vasimr for flexible space exploration

Upload: paradox-olbers

Post on 30-May-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 VASIMR for Flexible Space Exploration

    1/29

  • 8/9/2019 VASIMR for Flexible Space Exploration

    2/29

    A Survey of Missions using VASIMRfor

    Flexible Space Exploration

    April 2010

    Prepared by:Andrew V. Ilin, Leonard D. Cassady, Tim W. Glover, Mark D. Carter, andFranklin R. Chang DazAd Astra Rocket Company141 W. Bay Area BlvdWebster, TX 77598

    In fulfillment of Task Number 004 of NASA PO Number NNJ10HB38P

    Document Number: JSC-65825

  • 8/9/2019 VASIMR for Flexible Space Exploration

    3/29

    JSC-65825

    VASIMR

    For Flexible Space ExplorationTableofContents

    Section1. FlexibleMissionStrategies .......................................................................................................1

    Section2. MissionStudyAnalysisTools .................................................................................................... 2

    2.1 Copernicus.....................................................................................................................................2

    2.2 AdAstra3DTraj .................................................................................................................. ............. 2

    2.3 Chebytop ....................................................................................................................................... 2

    2.4 OptiMars ........................................................................................................................................ 2

    2.5 HOT ................................................................................................................................................ 2

    Section3. TypicalParameterAssumptions............................................................................................... 3

    Section4. PrepositioningtotheEdgeofEarthsSphereofInfluence ...................................................... 3

    4.1 DepartingLEOwithInclinationChange......................................................................................... 3

    4.2 LunarTug .......................................................................................................................................4

    Section5. RoboticMissionsBeyondEarthsSphereofInfluence.............................................................7

    5.1 CargoDeliverytoMars .................................................................................................................. 7

    5.2 MarsSampleReturn ...................................................................................................................... 8

    5.3 EnhancingSolarPoweredCapabilitiestoreachJupiter .............................................................. 12

    Section6. FastHumanMissionstoMarswithVariableSpecificImpulse...............................................16

    6.1 HumanMissiontoMarsusing12MW ........................................................................................ 16

    6.2 HumanMissionScenariostoMarsusing200MW......................................................................19

    6.2.1 TechnologyRequirementEstimatesfromOptiMars..............................................................19

    6.2.2 OptimizedResultsfromCopernicus.......................................................................................21

    Section7. SummaryandFutureWork ....................................................................................................23

    Section8. References..............................................................................................................................23

  • 8/9/2019 VASIMR for Flexible Space Exploration

    4/29

    JSC-65825

    FIGURESFigure1: ExampleEarthdepartureandplanechangetrajectory,inthiscasea200kWVASIMR

    propelledspacecraftweighing4000kgatLEO.3

    Figure2: VASIMRTransferfromLEOtoLLO..4

    Figure3: CopernicusSimulationsofVASIMRTransferfromLEOtoLLO.5

    Figure4: LunarTugmissiontrajectoryintheEarthMoonRotatingVisualizationframe..6

    Figure5: OptiMarsSimulationofheliocentrictransferfromEarthSOItoMarsorbit...7

    Figure6: VariableIspprofileforOptiMarsheliocentrictransfersimulation.8

    Figure7: ChangingMinimalIspandPayloadMassasafunctionofTripTimeforCargoMissiontoMars.8

    Figure8: VASIMRMSRScenario:EarthtoMars9

    Figure9: VASIMRMSRScenario: MarstoEarth..9

    Figure10: PowerScanforMSRMission. Foreachpowervalue,onewaytriptimes(andpropellant

    mass)wereminimized............................................................................................................................10

    Figure11: FromLEOtoMars:250kW.11

    Figure12: FromMarstoLEO:250kW.12

    Figure13: VASIMRCatapult:StartingPointforMassRelations.13

    Figure14: JupiterCatapultmissiontrajectoryforIsp=5,000s.....14

    Figure15: HumanpilotedheliocentrictransferwithIspvstimeplot(right)..17

    Figure16: CTVarrivalatMarsandsubsequentcapture131dayslater(left)and7dayspiralmaneuver

    intolowMarsorbit(right).18

    Figure17: CTVspiraldeparturefromMarsandreturnheliocentrictrajectory.18

    Figure18: OptiMarssimulationof31dayheliocentrictransferfromEarthtoMarsorbits....20

    Figure19: Profileofvariablespecificimpulsefor31dayheliocentrictransferbetweenEarthandMars

    orbitssecondstageofaveryfasthumanmissiontoMars...20

    Figure20: Copernicussimulationof31dayheliocentrictransferfromEarthSOItoMars.............21

    Figure21: Copernicussimulationofvariablespecificimpulseprofilefor31dayheliocentrictransfer

    fromEarthSOItoMars...22

    Figure22: ParametricstudyofhumanmissiontoMarstriptimedepartingfromL1withminimalIsp=

    3,000sec.22

  • 8/9/2019 VASIMR for Flexible Space Exploration

    5/29

    JSC-65825

    NOMENCLATURE

    A ThrustVector

    an Normal(azimuthal)componentof

    accelerationinOptimars

    ar Radialcomponentofacceleration

    AARC AdAstraRocketCompany

    CDV CargoDeliveryVehicle

    CTV CrewTransferVehicle

    DRM DesignReferenceMission

    EELV EvolvedExpendableLaunchVehicle

    EEV EarthEntryVehicle

    ERV EarthReturnVehicle

    GNC Guidance,NavigationandControl

    GUI GraphicUserInterface

    HOT HybridOptimizationTechnique

    IMLEO InitialMassatLEO[kg]

    Isp SpecificImpulse

    LEO LowEarthOrbit

    LLO LowLunarOrbit

    LMO LowMarsOrbit

    ML MarsLander

    MP PropellantMass[kg]

    MPL PayloadMass[kg]

    MPT PropellantTankMass[kg]

    MSA SolarArrayMass[kg]

    MSR MarsSampleReturn

    MT MassofThruster[kg]

    OTV OrbitalTransferVehicle

    P Power[kW]

    R RadiusVector

    SOI SphereofInfluence

    V VelocityVector

    VASIMR VariableSpecificImpulse

    MagnetoplasmaRocket

    VX200 VASIMRlabexperimentat200kW

    TotalSpecificMass[kg/kW]

    SA SpecificMassofSolarArrays[kg/kW]

    T SpecificMassofThruster[kg/kW]

    PowerEfficiency

  • 8/9/2019 VASIMR for Flexible Space Exploration

    6/29

    JSC-65825

    1of24

    Section1. FlexibleMissionStrategiesSpace

    exploration

    can

    greatly

    benefit

    from

    the

    high

    power

    electric

    propulsion

    capabilities

    the

    Variable

    Specific Impulse Magnetoplasma Rocket (VASIMR) provides. When combined with chemical rocket

    technologies in a flexible architecture, the VASIMR allows new and dramatically improved mission

    scenariostobeconsidered. Employingexistingstateoftheartsolarcelltechnology,VASIMRisableto

    achieve dramatic propellant mass savings to move payloads near Earth and preposition payloads for

    assemblynear themoon, theedgeofEarthsgravitationalsphereof influence,andbeyond. Robotic

    prepositioningofassetsatkey locations inspaceallowscostand risk tobe reduced for later transits

    between staging locations. The possibility of multimegawatt power levels also allows VASIMR

    technologytosignificantlyreducethetraveltimeand improveabortoptionsforhuman interplanetary

    missions between staging locations near the Moon and Mars. Power levels ranging from currently

    availablesolartechnologiestothoserequiringthefuturedevelopmentofnuclearpoweredsystemsare

    considered.

    InSection2of thisreport,wedescribe thevariousstrengths, limitations,andassumptionsofmission

    softwaretoolsusedforthisstudy. ThecapabilitiesenabledbyVASIMRtechnologyarethenexamined

    usingapiecewiseapproachbuiltonthreemaneuvers:transferfromlowEarthorbittostaginglocations

    innearlunarorbit,transferfromnearlunarorbittomoredistantobjects(includingrobotictransitsto

    Marsortheouterplanets),andfinallyhumanmissionstoMars.

    InSection 3, we give the parameters andassumptions typicallyused for these studies, unless stated

    otherwiseinthespecificstudy.

    InSection4wedescribemissioncapabilitiesneartheEarthandtheMoonusingaVASIMRwithrealistic

    mass and performance values based on results from the VX200, a VASIMR laboratory experimentoperatingat200kW,and theVASIMR flightdesign,VF200,operatingat200kW.ThesenearEarth

    missionsincludecosteffectivecargotransferfromLowEarthOrbit(LEO)toLowLunarOrbit(LLO)and

    cargoprepositioningneartheedgeofEarthsgravitationalsphereofinfluence(SOI).

    InSection5,weconsiderorbit transfers for solarpowered roboticmissions that start froma staging

    areanearEarthsSOI todelivercargo toMars, returna sample fromMars,andcatapult payloads to

    more distant destinations, particularly Jupiter. These studies to more distant objects help identify

    possibleprepositioningstrategiesinsupportofmorecomplexmissions.

    InSection6,wediscusstechnologydevelopmentsneededtosupporthighpowerfasthumanmissions

    beginningfromLEOorprepositionedstagingareasnearEarthsSOIandendinginorbitaroundMars.

    InSection7,wegiveabriefsummaryandsuggestscenariosthatwarrantmoredetailedstudyalongwith

    basictechnologyrequirementsandfutureneedsforthesemissions.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    7/29

    JSC-65825

    2of24

    Section2. MissionStudyAnalysisToolsAdAstraRocketCompanyemploysseveralsoftwaretoolsforsimulatingtheVASIMRmissions. When

    consideringelectricpropulsionsystems,thefundamentalequationsofmotionmustbeexaminedwith

    care taken to avoid implicit assumptions commonly applied for chemical propulsion systems. For

    example, the power and propellant mass flow are somewhat independent of one another, and thespecific impulsecanbechangedduringamaneuver.For thesemissionstudies,relativelysimple tools

    areusedfirsttoidentifymissionssuitableforprogressivelyhigherfidelityanalysis. Then,moredetailed

    surveysareperformedwithanalytictoolsandvariouscodesincludingAdAstra3DTraj,CHEBYTOP[2], and

    OptiMars[4]. Wherewarranted,stillhigherfidelityanalysiscanthenbeperformedusingHOT[7],[8]and/or

    Copernicus[1]. Inthissectionwegiveabriefdescriptionofthesemissionanalysistools.

    2.1 CopernicusCopernicus[1] is a generalized spacecraft trajectory design and optimization system developed by the

    UniversityofTexasatAustin. ThissoftwareisreleasedtoNASAcentersandaffiliates. Itissuppliedwith

    a complex GUI (Graphic User Interface), and includes variable Isp (Specific Impulse) capability.

    Copernicusisannbodytoolwithahighdegreeofflexibility.Theusercanmodelanumberofdifferent

    missions, with varying gravitational bodies, objective functions, optimization variables, constraint

    options,andlevelsoffidelity. Additionally,itcanmodelmultiplespacecraft,aswellasoptimizeforboth

    constant and variable specific impulse trajectories. Copernicus employs multiple shooting and direct

    integrationmethodsfortargetingandstatepropagation.

    2.2 AdAstra3DTrajThe Fortran code AdAstra3DTraj was written in Ad Astra Rocket Company (AARC) for a direct 3D

    trajectorysimulation. Itemploysvariousnumbersofgravitationalbodiesandcustommadenavigation

    strategies, including variable specific impulse. It also allows for simple parametric scans and limited

    optimization.

    2.3 Chebytop

    CHEBYTOP[2]isananalysistoolthatoptimizesonewaytrajectoriesbetweenplanetarybodies. Itisused

    as a preliminary design tool for missions using electric propulsion with constant specific impulse.

    CHEBYTOPusesChebychevpolynomialstorepresentstatevariables,whicharethendifferentiatedand

    integrated in closed form to solve a variablethrust trajectory. This solution can then be used to

    approximate a constant thrust trajectory. While it is considered a lowfidelity program, it is highly

    valuedforitsabilitytorapidlyassesslargetradespaces.ItiswrittenonVisualBasicmacroswithExcel

    GUIandgraphics.

    2.4 OptiMarsOptiMars[4]

    is a variable Isp Earth Mars transfer optimizer of very low fidelity. The software was

    developed in 2000 2002 at University of Maryland. It assumes polynomial expression for the

    acceleration. Thepositionsof theplanetsarenotconsidered,so transfer isoptimizedbetweenEarth

    andMarsorbits.

    2.5 HOTTheHOT(HybridOptimizationTechnique)software[7],

    [8]isaFortrancodewrittenatNASAJSC. Itusesa

    numerical optimization method based on the calculus of variations for minimizing a performance

    function describing a mission trajectory with variable specific impulse. HOT simulates interplanetary

    maneuversbyintegratingequationsofmotionandequationsforLagrangemultipliers.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    8/29

    JSC-65825

    3of24

    Section3. TypicalParameterAssumptionsThefollowingparametersandassumptionsaretypicallyusedthroughoutthispaperunlessspecifically

    statedotherwise. ThemassbudgetcanbepresentedasM0=MPL+MP+MPT+MSA+MT,whereMPLis

    payloadmass,MP ispropellantmass,MPT ispropellant tankmass (assumed tobe0.1MP),MSA= SA

    max(P) isthemassofsolararrays ,andMT= TP isthemassofVASIMRthrusters,whereSA isthemasstopowerratioforthesolararraysinkg/kW,andsimilarly,T isthemasstopowerratioforthe

    thrusterpackageincludingallpowerhandlingequipment.

    FormissionsinsidetheEarthsgravitationalsphereof influence(SOI),weconsiderVASIMRpower(P)

    levelsrangingfrom100500kW. Thenominalparametersforthesemissionsareaspecificimpulse,Isp,

    of5,000swithatotalmasstopowerratio, = SA+ T,of10kg/kW.

    Forroboticorcargointerplanetarymissions,weconsiderVASIMRpowerlevelsrangingfrom1 5MW.

    Thenominalparameters for thesemissionsareaspecific impulse, Isp,of4,000or5,000switha total

    powerefficiency,,of60%,andamasstopowerratio, (total),of4kg/kW.

    Forhumaninterplanetarymissions,weconsiderVASIMRpowerlevelsrangingfrom10 200MW. The

    nominalparametersforthesemissionsareavariablespecificimpulse,Isp,from3,000to30,000switha

    total power efficiency,, of 60%, and a masstopower ratio, (total), less than 4 kg/kW. A more

    accurate VASIMR model, considering the power efficiency to be a function of specific impulse and

    power,isbeyondthescopeofthesestudies.

    Section4. PrepositioningtotheEdgeofEarthsSphereofInfluenceA VASIMR powered transfer from LEO to the Earths Sphere of Influence (SOI) is different than a

    chemicallypropelledEarthdeparturebecauseofthelowthrustnatureofanelectricpropulsionsystem.

    The low,butsteadythrustonthespacecraft leadstoaspiralorbitwith increasingradiustoreachthe

    SOI.

    4.1 DepartingLEOwithInclinationChange

    Figure 1 shows an example of a

    lowthrust Earth departure spiral

    (inred)followedbya51.6degree

    plane change (in green) using a

    200 kW VASIMR system

    propellinga4000kgIMLEO(Initial

    Mass at LEO) payload. The

    AdAstra3DTraj code was used for

    the direct simulation without full

    optimization. Theplanechange is

    executedwhentheorbitalvelocity

    is the lowest, at the end of the

    spiral, to minimize the propellant

    requiredforthemaneuver.

    Figure1: ExampleEarthdepartureandplanechangetrajectory,inthiscasea

    200kWVASIMRpropelledspacecraftweighing4000kgatLEO.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    9/29

    JSC-65825

    4of24

    ThemainadvantageofthistypeofEarthdeparturestage isthefuel,andhence,masssavingsforthe

    propulsionsystem. Intheexamplescenario,lessthan600kgofargonpropellantisusedtoputa4,000

    kgspacecraftonanEarthescape trajectory. Thecontinuousoperationof theVASIMR thrusteralso

    allowsanoptimizedplanechangemaneuveratanyaltitude. This inturnallowsformoreflexibility in

    the initial launch locationand results ina less severepayload reduction if the spacecraft is launched

    from a high latitude location on Earth. The slow spiraling nature of the VASIMR for trajectories

    departingtheEarthalsoenablesmissionoperatorstoperformvitalspacecraftsystemandhealthchecks

    forweeksduringtheinitialspiral. Ifaproblemisdiscovered,ahighvaluespacecraftcouldbeputintoa

    parkingorbitforlaterevaluation,docking,return,orrepair.

    4.2 LunarTugLarge quantities of equipment and material must be transported from the Earth to the Moon for

    ambitiousprogramsoflunarexploration. Iftransittimesofseveralmonthsareacceptableforcargo,a

    reusableVASIMRtugallowsroughlytwiceasmuchpayloadtobedeliveredtotheMoonasachemical

    system would require for the same initial mass in low Earth orbit (IMLEO). This implies cutting the

    numberofheavylift launchesandtheirassociatedcostinhalfandamortizingthecostofthetugover

    themanyyearsthatcargoisdeliveredbetweenLEOanddestinationsneartheMoon.

    Fi ure2: VASIMRTransferfromLEOtoLLO

  • 8/9/2019 VASIMR for Flexible Space Exploration

    10/29

    JSC-65825

    5of24

    Thefollowingmissionassumptionswereusedforthesimulation: inputpowerprovidedbysolarpanel

    cellsP=500kW,VASIMRpowerefficiency=60%,Isp=5,000sec,IMLEO=25,200kg(includingboth

    OTVandCDV).

    Figure2demonstratesapossibleLunarTugarchitecture. ItwasassumedthatanEvolvedExpendable

    Launch Vehicle (EELV) delivers a large Cargo Delivery Vehicle (CDV) into 500 km orbit, followed by

    rendezvouswithaVASIMRpoweredOrbitalTransferVehicle(OTV)orTug. TheOTVtransfersCDV

    betweena500kmlowEarthorbit(LEO)anda100kmlowlunarorbit(LLO)andreturnstoLEO. Forlow

    thrustspiraltrajectorieswithoutaplanechange,theV isthedifferencebetweenthe initialandfinal

    circularorbitalvelocities[10],whichis8km/sforthismission,includingboththespiralsaroundtheEarth

    and the Moon. From the rocket equation, given in Figure 2, the VASIMR could deliver the 14 mT

    payloadwithin6months,using3.8mTofpropellant. Forcomparison,achemicalpropulsionsystem

    withspecific impulsearound450scanonlydeliver5.7mTpayloadforthesameinitialmassplaced in

    LEO.

    Figure3showsthetrajectory,calculatedbytheCopernicuscode,intheEarthframeofreference. Thetriptimeis178days,thepropellantusedis3,840kg,andbothnumbersareveryclosetotheestimates.

    Figure4showsthesamemissiontrajectoryintherotatingEarthMoonframeofreference,inorderto

    show both spiraling from LEO anddespiraling to LLO. For this case, the inclination changewas not

    required. Copernicususesfourconsecutivesegmentsforthetrajectory;eachofthemmatchedattheir

    connectingendpointswithrespecttoposition,velocity,massandtime. Thefirstandlongestsegmentis

    spiralingfromLEOwith the thrustvectordirectedalong thevelocityvector. Thedurationofthefirst

    Figure3: CopernicusSimulationsofVASIMRTransferfromLEOtoLLO

  • 8/9/2019 VASIMR for Flexible Space Exploration

    11/29

    JSC-65825

    6of24

    segment isoneof the optimizedvariablesand calculated to be 140days and it requires 3,020 kgof

    propellant. TheendofthesecondsegmentistargetedtothepointontheboundaryoftheMoonsSOI

    (relative to theEarth) closest to Earth. It lasts 3daysand requires75 kgof propellant. Copernicus

    optimizes thedirectionof the thrustvector in the secondand thirdphases,aswellas the transition

    timesbetweenallphases.Thethirdsegment,capturingthepayload inorbitaroundtheMoon, lasts5

    days and requires 105 kg of propellant. A fourth, optional segment performs despiralingmaneuver

    withthrustdirectedopposedtothevelocityinpreparationforlandingontheMoonbychemicalmeans.

    CopernicuscalculatesthefourthandthirdsegmentsbackwardfromLLOandconnectstheendsofthe

    second and third segments iteratively. This despiraling maneuver requires 30 days and 640 kg of

    propellant.

    Figure4: LunarTugmissiontrajectoryintheEarthMoonRotatingVisualizationframe

  • 8/9/2019 VASIMR for Flexible Space Exploration

    12/29

    JSC-65825

    7of24

    Section5. RoboticMissionsBeyondEarthsSphereofInfluence5.1 CargoDeliverytoMarsAparametricstudyofcargodelivery toMarswith2MWofpoweranda totalspecificmassof =4kg/kW(power+VASIMR)wasperformedusingtheOptiMarscodewiththevariableIspoptimizer,for

    anIMLEO=20mT. Theparametervariedwastheminimumallowedspecificimpulse.Thefirstsegment

    ofthemissionisthespiralingfromLEOwithaninitialaltitudeof1,000kmtotheEarthsSOI. ForIsp=

    4,000sec,thespiralingtakes27daysandrequires3.7mTofpropellant. Figure5demonstratesthe80

    dayheliocentrictransferfromEarthtoMarsorbit. Thearrivalspeedwasconstrainedtobe6km/sec,

    assuming that aerocapture will be used for payload delivery to the Mars surface. The time varying

    profileforthespecificimpulsedeterminedbyoptimizationisshowninFigure6. Amaximumtechnology

    limitof30,000swasusedforthespecificimpulseoftheVASIMRengine. Thecoastingtimeisabout10

    days. FortheoptimizedprofileofthespecificimpulsewithaminimumIspof4,200sec,theheliocentric

    transferrequires3mTofpropellant. So,fromIMLEO=20mT,thetotalmassbudgetcanbepresented

    as8mTforpowerandpropulsionplus7mTofpropellantand5mTofpayload. Thetotaldurationof

    themissionisabout3.5months.

    Figure5: OptiMarsSimulationofheliotransferfromEarthSOItoMarsorbit

  • 8/9/2019 VASIMR for Flexible Space Exploration

    13/29

    JSC-65825

    8of24

    TheresultsoftheparametricstudyareshownintheFigure7forthesameIMLEOinallcasesandvarying

    minimumIsp. IftheminimumIspis

    increasedfrom4,200secto6,200

    sec,thetotaltriptimegoesupby

    14 days but the amount

    propellantrequiredgoesdownby

    1.7 mT, so more payload can be

    delivered.

    5.2 MarsSampleReturnThe International Mars

    Architecture for the Return of

    Samples (iMARS) Working Group

    has conducted extensive studies

    on Mars Sample Return (MSR)

    missions

    using

    chemical

    propulsiontechnology [11]. Inthis

    section,weinvestigatetheuseof

    VASIMR technology to

    accomplishaMSRmission that is

    a modified version of the one

    proposed by the iMARS Working

    Group.

    This analysis is based on

    reasonablevalues for thespecific

    massforpowerlevelsintherange

    between 100 and 500 kW. This

    calculation was performed using

    Chebytopassuminganinitialmass

    in LEO, IMLEO = 19,000 kg,

    including 4,880 kg of payload

    fixed, leaving 14,120 kg for the

    OTVandpropellant. Powerreceivedfromsolarpanelwasassumedtodependondistancetothesunas

    ~1/R2. Figure8illustratesthevariousstagesofthemission:

    1)

    An

    Atlas

    V

    552

    puts

    19,000

    kg

    into

    LEO

    at

    an

    altitude

    of

    500

    km.

    The

    spacecraft

    includes

    an

    OTV

    with

    aVASIMRthruster,a4,000kgMarsLander(ML),andan880kgEarthEntryVehicle(EEV). Themasses

    forMLandtheEEVaretakenfromtheMSRmissiondevelopedbytheiMARSWorkingGroup.

    2)ThespacecraftspiralsupfromLEOtotheEarthsSOI.

    3)AheliocentrictransfertoMarsisperformed.

    Figure7: ChangingMinimalIspandPayloadMassasafunctionofTripTimefor

    CargoMissiontoMars

    Figure6: VariableIspprofileforOptiMarsheliocentrictransfersimulation.The

    variablesarandanareradialthenormalcomponentsofacceleration,respectively,

    relativetotheSun.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    14/29

    JSC-65825

    9of24

    4)The4,000kgLanderisejectedjustbeforethespacecraftbeginsitsMarsorbitinsertion.TheLander

    followsadirectdescentpath,justasitwouldinthechemicalmission.

    5)TheOTVspiralsdowntoalowMartianOrbit(LMO)withanaltitudeof500km.

    3. Heliocentric transfer to Mars

    4. Lander separatesto make directlanding

    5. OTV spirals downto 500 km LMO

    Earth SOI

    925,000 km radius Mars SOI

    577,000 km radius

    2. OTV spirals upfrom LEO toEarths SOI

    1. Atlas V 552 puts 19,000 kg into500 km LEO; OTV carrying 4000kg Mars Lander and 880 kgEarth Entry Vehicle

    Figure8: VASIMRMSRScenario:EarthtoMars

    Figure9showsthe30kgsamplereturnwiththefollowingphases:

    67)Thesamplecontainer(30kg)isreturnedtoLMO,whereitrendezvouswiththeOTV.

    8) ThecombinedpackagespiralsuptoreachtheMarsSOI.

    9) AheliocentrictransferreturnstheOTVandsamplebacktotheEarth.

    1011)The910kgpackage,includingtheEEVtolandthesampleontheEarthisejectedfromtheOTVasitbegins itsEarthOrbit Insertion,sothatthesamplecontainer landsontheEarthandtheOTVspirals

    downtoLowEarthOrbit.

    Earth SOI Mars SOI6. Mars Ascent Vehicle launches samplecontainer to 500 km Mars orbit

    7. OTV finds and captures sample container

    8. OTV spirals up to Mars SOI

    9. Heliocentric transfer to Earth

    10. Earth Entry Vehicle separatesfrom OTV for direct landing

    11. OTV spirals down to LEO from Earth SOI

    Figure9: VASIMRMSRScenario: MarstoEarth

    Figure10summarizeskeyresultsforthistypeofmissionwithdifferentpowerlevels.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    15/29

    JSC-65825

    10of24

    Figure10: PowerScanforMSRMission. Foreachpowervalue,onewaytriptimes(andpropellantmass)wereminimized.

    Thepowerat1AUwasvariedbetween100kWand500kW.Theonewaytriptimewasminimizedfor

    eachpower level. Theresultsoftheparametricscanaredemonstrated inFigure10. Theparametric

    scanusedthefollowingvaluesofinputparameters:

    Totalpowerefficiency=60%

    Specificimpulse Isp=5,000sec,

    IMLEO=19,000kg,

    LEOaltitudeRLEO=500km,

    MarsaltitudeRLMO=500km,

    MinimalstaytimeonLMOis4months.

    LanderMassML=4mT

    PropellantTankmassMPT=0.1MP

    InitialmassforLMOLEOsegment=finalmassofLEOLMOsegmentMLMPT

    Insummary,aMarssamplereturnmissionispossibleatanypowerlevelbetween100kWand500kW

    (at1AU). AsFigure10shows,theroundtriptimedecreaseswith increasingpowerwithasubstantial

    decrease from6.1yearsat200kW to3.7yearsat250kWanda relatively slowdecrease forpower

    levelsbetween250kWand500kW(downto3.1years). Thereasonforthebigdecrease intriptime

    just less than250kW is that theLMOstay time isnotmonotonic functionofpower. For lowpower

    levels(100200kW)theLMOstaytimeincreasesfrom0.4yearto2.1years,butfor250kWofpower,

    thestaytimecanbereducedto140daysduetotheeffectoftherelativepositionofEarthandMars.

    Theconclusion is that theoptimal levelofVASIMRpower for theMSRmission is250kW (at1AU),

  • 8/9/2019 VASIMR for Flexible Space Exploration

    16/29

    JSC-65825

    11of24

    requiringaround triptimeof3.7years, including140days in lowMartianorbit. Themissioncanbe

    performedforspecifictotalpower,

  • 8/9/2019 VASIMR for Flexible Space Exploration

    17/29

    JSC-65825

    12of24

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1.5 -1 -0.5 0 0.5 1

    Mass balance [kg]:Mass at LMO 9220Propellant(LMO-LEO) 2740Tank 280EEV with Mars sample 910

    _________________________Mass at LEO 5390Total Alpha 21

    Decelerating: 122 days

    Coasting: 87 days

    Accelerating: 61 days

    Helio Transfer Departure: 1 July 2022

    Helio Transfer Arrival: 28 Mar 2023

    Power 250 kW (at Earth orbit)

    stage Trip time PropellantSpiraling 87 days 493 kgHeliotrans 270 days 1361 kgDespiral 82 days 886 kgTotal 439 days 2740 kg

    Departure 5 Apr 2022 (LMO)Arrival 18 Jun 2023 (LEO)

    Figure12: FromMarstoLEO:250kW

    5.3 EnhancingSolarPoweredCapabilitiestoreachJupiterInthissection,weexploretheconceptofareusableVASIMRspacecrafttocatapult5,000kgrobotic

    payloadstoJupiterusingaHohmannliketransfer. Theintentofthisstudyistoidentifytheimportant

    parameters for ejecting the payload and returning the VASIMR system back to Earth for additional

    payloads inreasonableperiodsof time. Theoperationalparametersof interestare thepower level,

    propellantmass,payloadreleasepoint,anddistanceofclosestapproachtotheSuntogainadditional

    solarpower. Optimizationbasedonvariablespecific impulse isneeded to fullyexplore thisconcept.

    However, two calculations at fixed specific impulse within the range of VASIMR capabilities, one

    assuming 5,000 s and another assuming 4,000 s, demonstrate the advantages of variable specific

    impulseandindicatethedirectionforpossiblefuturestudies.

    ThemissionisbasedontheassumptionthatthecatapultspacecraftanditspayloadbeginattheEarths

    sphere of influence (SOI), coasting in the Earths orbit about the Sun. The VASIMR engines power

    ratingmustmatchthepeakpoweravailablewhenthespacecraftisclosesttotheSun. Thesolararrayisassumedtobeaplanararrayratherthanaconcentrator,tosimplifyitsoperationneartheSunwherea

    concentratormightotherwiseoverheat thephotovoltaiccells. For this study,nogravityassist from

    othercelestialbodiesareconsidered, inordertoallowforflexible launchwindowsdependingonlyon

    Jupiter.

    TheMESSENGERspacecraft[6]providesastartingpointforestimatingthemassofvarioussubsystemsof

    theVASIMRCatapultwhichwillmakerepeatedflightsfromlowEarthorbittotheinnersolarsystem.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    18/29

    JSC-65825

    13of24

    MESSENGERisexpectedtohavealifetimeofapproximately10yearsinthistypeofenvironment. The

    VASIMR Catapult will have similar requirements for communications and Guidance, Navigation and

    Control(GNC). ThemassbudgetoftheCatapultspacecraftisshowninFigure13.

    dockingpropulsion

    (arcjet)

    Argon mass depends on trajectory expect several thousand kg

    Assume 4,000 k

    launched to

    rendezvousand dock withejector in LEO

    Argonpropellant

    payload

    ejector

    solar array

    VASIMR engines

    avionics

    thermal

    communications

    GNC

    structure

    harness

    T = 5 kg/kW; thrusterpower = power at closest approach to Sun

    A = 18 kg/kW; P = power@ 1 AU; range 200 kW to 1 MW

    100 kg

    10% of sum of other components of the ejector (dominated by

    VASIMR engines and solar array)

    400 k

    30 kg

    35 kg

    100 kg

    based on MESSENGER spacecraft total:700 kg (this quantity is fixed)

    35 k

    Figure13: VASIMRCatapult:StartingPointforMassRelations

    The mission trajectory was studied using the AdAstra3DTraj code and considered only the Suns

    gravitationalfield. ThemissionbeginswithadecelerationphasefromtheEarthSOIwithaninitialmass

    there (IMSOI) of 22mT where the solar panels provide power, PEarth = 500 kW, with a propulsion

    efficiencyoftheVASIMRof=60%. Twooptionsforconstantspecificimpulsewereconsidered,one

    with Isp=4,000sandanotherwith Isp=5,000sec. Several iterationswereperformed to findout the

    optimal distance for switching from deceleration to acceleration, and then a return of the Catapult

    spacecrafttoEarthsSOI.

    During the acceleration phase, the orbital elements of the vehicles trajectory are continuously

    changing. In particular, the aphelion distance grows larger. As soon as the instantaneous aphelion

    matches

    the

    semi

    major

    axis

    of

    Jupiters

    orbit,

    the

    robotic

    payload

    should

    be

    released

    on

    an

    orbit

    that

    willcoasttoJupiter. Afterthepayloadisreleased,theCatapultsthrustvectoristhenchangedtobegin

    itsrendezvouswithEarth.

    Whentheenergyneededforejectionisreached,thepayloadwithamassofMPL=4mTandtheempty

    propellanttankwithanassumedmassofMT=0.1MPisreleasedfromtheVASIMRCatapult. Whenthe

    payload is released, the Catapult immediately directs its thrust opposite to its velocity vector to

  • 8/9/2019 VASIMR for Flexible Space Exploration

    19/29

    JSC-65825

    14of24

    decelerate until the instantaneous aphelion distance is reduced to approximately 1 AU, thereby

    initiatingitsrendezvouswiththeEarthforreuse.

    AnoptimizedJupitercatapulttrajectoryisfirstconsidered,asshowninFigure14,forIsp=5,000sec.

    Belowarethemissiondetails,whichwerecalculatedwiththeAdAstra3DTrajsimulations.

    Figure14: JupiterCatapultmissiontrajectoryforIsp=5000sec

    Phase1, shown in red, is adeceleration phase to begina close solar passwith the thrustvector, A,

    directedperpendiculartotheradiusvector,R. Observationsofseveralsimulations indicatedthatthis

    wasthebeststrategytogetclosetotheSunusingaminimalamountofpropellant. Theendtimefor

    thefirstphasewasalsooptimizedbytrialanderrortoaccomplishthemissionwithminimalpropellant.

    Phase1endsatadistancefromtheSunofRend=0.66AUafterTend=132.7daysusingapropellantmass

    of3.6mT.

    Phase2,shown ingreen, isanaccelerationphasenear theSunwithhighsolarpowerand the thrust

    vectorparalleltothespacecraftvelocity. TheclosestapproachtotheSunisRmin=0.452AUduringthis

    phase. Phase2endswhenthespecificenergyreachesthelevelneededforthepayloadtogettoJupiter

    atRend =0.581AU, Tend=181.8days, requiring an additional 3.5 mT of propellant, so that the total

    propellantusageinphases1and2is7.1mT.

    Phase3a,showninred,involvesonlythereleasedofthe4mTpayload,whichcoaststherestoftheway

    toJupiterat5.2AUafter1,036daysoftotaltimefromdepartingEarthssphereofinfluence.

    Phase3b,alsoshowninred,describesthedecelerationphaseofthe0.8mTVASIMRCatapultsoitcan

    begin itsreturntonearEarth. Thethrustwasdirectednearlyopposite to thevelocityvectorwithan

    anglewhichwasoptimizediteratively. Theoptimalvalueangle(A,V)=165o,minimizespropellantusefor

  • 8/9/2019 VASIMR for Flexible Space Exploration

    20/29

    JSC-65825

    15of24

    thereturntotheEarthsSOI. ThephaseendswhenthespecificenergyreachesthatofanEarthorbitat

    distanceR=1.179AU,after231.4days,usinganadditional1.5mTofpropellant. Theremainingphases

    are then performed with thrust directed orthogonally to velocity, so the specific energy does not

    change.

    Phase3c,showninlightblue,isamaneuvertoreturnthecatapulttotheEarthwiththethrustvector,A,

    orthogonaltothevelocityvector,V,andtowardtheSun,endingat1.452AU,afteratotalof279.2days

    usinganadditional0.6mTorpropellant.

    Phase3d,showningray,isasimplecoastingphaseto1.478AUafteratotalof359.2days.

    Phase3e,showninmagenta,isamaneuverturningawayfromtheSunwiththrustvector,A,orthogonal

    tothevelocityvector,V,oppositetheSuntorendezvousat1AUafteratotal509.5days,usingan

    additional2.4mTofpropellant. Thecumulativepropellantusageis11.5mT.

    Toillustratetheeffectofspecificimpulseonthetechnologyrequirementsforthespecificmass,thecatapultmissionwasrepeatedforalowerspecificimpulsewithIsp=4000susingthesamemaneuvers.

    TheresultsfromtheAdAstra3DTrajsimulationsat4000sare:

    Phase1endsatRend=0.9AU,after80.7days,using2.9mTofpropellant.

    Phase2endsatRend=0.729AU,withaclosestapproachtotheSunat0.657AU,afteratotalof157.4

    days,usinganadditional4.6mTofpropellant.

    Phase3adeliversthepayloadtoRend=5.2AU,afteratotalof1,057days.

    Phase3bwithangle(A,V)=150oendsatRend=1.156AU,afteratotalof210.8days,using2.1mTof

    propellant.

    Phase3cendsatRend=1.27AU,after240.3days,using0.7mTofpropellant.

    Phase3dcoaststoanendingradiusatRend=1.121AU,after363.3days.

    Phase3eendsatRend=1AU,afteratotalof406.8days,requiringanadditional1.3mTofpropellant,

    suchthattheentiremissionuses11.6mTofpropellant.

    Oneadvantageof lowering the specific impulse from5,000s to4,000 s isa relaxation in technology

    requirementsfrom =6.8kg/kWfor5,000secondsto =8.4kg/kWfor4,000seconds. However,the

    efficiencyoftheVASIMRsystemmaybemorechallengingforlowerspecificimpulse. Inaddition,the

    massofthepropellanttoreturntoEarth issignificant,somissionswithoutareturntoearthcanhave

    larger,ormultiplepayloads,offeringoptionsforfuturestudy.

    Theprimaryresult from these twostudiesatdifferent fixedspecific impulse is that the initialphases,

    neededtoreleasethepayloadon itswaytoJupiter,canbeperformedwith7.1mTusing5,000s,but

    require7.5 mTat4,000s. Alternatively, the returnof thecatapult spacecraft to theEarth for future

  • 8/9/2019 VASIMR for Flexible Space Exploration

    21/29

    JSC-65825

    16of24

    reusecanbeperformedwith4.1mTofpropellantusingaspecificimpulseof4,000swhereasthereturn

    phasesrequire4.5mTusingaspecificimpulseof5,000s. Clearly,varyingthespecificimpulsebetween

    theoutboundandreturnmaneuverscanresultissignificantsavings,warrantingfurtherstudy.

    Section6. FastHumanMissionstoMarswithVariableSpecificImpulseIn thissectionweassume thatveryhighpowersourcesareavailable,suchasmightbepossiblewith

    advancednuclearpowertechnology. Withamplepowerforinterplanetarymissions,theVASIMRcan

    significantlyreduce launchmassand trip timescomparedwithchemical thruster technology. At the

    200 megaWatt power level,human missions to Mars in less than39 days become conceivable with

    advancedVASIMRandpowertechnologies. TriptimestoMarsonthistimescalewerementionedasa

    laudablegoal forNASAby itsadministrator,CharlesBolden[9], in July2009,because theydramatically

    improveacrewssurvivabilityandsafety inthe interplanetaryspaceenvironment. Inthissection,we

    presentconceptualstudiesshowingthedependenceofthetriptimeonthe initialdepartureposition,initialmassatthedepartureposition,massofthepayload,variablespecific impulse,andthemassto

    powerratioforthepowerandpropulsionsystems. Thereturnmissionisnotpresentedinthisreport.

    6.1 HumanMissiontoMarsusing12MWThevariablespecificimpulsemadepossiblebyVASIMRtechnologiescanbefullyappreciatedformulti

    megawattinterplanetarymissions. ThesestudieswereconductedusingtheHOT[7],[8]

    softwarepackage

    anddemonstratethepossibilityof1218MWmissionsarrivingatMarswithin34months,abouthalf

    the time estimated in the Design Reference Mission (DRM) 3.0[12], which utilizes Nuclear Thermal

    RocketsfortransferringtoMars.Themissionanalysisassumedtheexactsamepayloadmassdelivered

    totheatmosphereofMars(60.8mT)atthesamevelocityforaerocapture(6.8km/s)asintheDRM3.0

    for the crewed portion mission with VASIMR engines. The crew time in space could be reduced by

    aboutonemonthbyrendezvousingthecrewwiththeVASIMRpoweredspacecraftinhighearthorbit

    afterthemainvehiclehadpassedthroughtheVanAllenbelts.

    ForthismissioncargomustbepredeployedbothinMartianorbitandonthesurface. IntheDRM,one

    rockettransfersthecargolanderandanothertransfersanearthreturnvehiclewithalivinghabitatfor

    thecrewtoMars. Thetotalmassofthosepayloadsis91.4mTasoutlinedintheDRM3.0(includingan

    aeroshell for thecargo landersizedappropriately forentryvelocity). TheVASIMRmissionproposes

    combiningbothpayloadsplusthereturnpropellantononevehicletosavepropellantontheoutbound

    journey. AVASIMRsystemwithonethirdthepower,4MW,comparedtothe12MWofthecrewed

    vehicle, transfers the payload more slowly, requiring a 154 day spiral plus a 288 day heliocentric

    transfer,butusesonethird less initialmasswithan IMLEOof202mT,comparedwith282mTforthe

    DRM.ThereturnhabitisstoredinorbitatMars,asintheDRM3.0,waitingfortheMarsascentvehicle

    andthecrewforthereturntrip.

    ThecrewedspacecraftdepartsLEOonMay6,2018.Theship initialmass inLEO is188mT.12MWof

    electricpower isassumedforthedurationofthetripwithatotalmasstopowerratioof=4kg/kW,

  • 8/9/2019 VASIMR for Flexible Space Exploration

    22/29

    JSC-65825

    17of24

    which includes thenuclearpowersupply,VASIMR,andallothervehiclemassexceptpropellantand

    propellant tanks. Therefore, the Crew TransferVehicle (CTV) mass is 48mT plus the propellantand

    propellanttankmass.Themassbreakdownforthe60.8mTMarsLander(ML)isassumedtobe31.0mT

    forthehabitat,13.5mTforanaeroshell,and16.3mTforadescentsystem.TheCTV,matedtotheML

    (MarsLander),willtransportthecrewtoMars. ThespeedrelativetotheEarthis2.5km/sattheEarths

    gravitationalsphereofinfluence. Figure15showsthepilotedmissiontrajectoryandIspprofile.

    The ML will separate from the CTV at Mars arrival. The lander is designed to approach Mars with a

    relativevelocityof6.8km/sandexecuteadirectdescenttothesurface. TheLanderdescentmaneuver

    is identicaltothatoutlined intheDRM.TheCTVwill initiallyexecuteaflybyofMars,closeenoughto

    dropofftheML.TheCTVwillcontinuepastMars inanarcingtrajectorytobecapturedbytheplanet

    approximately fourmonths later.Theapproach toMarsand the elliptical spiral to low Martianorbit

    (LMO)areshowninFigure16.

    Figure15: HumanpilotedheliocentrictransferwithIspvstimeplot(right)

    The separation of the ML from the propulsion system at Mars arrival and its direct entry are

    operationallyreasonablebasedontheDesignReferenceMission.Thedelayinachievingorbitalinsertion

    of the interplanetarypropulsionmoduleatMars,results inconsiderable fueland timesavings.While

    someriskisinvolvedinthisapproach,thecrewhasapossiblebackupbecausetheCargoVehicleinLMO

    contains

    the

    Earth

    Return

    Vehicle

    and

    the

    return

    propellant,

    as

    well

    as

    a

    fully

    functional,

    albeit

    lower

    power, VASIMR module. This configuration could be used in a contingency, should the prime

    propulsionsystemfailtoachieveLMO.Suchanoptionwillresultinalongerreturntriptime.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    23/29

    JSC-65825

    18of24

    Figure16: CTVarrivalatMarsandsubsequentcapture131dayslater(left)and7dayspiralmaneuverintolowMarsorbit

    (right)

    UponarrivalatMars,theCTVpropulsionmodulewilldockwiththeEarthReturnVehicleandpropellant.

    ThecargoengineandreactorpackagecanbereleasedafterdockingandleftinMarsorbit. Acommon

    dockingmechanismwillallowtheEarthReturnVehicletomatewiththeCTVpropulsionmodule.

    Figure17: CTVspiraldeparturefromMarsandreturnheliocentrictrajectory. Thespirallasts4daysandtheheliocentric

    transferlasts85days.

    AscentfromMarstotheReturnHabitatisaccomplishedwithachemicalascentcapsule,asintheDRM

    3.0.ThiscapsulestaysattachedtotheCTVduringinterplanetaryflightandisusedfordirectdescentto

    the Earth surface. Since the capsule is designed for a reentry at a relative velocity to Earth of 6.8

  • 8/9/2019 VASIMR for Flexible Space Exploration

    24/29

    JSC-65825

    19of24

    km/sec,thevehicleistargetedtoapproachEarthwiththatvelocity.Thereturnmissionfollowsasimilar

    strategy.Itconsistsofa4dayMarsspiralfollowedbyan85dayheliocentrictransfer,asshowninFigure

    17.

    6.2 HumanMission

    Scenarios

    to

    Mars

    using

    200

    MW

    6.2.1 Technology Requirement Estimates from OptiMars

    A200MWhumanmissiontoMarswasevaluatedusingtheOptiMarsprogramassuminganinitialmass

    atLEOof600mT,withinitialaltitudeof1,000km,aVASIMRefficiencyof60%,andaspecificimpulse

    of3,200sec. Forthispowerlevel,thespiralingfromLEOtoEarthsSOIrequires8days,and165mTof

    propellant. Thisspiralsavesasignificantamountofpropellantoverachemicalmaneuvertonearthe

    EarthsSOI,however,achemical rendezvousnearEarthsSOIbetweenastronautsand theVASIMR

    spacecraftcouldbeconsideredtoreducethecrewsexposuretotheVanAllenbelts,furtherreducetrip

    time,andalso to relax theminimumspecific impulse requirements for theVASIMR technology. No

    chemical

    based

    rendezvous

    is

    considered

    here,

    but

    future

    study

    may

    be

    useful.

    In this evaluation, propellant usage during the second stage heliocentric transfer is optimized by

    escapingtheEarthwithavelocitydirectedawayfromtheSunwithzerotangentialvelocityrelativeto

    Earth at a speed of 5.5 km/s. The mass and velocity at the end of this spiral maneuver is used to

    initialize the secondstageheliocentric transferbetweenEarthandMars,asshown inFigure18. The

    optimal 31day heliocentric transfer requires 295 mT of propellant with variable specific impulse

    followingtheprofileshowninFigure19between3,000sand30,000sec. A3dayperiodinthemiddle

    oftheheliocentrictransferhadtheVASIMRthrustersrunningatmaximumspecificimpulsepriortothe

    slowingof thecraft inpreparation fororbitalcapturebyMars. Thearrivalvelocityat theendof the

    heliocentric transfer is 6.8 km/sec, which requires aerocapture to slow the lander for capture. The

    arrivalmass toMars for thisscenario is140mT,and themassof thepayload issomewhatarbitrarily

    pickedtobe20mT,themassbudgetforthepowersystemsandVASIMRthrustersis120mT,requiring

    atotalalphaoflessthan0.6kg/kW. Currenttechnologiescannotachievespecificmassvaluesthislow,

    although some theoretical studies predict power plant specific masses below 1 kg/kW. Thus, pre

    positioningofcargoandcrewsupportfacilitiesinMartianorbitmayberequiredtoachievetheshortest

    times for crewed missions. Nevertheless, the orbital mechanics identified by the OptiMars program

    warrantsamore thoroughevaluationofmissions to identify the technologyneeded,asmeasuredby

    specificmass,usingCopernicus.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    25/29

    JSC-65825

    20of24

    Figure18: OptiMarssimulationof31dayheliocentrictransferfromEarthtoMars. Themaximumspeedrelativetothesun

    isroughly40km/spriortotheslowingmaneuvertotransferintotheorbitofMars.

    Figure19: Profileofvariablespecificimpulsefor31dayheliocentrictransferbetweenEarthandMarsorbitssecondstage

    ofaveryfasthumanmissiontoMars. Thehorizontalaxisindicatestherelativeheliocentrictransfertriptimestartingwith

    departurefromtheEarthSOIandendingwitharrivaltotheMarsSOI

  • 8/9/2019 VASIMR for Flexible Space Exploration

    26/29

    JSC-65825

    21of24

    6.2.2 Optimized Results from Copernicus

    Theeffectson trip timeandpayload for200MWhumanscenarioscausedbyvarying the technology

    requirements,measuredbytotalspecificmassandarrivalvelocity,arepresentedinthissection. Figure

    20demonstratesanoptimized31dayheliocentrictransferforthemissiontoMarsusingtheCopernicus

    program. TheoptimaldeparturedatefromEarthSOIinthenext20yearswascalculatedtobeJuly15,

    2018. Thecorrespondingoptimizedvariablespecific impulseprofile isshown inFigure21. The final

    mass after the heliocentric transfer is 145 mT, in good agreement with, and slightly higher than

    estimatedbyOptiMars. Inthisstudy,werelaxthetotalspecificmassrequirementsbyparametrically

    varyingthearrivalspeedatMarsSOIandthemissiontimewhilekeepingtheinitialmassatEarthsSOI

    andthefinalpayloadmassatMarsfixed. Additionalimprovementsbeyondthescopeofthisstudycan

    likelybeobtainedbychemicalrendezvousofahumancrewwithprepositionedresourcesat libration

    pointsoftheEarthMoonsystem.

    Figure20: Copernicussimulationof31dayheliocentrictransferfromtheEarthsSOItoMars. Theyellowlinesindicate

    thrustvectors.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    27/29

    JSC-65825

    22of24

    0

    3000

    6000

    9000

    12000

    15000

    1800021000

    24000

    27000

    30000

    33000

    0 5 10 15 20 25 30

    time [days]

    Isp

    [sec]

    Isp [sec]

    Figure21: Copernicussimulationofvariablespecificimpulseprofilefor31dayheliocentrictransferfromEarthSOItoMars

    Figure22shows the required totalspecificmass,, fordifferentmission timesandarrivalvelocities.

    Theseresultsshowthatheliocentrictransfertimesfordeliveringafixed20mTpayloadfromL1toMars

    usingafixedinitialmassatEarthsgravitationalsphereofinfluenceof600mT,canbeintherangeof55

    to60daysdependingonthearrivalvelocityatMarswithatotalpropulsionofapproximately2kg/kW.

    A39daymissiontoMarswithanarrivalvelocity10km/scanbeachievedwithtotalspecificmassof1.2

    kg/kW. Achievingtriptimesoflessthan90daysforthesemasstransfersrequiresthetotalpropulsion

    technology,measuredby, to belessthanabout2.5kg/kW. Notethatslowmissionsdontneedsuch

    highpowerlevels. Forexample,90daymissiontoMarscanbeaccomplishedwithpowerlevelscloseto

    12MWasreportedinprevioussection. AdditionalmassstagingfordeparturenearL1with800mTmay

    further

    relax

    the

    technology

    requirements

    on

    the

    propulsion

    system

    to

    around

    4

    kg/kW,

    but

    further

    studyisrequired.

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    3.00

    35 45 55 65 75 85

    Trip time [days]

    T

    otalalpha[kg/kW]

    V_arr=0km/s

    V_arr=2km/s

    V_arr=4km/s

    V_arr=6km/s

    V_arr=8km/s

    V_arr=10km/s

    Figure22: ParametricstudyofhumanmissiontoMarstriptimedepartingfromL1withminimalIsp=3,000sec,IML1=600

    mT,P=200MW,=60%,MPL=20mT.

  • 8/9/2019 VASIMR for Flexible Space Exploration

    28/29

    JSC-65825

    23of24

    Section7. SummaryandFutureWorkAsurveyofspaceexplorationmissionsenabledbyVASIMRtechnologieshasbeenpreformedusinga

    wide range of simulation tools including nearEarth, deepspace robotic and human missions. This

    surveyprovidesamaptoguidemorespecificanddetailedanalysisofscenariosenabledbyexploitinganddevelopingVASIMRtechnologies. Italsoprovidesguidanceforevaluatingthetradeoffs,risks,and

    rewardsinherentindevelopingnewtechnologies.

    A500kWLunarTugscenariobasedonaVASIMRdrivenspacecraftandexistingstateoftheartsolar

    cell technologywitha totalpropulsionalphaof10kg/kW, isable toachieve significantmass savings

    overallchemicalthrustertechnology. ForanIMLEOof25.2mT,theVASIMRtugcandeliver14mTof

    payloadtolowlunarorbit(LLO)versus5.7mTdeliveredbytraditionalchemicalmeans. Thus,thecost

    to preposition cargo and equipment near the Moon can be cut in half using technologies that are

    availableinthenearterm. Similarly,a250kWMarsSampleReturnmissionusingaVASIMRisableto

    accomplishthemissionin3.5years,aboutthesameasusingchemicalthrustertechnology,butrequiring

    muchlesspropellantlaunchedintoLEO.

    The major advantage of Variable Specific Impulse technology is demonstrated for high power deep

    spaceroboticmissions. Ascenariobasedonpresentlyavailablesolarpowertechnologieswith500kW

    ofpowerandalphaof6.4kg/kWcanlaunch4mTofpayloadbeyondtheorbitofJupiter. Besidesusing

    muchlesspropellantthanchemicallypoweredmissions,theVASIMRCatapulttoJupiteroptionallyhas

    the advantage of reusing the hardware to amortize the initial investment. This technique warrants

    furtherstudytobetteridentifyitscapabilities,tradeoffs,andadvantages.

    Perhapsthemostlaudablegoalsforthetechnologyarethatitshouldeventuallyenablehumanmissions

    toMarsthataremuchfasterandsaferthancanbeachievedwithchemicalrockets. Tripstoothernear

    Earthobjectsclearlywarrantsimilarstudies. Using12MWofpowerandatotalspecificmassforthe

    entirepowerandpropulsionsystemofachallenging,butpresentlyrealizable4kg/kW,allowsascenario

    withacrewedonewaymissiontimeofapproximately3months. Assumingadvancedtechnologiesthat

    reducethetotalspecificmasstolessthan2kg/kW,triptimesoflessthan60dayswillbepossiblewith

    200MWofelectricalpower. OnewaytripstoMarslastinglessthan39daysareevenconceivableusing

    200MWofpower iftechnologicaladvancesallowthespecificmasstobereducedtonearorbelow1

    kg/kW.

    Section8. References[1] Ocampo,C.AnArchitectureforaGeneralizedTrajectoryDesignandOptimizationSystem,

    ProceedingsoftheInternationalConferenceonLibrationPointsandMissions,Girona,SpainJune

    2002

    [2] Hahn,D.W.,Johnson,F.T.,andItzen,B.F.,FinalReportforCHEBYCHEVOptimizationProgram

    (CHEBYTOP),TheBoeingCompanyReportNo.D21213081,NASACR73359(or69N34537),July

    1969

  • 8/9/2019 VASIMR for Flexible Space Exploration

    29/29

    JSC-65825

    [3] Yam,C.H.andLonguski,J.,M.,OptimizationofLowThrustGravityAssistTrajectorieswitha

    ReducedParameterizationoftheThrustVector,AAS/AIAAAstrodynamicsSpecialistConference

    andExhibit,AASPaper05375,1995,LakeTahoe,CA

    [4] K.

    Karavasilis,

    Earth

    Mars

    Trajectory

    Calculations,

    4

    th

    VASIMR

    Workshop,

    Houston,

    TX,

    March

    28,

    2001.

    [5] BBCNews(2007).ConcernoverChina'smissiletest.RetrievedJanuary20,2007.

    "SatellitesCollide,PutSpaceStationatRisk".TheWashingtonPost.February11,2009.

    http://www.washingtonpost.com/wpdyn/content/article/2009/02/11/AR2009021103387.html

    [6] Messengerfactsonweb: http://www.astronautix.com/craft/mesenger.htmor

    http://en.wikipedia.org/wiki/MESSENGER

    [7] Chang Daz F. R., Braden E., Johnson I., Hsu M. M., Yang T. F. (1995) Rapid Mars Transits With

    Exhaust-Modulated Plasma Propulsion, NASA Technical Paper 3539, 10p

    [8] Chang Daz F. R. (2000) The VASIMR Rocket, Scientific American, November 2000, 283 (5) 90-97.

    [9] Grossman,L. (2009) Ionenginecouldonedaypower39day trips toMars,NewScientist,22 July

    2009.

    [10]Edelbaum,T.N.(1964)PropulsionRequirementsforControllableSatellites,ARSJournal,31:1079

    1089.August1961.

    [11]PreliminaryPlanningforanInternationalMarsSampleReturnMission, ReportoftheInternational

    MarsArchitecturefortheReturnofSamples(iMARS)WorkingGroup,June1,2008.

    [12]HumanExplorationofMars:TheReferenceMissionof theNASAMarsExplorationStudyTeam,

    Hoffman,S.J.,Kaplan,D.I.NASA/SP6107ADD,NASAJSC,60p.,1998.