vacancy type defects in oxide dispersion strengthened steels v. slugeň, j. veterníková, v....

27
Vacancy type defects in oxide dispersion strengthened steels V. Slugeň , J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute of Nuclear and Physical Engineering Faculty of Electrical Engineering and Information Technology Slovak University of Technology Bratislava, Slovakia

Upload: chloe-pope

Post on 16-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Vacancy type defects in oxide dispersion strengthened steels

V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak

Institute of Nuclear and Physical Engineering

Faculty of Electrical Engineering and Information Technology Slovak University of Technology

Bratislava, Slovakia

Page 2: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Available techniques for material studies:Positron Annihilation Spectroscopy: Conventional PALS 2-det. or 3-det. Set-

ups (for irradiated materials), digital Doppler Broadening set-up, access and experiences with PLEPS measurements at FRM-II in Garching

Moessbauer spectroscopy,

Atomic force microscopy,

Alfa, beta, gamma spectroscopy including low/background chamber,

X-ray diffraction, Barkhausen Noises measurements,

TEM, SEM,

Operating cascade accelerator for simulation of radiation induced defects via ion implantation

Institute of Nuclear and Physical Engineering

Slovak University of Technology

Page 3: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

What kind of information we can

obtain from Positron Annihilation

Spectroscopy?

Report: EUR 22468 EN

Vladimír Slugeň

JRC-Petten, 30.8.2006

Defects density

Annealing effectiveness

Precipitation

Types of defects

Near surface region study

Microstructural changes due to irradiation, ageing,

...

Page 4: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Neutron-irradiation– Defect production

• Self-interstitial atom (SIA) & vacancy (V) rich regions

– Matrix damage• SIA-clusters, SIA-loops• Micro voids

– Solute atom diffusion• Precipitates• Complex defect-solute

configurations• GB segregation

Irradiation-induced changes of microstructure

x

x

x

xx

x

xxx

xx

Page 5: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Collision events

00,00050,001

0,00150,002

0,00250,003

0,00350,004

0,00450,005

target depth [nm]

counts

Depth profile of the helium implantation, E=250keV (SRIM simulation 105 ions)

ExperimentRadiation treatment

Dose [ions/cm2](C/cm2)

6,24.1017

(0.1)1,25.1018

(0.2)1,87.1018

(0.3)2,5.1018

(0.4)3,12.1018

(0.5)

DPAPALS 0,15 0,30 0,45 0,60 0,74

DPAPLEPS 18.55 37.10 55.64 74.19 92.74

DPA (average) calculation for different level of implantation in first 100m layer (DPAPALS) and 800nm (DPAPLEPS) of studied Fe-Cr alloys

To obtain cascade collisions in the microstructure of studied materials without neutron activation, accelerated helium ions have been used

Page 6: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute
Page 7: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Complementary techniques results

Experiment

SEM

x

Z SEM confirms the PLEPS results of large voids in the depth >500nm which correspondent to the helium implantation profile maxima .

1m

Page 8: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Technical specificationTotal accelerating voltage: 0 - 1 MVRipple factor: < 1%Energy rangefor singly charged particles: 5 keV to 1 MeV Energy spread: 70 keV – 1 MeV: 2 keV

< 70 keV: < 0,1%Beam current: 1 - 100 A

Cascade accelerator, laboratory of ion beams,

Slovak University of Technology

Radiation treatment

Experiment

Page 9: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

PALS equipment

Page 10: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Pulsed low energy positron system (PLEPS)

remoderated positrons

[1] P. Sperr, W. Egger, G. Kögel, G. Dollinger, Ch. Hugenschmidt, R. Repper, C. Piochacz, Applied Surface Science 255 (2008) 35–38 [2] Hugenschmidt C., Dollinger G., Egger W., Kögel G.,Löwe B., Mayer J., Pikart P., Piochacz C., Repper R., Schreckenbach K., Sperr P., Stadlbauer M., Applied Surface Science, Volume 255, Issue 1, p. 29-32

Page 11: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

100120140160180200220240260280300320

MLT [ps]

Temperature [°C]

Energy [keV]. For Cu 18keV~457nm

SM sample

300-320

280-300

260-280

240-260

220-240

200-220

180-200

160-180

140-160

120-140

100-120

SLUGEŇ, V. et al., Nuclear Fusion 44, 2004, 93.

100

250

400

550

45

7

37

8

30

5

23

8

17

8

12

4 78 41

140

160

180

200

220

240

260

280

300

MLT [ps]

Temperature [°C]

Depth [nm]

SS non-irradiated sample

Defects depth profiling study and studies of near-surface region. PAS and TEM results are useable for microstructural evaluation of new materials

Page 12: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

HV10

PAS

MS

110

120

130

140

150

160

13 14 15 16 17 18 19 20 21 22

Hp=T.(20+logt)10-3 (a.u.)

Lif

etim

e t

1 (p

s)15Kh2NMFA

15Kh2MFA

200

250

300

350

400

13 14 15 16 17 18 19 20 21 22Hp=T.(20+logt)10 - 3 (a.u.)

15Kh2NMFA

15Kh2MFA

40

45

50

55

60

65

70

13 14 15 16 17 18 19 20 21 22

Hp=T.(20+logt)10 - 3 (a.u.)

15Kh2MFA

15Kh2NMFA

0 20 40 60 80 100100

120

140

160

180

200

[% fracture strain]

[p

s]

[ps]

0

50

100

150

200

250

[N/m

m 2]

[N/mm2]

Stress-strain experiments on Fe Distinct positron trapping after 80%

Hooks range (fully elastic region) Early stage of fatigue

Stress-strain diagram of pure Fe

Average positron LT in Fe after tensile strain

PAS parameters in comparison to results from

other techniques (TEM, SEM, HV10, MS, XRD).

SLUGEŇ, V., MAGULA, V.: Nuclear engineering and design 186/3, 1998

Page 13: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Lattice parameter vs. positron lifetime in defects in helium implanted Fe-Cr alloys. a.) Fe2.56%Cr; b.) Fe11.62%Cr

a.)

b.)

KRSJAK, V.: PhD Thesis, STU Bratislava, 2008

Page 14: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

PAS Results - Annealing temperature for WWER-steels at 475 °C is acceptable, but PAS gives more information.

100

200

300

400

500

400425450475500525550

160

165

170

175

180

156.0

159.0

162.0

165.0

168.0

171.0

174.0

177.0

180.0

400 425 450 475 500 525 550

100

200

300

400

500

t (°C)

Dep

th (n

m)

158.2 168.1 178.1 188.0 197.9 207.8 217.8 227.7 237.6

The 3D presentation of PLEPS results (Tau1) of irradiated (1.25x10E24m-2) and annealed Sv-10KhMFT steel (WWER-440 weld).

The effectiveness of the annealing process to removing of small defects (mono/di-vacancies or Frenkel pairs) can be followed via significant decrease of parameter tau1. This figure also shows rapid increase of mentioned small defects in WWER type of RPV steels after about 480 ºC.

Slugen et al: NTD&E Int. 37 (2004) 651

Page 15: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

15

The EPR pressure vessel in Olkiluoto 3 (Finland) – 2009

VVER-440 annealing facility VVER-440 V-213

Pressure vessel

Page 16: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

• Corrosion reistance,• Radiation resistance –

negligible radiation swelling, small ΔDBTT (RTNDT, NDTT) and upper shelf energy (USE) decrease

• Thermal resistance,• Reduced activated steel – with

eliminated content of long-term radiactive Ni, C, Cu and Co replaced by V, Mn, Cr, Ti, W.

How should the ideal WWER-reactor steel look like and why?

Optimization of all factors affected on properties

Page 17: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Difficulties with irradiated RPV steels and advantages for implantation

• Radioactivity ―> special rules for handling, transport, polishing, storage... (PROBLEMS),– Reducing of volume,– Reducing of number of samples,– Application of other techniques if possible.

• PAS disturbing 60Co contribution (photopiks 1.17 and 1.33 MeV)– 1. Measurement using PLEPS (very thin samples of about 20 μm are

necessary), – 2. Measurement using 3 detector set-up in coincidence mode (takes about 2

weeks),– 3. To wait ... (T1/2(Co-60)=5.27 a).

• Ion implantation – none transmutations = none 60Co, very short half-time of decay for radionuclides, only 2 detectors measurement equipment for PAS

In ODS steels – 0 Co content (theory)

Page 18: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Chemical composition of studied ODS steels (in % wt.).

C Mn Ni Cr Mo Ti Al Si W Y2O3

MA 956 0.07 0.12 0.07 20 0.1 0.3 3.4 0.04 - 0.5

ODM 751 0.07 0.07 0.02 16 1.74 0.7 3.8 0.06 - 0.5

ODS Eurofer 0.1 0.44 - 9 0.01 - - 0.01 1.1 0.3

• Addition of stable oxides (Al2O3, Cr2O3, Y2O3)• Better mechanical properties – strength, toughness• Better corrosion resistance and resistance to thermal loading• Candidate materials for fuel cladding in new reactors (fast reactors)

Oxide Dispersion Strengthening might improve the swelling resistance of F/M steels

Page 19: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

19

ODS 14%Cr ferritic steels: MA957ODS 14%Cr ferritic steels: MA957Less hardening than conventional and low activation F/M SteelsLess hardening than conventional and low activation F/M Steels

J. L. Boutard, J. L. Boutard, IAEA Technical Meeting, Vienna, 27-29 June 2011

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50

9Cr1Mo

9Cr1MoVNb

F82H

JLF-1

EUROFER

9Cr2WTaV

ODS-MA957

Incr

ea

se o

f Yie

ld S

tre

ss (

MP

a)

Displacement damage (dpa)

9Cr1MoVNb

9Cr1Mo

RAFM-steels

ODS-MA957

Ttest

= Tirrad

= 300-325°C

Page 20: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Experimental techniques

• Positron annihilation lifetime spectroscopy (PALS)− Slovak University of Technology, Slovakia

• Doppler Broadening Spectroscopy (DBS) − Aalto University, Finland

• Magnetic Barkhausen Noise (MBN) − JRC, Petten, Netherland

Page 21: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

PALS meaurement – MLT

Page 22: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Results of Positron Annihilation Lifetime

Spectroscopy: Lifetimes (a); Intensities (b).

ODM 751 had visible higher values – 250 ps. This signifies that MA 956 and ODS Eurofer contain defects probably with the similar size of di-vacancies, although the lifetime of MA 956 has much higher deviation. According to ΔLT2, MA 956 can also contains three-vacancies. ODM 751 has three- and four-vacancy clusters. The intensities (percentages) of positron annihilation in the defects (I2) differ significantly for investigated steels, i.e. for MA 956 ~ 60%, ODM 751 - 51% and ODS Eurofer – over 70%. Observed defects are categorical and they are formed during manufacture.

a) b)

Page 23: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

DBS results

Page 24: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Behavior of S- W parameters.

The highest gradient ODM 751. ODM 751 is probably by the lowest defect presence.

Page 25: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

The signal envelope of Magnetic Barkhausen noise for frequency up to

50 Hz (depth ~ 1 mm).

The highest signal amplitude – BNA: ODM751, which demonstrates the lowest concentration of all structural defects (vacancies, precipitations, grain boundaries) than in ODS Eurofer and MA 957. It can also denote lower hardness or lower level of residual stress in ODM 751. The highest residual stress belongs to ODS Eurofer. The smallest grains were found in MA 956. The highest Hpeak as well as the coarsest grains were detected for ODM 751.

Page 26: Vacancy type defects in oxide dispersion strengthened steels V. Slugeň, J. Veterníková, V. Sabelová, J. Degmová, R. Hinca, M. Petriska and S. Sojak Institute

Conclusion

• ODM 751 – the lowest defect concentration, but the largest defects,

• ODS Eurofer – the higher defect concentration as well as hardness.

• No relation to chromium content as was assumed

HHardness (residual stress) increases with defect concentration growth, no with defect size growth (precipitation vs dislocation)

• Defect concentration, defet size (PALS)

• Defect concentration, defet size (DBS)

• Hardness = residual stress (MBN)

SSame or similar

results

• Influence of Cr + Mo + W and aslo Al on hardness (creation of precipitates