validation metrics [-1.5cm] - ncsu

22
Validation Metrics Kathryn Maupin Laura Swiler June 28, 2017 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO. 2017-XXX

Upload: others

Post on 30-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Validation Metrics [-1.5cm] - NCSU

Validation MetricsKathryn Maupin

Laura Swiler

June 28, 2017

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly ownedsubsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO.

2017-XXX

Page 2: Validation Metrics [-1.5cm] - NCSU

Overview

Model Validation

Data Classification

Validation Metrics

Examples

Conclusions

June 28, 2017 2

Page 3: Validation Metrics [-1.5cm] - NCSU

Model Validation

The comparison of experimental observations with model output

Observed values contain uncertaintiesExperimental measurement errorLimited/incomplete dataModel form errorParameter uncertaintyApproximation/discretization error

Validation Metric: quantifies the difference between physical andsimulation observations

Observations may be considered with or without uncertainties

June 28, 2017 3

Page 4: Validation Metrics [-1.5cm] - NCSU

Data Types

Type 1: Experimental and model values are treated withoutuncertainty

Type 2: Experimental values are treated as uncertainNominal value, given by expertsStandard deviation, calculated using multiple experiments

Type 3: Experimental and model values are treated as uncertainUncertainty analysis

June 28, 2017 4

Page 5: Validation Metrics [-1.5cm] - NCSU

Data TypesType 1 (no uncertainties)

Type 2 (experimental uncertainty)

June 28, 2017 5

Page 6: Validation Metrics [-1.5cm] - NCSU

Data TypesType 1 (no uncertainties)

Type 2 (experimental uncertainty)

June 28, 2017 5

Page 7: Validation Metrics [-1.5cm] - NCSU

Data Types

Type 3 (experimental and model uncertainty)

June 28, 2017 6

Page 8: Validation Metrics [-1.5cm] - NCSU

Classification of Validation MetricsMetric Type 1 Type 2 Type 3Root Mean Square ✓Minkowski Distance ✓Simple Cross Correlation ✓Normalized Cross Correlation ✓Normalized Zero-Mean Sum of Squared Distances ✓Moravec Correlation ✓Index of Agreement ✓Sprague-Geers Metric ✓Normalized Euclidean Metric ✓Mahalanobis Distance ✓Hellinger Metric ✓ ✓Kolmogorov-Smirnoff Test ✓ ✓Kullback-Leibler Divergence ✓Symmetrized Divergence ✓Jensen-Shannon Divergence ✓Total Variation Distance ✓

June 28, 2017 7

Page 9: Validation Metrics [-1.5cm] - NCSU

Example Validation Metrics

Type 1 DataMinkowski Distance (lp Distance)

d =

(∑i|Pi − Di|p

)p

Type 2 DataMahalanobis Distance

d =

√(P − D)T Σ−1

D (P − D)

Type 3 DataKullback-Leibler Divergence

DKL(ND∥NP) =1

2

[tr(Σ−1

P ΣD) + (P − D)TΣ−1P (P − D)− k + ln

(detΣPdetΣD

)]Kolmogorov-Smirnov Test

DKS = sup |FP(x)− FD(x)|

June 28, 2017 8

Page 10: Validation Metrics [-1.5cm] - NCSU

Example Validation Metrics

Type 1 DataMinkowski Distance (lp Distance)

d =

(∑i|Pi − Di|p

)p

Type 2 DataMahalanobis Distance

d =

√(P − D)T Σ−1

D (P − D)

Type 3 DataKullback-Leibler Divergence

DKL(ND∥NP) =1

2

[tr(Σ−1

P ΣD) + (P − D)TΣ−1P (P − D)− k + ln

(detΣPdetΣD

)]Kolmogorov-Smirnov Test

DKS = sup |FP(x)− FD(x)|

June 28, 2017 9

Page 11: Validation Metrics [-1.5cm] - NCSU

Example Validation Metrics

Type 1 DataMinkowski Distance (lp Distance)

d =

(∑i|Pi − Di|p

)p

Type 2 DataMahalanobis Distance

d =

√(P − D)T Σ−1

D (P − D)

Type 3 DataKullback-Leibler Divergence

DKL(ND∥NP) =1

2

[tr(Σ−1

P ΣD) + (P − D)TΣ−1P (P − D)− k + ln

(detΣPdetΣD

)]Kolmogorov-Smirnov Test

DKS = sup |FP(x)− FD(x)|

June 28, 2017 10

Page 12: Validation Metrics [-1.5cm] - NCSU

Example 1

“Experiment”f(x) = 1.1 log(10x) + ε

Modelg(x) = log(10x)

withε = measurement errorxi = 1, 2, . . . 20

Type 1 Data

Metric Value Min MaxRoot Mean Square 4.4706× 10−1 0 ∞Average Relative Minkowski Distance

p = 1 8.9337× 10−2 0 ∞p = 2 3.0483× 10−3 0 ∞

June 28, 2017 11

Page 13: Validation Metrics [-1.5cm] - NCSU

Example 1Type 2 Data

June 28, 2017 12

Page 14: Validation Metrics [-1.5cm] - NCSU

Example 1Type 2 Data

Metric Value (5%) Value (10%) Min MaxAverage Mahalanobis Distance 3.5891 1.7946 0 ∞

June 28, 2017 13

Page 15: Validation Metrics [-1.5cm] - NCSU

Example 1Type 3 Data

June 28, 2017 14

Page 16: Validation Metrics [-1.5cm] - NCSU

Example 1Type 3 Data

Metric Value (5%) Value (10%) Min MaxKullback-Leibler Divergence

Total 1.5608× 102 3.9162× 101 0 ∞Average per point 7.8041 1.9581 0 ∞

June 28, 2017 15

Page 17: Validation Metrics [-1.5cm] - NCSU

Example 1Type 3 Data

Metric Value (5%) Value (10%) Min MaxKolmogorov-Smirnov Test

Maximum 9.7072× 10−1 7.2466× 10−1 0 1Average 9.3431× 10−1 6.4907× 10−1 0 1

June 28, 2017 16

Page 18: Validation Metrics [-1.5cm] - NCSU

Example 2

“Experiment”f(x) = sin2(x) + 5 + ε

Modelg(x) = sin2(x) + θ

withε = measurement error

Type 1 DataMetric Value Min MaxRoot Mean Square 1.0242× 10−1 0 ∞Average Relative Minkowski Distance

p = 1 1.5291× 10−2 0 ∞p = 2 1.8371× 10−2 0 ∞

June 28, 2017 17

Page 19: Validation Metrics [-1.5cm] - NCSU

Example 2Type 2 Data

Metric Value (5%) Value (10%) Min MaxAverage Mahalanobis Distance 7.3463× 10−1 3.6817× 10−1 0 ∞

June 28, 2017 18

Page 20: Validation Metrics [-1.5cm] - NCSU

Example 1Type 3 Data

Metric Value (5%) Value (10%) Min MaxKullback-Leibler Divergence

Total 5.8205× 101 2.4860× 102 0 ∞Average per point 4.0703× 10−1 1.7384 0 ∞

June 28, 2017 19

Page 21: Validation Metrics [-1.5cm] - NCSU

Example 1Type 3 Data

Metric Value (5%) Value (10%) Min MaxKolmogorov-Smirnov Test

Maximum 7.2276× 10−1 5.8143× 10−1 0 1Average 2.6065× 10−1 3.0401× 10−1 0 1

June 28, 2017 20

Page 22: Validation Metrics [-1.5cm] - NCSU

Conclusions

Computational models require validation before they can bereliably used in prediction scenarios

Metrics exist for deterministic data and probabilistic (uncertain)data

Choice of metric is application and quantity of interest dependent

Future work: develop a guide to determinechoice of validation metricvalidation tolerance

June 28, 2017 21