.09

0.06

770.

886

CH

3OH

16−

1−15−

177

0.88

632

0.63

3.08

e-03

36B

:H2C

O(1

1 1,1

1−10

1,10

)77

0.89

6H

2CO

111,

11−

101,

1077

0.89

623

4.26

1.37

e-02

36B

:CH

3OH

(16 −

1−15−

1)77

1.18

413

CO

7−6

771.

184

148.

063.

01e-

0511

.37

0.02

3.58

0.04

4.91

3623

.54

0.07

771.

576

CH

3OH

160−

150

771.

576

315.

212.

10e-

0312

.32

0.02

4.08

0.05

0.46

352.

060.

0577

2.45

4C

H3O

H5 3−

4 277

2.45

482

.53

2.70

e-03

12.7

40.

036.

210.

060.

5140

3.45

0.06

773.

259

CH

3OH

163−

153

773.

259

365.

372.

03e-

0311

.95

0.07

5.15

0.16

0.10

380.

400.

0577

3.41

6C

H3O

H16

3−15

377

3.41

636

5.40

3.01

e-03

11.9

70.

195.

040.

450.

1238

0.65

0.06

773.

602

CH

3OH

161−

151

773.

602

336.

722.

13e-

0312

.72

0.04

3.31

0.10

0.13

400.

500.

0677

3.89

3C

H3O

H19−

1−18

077

3.89

344

5.37

2.53

e-03

12.2

90.

065.

360.

130.

1335

0.66

0.05

773.

941

CH

3OH

163−

153

773.

941

363.

433.

03e-

0335

B:C

H3O

H(1

6 2−

152)

773.

950

CH

3OH

162−

152

773.

950

353.

453.

10e-

0335

B:C

H3O

H(1

6 3−

153)

774.

333

CH

3OH

162−

152

774.

333

338.

142.

07e-

0312

.01

0.04

3.24

0.10

0.21

390.

710.

0677

5.59

6C

H3O

H16−

2−15−

277

5.59

634

1.96

2.10

e-03

11.7

40.

093.

820.

200.

1141

0.39

0.06

779.

009

CH

3OH

161−

151

779.

009

332.

652.

15e-

0340

B:C

H3O

H(1

3 0−

12−

1)77

9.03

1C

H3O

H13

0−12−

177

9.03

122

3.82

1.82

e-03

40B

:CH

3OH

(16 1−

151)

779.

380

CH

3OH

6 2−

5 177

9.38

086

.46

1.78

e-03

11.8

50.

025.

080.

060.

5541

2.60

0.07

780.

039

H237

Cl+

2 1,2,5/2−

1 0,1,5/2

780.

039

57.6

61.

78e-

039.

381.

091.

151.

52−

0.07

35-0

.38

0.04

781.

609

H2C

l+2 1

,2,5/2−

1 0,1,5/2

781.

609

57.7

51.

79e-

0332

B:H

2Cl+

(21,

2,7/

2−1 0

,1,5/2

)78

1.62

2H

2Cl+

2 1,2,5/2−

1 0,1,3/2

781.

622

57.7

54.

17e-

0330

B:H

2Cl+

(21,

2,7/

2−1 0

,1,5/2

)78

1.62

7H

2Cl+

2 1,2,7/2−

1 0,1,5/2

781.

627

57.7

55.

96e-

0331

B:H

2Cl+

(21,

2,5/

2−1 0

,1,5/2

)78

1.62

8H

2Cl+

2 1,2,1/2−

1 0,1,1/2

781.

628

57.7

54.

96e-

0330

B:H

2Cl+

(21,

2,5/

2−1 0

,1,5/2

)78

3.00

2C

H3O

H11

3−10

278

3.00

220

2.98

1.85

e-03

12.0

80.

034.

390.

070.

4333

2.13

0.05

783.

199

CS

16−

1578

3.19

931

9.62

1.04

e-02

12.8

00.

2710

.51

0.62

0.13

321.

270.

0578

4.17

7C

H3O

H11

3−10

278

4.17

720

2.99

1.86

e-03

12.1

60.

034.

210.

060.

4135

1.89

0.05

784.

693

CH

3OH

210−

201

784.

693

534.

791.

60e-

0312

.66

0.05

3.86

0.12

0.14

300.

610.

0478

5.80

2C

CH

9 19/

2,9−

8 17/

2,8

785.

802

188.

591.

58e-

0335

B:C

CH

(919/2,1

0−8 1

7/2,

9)78

5.80

2C

CH

9 19/

2,10−

8 17/

2,9

785.

802

188.

591.

59e-

0335

B:C

CH

(919/2,9−

8 17/

2,8)

786.

280

C17

O7 9

/2−

6 11/

278

6.28

015

0.96

6.36

e-08

39B

:H2C

O(1

1 0,1

1−10

0,10

)

A57, page 29 of 36

Page 31: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

786.

285

H2C

O11

0,11−

100,

1078

6.28

522

8.32

1.47

e-02

39B

:C17

O(7

9/2−

6 11/

2)79

3.33

6C

N7 1

3/2,

15/2−

6 11/

2,13/2

793.

336

152.

305.

64e-

0335

B:C

N(7

13/2,1

1/2−

6 11/

2,9/

2)79

3.33

6C

N7 1

3/2,

11/2−

6 11/

2,9/

279

3.33

615

2.30

5.48

e-03

35B

:CN

(713/2,1

5/2−

6 11/

2,13/2

)79

3.33

7C

N7 1

3/2,

13/2−

6 11/

2,11/2

793.

337

152.

305.

51e-

0335

B:C

N(7

13/2,1

5/2−

6 11/

2,13/2

)79

3.55

3C

N7 1

5/2,

15/2−

6 13/

2,13/2

793.

553

152.

385.

61e-

0336

B:C

N(7

15/2,1

7/2−

6 13/

2,15/2

)79

3.55

3C

N7 1

5/2,

17/2−

6 13/

2,15/2

793.

553

152.

385.

71e-

0337

B:C

N(7

15/2,1

5/2−

6 13/

2,13/2

)79

3.55

4C

N7 1

5/2,

13/2−

6 13/

2,11/2

793.

554

152.

385.

59e-

0335

B:C

N(7

15/2,1

5/2−

6 13/

2,13/2

)79

7.43

3H

CN

9−8

797.

433

191.

382.

49e-

0212

.44

0.02

11.9

30.

041.

1447

14.6

00.

1179

8.31

3H

2CO

112,

10−

102,

979

8.31

327

7.39

1.49

e-02

9.62

0.30

6.16

0.71

0.10

490.

490.

0780

2.24

1C

H3O

H13

1−12

080

2.24

123

2.29

1.38

e-03

12.3

10.

072.

470.

160.

2058

0.52

0.07

802.

282

H2C

O11

3,9−

103,

880

2.28

233

6.87

1.45

e-02

11.8

20.

073.

200.

170.

1957

0.51

0.07

802.

458

HC

O+

9−8

802.

458

192.

594.

33e-

0211

.55

0.02

5.42

0.04

2.00

5713

.19

0.12

803.

112

H2C

O11

3,8−

103,

780

3.11

233

6.96

1.45

e-02

12.2

70.

073.

640.

170.

1959

0.77

0.08

803.

239

CH

3OH

162−

151

803.

239

338.

141.

38e-

0312

.25

0.08

5.16

0.18

0.14

560.

570.

0880

6.65

2C

O7−

680

6.65

215

4.88

3.42

e-05

11.2

70.

0313

.27

0.06

20.4

249

211.

460.

1480

7.86

6C

H3O

H11

1−10

080

7.86

616

6.37

1.65

e-03

51B

:CH

3OH

(11 1−

100)

807.

866

CH

3OH

111−

100

807.

866

166.

371.

65e-

0350

B:C

H3O

H(1

1 1−

100)

809.

342

C2−

180

9.34

262

.46

2.67

e-07

11.9

80.

021.

800.

051.

4747

4.90

0.07

811.

445

CH

3OH

8 −2−

7 −1

811.

445

109.

491.

88e-

0312

.38

0.03

5.11

0.06

0.57

492.

980.

0781

2.55

0C

H3O

H7 2−

6 181

2.55

010

2.70

1.92

e-03

12.1

60.

035.

050.

060.

5443

2.70

0.06

812.

831

H2C

O11

2,9−

102,

881

2.83

127

9.73

1.57

e-02

11.9

30.

108.

710.

240.

0941

0.77

0.06

813.

542

CH

3OH

171−

161

813.

542

366.

292.

45e-

0313

.96

0.33

8.69

0.82

0.14

430.

990.

0681

5.07

1C

H3O

H6 −

4−5 −

381

5.07

113

6.65

3.31

e-03

11.9

10.

024.

390.

060.

4341

1.76

0.06

816.

011

CH

3OH

170−

160

816.

011

366.

792.

48e-

0312

.10

0.06

5.39

0.13

0.18

461.

200.

0781

8.66

9C

H3O

H17−

1−16−

181

8.66

935

9.92

2.50

e-03

12.6

70.

044.

150.

100.

3051

1.28

0.07

819.

479

CH

3OH

170−

160

819.

479

354.

542.

51e-

0312

.39

0.04

4.04

0.08

0.33

531.

470.

0782

0.49

9C

H3O

H17

2−16

282

0.49

939

2.50

3.71

e-03

12.1

20.

9312

.87

2.41

0.10

500.

590.

0682

0.76

2C

H3O

H6 3−

5 282

0.76

296

.46

2.93

e-03

12.1

70.

025.

180.

050.

4552

2.31

0.07

821.

698

CH

3OH

173−

163

821.

698

404.

833.

64e-

0312

.77

0.05

3.44

0.12

0.14

430.

440.

0682

1.86

9C

H3O

H17

1−16

182

1.86

937

6.17

2.56

e-03

12.4

40.

053.

750.

130.

1545

0.50

0.06

822.

301

CH

3OH

172−

162

822.

301

392.

923.

73e-

0312

.31

0.22

3.45

0.53

0.06

450.

250.

0482

2.54

0C

H3O

H17

2−16

282

2.54

037

7.62

2.49

e-03

12.2

90.

064.

450.

140.

1646

0.59

0.06

823.

083

H2C

O11

1,10−

101,

982

3.08

324

9.44

1.67

e-02

12.0

80.

034.

320.

060.

4142

1.94

0.06

824.

343

CH

3OH

17−

2−16−

282

4.34

338

1.52

2.53

e-03

12.7

30.

062.

850.

140.

1441

0.44

0.05

825.

276

CH

3OH

140−

13−

182

5.27

625

6.14

2.28

e-03

12.1

70.

044.

450.

090.

3141

1.56

0.05

827.

454

CH

3OH

171−

161

827.

454

372.

372.

58e-

0312

.68

0.06

5.47

0.14

0.19

531.

110.

0782

9.89

1C

H3O

H4 4−

3 382

9.89

110

3.56

7.63

e-03

50B

:CH

3OH

(44−

3 3)

829.

891

CH

3OH

4 4−

3 382

9.89

110

3.56

7.63

e-03

50B

:CH

3OH

(44−

3 3)

830.

349

CH

3OH

7 2−

6 183

0.34

910

2.72

2.05

e-03

12.0

40.

025.

300.

060.

6050

3.16

0.07

831.

045

CH

3OH

123−

112

831.

045

230.

832.

14e-

0311

.99

0.04

4.97

0.09

0.36

601.

680.

0883

2.05

7C

S17−

1683

2.05

735

9.56

1.25

e-02

12.4

70.

6712

.31

1.67

0.16

561.

150.

1083

2.75

4C

H3O

H12

3−11

283

2.75

423

0.83

2.16

e-03

12.1

30.

043.

950.

090.

3348

1.11

0.06

A57, page 30 of 36

Page 32: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

835.

138

CH

+1−

083

5.13

840

.08

6.36

e-03

9.46

0.08

6.04

0.20

-0.4

340

-2.8

10.

0583

8.30

7N

2H+

9−8

838.

307

201.

194.

03e-

0211

.77

0.03

2.88

0.08

0.78

402.

600.

0683

8.90

2C

H3O

H22

0−21

183

8.90

258

5.57

1.99

e-03

13.4

40.

075.

050.

160.

0939

0.39

0.05

840.

276

H2C

O12

1,12−

111,

1184

0.27

627

4.58

1.79

e-02

12.1

00.

035.

220.

060.

4236

2.40

0.05

851.

415

CH

3OH

121−

110

851.

415

193.

961.

95e-

0312

.48

0.02

4.59

0.04

0.69

443.

500.

0685

2.17

7C

H3O

H17

2−16

185

2.17

737

7.62

1.65

e-03

11.8

80.

072.

850.

180.

1142

0.39

0.05

853.

504

CH

3OH

141−

130

853.

504

264.

781.

65e-

0312

.23

0.05

5.38

0.12

0.17

420.

790.

0685

7.95

9C

H3O

H8 2−

7 185

7.95

912

1.27

2.18

e-03

12.1

40.

044.

720.

080.

5757

2.83

0.07

860.

459

CH

3OH

9 −2−

8 −1

860.

459

130.

402.

13e-

0312

.20

0.03

4.89

0.06

0.53

552.

770.

0786

1.18

6C

H3O

H18

1−17

186

1.18

640

7.62

2.92

e-03

12.7

20.

429.

931.

020.

1146

0.99

0.07

863.

365

CH

3OH

7 −4−

6 −3

863.

365

152.

893.

57e-

0311

.81

0.03

5.52

0.08

0.38

472.

190.

0686

3.43

1C

H3O

H18

0−17

086

3.43

140

8.23

2.94

e-03

11.6

10.

084.

670.

190.

1447

0.58

0.05

866.

388

CH

3OH

18−

1−17−

186

6.38

840

1.50

2.97

e-03

12.9

80.

217.

750.

490.

2544

1.68

0.06

867.

327

CH

3OH

180−

170

867.

327

396.

172.

99e-

0312

.18

0.04

4.60

0.10

0.24

460.

940.

0786

9.03

8C

H3O

H7 3−

6 286

9.03

811

2.71

3.21

e-03

12.3

50.

025.

120.

060.

4554

2.26

0.08

869.

973

CH

3OH

183−

173

869.

973

446.

594.

34e-

0312

.23

0.07

5.05

0.16

0.10

520.

470.

0687

0.27

3H

2CO

122,

11−

112,

1087

0.27

331

9.16

1.94

e-02

10.9

40.

083.

730.

180.

1550

0.78

0.06

870.

664

CH

3OH

182−

172

870.

664

419.

414.

39e-

0352

B:C

H3O

H(1

8 3−

173)

870.

691

CH

3OH

183−

173

870.

691

444.

684.

36e-

0353

B:C

H3O

H(1

8 2−

172)

871.

152

CH

3OH

150−

14−

187

1.15

229

0.74

2.84

e-03

12.7

30.

034.

790.

070.

3249

1.75

0.07

873.

036

CC

H10

21/2,1

0−9 1

9/2,

987

3.03

623

0.49

2.18

e-03

38B

:CC

H(1

0 21/

2,11−

9 19/

2,10

)87

3.03

6C

CH

1021/2,1

1−9 1

9/2,

1087

3.03

623

0.49

2.19

e-03

38B

:CC

H(1

0 21/

2,10−

9 19/

2,9)

873.

138

CH

3OH

18−

2−17−

287

3.13

842

3.43

3.01

e-03

12.7

50.

068.

220.

150.

1439

0.95

0.06

873.

775

H2C

O12

5,8−

115,

787

3.77

556

6.55

1.67

e-02

34B

:H2C

O(1

2 5,7−

115,

6)87

3.77

6H

2CO

125,

7−11

5,6

873.

776

566.

551.

67e-

0235

B:H

2CO

(12 5

,8−

115,

7)87

5.36

6H

2CO

123,

10−

113,

987

5.36

637

8.88

1.91

e-02

12.2

60.

054.

080.

130.

1437

0.55

0.05

875.

735

CH

3OH

21−

1−20

087

5.73

553

9.96

3.97

e-03

12.5

80.

074.

120.

170.

0836

0.38

0.04

875.

852

CH

3OH

181−

171

875.

852

414.

403.

07e-

0312

.56

0.05

3.54

0.12

0.16

380.

560.

0587

6.64

9H

2CO

123,

9−11

3,8

876.

649

379.

031.

92e-

0212

.04

0.08

4.84

0.18

0.12

380.

680.

0587

7.92

2C

18O

8−7

877.

922

189.

644.

47e-

0511

.44

0.03

3.23

0.08

0.34

371.

380.

0587

8.22

6C

H3O

H5 4−

4 387

8.22

611

5.16

7.60

e-03

37B

:CH

3OH

(54−

4 3)

878.

227

CH

3OH

5 4−

4 387

8.22

711

5.16

7.60

e-03

40B

:CH

3OH

(54−

4 3)

879.

013

CH

3OH

133−

122

879.

013

260.

992.

48e-

0312

.19

0.04

4.77

0.08

0.23

371.

050.

0588

0.89

9C

S18−

1788

0.89

940

1.83

1.49

e-02

12.3

70.

0612

.56

1.00

0.11

391.

250.

0688

1.27

313

CO

8−7

881.

273

190.

364.

52e-

0511

.29

0.02

5.07

0.04

2.95

4215

.76

0.08

881.

421

CH

3OH

133−

122

881.

421

261.

002.

50e-

0311

.96

0.03

3.72

0.07

0.28

381.

210.

0488

1.78

2C

H3O

H8 2−

7 188

1.78

212

1.29

2.37

e-03

11.9

40.

024.

760.

060.

6335

3.28

0.05

885.

971

HC

N10−

988

5.97

123

3.90

3.44

e-02

12.5

60.

0112

.24

0.03

1.09

4014

.07

0.09

888.

629

H2C

O12

2,10−

112,

988

8.62

932

2.37

2.07

e-02

11.9

00.

427.

510.

990.

0737

0.47

0.04

891.

557

HC

O+

10−

989

1.55

723

5.38

5.97

e-02

11.4

20.

025.

520.

051.

6838

11.6

60.

0789

3.63

9H

DO

1 1,1−

0 0,0

893.

639

42.8

98.

35e-

0313

.42

0.08

2.47

0.18

0.10

370.

410.

0589

4.61

4C

H3O

H13

1−12

089

4.61

422

3.84

2.27

e-03

12.4

90.

024.

440.

050.

5736

2.76

0.06

896.

805

H2C

O12

1,11−

111,

1089

6.80

529

2.48

2.17

e-02

12.0

10.

035.

100.

080.

2933

1.75

0.05

A57, page 31 of 36

Page 33: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

900.

972

CH

3OH

182−

171

900.

972

419.

411.

96e-

0311

.65

0.09

4.10

0.22

0.08

370.

370.

0590

2.93

5C

H3O

H9 2−

8 190

2.93

514

2.15

2.47

e-03

12.3

60.

025.

240.

050.

4536

2.41

0.06

905.

404

CH

3OH

151−

140

905.

404

299.

591.

94e-

0311

.90

0.06

4.81

0.14

0.17

520.

770.

0690

6.59

3C

N8 1

5/2,

17/2−

7 13/

2,15/2

906.

593

195.

818.

51e-

0353

B:C

N(8

15/2,1

3/2−

7 13/

2,11/2

)90

6.59

3C

N8 1

5/2,

13/2−

7 13/

2,11/2

906.

593

195.

818.

34e-

0353

B:C

N(8

15/2,1

7/2−

7 13/

2,15/2

)90

9.04

5O

H+

1 0,1/2−

0 1,1/2

909.

045

43.6

35.

23e-

038.

750.

213.

450.

62−

0.08

40−

0.44

0.05

909.

159

OH

+1 0

,1/2−

0 1,3/2

909.

159

43.6

31.

05e-

029.

360.

072.

740.

16−

0.20

40−

0.72

0.05

909.

508

H2C

O13

1,13−

121,

1290

9.50

831

8.23

2.28

e-02

12.1

20.

034.

330.

070.

3039

0.89

0.05

909.

738

CH

3OH

10−

2−9 −

190

9.73

815

3.63

2.38

e-03

12.3

60.

024.

970.

060.

4536

2.16

0.05

910.

808

CH

3OH

190−

180

910.

808

451.

943.

45e-

0312

.39

0.07

6.07

0.17

0.14

371.

010.

0591

1.64

2C

H3O

H8 −

4−7 −

391

1.64

217

1.46

3.89

e-03

11.8

40.

025.

290.

050.

3744

2.10

0.06

912.

109

CH

3OH

3 −3−

2 −2

912.

109

76.6

45.

85e-

0312

.18

0.02

6.01

0.05

0.45

392.

970.

0591

4.04

4C

H3O

H19−

1−18−

191

4.04

444

5.37

3.49

e-03

12.3

70.

034.

390.

080.

2338

1.06

0.05

915.

117

CH

3OH

190−

180

915.

117

440.

093.

51e-

0312

.34

0.05

4.04

0.12

0.16

430.

750.

0691

6.65

2C

H3O

H16

0−15−

191

6.65

232

7.63

3.49

e-03

12.5

20.

043.

780.

080.

2647

1.01

0.06

917.

270

CH

3OH

8 3−

7 291

7.27

013

1.28

3.53

e-03

12.6

70.

036.

110.

060.

4250

2.46

0.07

918.

699

CH

3OH

192−

182

918.

699

463.

503.

49e-

0311

.83

0.10

4.01

0.23

0.09

510.

360.

0692

1.80

0C

O8−

792

1.80

019

9.11

5.13

e-05

11.2

70.

0212

.91

0.05

23.5

648

248.

500.

1292

3.58

8H

2CO

130,

13−

120,

1292

3.58

831

3.69

2.39

e-02

12.0

20.

084.

230.

190.

1137

0.21

0.06

924.

198

CH

3OH

191−

181

924.

198

458.

763.

61e-

0312

.58

0.07

5.26

0.16

0.13

390.

630.

0592

6.55

5C

H3O

H6 4−

5 392

6.55

512

9.09

7.85

e-03

39B

:CH

3OH

(64−

5 3)

926.

555

CH

3OH

6 4−

5 392

6.55

512

9.09

7.85

e-03

40B

:CH

3OH

(64−

5 3)

926.

893

CH

3OH

143−

132

926.

893

293.

474.

20e-

0311

.38

0.04

5.90

0.10

0.25

431.

570.

0692

9.72

3C

S19−

1892

9.72

344

6.45

1.75

e-02

12.5

00.

439.

641.

020.

1245

0.95

0.08

930.

198

CH

3OH

143−

132

930.

198

293.

482.

87e-

0312

.25

0.05

4.19

0.12

0.22

440.

560.

0793

1.38

6N

2H+

10−

993

1.38

624

5.89

5.56

e-02

11.6

50.

074.

010.

170.

6245

3.03

0.06

933.

693

CH

3OH

9 2−

8 193

3.69

314

2.19

2.73

e-03

11.8

40.

035.

210.

060.

4948

2.52

0.07

937.

478

CH

3OH

141−

130

937.

478

256.

022.

64e-

0312

.46

0.02

5.78

0.05

0.48

402.

940.

0694

7.47

6C

H3O

H10

2−9 1

947.

476

165.

352.

78e-

0312

.27

0.03

4.42

0.07

0.43

611.

690.

0994

8.45

4H

2CO

133,

11−

123,

1094

8.45

442

4.40

2.46

e-02

12.2

80.

094.

270.

200.

1050

0.51

0.07

950.

365

H2C

O13

3,10−

123,

995

0.36

542

4.65

2.47

e-02

11.8

80.

184.

860.

420.

1151

0.41

0.06

959.

346

CH

3OH

11−

2−10−

195

9.34

617

9.19

2.65

e-03

13.4

20.

063.

570.

150.

3513

41.

710.

1995

9.90

1C

H3O

H9 −

4−8 −

395

9.90

119

2.34

4.26

e-03

12.8

60.

389.

231.

020.

3411

71.

500.

1796

0.47

1C

H3O

H4 −

3−3 −

296

0.47

185

.92

5.57

e-03

11.7

00.

057.

300.

110.

4411

02.

510.

1596

1.63

5C

H3O

H20−

1−19−

196

1.63

549

1.52

4.07

e-03

13.4

40.

073.

600.

160.

1474

0.50

0.08

961.

777

CH

3OH

170−

16−

196

1.77

736

6.79

4.25

e-03

12.7

10.

074.

270.

160.

2279

0.77

0.09

962.

848

CH

3OH

200−

190

962.

848

486.

304.

10e-

0311

.83

0.06

3.68

0.14

0.23

571.

140.

0796

5.44

8C

H3O

H9 3−

8 296

5.44

815

2.17

3.90

e-03

12.5

20.

035.

110.

070.

4550

2.53

0.07

966.

507

CH

3OH

203−

193

966.

507

537.

046.

00e-

0350

B:C

H3O

H(2

0 1−

191)

966.

515

CH

3OH

201−

191

966.

515

508.

386.

19e-

0352

B:C

H3O

H(2

0 3−

193)

970.

199

H2C

O13

1,12−

121,

1197

0.19

933

9.05

2.76

e-02

10.7

80.

314.

870.

720.

1482

0.67

0.11

971.

804

OH

+1 2

,5/2−

0 1,3/2

971.

804

46.6

41.

82e-

0210

8B

:OH

+(1

2,3/

2−0 1

,1/2

)97

1.80

5O

H+

1 2,3/2−

0 1,1/2

971.

805

46.6

51.

52e-

0210

7B

:OH

+(1

2,5/

2−0 1

,3/2

)

A57, page 32 of 36

Page 34: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

972.

489

CH

3OH

201−

191

972.

489

505.

434.

21e-

0312

.78

0.08

2.83

0.18

0.19

990.

600.

1197

4.46

2N

H1 2

,5/2,3/2−

0 1,3/2,1/2

974.

462

46.7

75.

04e-

0355

B:N

H(1

2,3/

2,3/

2−0 1

,1/2,1/2

)97

4.47

1N

H1 2

,5/2,5/2−

0 1,3/2,3/2

974.

471

46.7

75.

66e-

0355

B:N

H(1

2,3/

2,3/

2−0 1

,1/2,1/2

)97

4.47

5N

H1 2

,3/2,3/2−

0 1,1/2,1/2

974.

475

46.7

73.

38e-

0357

B:N

H(1

2,5/

2,3/

2−0 1

,3/2,1/2

)97

4.47

8N

H1 2

,5/2,7/2−

0 1,3/2,5/2

974.

478

46.7

76.

94e-

0355

B:N

H(1

2,5/

2,3/

2−0 1

,3/2,1/2

)97

4.47

9N

H1 2

,3/2,5/2−

0 1,1/2,3/2

974.

479

46.7

86.

01e-

0356

B:N

H(1

2,5/

2,3/

2−0 1

,3/2,1/2

)97

4.48

7H

CN

11−

1097

4.48

728

0.67

4.59

e-02

55B

:NH

(12,

5/2,

3/2−

0 1,3/2,1/2

)97

4.67

3C

H3O

H15

3−14

297

4.67

332

8.26

3.24

e-03

11.5

80.

042.

140.

100.

1957

0.70

0.06

974.

877

CH

3OH

7 4−

6 397

4.87

714

5.33

8.28

e-03

56B

:CH

3OH

(74−

6 3)

974.

878

CH

3OH

7 4−

6 397

4.87

814

5.33

8.28

e-03

57B

:CH

3OH

(74−

6 3)

978.

529

CS

20−

1997

8.52

949

3.42

2.04

e-02

51B

:H2C

O(1

4 1,1

4−13

1,13

)97

8.59

2H

2CO

141,

14−

131,

1397

8.59

236

5.20

2.84

e-02

56B

:CS

(20−

19)

979.

110

CH

3OH

153−

142

979.

110

328.

283.

28e-

0312

.45

0.05

4.62

0.13

0.20

531.

080.

0798

0.02

5C

H3O

H15

1−14

098

0.02

529

0.49

3.04

e-03

12.6

80.

034.

520.

060.

4461

2.15

0.09

980.

636

HC

O+

11−

1098

0.63

628

2.44

7.98

e-02

11.4

40.

026.

140.

061.

2354

9.31

0.10

986.

098

CH

3OH

102−

9 198

6.09

816

5.40

3.13

e-03

12.4

80.

034.

400.

070.

4863

1.87

0.09

987.

560

C18

O9−

898

7.56

023

7.03

6.38

e-05

11.0

10.

143.

370.

320.

2354

0.96

0.07

987.

927

H2O

2 0,2,0−

1 1,1,0

987.

927

100.

855.

85e-

0312

.37

0.02

16.3

90.

044.

3472

66.5

90.

1899

1.32

913

CO

9−8

991.

329

237.

946.

45e-

0511

.32

0.02

6.92

0.04

1.82

6511

.49

0.11

991.

580

CH

3OH

112−

101

991.

580

190.

873.

12e-

0312

.27

0.04

5.28

0.09

0.39

591.

900.

0799

1.66

0H

2CO

140,

14−

130,

1399

1.66

036

1.28

2.97

e-02

12.2

10.

192.

460.

450.

1156

0.24

0.05

993.

108

H2S

3 0,3−

2 1,2

993.

108

102.

763.

73e-

0311

.67

0.03

5.99

0.08

0.41

643.

410.

1199

4.21

7C

H3O

H5 −

5−4 −

499

4.21

715

8.83

9.26

e-03

12.1

80.

066.

320.

140.

1762

0.99

0.08

995.

492

o-N

H3

4 0,1−

4 3,1

995.

492

285.

603.

87e-

0813

.49

0.09

0.94

0.21

0.17

801.

230.

1299

7.87

3C

H3O

H20

2−19

199

7.87

350

9.89

2.76

e-03

12.7

40.

106.

560.

230.

1368

0.72

0.07

1002

.779

H2S

3 1,3−

2 0,2

1002

.779

102.

823.

87e-

0310

.88

0.24

3.42

0.56

0.16

500.

630.

0510

05.4

55C

H3O

H21

0−20

010

05.4

5554

6.18

4.66

e-03

14.5

80.

100.

440.

220.

1064

0.46

0.07

1005

.642

CH

3OH

104−

103

1005

.642

223.

655.

06e-

0312

.41

0.07

7.31

0.16

0.12

600.

780.

0710

06.0

28C

H3O

H7 4−

7 310

06.0

2816

0.99

4.45

e-03

63B

:CH

3OH

(64−

6 3)

1006

.081

CH

3OH

6 4−

6 310

06.0

8114

4.75

4.04

e-03

63B

:CH

3OH

(74−

7 3)

1006

.111

CH

3OH

5 4−

5 310

06.1

1113

0.82

3.40

e-03

64B

:CH

3OH

(74−

7 3)

1006

.125

CH

3OH

4 4−

4 310

06.1

2511

9.21

2.26

e-03

60B

:CH

3OH

(74−

7 3)

1006

.540

CH

3OH

180−

17−

110

06.5

4040

8.23

5.12

e-03

13.4

90.

065.

140.

130.

2567

1.09

0.08

1008

.139

CH

3OH

10−

4−9 −

310

08.1

3921

5.55

4.69

e-03

12.1

60.

079.

130.

150.

2684

1.75

0.09

1008

.812

CH

3OH

5 −3−

4 −2

1008

.812

97.5

35.

63e-

0311

.93

0.04

4.85

0.09

0.47

792.

020.

1210

09.3

58C

H3O

H12−

2−11−

110

09.3

5820

7.08

2.91

e-03

12.2

20.

054.

800.

120.

2984

1.32

0.10

1011

.325

CH

3OH

171−

160

1011

.325

376.

172.

60e-

0313

.22

0.07

4.04

0.17

0.15

660.

610.

0810

13.5

63C

H3O

H10

3−9 2

1013

.563

175.

394.

29e-

0357

B:C

H3O

H(1

0 3−

9 2)

1013

.563

CH

3OH

103−

9 210

13.5

6317

5.39

4.29

e-03

57B

:CH

3OH

(10 3−

9 2)

1020

.720

CH

3OH

211−

201

1020

.720

554.

424.

88e-

0312

.61

0.05

4.32

0.12

0.16

621.

000.

0810

22.2

71C

H3O

H16

1−15

010

22.2

7132

7.24

3.49

e-03

12.5

30.

045.

290.

080.

3086

1.76

0.10

1022

.338

CH

3OH

163−

152

1022

.338

365.

373.

67e-

0312

.88

0.06

5.12

0.14

0.16

106

0.64

0.13

1023

.193

CH

3OH

8 4−

7 310

23.1

9316

3.90

8.84

e-03

63B

:CH

3OH

(84−

7 3)

1023

.197

CH

3OH

8 4−

7 310

23.1

9716

3.90

8.84

e-03

64B

:CH

3OH

(84−

7 3)

A57, page 33 of 36

Page 35: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)Ta

ble

A.1

.con

tinue

d.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

1024

.443

N2H

+11−

1010

24.4

4329

5.06

7.43

e-02

11.9

70.

043.

300.

090.

4194

1.78

0.11

1027

.314

CS

21−

2010

27.3

1454

2.72

2.37

e-02

11.0

40.

457.

501.

080.

1581

0.98

0.12

1028

.180

CH

3OH

163−

152

1028

.180

365.

403.

73e-

0313

.00

0.07

8.45

0.17

0.20

791.

420.

1110

32.9

98O

H+

1 1,1/2−

0 1,1/2

1032

.998

49.5

81.

41e-

0270

B:O

H+

(11,

3/2−

0 1,1/2

)10

33.0

04O

H+

1 1,3/2−

0 1,1/2

1033

.004

49.5

83.

53e-

0370

B:O

H+

(11,

1/2−

0 1,1/2

)10

33.1

12O

H+

1 1,1/2−

0 1,3/2

1033

.112

49.5

87.

03e-

0374

B:O

H+

(11,

3/2−

0 1,3/2

)10

33.1

19O

H+

1 1,3/2−

0 1,3/2

1033

.119

49.5

81.

76e-

0275

B:O

H+

(11,

1/2−

0 1,3/2

)10

35.2

47C

H3O

H12

2−11

110

35.2

4721

8.69

3.48

e-03

12.0

70.

065.

070.

150.

2899

1.41

0.12

1036

.912

CO

9−8

1036

.912

248.

887.

33e-

0511

.27

0.02

12.4

40.

0422

.64

188

257.

050.

4810

39.0

15C

H3O

H11

2−10

110

39.0

1519

0.94

3.59

e-03

12.3

10.

075.

070.

160.

4024

91.

570.

3110

42.5

22C

H3O

H6 −

5−5 −

410

42.5

2217

2.76

9.19

e-03

11.2

40.

062.

300.

140.

3010

80.

410.

1310

47.4

27C

CH

1225/2,1

3−11

23/2,1

210

47.4

2732

6.85

3.81

e-03

105

B:C

CH

(12 2

5/2,

12−

1123/2,1

1)10

47.4

27C

CH

1225/2,1

2−11

23/2,1

110

47.4

2732

6.85

3.79

e-03

98B

:CC

H(1

2 25/

2,13−

1123/2,1

2)10

47.4

90C

CH

1223/2,1

2−11

21/2,1

110

47.4

9032

6.88

3.79

e-03

93B

:CC

H(1

2 25/

2,13−

1123/2,1

2)10

47.4

90C

CH

1223/2,1

1−11

21/2,1

010

47.4

9032

6.88

3.78

e-03

92B

:CC

H(1

2 25/

2,13−

1123/2,1

2)10

56.3

55C

H3O

H11−

4−10−

310

56.3

5524

1.07

5.17

e-03

12.5

70.

045.

510.

110.

2872

1.35

0.09

1057

.118

CH

3OH

6 −3−

5 −2

1057

.118

111.

465.

86e-

0311

.90

0.03

5.93

0.07

0.44

752.

570.

1010

59.8

59C

H3O

H13−

2−12−

110

59.8

5923

7.30

3.16

e-03

12.0

90.

062.

650.

140.

2873

1.41

0.10

1061

.609

CH

3OH

113−

102

1061

.609

200.

924.

72e-

0313

.11

0.23

6.04

0.54

0.27

921.

490.

1510

62.9

81H

CN

12−

1110

62.9

8133

1.69

5.98

e-02

12.3

90.

0414

.47

0.09

0.63

124

9.19

0.22

1064

.237

CH

3OH

171−

160

1064

.237

366.

293.

98e-

0312

.44

0.05

4.49

0.12

0.28

971.

010.

1310

69.6

94H

CO

+12−

1110

69.6

9433

3.78

1.04

e-01

11.5

40.

025.

940.

060.

9256

5.86

0.07

1069

.874

CH

3OH

173−

162

1069

.874

404.

804.

14e-

0312

.86

0.06

4.01

0.15

0.14

630.

530.

0610

71.5

05C

H3O

H9 4−

8 310

71.5

0518

4.79

9.51

e-03

65B

:CH

3OH

(94−

8 3)

1071

.514

CH

3OH

9 4−

8 310

71.5

1418

4.79

9.52

e-03

66B

:CH

3OH

(94−

8 3)

1072

.837

H2S

2 2,1−

1 1,0

1072

.837

79.3

74.

13e-

0312

.33

0.14

7.48

0.33

0.31

672.

290.

0910

76.8

34C

H3O

H5 5−

4 410

76.8

3417

0.89

1.07

e-02

12.3

70.

063.

690.

130.

2887

1.01

0.12

1077

.437

CH

3OH

173−

162

1077

.437

404.

836.

26e-

0312

.68

0.28

4.80

0.67

0.16

810.

720.

1010

78.4

77C

H3O

H13

2−12

110

78.4

7724

8.84

3.88

e-03

12.3

10.

045.

310.

100.

2880

1.27

0.10

1090

.816

CH

3OH

7 −5−

6 −4

1090

.816

189.

009.

37e-

0312

.40

0.08

6.75

0.18

0.16

841.

180.

0910

92.4

63C

H3O

H12

2−11

110

92.4

6321

8.80

4.09

e-03

11.8

60.

044.

630.

100.

3590

1.66

0.10

1095

.063

CH

3OH

200−

19−

110

95.0

6349

7.93

7.23

e-03

12.4

00.

084.

120.

180.

1583

0.56

0.08

1097

.365

H2O

3 1,2,0−

3 0,3,0

1097

.365

249.

441.

64e-

0212

.66

0.02

15.6

30.

042.

1787

32.8

90.

1911

01.3

5013

CO

10−

911

01.3

5029

0.79

8.86

e-05

11.3

40.

027.

950.

041.

2675

9.39

0.13

1104

.547

CH

3OH

12−

4−11−

311

04.5

4726

8.91

5.69

e-03

12.4

20.

064.

690.

130.

2092

0.95

0.10

1105

.370

CH

3OH

7 −3−

6 −2

1105

.370

127.

716.

21e-

0312

.43

0.04

5.05

0.09

0.43

801.

940.

1011

05.9

44C

H3O

H18

1−17

011

05.9

4440

7.62

4.51

e-03

13.0

60.

053.

330.

120.

3185

1.14

0.10

1109

.585

CH

3OH

123−

112

1109

.585

228.

785.

18e-

0312

.74

0.23

5.21

0.55

0.28

971.

160.

1111

10.9

41C

H3O

H14−

2−13−

111

10.9

4126

9.85

3.40

e-03

12.7

30.

064.

870.

140.

2293

0.96

0.10

1113

.343

H2O

1 1,1,0−

0 0,0,0

1113

.343

53.4

31.

84e-

0212

.63

0.04

20.5

40.

083.

1594

48.5

80.

2211

15.2

04H

2O+

1 1,1,3/2,5/2−

0 0,0,1/2,3/2

1115

.204

53.5

23.

10e-

028.

400.

002.

500.

00−

0.22

110

−0.

890.

10

A57, page 34 of 36

Page 36: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

M. Kama et al.: HIFI spectral survey of OMC-2 FIR 4 (CHESS)

Tabl

eA

.1.c

ontin

ued.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

1116

.986

CH

3OH

231−

221

1116

.986

659.

326.

41e-

0313

.80

0.59

5.58

1.39

0.14

119

0.65

0.11

1117

.477

N2H

+12−

1111

17.4

7734

8.69

9.68

e-02

11.7

80.

063.

480.

130.

3511

51.

230.

1211

19.8

13C

H3O

H10

4−9 3

1119

.813

207.

991.

03e-

0212

2B

:CH

3OH

(10 4−

9 3)

1119

.831

CH

3OH

104−

9 311

19.8

3120

7.99

1.03

e-02

123

B:C

H3O

H(1

0 4−

9 3)

1121

.269

CH

3OH

142−

131

1121

.269

281.

294.

30e-

0312

.23

0.07

4.55

0.17

0.15

910.

650.

1011

25.1

43C

H3O

H6 5−

5 411

25.1

4318

4.82

1.55

e-02

12.3

20.

0910

.90

0.21

0.17

991.

000.

1211

46.4

64C

H3O

H13

2−12

111

46.4

6424

8.98

4.66

e-03

12.5

60.

064.

310.

150.

3815

31.

740.

1711

47.4

15C

H3O

H19

1−18

011

47.4

1545

1.23

5.10

e-03

14.1

10.

074.

210.

170.

2916

51.

000.

1911

51.4

49H

CN

13−

1211

51.4

4938

6.95

7.63

e-02

12.1

90.

0613

.51

0.13

0.45

152

5.43

0.24

1151

.985

CO

10−

911

51.9

8530

4.17

1.01

e-04

11.4

00.

0111

.47

0.02

23.5

716

226

7.41

0.40

1153

.127

H2O

3 1,2,0−

2 2,1,0

1153

.127

249.

442.

67e-

0312

.08

0.02

16.1

30.

042.

7317

246

.14

0.39

1153

.549

CH

3OH

8 −3−

7 −2

1153

.549

146.

286.

64e-

0312

.72

0.06

5.36

0.15

0.46

140

2.07

0.17

1157

.499

CH

3OH

133−

122

1157

.499

258.

965.

66e-

0312

.52

0.46

7.96

1.14

0.35

144

1.68

0.16

1158

.727

HC

O+

13−

1211

58.7

2738

9.39

1.33

e-01

12.1

60.

187.

630.

430.

6415

45.

120.

2011

62.7

06C

H3O

H15−

2−14−

111

62.7

0630

4.74

3.61

e-03

11.5

80.

397.

870.

920.

2816

00.

990.

1111

62.9

12H

2O3 2

,1,0−

3 1,2,0

1162

.912

305.

252.

28e-

0212

.91

0.03

14.4

50.

071.

3113

718

.18

0.28

1163

.624

CH

3OH

152−

141

1163

.624

316.

054.

75e-

0313

.47

0.07

3.23

0.16

0.28

136

0.80

0.14

1168

.118

CH

3OH

114−

103

1168

.118

233.

527.

51e-

0316

1B

:CH

3OH

(11 4−

103)

1168

.150

CH

3OH

114−

103

1168

.150

233.

527.

51e-

0315

2B

:CH

3OH

(11 4−

103)

1168

.452

p-N

H3

2 1,0−

1 1,1

1168

.452

57.2

11.

21e-

0213

.06

0.26

8.38

0.60

0.54

148

3.35

0.20

1173

.435

CH

3OH

7 5−

6 411

73.4

3520

1.06

1.57

e-02

10.3

00.

087.

770.

190.

3816

51.

450.

1811

88.6

72C

H3O

H20

1−19

011

88.6

7249

7.13

5.75

e-03

12.6

90.

094.

050.

210.

2015

10.

840.

1511

99.5

99C

H3O

H4 4−

3 311

99.5

9911

9.21

1.48

e-02

12.5

80.

197.

280.

450.

3316

02.

130.

1612

00.8

55C

H3O

H14−

4−13−

312

00.8

5533

1.54

6.89

e-03

12.0

20.

084.

540.

180.

3016

00.

940.

1512

01.6

30C

H3O

H9 −

3−8 −

212

01.6

3016

7.16

7.15

e-03

11.8

90.

064.

040.

130.

5816

71.

710.

1912

05.3

68C

H3O

H14

3−13

212

05.3

6829

1.46

6.15

e-03

13.2

40.

073.

640.

160.

2615

30.

960.

1412

11.3

3013

CO

11−

1012

11.3

3034

8.93

1.18

e-04

11.9

70.

049.

030.

091.

0517

68.

770.

2812

14.8

53o-

NH

32 0

,1−

1 0,0

1214

.853

85.7

81.

81e-

0213

.79

0.04

7.57

0.08

0.91

183

5.54

0.27

1215

.246

p-N

H3

2 1,1−

1 1,0

1215

.246

58.3

21.

36e-

0219

5B

:CH

3OH

(16 −

2−15−

1)12

15.2

61C

H3O

H16−

2−15−

112

15.2

6134

1.96

5.60

e-03

204

B:p

-NH

3(2

1,1−

1 1,0

)12

16.4

20C

H3O

H12

4−11

312

16.4

2026

1.36

8.14

e-03

12.1

10.

075.

620.

180.

3419

01.

400.

1712

28.7

89H

2O2 2

,0,0−

2 1,1,0

1228

.789

195.

911.

88e-

0212

.93

0.04

12.8

00.

090.

7714

810

.18

0.28

1229

.740

CH

3OH

211−

200

1229

.740

545.

316.

45e-

0311

.30

0.14

2.25

0.34

0.34

160

0.90

0.14

1232

.476

HF

1−0

1232

.476

59.1

52.

42e-

029.

980.

082.

820.

19−

0.81

195

−2.

000.

1912

39.8

90H

CN

14−

1312

39.8

9044

6.45

9.55

e-02

12.1

90.

5614

.59

1.36

0.50

191

5.02

0.29

1249

.559

H37

Cl

2 3/2−

1 1/2

1249

.559

89.9

74.

65e-

0383

B:H

37C

l(2 3

/2−

1 5/2

)12

49.5

69H

37C

l2 3

/2−

1 5/2

1249

.569

89.9

65.

58e-

0483

B:H

37C

l(2 3

/2−

1 1/2

)12

49.5

71H

37C

l2 1

/2−

1 1/2

1249

.571

89.9

79.

30e-

0385

B:H

37C

l(2 3

/2−

1 1/2

)12

49.5

73H

37C

l2 7

/2−

1 5/2

1249

.573

89.9

71.

12e-

0283

B:H

37C

l(2 3

/2−

1 1/2

)12

49.5

73H

37C

l2 5

/2−

1 3/2

1249

.573

89.9

67.

82e-

0383

B:H

37C

l(2 3

/2−

1 1/2

)12

49.5

82H

37C

l2 3

/2−

1 3/2

1249

.582

89.9

75.

95e-

0382

B:H

37C

l(2 3

/2−

1 1/2

)12

49.5

84C

H3O

H10−

3−9 −

212

49.5

8419

0.37

1.14

e-02

84B

:H37

Cl(

2 3/2−

1 1/2

)12

49.5

95H

37C

l2 1

/2−

1 3/2

1249

.595

89.9

71.

86e-

0384

B:H

37C

l(2 3

/2−

1 1/2

)12

51.4

34H

Cl

2 5/2−

1 5/2

1251

.434

90.1

03.

36e-

0396

B:H

Cl(

2 3/2−

1 1/2

)

A57, page 35 of 36

Page 37: UvA-DARE (Digital Academic Repository) The …...Various stages of star formation are represented: Orion Ia and Ib are 10 Myr old clusters, while Class 0 protostars are still abun-dant

A&A 556, A57 (2013)

Tabl

eA

.1.c

ontin

ued.

Gau

ssia

nfit

from

mom

ents

νSp

ecie

sTr

ansi

tion

ν res

tE

uA

ulv l

srδv

lsr

FW

HM

δFW

HM

T mb

rms

Flux

δFlu

xB

lend

(B)/

Not

esG

Hz

GH

zK

rad/

skm

s−1

kms−

1km

s−1

kms−

1K

mK

Kkm

s−1

Kkm

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

1251

.434

HC

l2 3

/2−

1 1/2

1251

.434

90.1

04.

67e-

0397

B:H

Cl(

2 5/2−

1 5/2

)12

51.4

47H

Cl

2 3/2−

1 5/2

1251

.447

90.1

05.

61e-

0496

B:H

Cl(

2 5/2−

1 5/2

)12

51.4

50H

Cl

2 1/2−

1 1/2

1251

.450

90.1

09.

34e-

0396

B:H

Cl(

2 5/2−

1 5/2

)12

51.4

52H

Cl

2 5/2−

1 3/2

1251

.452

90.1

07.

85e-

0396

B:H

Cl(

2 5/2−

1 5/2

)12

51.4

64H

Cl

2 3/2−

1 3/2

1251

.464

90.1

05.

98e-

0397

B:H

Cl(

2 5/2−

1 5/2

)12

51.4

81H

Cl

2 1/2−

1 3/2

1251

.481

90.1

01.

87e-

0394

B:H

Cl(

2 5/2−

1 5/2

)12

67.0

14C

O11−

1012

67.0

1436

4.97

1.34

e-04

11.6

60.

0411

.29

0.11

21.6

212

624

7.42

0.25

1496

.923

CO

13−

1214

96.9

2350

3.14

2.20

e-04

12.1

90.

0112

.02

0.02

15.9

220

919

2.13

0.44

1541

.843

CH

3OH

202−

191

1541

.843

525.

231.

06e-

0214

.84

0.05

2.56

0.11

0.58

241

1.14

0.19

1611

.794

CO

14−

1316

11.7

9458

0.50

2.74

e-04

12.3

20.

0112

.54

0.02

13.4

927

316

5.51

0.53

1661

.008

H2O

2 2,1,0−

2 1,2,0

1661

.008

194.

103.

06e-

0214

.52

0.03

10.9

90.

072.

1821

022

.30

0.33

1669

.905

H2O

2 1,2,0−

1 0,1,0

1669

.905

114.

385.

60e-

0215

.24

0.03

14.5

80.

075.

3220

066

.52

0.36

1716

.770

H2O

3 0,3,0−

2 1,2,0

1716

.770

196.

775.

06e-

0215

.01

0.02

9.91

0.05

4.70

175

53.8

60.

2817

26.6

03C

O15−

1417

26.6

0366

3.36

3.35

e-04

13.0

50.

0112

.34

0.02

10.3

422

113

5.76

0.40

1760

.486

13C

O16−

1517

60.4

8671

8.70

3.57

e-04

16.1

50.

223.

950.

510.

2617

21.

150.

1717

63.6

01p-

NH

33 1

,0−

2 1,1

1763

.601

142.

965.

28e-

0213

.83

0.15

2.13

0.36

0.40

166

3.22

0.20

1763

.823

p-N

H3

3 2,0−

2 2,1

1763

.823

126.

973.

30e-

0213

.83

0.19

2.95

0.44

0.29

169

2.05

0.18

1834

.736

OH

2 Π2 1

,−1,

0,1−

1 1,1,0,1

1834

.736

269.

762.

12e-

0289

B:O

H(2 Π

2 1,−

1,0,

2−1 1

,1,0,1

)18

34.7

47O

H2 Π

2 1,−

1,0,

2−1 1

,1,0,1

1834

.747

269.

766.

36e-

0289

B:O

H(2 Π

2 1,−

1,0,

1−1 1

,1,0,1

)18

34.7

50O

H2 Π

2 1,−

1,0,

1−1 1

,1,0,0

1834

.750

269.

764.

24e-

0289

B:O

H(2 Π

2 1,−

1,0,

1−1 1

,1,0,1

)18

37.7

47O

H2 Π

2 1,1,0,1−

1 1,−

1,0,

118

37.7

4727

0.14

2.13

e-02

85B

:OH

(2 Π2 1

,1,0,2−

1 1,−

1,0,

1)18

37.8

17O

H2 Π

2 1,1,0,2−

1 1,−

1,0,

118

37.8

1727

0.14

6.40

e-02

88B

:OH

(2 Π2 1

,1,0,1−

1 1,−

1,0,

1)18

37.8

37O

H2 Π

2 1,1,0,1−

1 1,−

1,0,

018

37.8

3727

0.14

4.27

e-02

93B

:OH

(2 Π2 1

,1,0,1−

1 1,−

1,0,

1)18

41.3

46C

O16−

1518

41.3

4675

1.73

4.05

e-04

12.6

00.

0112

.45

0.03

5.91

8369

.82

0.14

1900

.537

C+

3/2−

1/2

1900

.537

91.2

12.

32e-

069.

070.

012.

080.

0111

.58

9424

.14

0.06

A57, page 36 of 36