validation of operational nwp forecasts for global ... · solar exposure forecasts using the access...

27
Validation of operational NWP forecasts for global, diffuse and direct solar exposure over Australia www.bom.gov.au Lawrie Rikus, Paul Gregory, Zhian Sun, Tomas Glowacki Bureau of Meteorology Research Branch, 15 June 2015

Upload: others

Post on 03-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Validation of operational NWP forecasts for global, diffuse and direct

    solar exposure over Australia

    www.bom.gov.au

    Lawrie Rikus, Paul Gregory, Zhian Sun,

    Tomas Glowacki

    Bureau of Meteorology Research Branch,

    15 June 2015

  • Motivation: why am I here?

    The Background: Model evaluation Need to compare model variables with observational data not included as

    input to DA.

    Surface solar radiation is an essential variable for the model forecast process

    NWP solar radiation forecasts are potentially a basis for solar power forecasts

    Solar power stations could be a source of additional validation data

    The Question: How well do the raw NWP surface solar radiation

    fields agree with the observations? Compare raw NWP fields with the Bureau’s surface solar measurements

    Hourly accumulations available from all operational models

    Limitations: Full radiation calculation is done at most each hour

    Cloud fixed over the hour

    Solar zenith angle corrected at each time step

  • ACCESS-NWP (APS1 - Domains)

    APS0: • Operational 2Q2010 • N144 global (~80 km) • ACCESS-R 40 km • ACCESS-A 11 km • ACCESS-C 5 km • L60

    The ACCESS NWP Systems

    Australian Community Climate Earth-System Simulator

    Based on MetOffice Unified Model and 4DVar data assimilation system

    APS1: • Implemented 3Q2013 • N320 global (~40 km) • ACCESS-R 11 km • ACCESS-C 4 km • L70

    APS2: • Implemented around now • N512 global (~40 km) • ACCESS-R 11 km • ACCESS-C 1.5 km • L70

  • http://www.bom.gov.au/climate/data/oneminsolar/stations.shtml

    Station name Start End Years

    Adelaide 1994 open 15

    Alice Springs 1993 open 21

    Broome 1996 open 18

    Cairns 1997 2004 6

    Cape Grim 1998 open 16

    Cobar 2012 2014 1

    Cocos Island 2004 open 9

    Darwin 1993 open 20

    Geraldton Airport 2012 2014 1

    Geraldton Airport

    Comparison 1996 2006 9

    Kalgoorlie-Boulder 1998 2013 9

    Learmonth 1996 2013 10

    Longreach Aero 2012 open 1

    Melbourne Airport 1999 open 15

    Mildura 1996 2013 10

    Mount Gambier 1993 2006 11

    Rockhampton Aero 1996 open 19

    Tennant Creek Airport 1996 2006 10

    Townsville Aero 2012 2014 1

    Wagga Wagga 1997 open 18

    Woomera 2012 2013 1

    The Validation sites

    1 minute high quality data available

  • The relationship between the observations and

    the model domains

    4 domains have one long-term site

    • DN

    • BN

    • AD

    • SY

    VT has 3 long-term sites

    PH has no long-term sites

  • Documentation

    o Legacy (pre-ACCESS) 12 km model o Gregory, P. A., L. J. Rikus, and J. D. Kepert, 2012: Testing and Diagnosing the Ability of the

    Bureau of Meteorology’s Numerical Weather Prediction Systems to Support Prediction of Solar

    Energy Production. J. Appl. Meteor. Climatol, 51, 1577–1601.

    oAPS0 12km model (ACCESS-A) o Gregory, P. A. and L. J. Rikus: Validation of Bureau of Meteorology’s Global, Diffuse and Direct

    Solar Exposure Forecasts using the ACCESS Numerical Weather Prediction Systems, submitted

    to J. Appl. Meteor. Climatol

    The 1-minute site data were aggregated into the relevant hour spanned by the

    model’s forecasts

    Hourly accumulated global, direct and diffuse solar irradiance at the surface

    processed

  • Forecast metrics

    •Solar variability is predominantly due to cloud cover and solar

    position •Variation in solar position is completely deterministic

    •Variation in cloud cover is mostly stochastic

    •Need to de-couple these two factors, otherwise you inflate the skill of

    the NWP model. •A clear sky model (Ineichen and Perez (2002)) was used to normalise forecast

    and observed data.

    •Standard statistical metrics used for validation •RMSE, correlation, multiplicative bias

    •Metrics developed by Espinar et al. (2009) •Integrate the absolute difference between the observed and forecast empirical

    cumulative distribution functions (CDFs)

  • Standard forecast metrics

    Paul Gregory developed the scripts to implement the validation process for ACCESS We can now apply them easily to the model archive for any period (since late 2013).

  • Validation of ACCESS-A hourly data

    Global exposure Diffuse exposure Direct exposure

    Bias MAE RAE (%) Bias MAE RAE (%) Bias MAE RAE (%)

    All sky 1.01 0.28 16.38 0.95 0.21 46.05 1.03 0.44 33.54

    Clear sky 1.00 0.16 8.11 1.01 0.13 40.11 1.00 0.26 14.96

    Low cloud 0.88 0.05 18.89 0.84 0.05 23.17 4.55 0.01 80.21

    Hourly results for January 2012 at Adelaide

  • Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

    Global Bias 1.01 1.00 0.99 0.99 0.97 0.97 1.00 0.98 0.93 0.93 1.00 0.99 0.99 0.98 1.01 1.00

    RMSE 0.23 0.25 0.28 0.25 0.28 0.28 0.34 0.35 0.39 0.39 0.33 0.29 0.24 0.27 0.27 0.27

    Correlation 0.62 0.62 0.56 0.58 0.59 0.59 0.58 0.46 0.61 0.59 0.58 0.63 0.59 0.55 0.64 0.66

    KSI 14.31 11.65 31.61 27.71 59.19 67.59 12.58 13.97 93.98 80.40 9.79 13.23 21.57 24.15 15.00 22.67

    OVER 0.00 0.00 0.25 0.00 21.29 38.36 0.00 0.00 66.48 51.96 0.00 0.00 0.00 0.00 0.00 0.00

    Direct Bias 1.02 1.01 1.02 1.02 0.97 0.96 0.93 0.94 0.87 0.88 0.97 0.91 1.00 0.97 1.05 1.02

    RMSE 0.39 0.40 0.42 0.41 0.46 0.48 0.63 0.57 0.58 0.56 0.50 0.63 0.41 0.46 0.43 0.44

    Correlation 0.64 0.65 0.59 0.59 0.57 0.56 0.53 0.51 0.64 0.62 0.56 0.50 0.60 0.56 0.65 0.63

    KSI 23.58 24.60 34.28 31.97 47.91 62.14 35.86 35.30 150.10 125.10 15.35 49.43 26.51 31.95 40.25 24.84

    OVER 0.00 0.00 8.18 9.67 16.54 23.85 0.00 0.00 135.50 106.90 0.00 0.00 0.00 1.92 0.00 0.00

    Diffuse Bias 0.91 0.94 0.82 0.84 0.93 0.94 1.26 1.23 1.22 1.18 1.12 1.28 0.94 1.00 0.82 0.89

    RMSE 0.21 0.21 0.20 0.21 0.19 0.19 0.34 0.29 0.23 0.22 0.30 0.42 0.20 0.23 0.20 0.21

    Correlation 0.45 0.45 0.39 0.37 0.41 0.41 0.27 0.41 0.47 0.47 0.28 0.18 0.41 0.39 0.46 0.39

    KSI 102.20 108.10 237.90 384.40 164.90 191.80 78.38 71.33 168.80 129.30 100.10 131.80 134.90 182.90 138.40 177.40

    OVER 65.66 78.52 213.30 365.30 164.90 191.80 52.71 40.33 147.90 113.00 67.48 121.90 119.50 162.20 109.20 153.50

    Wagga WaggaAdelaide Alice Springs Broome Cape Grim Darwin Melbourne Rockhampton

    Annual ACCESS-A Clear Sky Results

    Overall day 1 better than day 2 except for Darwin, Cape Grim

    Correlation ~ 0.6 for global and direct

    < 0.5 for diffuse

  • Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

    Global Bias 1.02 1.01 0.97 0.97 0.96 0.96 1.03 1.01 0.91 0.92 0.97 0.97 1.00 0.98 1.01 1.00

    RMSE 0.50 0.50 0.47 0.48 0.52 0.49 0.50 0.55 0.60 0.62 0.48 0.54 0.44 0.49 0.43 0.47

    Correlation 0.62 0.60 0.66 0.62 0.61 0.63 0.64 0.56 0.59 0.55 0.67 0.60 0.74 0.68 0.73 0.70

    KSI 26.51 19.82 56.44 59.19 84.05 86.11 38.45 18.54 181.60 157.20 39.18 34.81 17.96 34.72 12.80 15.58

    OVER 0.00 0.00 4.35 13.81 59.18 62.25 0.76 0.00 176.40 150.90 0.00 0.00 0.00 0.00 0.00 0.00

    Direct Bias 0.99 0.98 0.98 0.97 0.94 0.93 0.90 0.88 0.79 0.83 0.84 0.84 0.94 0.91 1.02 1.01

    RMSE 0.65 0.68 0.63 0.66 0.71 0.69 0.62 0.66 0.78 0.78 0.62 0.67 0.60 0.66 0.58 0.63

    Correlation 0.63 0.60 0.68 0.63 0.63 0.65 0.61 0.56 0.61 0.58 0.64 0.58 0.72 0.67 0.71 0.67

    KSI 87.32 83.29 65.25 71.38 106.90 110.50 82.71 103.60 328.90 262.30 148.90 152.20 79.25 113.70 70.88 57.25

    OVER 0.00 46.38 38.87 42.01 82.82 85.45 55.80 79.13 326.20 258.60 136.30 137.10 55.49 93.46 24.04 21.28

    Diffuse Bias 1.08 1.08 0.92 0.94 0.98 0.99 1.19 1.19 1.21 1.14 1.18 1.19 1.11 1.12 0.96 0.99

    RMSE 0.34 0.33 0.30 0.30 0.30 0.29 0.33 0.33 0.33 0.34 0.33 0.34 0.32 0.33 0.29 0.31

    Correlation 0.36 0.34 0.44 0.38 0.38 0.40 0.35 0.30 0.34 0.30 0.34 0.28 0.40 0.37 0.42 0.34

    KSI 148.30 154.70 205.70 220.60 152.80 154.10 197.10 195.30 234.60 173.90 167.90 199.00 195.20 209.60 127.40 140.40

    OVER 0.00 136.20 182.40 201.70 126.80 126.90 181.90 181.80 217.40 157.50 148.70 182.90 184.90 196.70 85.02 116.40

    Rockhampton Wagga WaggaAdelaide Alice Springs Broome Cape Grim Darwin Melbourne

    Annual ACCESS-A All Sky Results

    Direct generally under-predicted

    Diffuse generally over-predicted

    But not always! The results are

    site dependent.

  • Global exposure bias and RMS as function of CSI and SZA

    Clear Sky Index created by dividing observed exposure by clear-sky model exposure

  • Discussion of direct and diffuse irradiance

    Model tends to over-estimate direct and under-estimate diffuse Parameterization is tuned for global irradiance at the surface and TOA and

    atmospheric heating rate.

    Global and direct are calculated separately and differenced to produce

    diffuse.

    The two stream approach makes approximations for angular integration. Large number of different approximations in the literature

    Optimised for different cloud properties

    Can we try a different two stream scheme?

    Schemes which give same global radiation should not effect

    NWP forecast skill. Easier to implement in operational suite.

    (Would possibly effect surface parameterization scheme)

  • GHI

    DNI

    DNI

    Scaled

    Unscaled

    Unscaled direct two-stream approximation

    Work by Zhian Sun

  • T2m 00Z + 24h Exp1 Exp2 Exp3

    AD

    89

    Bias -0.6819 -0.6762 -0.7619

    Err St Dev 1.4285 1.4248 1.8738

    RMS Error 1.6964 1.6926 2.1304

    BN

    95

    Bias -0.7933 -0.7956 -1.1621

    Err St Dev 1.4054 1.4042 1.7572

    RMS Error 1.7144 1.7138 2.1924

    DN

    35

    Bias -0.3850 -0.3823 -0.3091

    Err St Dev 1.3537 1.3495 2.4741

    RMS Error 1.5807 1.5776 2.6110

    PH

    174

    Bias -0.4630 -0.4575 0.0019

    Err St Dev 1.6652 1.6623 2.3227

    RMS Error 1.8254 1.8220 2.4602

    SY

    153

    Bias -0.5869 -0.5915 -0.6702

    Err St Dev 1.5021 1.4996 1.7590

    RMS Error 1.7593 1.7584 2.0149

    VT

    266

    Bias -0.6153 -0.6148 -0.5816

    Err St Dev 1.5300 1.5328 1.8318

    RMS Error 1.7759 1.7771 2.0474

    D2m 00Z + 24h Exp1 Exp2 Exp3

    AD

    68

    Bias -0.4438 -0.4571 -0.1234

    Err St Dev 1.8676 1.8735 2.0035

    RMS Error 2.2411 2.2509 2.3543

    BN

    62

    Bias -0.0376 -0.0334 0.2782

    Err St Dev 1.8704 1.8684 2.0874

    RMS Error 2.0611 2.0580 2.3316

    DN

    32

    Bias -0.5316 -0.5290 -0.1444

    Err St Dev 2.1853 2.1920 2.7055

    RMS Error 2.5135 2.5167 3.1528

    PH

    49

    Bias 0.0634 0.0595 0.5265

    Err St Dev 1.7709 1.7609 2.0151

    RMS Error 1.9622 1.9488 2.2516

    SY

    69

    Bias -0.2387 -0.2339 0.0161

    Err St Dev 1.7616 1.7592 1.9189

    RMS Error 1.9366 1.9351 2.0821

    VT

    153

    Bias -0.4536 -0.4569 -0.2859

    Err St Dev 1.6792 1.6778 1.8901

    RMS Error 1.9321 1.9331 2.1025

    ACCESS-C2 model experiments – 0UTC

    Courtesy: Tomas Glowacki

    Expt 1: Control

    Expt 2: unscaled direct

    Expt 3: PC2

    Results for December 2014

  • ACCESS-C2 model experiments – Solar All Sky

    Results for December 2014 - 0 and 12UTC runs

    Direct increased/diffuse decreased in Exp 2

    AD AdelaideBN RockhamptonDN Darwin SY Wagga_WaggaVT CapeGrimVT3 Melb_airportVT4 Wagga_Wagga5

    Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2

    Global Bias 1.03 1.03 0.99 0.99 0.93 0.93 1.02 1.02 1.00 1.00 1.06 1.06 1.03 1.03

    RMSE 0.47 0.46 0.46 0.44 0.31 0.31 0.40 0.40 0.47 0.45 0.53 0.54 0.38 0.37

    Correlation 0.64 0.64 0.76 0.77 0.80 0.81 0.73 0.73 0.64 0.65 0.60 0.60 0.75 0.76

    KSI 21.14 21.81 15.94 16.16 47.16 44.26 19.07 74.79 16.78 15.00 28.22 30.22 21.51 20.09

    OVER 0 0 0.00 0.00 16.29 15.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    Direct Bias 0.98 1.13 0.98 1.11 0.87 0.95 1.04 1.18 0.88 1.07 1.00 1.18 1.07 1.21

    RMSE 0.63 0.62 0.61 0.60 0.48 0.41 0.45 0.47 0.62 0.58 0.59 0.59 0.40 0.44

    Correlation 0.64 0.65 0.73 0.74 0.77 0.78 0.79 0.80 0.58 0.58 0.63 0.63 0.83 0.83

    KSI 21.41 55.25 29.54 61.14 81.15 32.44 24.71 74.79 39.03 29.20 37.42 68.25 34.65 87.32

    OVER 0.00 11.11 0.00 8.02 50.05 0.97 0.00 29.97 0.90 0.00 4.24 8.91 0.00 47.27

    Diffuse Bias 1.12 0.85 0.96 0.75 1.21 0.88 0.97 0.74 1.21 0.92 1.12 0.91 0.95 0.72

    RMSE 0.32 0.33 0.28 0.34 0.20 0.19 0.25 0.31 0.30 0.32 0.31 0.35 0.24 0.32

    Correlation 0.39 0.35 0.54 0.49 0.56 0.54 0.44 0.31 0.31 0.22 0.33 0.19 0.53 0.41

    KSI 80.40 79.27 60.92 101.40 91.46 89.92 88.98 99.70 79.37 37.78 70.90 43.62 72.86 94.85

    OVER 43.73 60.57 33.62 79.58 68.37 68.49 51.63 86.90 64.72 18.59 33.63 27.26 41.78 80.00

    Count Global 283 283 318 318 328 328 313 313 290 290 319 319 313 313

    Direct 283 283 318 318 328 328 313 313 290 290 319 319 313 313

    Diffuse 283 283 318 318 328 328 313 313 290 290 319 319 313 313

    Midl Cld Bias 80.78 74.32 155.10 151.30 0.00 0.00 105.70 105.50 0.00 0.00 109.50 108.10 98.94 100.80

    Low Cld Bias 437.10 404.20 262.50 254.60 571.30 500.00 340.30 349.40 0.00 0.00 264.50 271.10 288.50 280.20

    High Cld Bias 101.00 97.52 99.64 89.69 1829.00 1822.00 34.01 33.69 0.00 0.00 83.81 84.77 31.46 31.52

    Little change in global

  • ACCESS-R model experiments – Solar Results

    R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1 R2_CTL R2 R1

    Global Bias 1.05 1.09 1.05 1.04 0.97 0.97 0.97 0.96 0.97 1.05 1.05 1.12 1.16 1.20 1.29 0.96 1.10 1.02 1.09 1.07 1.03 1.14 1.10 1.05 1.02 0.99 0.96

    RMSE 0.60 0.57 0.65 0.58 0.59 0.67 0.50 0.51 0.50 0.65 0.62 0.73 0.65 0.71 0.87 0.83 0.84 0.78 0.55 0.57 0.65 0.63 0.68 0.69 0.52 0.53 0.58

    Correlation 0.77 0.79 0.73 0.61 0.62 0.62 0.54 0.51 0.50 0.68 0.70 0.61 0.61 0.59 0.47 0.25 0.26 0.25 0.79 0.78 0.71 0.65 0.60 0.54 0.72 0.72 0.68

    KSI 48.86 49.93 33.89 20.8 27.8 17.5 37.1 31.3 35.7 18.8 30.0 52.7 59.7 88.3 120.2 75.1 78.4 65.7 22.5 33.4 20.9 52.4 55.4 28.9 23.0 21.7 23.0

    OVER 0.0 0.0 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 6.4 30.1 56.5 100.3 30.8 42.4 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

    Direct Bias 1.06 1.28 1.01 0.95 0.90 0.73 0.83 1.07 0.87 0.94 1.16 0.96 1.26 1.96 1.27 0.85 1.25 0.86 1.05 1.25 0.95 1.17 1.25 0.98 1.03 1.14 0.87

    RMSE 0.80 0.82 0.82 1.03 0.94 1.06 0.76 0.79 0.76 0.73 0.65 0.76 0.82 0.97 0.95 0.82 0.82 0.89 0.62 0.67 0.73 0.76 0.81 0.87 0.67 0.66 0.77

    Correlation 0.74 0.75 0.71 0.46 0.53 0.60 0.57 0.51 0.53 0.66 0.69 0.62 0.48 0.40 0.30 0.30 0.32 0.19 0.78 0.76 0.71 0.63 0.61 0.51 0.72 0.74 0.68

    KSI 54.45 102.80 19.47 86.2 62.5 131.3 74.2 56.6 69.2 35.6 45.7 16.7 91.7 173.1 83.9 59.5 91.2 58.7 22.9 78.2 24.7 46.4 97.0 33.3 54.6 64.7 60.2

    OVER 9.0 79.3 0.0 56.1 36.4 118.3 52.5 17.2 53.9 15.2 1.6 1.9 62.7 165.0 53.3 29.2 58.4 43.9 0.7 12.0 0.0 0.7 74.2 6.9 1.4 32.8 5.7

    Diffuse Bias 1.02 0.75 1.18 0.90 0.84 1.58 1.32 0.77 1.32 1.19 0.94 1.32 1.03 0.83 1.29 1.16 0.96 1.27 1.15 0.86 1.19 1.09 0.89 1.18 1.00 0.75 1.27

    RMSE 0.37 0.44 0.40 0.47 0.50 0.51 0.36 0.45 0.38 0.38 0.37 0.42 0.38 0.48 0.50 0.35 0.37 0.43 0.31 0.39 0.40 0.32 0.36 0.40 0.29 0.36 0.34

    Correlation 0.47 0.38 0.43 0.20 0.23 0.38 0.46 0.40 0.43 0.51 0.52 0.48 0.20 0.12 0.09 0.12 -0.01 -0.02 0.49 0.35 0.35 0.43 0.30 0.23 0.52 0.51 0.50

    KSI 54.28 101.30 46.30 85.7 99.0 137.5 86.4 105.7 118.6 85.3 34.1 125.1 48.1 80.6 106.7 118.2 39.2 115.3 54.3 62.4 73.7 65.7 61.8 74.4 63.4 99.4 81.0

    OVER 23.9 83.6 24.1 49.5 71.2 126.4 50.2 91.5 92.3 68.0 19.1 110.7 8.4 64.3 81.6 103.8 0.0 96.1 4.5 35.1 33.1 31.5 42.7 29.3 33.7 75.3 43.6

    Count Global 178 290 290 161 293 293 204 336 336 238 382 382 184 306 306 204 336 336 223 372 372 209 338 338 238 392 392

    Direct 178 290 290 161 293 293 204 336 336 238 382 382 184 306 306 204 336 336 223 372 372 209 338 338 238 392 392

    Diffuse 178 290 290 161 293 293 204 336 336 238 382 382 184 306 306 204 336 336 223 372 372 209 338 338 238 392 392

    Midl Cld Bias 179.40 179.40 165.40 289.8 271.4 195.8 835.4 685.3 638.7 0.0 0.0 0.0 66.7 58.5 43.3 3078.0 507.2 602.6 90.2 85.4 91.5 163.9 171.3 246.3 115.5 95.5 98.4

    Low Cld Bias 482.10 412.80 334.20 199.1 1125.0 362.7 145.3 135.5 169.7 0.0 0.0 0.0 286.8 236.1 278.7 291.9 269.3 305.6 297.2 271.9 263.8 226.8 268.6 255.8 250.0 318.6 257.8

    High CldBias 100.10 75.60 66.80 45.6 28.1 30.8 445.3 417.2 397.9 0.0 0.0 0.0 123.7 106.4 139.1 619.4 449.1 609.9 36.6 44.2 50.7 136.5 150.9 161.8 79.9 54.2 61.9

    Adelaide Broome Cape_Grim Cocos_Island DarwinAlice Springs Rockhampton Wagga_WaggaMelb_airport

    Results for December 2014 - 0 and 12UTC runs

  • Wagga-wagga – all models

    SY and VT same model

    but different domains (1.5

    km)

    Wagga is close to the

    boundary of SY

    SY VT4 A R2 R1

    Global Bias 1.02 1.03 1.01 1.02 0.96

    RMSE 0.40 0.38 0.43 0.52 0.58

    Correlation 0.73 0.75 0.73 0.72 0.68

    KSI 19.07 21.51 12.80 23.0 23.0

    OVER 0.00 0.00 0.00 0.0 0.0

    Direct Bias 1.04 1.07 1.02 1.03 0.87

    RMSE 0.45 0.40 0.58 0.67 0.77

    Correlation 0.79 0.83 0.71 0.72 0.68

    KSI 24.71 34.65 70.88 54.6 60.2

    OVER 0.00 0.00 24.04 1.4 5.7

    Diffuse Bias 0.97 0.95 0.96 1.00 1.27

    RMSE 0.25 0.24 0.29 0.29 0.34

    Correlation 0.44 0.53 0.42 0.52 0.50

    KSI 88.98 72.86 127.40 63.4 81.0

    OVER 51.63 41.78 85.02 33.7 43.6

    Midl Cld Bias 105.70 98.94 115.5 98.4

    Low Cld Bias 340.30 288.50 250.0 257.8

    High Cld Bias 34.01 31.46 79.9 61.9

  • Melbourne – all models

    VT A R2 R1

    Global Bias 1.06 0.97 1.09 1.03

    RMSE 0.53 0.48 0.55 0.65

    Correlation 0.60 0.67 0.79 0.71

    KSI 28.22 39.18 22.5 20.9

    OVER 0.00 0.00 0.0 0.0

    Direct Bias 1.00 0.84 1.05 0.95

    RMSE 0.59 0.62 0.62 0.73

    Correlation 0.63 0.64 0.78 0.71

    KSI 37.42 148.90 22.9 24.7

    OVER 4.24 136.30 0.7 0.0

    Diffuse Bias 1.12 1.18 1.15 1.19

    RMSE 0.31 0.33 0.31 0.40

    Correlation 0.33 0.34 0.49 0.35

    KSI 70.90 167.90 54.3 73.7

    OVER 33.63 148.70 4.5 33.1

    Midl Cld Bias 109.50 90.2 91.5

    Low Cld Bias 264.50 297.2 263.8

    High Cld Bias 83.81 36.6 50.7

  • Darwin – all models

    DN is 1.5 km resolution and the

    only model which is convection

    permitting

    DN A R2 R1

    Global Bias 0.93 0.91 0.96 1.02

    RMSE 0.31 0.60 0.83 0.78

    Correlation 0.80 0.59 0.25 0.25

    KSI 47.16 181.60 75.1 65.7

    OVER 16.29 176.40 30.8 5.2

    Direct Bias 0.87 0.79 0.85 0.86

    RMSE 0.48 0.78 0.82 0.89

    Correlation 0.77 0.61 0.30 0.19

    KSI 81.15 328.90 59.5 58.7

    OVER 50.05 326.20 29.2 43.9

    Diffuse Bias 1.21 1.21 1.16 1.27

    RMSE 0.20 0.33 0.35 0.43

    Correlation 0.56 0.34 0.12 -0.02

    KSI 91.46 234.60 118.2 115.3

    OVER 68.37 217.40 103.8 96.1

    Midl Cld Bias 0.00 3078.0 602.6

    Low Cld Bias 571.30 291.9 305.6

    High Cld Bias 1829.00 619.4 609.9

  • APS Upgrade Plans

    APS1 APS2 APS3 (~2017/2018) APS4 (~2020)

    G 40km L70, 4dVAR Mar-2012 (Op)

    25km L70, 4dVAR (2 x 240FC + 2 x 78FC)

    12km, L85?, 4dVAR / Hybrid (2 x 240FC + 2 x 78FC)

    12km, L85?, 4dVAR / Hybrid (2 x 240FC + 2 x 78FC)

    R 12km L70, 4dVAR Mar-2013 (Op)

    12km L70, 4dVAR (4 x 72FC)

    8km, L85?, 4dVAR / Hybrid? (4 x 72FC)

    5km, L85?, 4dVAR / Hybrid? (4 x 72FC)

    C 4km L70, FC-only Mar-2013 (Op)

    1.5km L70, FC-only {6 X C1}

    1.5km(V) L85? 4dVAR (Rad), LHN (4 x 36FC + 4 x 18FC + 16 x 9FC )

    Unchanged

    On Demand

    1.5km L70, FC-only

    1.5km(V) L85? DS + M * (3dVAR (Rad), LHN), 4 domains max (4 x 36FC + 4 x 18FC + 16 x 9FC )

    Unchanged

    En-G 60km L70, M24 30km L85?, M24 (2 x 240FC)

    30km L85?, M32 (2 x 240FC)

    En-C

    2.2km(V) L85, M6 “En-C-1” (4 X 24FC, 4 X 36FC )

    1.5km(V) L85?, M12? “En-C-1” (4 X 24FC, 4 X 36FC)

  • Rapid update cycle model FDP

  • The RUC and times

    D0H23

    D1H22

    BA

    SE

    TIM

    E

    VALID TIME D0H23

    D3H11

    Daylight Daylight

    Possible ensemble applications?

    10 output for wind, screen variables, precip, etc

    High frequency solar requires fast surface scheme (e.g.SUNFLUX)

  • SUNFLUX: A fast surface radiation parameterization

    Zhian Sun's work

    Radiative transfer is expensive

    Hourly is 30% of model run

    time

    Clouds, SZA change but

    assumed constant

    SUNFLUX

    Fast but accurate

    calculation of surface

    irradiance

    Efficient enough to run

    every time step

    Accounts for cloud, SZA

    changes

    Could be implemented in

    APS3

  • There is a scatter in the metrics with variations from site to site

    • Different synoptics

    • Cloud frequencies

    • Cloud properties

    • Accuracy of radiative transfer assumptions to different cloud

    regimes

    • Aerosol not accounted for in model

    The comparisons all show a scatter in the metrics for individual sites

    • Is that significant?

    • If so which do we prefer?

    Conclusions

  • Extend evaluation to all operational models for all archive times

    Establish statistical significance for the different metrics

    Partition hourly results in terms of solar zenith angle and time of year

    (suggestion by John Boland)

    Implement fast surface radiation scheme to produce 10 minute forecasts in

    Model (SUNFLUX)

    Find more data for validation

    Global model

    Satellite derived fields

    Further work

  • The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

    Lawrie Rikus

    Phone: 03 9669 4452

    Email: [email protected]

    Web: www.bom.gov.au

    Thank you