vaishali adya , sean leavey , christian gräf , stefan hild and

1
Outlook The ET-LF Sensing and Control System Vaishali Adya 1,2 , Sean Leavey 3 , Christian Gräf 3 , Stefan Hild 3 and Harald Luck 1,2 1 Max-Planck-Insitut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany 2 Institut für Gravitationsphysik, Leibniz Universität, Hannover, Germany, 3 SUPA, University of Glasgow, UK Dual recycled Fabry Perot Michelson with 4 km arm cavities 1064 nm TEM00 light with fused silica optics Mirror temperature: 300 K Finesse of arm cavities: 1250 0.83 MW power in the arm cavities Advanced LIGO Einstein Telescope Underground facility, equilateral triangle with 10 km between corner stations Six dual recycled Fabry Perot interferometers in total, two main BS per corner station Cryogenic silicon mirrors for three out of six interferometers (LF) 'Xylophone' concept: two IFOs with parallel arms, optimized for low and high frequency detection, respectively 1064 nm TEM00 light (HF), 1550 nm LG33 light (LF) 3 MW, 18 kW in the arms for HF and LF respectively Optical Lengths The sidebands must be resonant within the recycling cavities The first sideband must be resonant only within the PRC The second sideband must be resonant within both the PRC and SRC Both sideband frequencies must not resonate in the arm cavities Chosen sideband frequencies: 11 MHz and 57 MHz PRC length: 310 m, SRC length: 312.634 m, changed from 310 m due to clash of sideband resonances Schnupp asymmetry: 5 cm References These degrees of freedom must be sensed and controlled in order to bring the interferometer to a locked state and keep it there. [1] R. Abbott, et al. "Advanced LIGO Length Sensing and Control Final Design", LIGO Document T1000298 [2] G.Vajente "Requirements for Advanced VIRGO Length Sensing and Control system", VIR-083A-08 BS from input optics PRM SRM Y-arm cavity X-arm cavity AS POP REFL to output 10 1 10 2 10 24 10 23 Frequency [Hz] Strain [1/ Hz] Gravity Gradients Quantum noise: no signal recycling (1 FC) Quantum noise: tuned signal recycling (1 FC) Quantum noise: detuned signal recycling (2 FC) 2G vs 3G Detectors Modulation Frequencies Preliminary Results Optimisation of control matrix for ET- LF with detuned signal recycling cavity Noise budget for sensing and control of ET-LF Investigate control signals at small signal recycling cavity detunings 0 0.2 0.4 0.6 0.8 1 10 5 10 0 Schnupp Asymmetry [m] Sideband Power [W] Sidebands in Recycling Cavities PRC Sideband 1 PRC Sideband 2 SRC Sideband 1 SRC Sideband 2 308 310 312 314 316 318 320 322 324 10 5 10 4 10 3 10 2 10 1 Sideband power [W] Sideband 1 Sideband 2 Sideband power in SRC vs SRCL SRCL [m] CARM DARM MICH PRCL SRCL REFL I1 3.37E+08 3.38E+04 1.65E+02 5.87E+05 6.45E-01 REFL Q1 1.08E+08 1.08E+04 5.15E+01 1.89E+05 2.42E-01 REFL I2 1.55E+08 1.55E+04 5.20E+03 2.93E+05 5.60E+03 REFL Q2 4.69E+07 4.67E+03 7.52E+03 9.17E+04 3.03E+03 POP I1 6.01E+07 5.99E+03 3.68E+02 9.59E+04 3.46E+00 POP Q1 7.58E+07 7.79E+03 4.55E+03 1.41E+05 2.85E+01 POP I2 1.35E+08 1.37E+04 1.13E+05 3.98E+04 6.19E+04 POP Q2 8.34E+07 7.81E+03 2.23E+05 1.79E+04 2.31E+04 AS I1 2.39E-01 7.77E+08 1.37E+06 5.50E+00 4.05E-02 AS Q1 1.75E-01 8.16E+06 1.44E+04 4.09E+00 1.54E-01 AS I2 9.86E+00 4.87E+10 8.56E+07 3.40E+03 7.33E+02 AS Q2 8.14E+00 4.30E+10 7.55E+07 2.85E+03 5.91E+02 Optickle and FINESSE models developed with good agreement Sensitivity curves match the design study reasonably well - work still ongoing Preliminary control matrix obtained Optical gain from each degree of freedom to each probe L y L x l y l x l p l s CARM = (L y + L x ) / 2 DARM = (L y - L x ) / 2 DARM = l y - l x PRCL = l p + (l y + l x ) / 2 SRCL = l s + (l y + l x ) / 2

Upload: lamcong

Post on 20-Jan-2017

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vaishali Adya , Sean Leavey , Christian Gräf , Stefan Hild and

Outlook

The ET-LF Sensing and Control System Vaishali Adya1,2, Sean Leavey3, Christian Gräf3, Stefan Hild3 and Harald Luck1,2

1Max-Planck-Insitut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany 2Institut für Gravitationsphysik, Leibniz Universität, Hannover,Germany, 3SUPA, University of Glasgow, UK

Dual recycled Fabry Perot Michelson with 4 km arm cavities1064 nm TEM00 light withfused silica opticsMirror temperature: 300 KFinesse of arm cavities: 12500.83 MW power in the arm cavities

Advanced LIGO

Einstein Telescope

Underground facility, equilateral triangle with 10 km between corner stationsSix dual recycled Fabry Perot interferometers in total, two main BS per corner stationCryogenic silicon mirrors for three out of six interferometers (LF)'Xylophone' concept: two IFOs with parallel arms, optimized for low and high frequency detection, respectively1064 nm TEM00 light (HF),1550 nm LG33 light (LF)3 MW, 18 kW in the arms for HF and LF respectively

Optical Lengths

The sidebands must be resonant within the recycling cavitiesThe first sideband must be resonant only within the PRCThe second sideband must be resonant within both the PRC and SRCBoth sideband frequencies must not resonate in the arm cavitiesChosen sideband frequencies: 11 MHz and 57 MHz

PRC length: 310 m, SRC length: 312.634 m, changed from 310 m due to clash of sideband resonancesSchnupp asymmetry: 5 cm

References

These degrees of freedom must be sensed and controlled in order to bring the interferometer to a locked state and keep it there.

[1] R. Abbott, et al. "Advanced LIGO Length Sensing and Control Final Design", LIGO Document T1000298

[2] G.Vajente "Requirements for Advanced VIRGO Length Sensing and Control system", VIR-083A-08

BS

from inputoptics

PRM

SRM

Y-arm cavity

X-arm cavity

AS

POPREFL

to output

101

102

10−24

10−23

Frequency [Hz]

Str

ain

[1/√H

z]

Gravity GradientsQuantum noise: no signal recycling (1 FC)Quantum noise: tuned signal recycling (1 FC)Quantum noise: detuned signal recycling (2 FC)

2G vs 3G Detectors

Modulation Frequencies

Preliminary ResultsOptimisation of control matrix for ET-LF with detuned signal recycling cavityNoise budget for sensing and control of ET-LFInvestigate control signals at small signal recycling cavity detunings

0 0.2 0.4 0.6 0.8 1

10−5

100

Schnupp Asymmetry [m]

Sid

eban

d P

ower

[W]

Sidebands in Recycling CavitiesPRC Sideband 1PRC Sideband 2SRC Sideband 1SRC Sideband 2

308 310 312 314 316 318 320 322 32410−5

10−4

10−3

10−2

10−1

Side

band

pow

er [W

]

Sideband 1Sideband 2

Sideband power in SRC vs SRCL

SRCL [m]

CARM DARM MICH PRCL SRCLREFL I1 3.37E+08 3.38E+04 1.65E+02 5.87E+05 6.45E-01REFL Q1 1.08E+08 1.08E+04 5.15E+01 1.89E+05 2.42E-01REFL I2 1.55E+08 1.55E+04 5.20E+03 2.93E+05 5.60E+03REFL Q2 4.69E+07 4.67E+03 7.52E+03 9.17E+04 3.03E+03POP I1 6.01E+07 5.99E+03 3.68E+02 9.59E+04 3.46E+00POP Q1 7.58E+07 7.79E+03 4.55E+03 1.41E+05 2.85E+01POP I2 1.35E+08 1.37E+04 1.13E+05 3.98E+04 6.19E+04POP Q2 8.34E+07 7.81E+03 2.23E+05 1.79E+04 2.31E+04AS I1 2.39E-01 7.77E+08 1.37E+06 5.50E+00 4.05E-02AS Q1 1.75E-01 8.16E+06 1.44E+04 4.09E+00 1.54E-01AS I2 9.86E+00 4.87E+10 8.56E+07 3.40E+03 7.33E+02AS Q2 8.14E+00 4.30E+10 7.55E+07 2.85E+03 5.91E+02

Optickle and FINESSE models developed with good agreement

Sensitivity curves match the design study reasonably well - work still ongoing

Preliminary control matrix obtained

Optical gain from each degree of freedom to each probe

Ly

Lx

lylxlp

ls

CARM = (Ly + Lx) / 2DARM = (Ly - Lx) / 2DARM = ly - lxPRCL = lp + (ly + lx) / 2SRCL = ls + (ly + lx) / 2