vasp6: total energies beyond dftco adsorption on d-metal surfaces. (all energies in ev) schimkaet...

48
VASP6: total energies beyond DFT Martijn Marsman University Vienna & VASP Software GmbH

Upload: others

Post on 01-May-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

VASP6: total energies beyond DFT

Martijn Marsman

University Vienna & VASP Software GmbH

Page 2: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Outline

• Beyond DFT• The need to go beyond DFT• HF/DFT hybrid functionals• The Random-Phase-Approximation

• ! "# implementation of the RPA• Cubic-scaling RPA total energies• Minimax frequency and time integration• Cubic-scaling RPA quasi-particles

• Forces in the RPA

Page 3: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

• Total energy differences with”chemical accuracy”(1 kcal/mol ≈ 40 meV/atom):Atomization-, formation energies,reaction barriers, etc

• Van der Waals interactions

0.5 1 2 4 8 16Experiment (eV)

0.25

0.5

1

2

4

8

16

The

ory

(eV

)

PBEHSE03PBE0

PbSePbS

PbTe Si

GaAs

Ne

AlP

CdS

SiC

ZnO

GaNZnS

LiFAr

C BN MgO

Figure 8. Band gaps from PBE, PBE0, and HSE03 calculations,plotted against data from experiment.

Need to go beyond DFT and DFT/HF hybrids?

SiCMgO

NaClLiCl

NaFLiF

PBE

PBE0

HSE03

B3LYP-30

-20

-10

0

Rel

ativ

e er

ror

(%)

-40

10

Figure 7. Relative error in the PBE, PBE0, HSE03, and B3LYPheats of formation with respect to experiment.

BandgapsHeats of formation

• Bandstructure of metals and largish gapsystems, and some problematic casesinbetween

Page 4: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

CO@Cu(111): �170 meVCO@Rh(111): �40 meVCO@Pt(111): �100 meV

• DFT incorrectly predicts that CO prefers thehollow site: P. Feibelman et al.,J. Phys. Chem. B 105, 4018 (2001)

• This error is relatively large.Best DFT/PBE calculations:

CO adsorption on d-metal surfaces

• CO HOMO-LUMO gap too small in DFT:

Page 5: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

CO @ top fcc hcp �Cu(111) PBE 0.709 0.874 0.862 �0.165

PBE0 0.606 0.579 0.565 0.027HSE03 0.561 0.555 0.535 0.006exp. 0.46-0.52

Rh(111) PBE 1.870 1.906 1.969 �0.099PBE0 2.109 2.024 2.104 0.005HSE03 2.012 1.913 1.996 0.016exp. 1.43-1.65

Pt(111) PBE 1.659 1.816 1.750 �0.157PBE0 1.941 1.997 1.944 �0.056HSE03 1.793 1.862 1.808 �0.069exp. 1.43-1.71

A. Stroppa et al., PRB 76, 195440 (2007); A. Stroppa and G. Kresse, NJP 10, 063020 (2008).

CO adsorption on d-metal surfaces

(All energies in eV)

Page 6: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Schimka et al., Nature Materials 9, 741 (2010)

• DFT does well for the metallicsurface, but not for the CO:2"∗ (LUMO) too close to theFermi level.

• HSE does well for the CO,but not for the surface:d-metal bandwidth too large.

Hybrid functionals reduce the tendency to stabilize adsorption at thehollow site w.r.t. the top site.

reduced CO 2π* ⎯ metal-d interaction

Page 7: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The Random-Phase-Approximation: GW and ACFDT

• Quasiparticles from GW: “electronic structure” in the RPA.

• Total energies from the ACFDT in the RPA.

• Are the above related?

Page 8: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

DFT: Kohn-Sham eq.

DFT-HF hybrid functionals: Roothaan eq.

GW: quasi-particle eq.

One-electron/QP picture

⇣�1

2�+ Vext(r) + VH(r) + Vxc [⇢] (r)

⌘ nk(r) = ✏nk nk(r)

<latexit sha1_base64="CXioMq33FCZ1KOj9JGyQhdaRzNg=">AAACoHicdVFdaxQxFM1M/ajjR1f7KELoIqyIy8xSUB+E0vqwD4otuNviZhgy2Tu7YTMfJHekS5jf1f/hm//GzHa0tdULSQ7nnJub3JtWShoMw5+ev3Xn7r372w+Ch48eP9npPX02NWWtBUxEqUp9lnIDShYwQYkKzioNPE8VnKaro1Y//Q7ayLL4iusK4pwvCplJwdFRSe+CHcqFGtA3LNNc2Kixo4Z9BIX89TSxTOcUzrEZWJZmVDevfpPja1TQceeiYQoynFGml6Xb5GKJ8R8fbStpd1RGJrbY0Kvm6p4PAQMnKfeqK/V/5iDp9cNhuAl6G0Qd6JMujpPeDzYvRZ1DgUJxY2ZRWGFsuUYpFDQBqw1UXKz4AmYOFjwHE9tNgxv60jFzmpXarQLphr2eYXluzDpPnTPnuDQ3tZb8lzarMXsXW1lUNUIhLgtltaJY0nZadC41CFRrB7jQ0r2ViiV3k0I307YJ0c0v3wbT0TDaH74/2e8fjLp2bJPnZI8MSETekgMyJsdkQoT3wjvyPnmf/T1/7H/xTy6tvtfl7JK/wv/2C7I3zGo=</latexit>

⇣�1

2�+ Vext(r) + VH(r)

⌘ nk(r) +

ZVX [{

o

}] (r, r0) nk(r

0)dr0 = ✏nk nk(r)

<latexit sha1_base64="p52S1soj6JNSChdMchGrYyNEpNQ=">AAAC03icdVJbb9MwFHbCbYTLCjzyYlGhtQKqpJoEPCBNwMMei0S7SnUUOe5Ja9VxItuZqKwIhHjlz/HGX+BX4GSpNjZ2JMufvvOd43NxWgquTRj+9vwbN2/dvrN3N7h3/8HD/d6jxzNdVIrBlBWiUPOUahBcwtRwI2BeKqB5KuAk3Xxo/CenoDQv5GezLSHO6UryjDNqHJX0/pD3fCUG+BXJFGU2qu24Jh9BGPpilliicgxfTD2wJM2wqoc78vicCpoMaohJqXliZUtv6gshhEuDu7h5TQRkZkFsKy9IjYniq7WJd/qX3X0wvCbhwXC5Q+8CAk4kXCPnuuvqCJJePxyFreGrIOpAH3U2SXq/yLJgVQ7SMEG1XkRhaWJLleFMQB2QSkNJ2YauYOGgpDno2LY7qfFzxyxxVih3XP8tezHC0lzrbZ46ZU7NWl/2NeT/fIvKZG9iy2VZGZDs7KGsEtgUuFkwXnIFzIitA5Qp7mrFbE3dco37Bs0QosstXwWz8Sg6HL39dNg/Gnfj2ENP0TM0QBF6jY7QMZqgKWLexDv1vnrf/Klv/e/+jzOp73UxT9A/5v/8CzLi4WE=</latexit>

⇣�1

2�+ Vext(r) + VH(r)

⌘ nk(r) +

Z⌃ [{ , E}] (r, r0, Enk) nk(r

0)dr0 = Enk nk(r)

<latexit sha1_base64="AzEgT9+bH61oaA3QplgUo0z9Epw=">AAAC13icdVJdb9MwFHXC1wgf6+CRF4sKrRWlSqpJjAekCZi0xyHWbqiOIsd1UqvOh+wbRLEiHkCIV/4ab/wJfgNOl4qysStZPjr3nGv7XselFBp8/5fjXrt+4+atrdvenbv37m93dh5MdFEpxseskIU6i6nmUuR8DAIkPysVp1ks+Wm8eN3kTz9wpUWRn8Cy5GFG01wkglGwVNT5TV6JVPbwM5IoykxQm1FN3nAJ9OkkMkRlmH+EumdInGBV99fk0V/KayqoPialFpHJV/Si3rAQkQMm70SaUSJ5AlNMTCMe4ENSEyXSOYRr9aDddweHG7X6V9Te7c/W6KW3abjqLl7U6fpDfxX4Mgha0EVtHEedn2RWsCrjOTBJtZ4GfgmhoQoEk7z2SKV5SdmCpnxqYU4zrkOzmkuNn1hmhpNC2WV7sGI3HYZmWi+z2CozCnN9MdeQ/8tNK0j2QyPysgKes/ODkkpiKHAzZDwTijOQSwsoU8LeFbM5tQMG+xWaJgQXn3wZTEbDYG/44u1e92DUtmMLPUKPUQ8F6Dk6QEfoGI0Rc06cT84X56v73v3sfnO/n0tdp/U8RP+E++MPkg/iBQ==</latexit>

Page 9: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

✓�1

2�+ Vext(r) + VH(r)

◆ nk(r) +

Z⌃(r, r0, Enk) nk(r

0)dr0 = Enk nk(r)

The quasi-particle equation:

⌃ = iGWThe “self-energy is given by:

or more explicitlyGreen’s function: G

screened Coulombinteraction: W

Compare to Fock-exchange:

VX

(r, r0) = �occ.X

n

n(r) ⇤n(r

0)⇥ e2

|r� r0|

⌃(r, r0, E) =i

2⇡

Z 1

�1d!

allX

n

n(r) ⇤n(r

0)

! � E � En + i⌘ sgn(En � Efermi)⇥

⇥ e2Z

dr00✏�1(r, r00,!)

|r00 � r0|

bare Coulombinteraction: v

GW

Page 10: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The Green’s function !(#, #′, & − &′) describes the propagation of a particlefrom (#, &) to #′, &′ : i.e., provided we have particle at position r at time t,!(#, #′, & − &′) is the chance of finding it at position r’ at time t’.

G0(r, r0,!) =

allX

n

⇤n(r) n(r0)

! � ✏n + i⌘ sgn(✏n � µ)

G0(1, 2) =vir.X

n

n(r1)⇤ n(r2)e

�i(✏n�µ)(t2�t1)

G0

(1, 2) =occ.X

n

⇤n(r1) n(r2)e

�i(✏n�µ)(t1�t2)

(r1, t1) = 1 (r2, t2) = 2

(r2, t2) = 2 (r1, t1) = 1

• Particle propagator: !* 1,2 = !*(#., #/, &/−&.) for &/ > &.:

• Hole propagator: !* 1,2 for &. > &/:

The Green’s function: physical interpretation

Page 11: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

W = ⌫ + ⌫�0⌫ + ⌫�0⌫�0⌫ + ⌫�0⌫�0⌫�0⌫ + ... = ⌫ (1� �0⌫)�1

| {z }✏�1

In the RPA, the screened Coulomb interaction is computed from !" as:

1. The bare Coulombinteraction betweentwo particles

2. The electronic environmentreacts to the field generatedby a particle: induced changein the density !"#, that givesrise to a change in the Hartreepotential: #!"#.

3. The electrons reactto the induced change inthe potential: additionalchange in the density, !"#!"#,and corresponding change inthe Hartree potential: #!"#!"#.

and so on,and so on …

geometricalseries

W in the Random-Phase-Approximation

Key: the “irreducible polarizability in the independent particle picture” !" (or !%&):

�0(r, r0,!) :=@⇢ind(r,!)

@ve↵(r0,!)

W = ✏�1⌫ ✏�1 = 1 + ⌫� � = �0 + �0⌫�

Page 12: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The “irreducible polarizability in the independent particle picture” !" (or !#$):

Adler and Wiser derived expressions for !"

�0(r1, t1, r2, t2) = �(1, 2) = �G0(1, 2)G0(2, 1)

Or in terms of Green’s functions (propagators):

�0(r, r0,!) :=@⇢ind(r,!)

@ve↵(r0,!)

�0

(r1

, r2

,!) =occ.X

i

virt.X

a

h a|r1| iih i|r2| ai✏i � ✏a � !

+occ.X

i

virt.X

a

h i|r1| aih a|r2| ii✏a � ✏i � !

%&, (& %), ()

a

i

*"(1,2)

The IP-polarizability: !"

Page 13: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

=+ + + + …

GW in the RPA

Page 14: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

E[n] = TKS [{ i}] + EH [n] + EX [{ i}] + Eion�el

[n] + Ec

The “RPA” total energy is given by:

with the RPA correlation energy

Ec =X

q

Z 1

0

d!

2⇡Tr{ln[1� �0(q, i!)⌫] + �0(q, i!)⌫}

�0G,G0(q,!) =

1

X

nn0k

2wk(fn0k+q � fn0k)

⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

and the Independent-Particle polarizability:

ln(1 − &'()+&'( = − Tr[&'(&'(]2 − Tr[&'(&'(&'(]

3 − Tr[&'(&'(&'(&'(]4

�0(r, r0,!) :=@⇢ind(r,!)

@ve↵(r0,!)

RPA total energies (ACFDT)

Page 15: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

+ + + …=

2nd. order 3rd. order 4th. order

ln(1 − )*+)+)*+ = −Tr[)*+)*+]2 − Tr[)*+)*+)*+]3 − Tr[)*+)*+)*+)*+]4

In terms of diagrams

+ + + …

The derivate w.r.t. Gyields GW!

@Ec

@G= ⌃

<latexit sha1_base64="i+XT2UasZQZ1ud5FEFqQWRmR7qw=">AAACP3icbZDLSgMxFIYz3q23qks3wSK4kDIjgroQBBFdKloVOqWcyZypwSQzJBmlDPMSPo1bfQufwJ24FVyY1orXA4Gf/z/nJPmiTHBjff/RGxoeGR0bn5isTE3PzM5V5xfOTJprhg2WilRfRGBQcIUNy63Ai0wjyEjgeXS118vPr1EbnqpT282wJaGjeMIZWGe1q2thooEVYQbachB0v12EWlJWll/eQbkTnvCOhHa15tf9ftG/IhiIGhnUUbv6FsYpyyUqywQY0wz8zLaK3l4msKyEucEM2BV0sOmkAommVfR/VdIV58Q0SbU7ytK++32iAGlMV0auU4K9NL+znvlf1sxtstUquMpyi4p9XJTkgtqU9hDRmGtkVnSdAKa5eytll+AwWQeyshJqVHjDUilBxUWYgOSiG2MCubCOmkk+tcMV/IbzV5yt14ON+vbxRm13fQBugiyRZbJKArJJdskhOSINwsgtuSP35MG79568Z+/lo3XIG8wskh/lvb4DUIqxjg==</latexit>

Page 16: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Deviations w.r.t. experiment(corrected for zero-point vibrations)

MRE MAREPBE 1.2 1.2HF 1.1 1.1MP2 0.2 0.4

RPA 0.5 0.4

(in %)

RPA: lattice constantsJ. Harl et al., PRB 81, 115126 (2010)

Page 17: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

304050100 25

corr

elat

ion

ener

gy(e

V)

volume (ų)

Neon

Argon

Krypton

20 30 40 50 60 70 80 90Volume [ ų]

-150

-100

-50

0

50

Coh

esiv

e En

ergy

[meV

]

LDAPBEACFDTMP2

Argon

C6 coe�cients

RPA(LDA) RPA(PBE) Exp.

Ne 62 53 47

Ar 512 484 455

Kr 1030 980 895

RPA: noble gas solidsJ. Harl and G. Kresse, PRB 77, 045136 (2008)

Page 18: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

QMC(Galli)

RPA EXP

d(Å) 3.426 3.34 3.34

C33 36 36-40

E(meV) 56 48 43-50

1/d4 behavior at short distances

J. Harl, G. Kresse, PRL 103, 056401 (2009).S. Lebeque, et al., PRL 105, 196401 (2010).

Graphite vs. Diamond

Page 19: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

PBE Hartree-Fock

RPA EXP

LiF 570 664 609 621NaF 522 607 567 576NaCl 355 433 405 413MgO 516 587 577 603MgH2 52 113 72 78AlN 262 350 291 321SiC 51 69 64 69

Example: Mg(bulk metal) + H2→ MgH2

Heats of formation w.r.t. normal state at ambient conditions (in kJ/mol)

RPA: heats of formationJ. Harl and G. Kresse, PRL 103, 056401 (2009)

Page 20: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

RPA:• increases surface energy

and• decreases adsorption energy

RPA: CO @ Pt(111) and Rh(111)Schimka et al., Nature Materials 9, 741 (2010)

Page 21: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Schimka et al., Nature Materials 9, 741 (2010)

• DFT does well for the metallicsurface, but not for the CO:2"∗ (LUMO) too close to theFermi level.

• HSE does well for the CO,but not for the surface:d-metal bandwith too large.

• GW gives a good descriptionof both the metallic surfaceas well as of the CO 2"∗ (LUMO).The CO 5% and 1" are slightlyunderbound.

Page 22: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Schimka et al., Nature Materials 9, 741 (2010)

RPA:

• Right site preference

• Good adsorption energies

• Excellent lattice constants

• Good surface energies

Page 23: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Cubic scaling RPA

�0G,G0(q,!) =

1

X

nn0k

2wk(fn0k+q � fn0k)

⇥ h n0k+q|ei(q+G)r| nkih nk|e�i(q+G0)r0 | n0k+qi✏n0k+q � ✏nk � ! � i⌘

As shown by Adler and Wiser, the IP polarizability !" can be straightforwardlycalculated from #, % :

Expensive: this scales as N4!

Page 24: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Now the worst scaling steps are the evaluation of the Greens function (N3), and

(which scales as N3 due to the diagonalization involved in evaluating the “ln”).

Evaluate the Green's function in “imaginary” time:

and the polarizability as:

Followed by a cosine-transform:

But storing G and χ is expensive! → we need small sets of cleverly chosen “τ” and “ω”

Cubic-scaling RPAM. Kaltak, J. Klimeš, and G. Kresse, PRB 90, 054115 (2014)

Ec =

Z 1

0

d!

2⇡Tr{ln[1� �0(i!)⌫] + �0(i!)⌫}

<latexit sha1_base64="MpgHT16zMz7sjYFeugcfTlUSzYE=">AAACdHicbZBLa9wwFIU17iudPjJtl+1CdBhIKR3sIdB0UQiUQJcpZJLAyDXX8vWMiCQbSU4xwr8vvyE/ott0k0U1j0Kb6QWJwznnIvHltRTWxfF1L7p3/8HDRzuP+0+ePnu+O3jx8tRWjeE45ZWszHkOFqXQOHXCSTyvDYLKJZ7lF1+W+dklGisqfeLaGlMFcy1KwcEFKxvAUcY/M6Hddx/u0rVdFlNWGuC+YJXCOXR+wmrReWYUPTEd85RJPUs+ML4QWbwn1q13TDfp+22PddlgGI/j1dBtkWzEkGzmOBvcsqLijULtuARrZ0lcu9SDcYJL7PqssVgDv4A5zoLUoNCmfoWio6PgFLSsTDja0ZX794YHZW2r8tBU4Bb2brY0/5fNGlcepF7ounGo+fqhspHUVXTJlRbCIHeyDQK4EeGvlC8gcHSBfn/EDGr8wSulQBeelaCEbAssoZEusLXlHx1wJXfhbIvTyTjZH3/6tj88nGzA7ZDX5C3ZIwn5SA7JV3JMpoSTK/KT3JBfvZvoTTSMRutq1NvsvCL/TDT+DQ3Kwqc=</latexit>

G(r, r0, i⌧) =X

n

n(r) ⇤n(r

0)e�✏n⌧

<latexit sha1_base64="vd8vvVlVid+OCG3tu1fO9rm7zpk=">AAACb3icbZBdaxQxFIaz41ddv1a98EKQ4FLalXaZKYXqhVDwQi8ruG1hs13OZM60oUlmSE4syzB/zn/hP/C2Xnth9qOorQdCXp73nJPw5rVWntL0eye5dfvO3Xtr97sPHj56/KT39Nmhr4KTOJKVrtxxDh61sjgiRRqPa4dgco1H+fmHuX/0FZ1Xlf1CsxonBk6tKpUEimjaEx83G5GX3LVby3uj3VKCIPABf8+FD2Zquai9itdV52ABTt78QRuR4UmzLTAaOu618xXttNdPh+mi+E2RrUSfrepg2vslikoGg5akBu/HWVrTpAFHSmpsuyJ4rEGewymOo7Rg0E+aRQotX4+k4GXl4rHEF/TviQaM9zOTx04DdOave3P4P28cqHw7aZStA6GVy4fKoDlVfB4pL5RDSXoWBUin4l+5PAMHkmLw3XXh0OKFrIwBWzSiBKP0rMASgqa2Eb680jGu7Ho4N8XhzjDbHb77vNvf31kFt8Zestdsk2Vsj+2zT+yAjZhk39gPdsl+di6TF8mrhC9bk85q5jn7p5LBb4pTvhI=</latexit>

�0(r, r0, i⌧) = �G(r, r0, i⌧)G(r, r0,�i⌧)

<latexit sha1_base64="hbsu+syT++hRXU5XV0w77kufbPc=">AAACbXicdZDfShwxFMazU1vt9o9rS6+UErqIFnSZEcH2oiB4oZcWuird2S5nMmfcYJIZkjOWZZh38zV8gd7aB+iF2d0RWrUfhPz4vnNI+JJCSUdheN0Kniw8fba49Lz94uWr18udlTcnLi+twL7IVW7PEnCopME+SVJ4VlgEnSg8TS4OpvnpJVonc/ONJgUONZwbmUkB5K1R53ssxvJHyDerOMm4rbfm90a9JWOCkn/kX/j24f/TR6LtJht1umEvnIk/hKiBLmt0POr8idNclBoNCQXODaKwoGEFlqRQWLfj0mEB4gLOceDRgEY3rGYd1HzdOynPcuuPIT5z/96oQDs30Ymf1EBjdz+bmo9lg5KyT8NKmqIkNGL+UFYqTjmfFspTaVGQmngAYaX/KxdjsCDI195ejy0a/ClyrcGkVZyBlmqSYgalorqKXXbHvq7ofjkP4WSnF+32Pn/d7e7vNMUtsVX2gW2yiO2xfXbEjlmfCXbFfrEb9rt1E7wL1oL389Gg1ey8Zf8o2LgFU0S7TQ==</latexit>

�0(r, r0, i⌧)CT��! �0(r, r0, i!)

<latexit sha1_base64="MCU36+EEEXPiJMKq4y7NIDDoKrg=">AAACa3icfZBLaxsxFIXlSR+p+4jT7NouRI1pAsHMhEDaXSCbLlOIE4PlmjuaO7aIHoN0p6kZ5q/lf2SfbfoLuuj4UWiT0gtCh3PuQeJLC60CxfFNK9p49PjJ081n7ecvXr7a6my/Pg+u9BIH0mnnhykE1MrigBRpHBYewaQaL9LLk0V+8Q19UM6e0bzAsYGpVbmSQI016QyFnKmvMd+tRJpzX++v7g/1vhIEJd/j4rtX0xmB9+6qEt7wk7Oa/6flDE6B70063bgfL4c/FMladNl6TiednyJzsjRoSWoIYZTEBY0r8KSkxrotyoAFyEuY4qiRFgyGcbUkUPNe42Q8d745lvjS/bNRgQlhbtJm0wDNwv1sYf4rG5WUfxxXyhYloZWrh/JSc3J8gZNnyqMkPW8ESK+av3I5Aw+SGujtnvBo8Uo6Y8BmlcjBKD3PMIdSU12JkP/WDa7kPpyH4vygnxz2P3057B4frMFtsrfsPdtlCTtix+wzO2UDJtk1u2V37EfrLtqJ3kTvVqtRa93ZYX9N1PsFfBW8nQ==</latexit>

The evaluation of the polarizability scales quadratically (N2)!

Page 25: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The “minimax” fit

||⌘||1 := max

axb

|⌘(~↵, ~�, x)|

<latexit sha1_base64="ugZktatsYD60barwZ91ZmsnY7yQ=">AAACZnicbZDfahQxFMaz47+6at0q4oU3waVQoSwzpWAVhII3XlZ028JmWc5kznRDk8yYnKk7zOyD+SheeVvfwQuz0xW09UDCj++cj5N8aamVpzj+3otu3b5z997G/f6Dh482Hw+2nhz7onISx7LQhTtNwaNWFsekSONp6RBMqvEkPX+/6p9coPOqsJ+pLnFq4MyqXEmgIM0Gn9pWIEHbzoSyOdX87TsuKpsFC1IDQuMXvujudNkIA4sl7wx8R1ygFKDLOezyjtMg7/LFq3Y2GMajuCt+E5I1DNm6jmaDXyIrZGXQktTg/SSJS5o24EhJjcu+qDyWIM/hDCcBLRj006b7/JJvByXjeeHCscQ79W9HA8b72qRh0gDN/fXeSvxfb1JRfjBtlC0rQiuvFuWV5lTwVZI8Uw4l6ToASKfCW7mcgwNJIbz+tnBo8assjAGbNSIHo3SdYQ6VphClz/9wiCu5Hs5NON4bJfujNx/3h4d76+A22Av2ku2whL1mh+wDO2JjJtk39oNdsp+9y2gzehY9vxqNemvPU/ZPRfw345q9IQ==</latexit>

⌘(~↵, ~�, x) = f(x)�X

i

�i'(↵i, x)

<latexit sha1_base64="vXlhMmIuuFvajkq/dI5+l4Fd0GQ=">AAACXnicbZDRahNBFIYnq7Y1WpvqjeDNYCikEMNuKVgvhII3gjcVTFvIhOXs7Nlm6MzsMnM2Nix5KJ9GvKvv4YWTTQRtPTCcj/8/h5n5s0orT3H8oxM9ePhoa3vncffJ091ne7395+e+rJ3EsSx16S4z8KiVxTEp0nhZOQSTabzIrj+s/Is5Oq9K+4UWFU4NXFlVKAkUpLT3SSABH4g5SgG6msGQt5wFechvDvl7XgxCe8OFr02qeOus+hxcNVOD9VaqhjeHaa8fj+K2+H1INtBnmzpLe79EXsraoCWpwftJElc0bcCRkhqXXVF7rEBewxVOAlow6KdN++klPwhKzovShWOJt+rfGw0Y7xcmC5MGaObveivxf96kpuJk2ihb1YRWri8qas2p5KsEea4cStKLACCdCm/lcgYOJIWcuwfCocWvsjQGbN6IAozSixwLqDUtG+GLPxziSu6Gcx/Oj0bJ8ejd5+P+6dEmuB32ir1mA5awt+yUfWRnbMwk+8a+s1v2s3MbbUW70d56NOpsdl6wfyp6+RukKbcf</latexit>

Express a function ! " in a basis of N functions # $%, " ' = 1, … , + ,such that the error:

is “as small as possible”.

Choose $%, ,% ' = 1, … , + so that the maximum error:

is minimized.

This solution, $%∗, ,%∗ ' = 1, … , + , is the so-called ”minimax” solution

Page 26: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The “minimax” frequency gridM. Kaltak, J. Klimeš, and G. Kresse, JCTC 10, 2498 (2014)

�(i!) =X

µ

�µ�(!, xµ)

<latexit sha1_base64="cWdrHM6G5sImfdsFhRdfRWYh6Bo=">AAACTnicbZBLaxsxFIU1Th+u+3LbZTeiJuBAMTMh0JZSCGTTZQp1ErDMcEdzxxbRY9CjrRn8Y/pruk2W+SNdNaQa24U8ekDwcc69SDpFLYXzaXqRdLbu3X/wsPuo9/jJ02fP+y9eHjkTLMcxN9LYkwIcSqFx7IWXeFJbBFVIPC5OD9r8+BtaJ4z+6hc1ThXMtKgEBx+tvP+R8bmgQ8GMwhnQHfqJUuaCyhumwpK2aR6JsnouhnQ99Zb+aL2dvD9IR+lK9C5kGxiQjQ7z/h9WGh4Uas8lODfJ0tpPG7BecInLHgsOa+CnMMNJRA0K3bRZfXJJt6NT0srYeLSnK/f6RgPKuYUq4qQCP3e3s9b8XzYJvno/bYSug0fN1xdVQVJvaNsYLYVF7uUiAnAr4lspn4MF7mOvvW1mUeN3bpQCXTasAiXkosQKgvTLhrnqH8e6stvl3IWj3VG2N/rwZW+wv7sprktekzdkSDLyjuyTz+SQjAknP8kvckbOk7Pkd3KZXK1HO8lm5xW5oU73L6k6tFM=</latexit>

�µ(=ia) = hi|r|aiha|r0|ii

<latexit sha1_base64="Wu2zQxduoftxDWs3VYfLFH4cljE=">AAACYnicbZBLaxsxFIXladqm7stplu3iEhOabsxMCDRZBALddJcU6iRgGXNHc8cWkTSDpGkw4/lZ+TGl2/RfdBH5Bc3jgOBwvnuRdNJSSefj+Hcrerbx/MXLzVft12/evnvf2fpw7orKCuqLQhX2MkVHShrqe+kVXZaWUKeKLtKrb3N+8Yusk4X56aclDTWOjcylQB+iUeeUi4kc1VxXe8cSvzRwDFyhGSsCCbOapznYZgYI3C7TNUWYwRJ/Dlyu+ajTjXvxQvDYJCvTZSudjTr/eFaISpPxQqFzgyQu/bBG66VQ1LR55ahEcYVjGgRrUJMb1ouPN7AbkgzywoZjPCzS/zdq1M5NdRomNfqJe8jm4VNsUPn8cFhLU1aejFhelFcKfAHzFiGTloRX02BQWBneCmKCFoUPXbd3uSVD16LQGk1W8xy1VNOMcqyUb2ru8rUPdSUPy3lszvd7yUHv6MdB92R/Vdwm+8h22B5L2Fd2wr6zM9Zngt2wP+yW/W3dRu1oK9pejkat1c42u6fo0x2uYbmU</latexit>

xµ(=ia) = ✏a � ✏i

<latexit sha1_base64="GMH5OpI2HEEEise4QHIw6YEFGPM=">AAACOXicbZDLSgMxFIYzXmu9VV26CRZFF5aZIqgLoeDGpYJVoVPKmcwZDSaZIcmoZegb+DRu9UVcuhO3bl2Y1orXA4Ev/38OJ/mjTHBjff/RGxkdG5+YLE2Vp2dm5+YrC4snJs01wyZLRarPIjAouMKm5VbgWaYRZCTwNLrc7/unV6gNT9Wx7WbYlnCueMIZWCd1Kms3nSKU+foeh40e3aMhZoYL5wDd/LrwTqXq1/xB0b8QDKFKhnXYqbyFccpyicoyAca0Aj+z7QK05UxgrxzmBjNgl3COLYcKJJp2MfhPj646JaZJqt1Rlg7U7xMFSGO6MnKdEuyF+e31xf+8Vm6TnXbBVZZbVOxjUZILalPaD4fGXCOzousAmOburZRdgAZmXYTl1VCjwmuWSgkqLsIEJBfdGBPIhe0VoUk+2cUV/A7nL5zUa8FWbfdoq9qoD4MrkWWyQtZJQLZJgxyQQ9IkjNySO3JPHrx778l79l4+Wke84cwS+VHe6ztGWK3w</latexit>

�(!, x) =2x

x

2 + !

2

<latexit sha1_base64="N7NVeJ9LRQPl5knIClVcrfKC1oQ=">AAACPHicbZDNaxNBGMZnWz9iWjWtRy+DoZCghN2lYHsQCr14rGDaQjYJ786+mwydj2Vm1iYs+zf41/Qa/w7v3sSrJw9OPgRNfWDg4Xnel5n5pYXg1oXh12Bn98HDR48bT5p7+0+fPW8dHF5aXRqGfaaFNtcpWBRcYd9xJ/C6MAgyFXiV3pwv+6tPaCzX6qObFziUMFE85wycj8atblJMOe0kWuIE3sy69B1NcgOsimd1NRvFr9fNKK7HrXbYC1ei9020MW2y0cW49SvJNCslKscEWDuIwsINKzCOM4F1MyktFsBuYIIDbxVItMNq9aWaHvkko7k2/ihHV+nfGxVIa+cy9ZMS3NRud8vwf92gdPnJsOKqKB0qtr4oLwV1mi750IwbZE7MvQFmuH8rZVPwRJyn2DxKDCq8ZVpKUFmV5CC5mGeYQylcXSU2/+M9rmgbzn1zGfei497ph+P2WbwB1yAvySvSIRF5S87Ie3JB+oSRz+SOLMiXYBF8C74HP9ajO8Fm5wX5R8HP3yxfrtk=</latexit>

E(2)c = � 1

8⇡

Z 1

�1d!{�(i!)⌫}2

<latexit sha1_base64="G/8IpZ3llhz0IPw7sv1I6/WfC78=">AAACZXicbZBdaxQxFIazUz/qau1axRsvDC6F7UWXmaVgeyEURPCyitsWNrtDJnOyG5qPIclYhjD/y7/ijbf1R3hh9kPQ1hcSnrznHJK8RSWF82n6vZNs3bv/4OH2o+7jJztPd3vP9s6dqS2DMTPS2MuCOpBCw9gLL+GyskBVIeGiuHq/rF98BeuE0V98U8FU0bkWXDDqo5X3Pn+YhcHooM0ZfocPCbeUhawNx6QSLSZC+1ncuG/ycLiGFpfEKJhTTAImbCEGYn0+ILrGpJ2N8l4/HaYr4buQbaCPNjrLe79IaVitQHsmqXOTLK38NFDrBZPQdkntoKLsis5hElFTBW4aVn9v8X50SsyNjUt7vHL/nghUOdeoInYq6hfudm1p/q82qT0/ngahq9qDZuuLeC2xN3gZJC6FBeZlE4EyK+JbMVvQmJ+PcXf3iQUN18woRXUZCKdKyKYETmvp20Ac/8Mxrux2OHfhfDTMjoYnn476p6NNcNvoFXqDBihDb9Ep+ojO0Bgx9A39QDfoZ+cm2UleJC/XrUlnM/Mc/aPk9W9Vb7tl</latexit>

The IP polarizability can be written as (Adler&Wiser):

where

Determine a frequency grid and quadrature weights by expressing the“2nd-order direct Møller-Plesset energy”

in the basis ! "#, % & = 1,… , * in the minimax sense:

⌘(~�, ~!, x) =1

x

� 1

NX

k=1

�k�2(!k, x)

<latexit sha1_base64="IoNYfVkTuG5bGr+vnCtMPaVTDCw=">AAACeXicbZFLbxMxEICd5VXCK8CRiyGqlKIS7YZKwKFSJS6cUJFIWylOV7PecWKt7V3Z3pJotf+QP8Df4NoecB4IaBnJ0ucZz9j6nFVKOh/HPzrRrdt37t7bud998PDR4ye9p89OXFlbjmNeqtKeZeBQSYNjL73Cs8oi6EzhaVZ8XNVPL9A6WZqvflnhVMPMSCE5+JBKe4KhBzpgF8jZDLSGfbrmUuMs8GKPHlImLPAmaZtFS9/82bFKtszV+vxz2hSHSUs3A9KCsmouz0eDzZC02F/spb1+PIzXQW9CsoU+2cZx2rtieclrjcZzBc5Nkrjy0wasl1xh22W1wwp4ATOcBDSg0U2btY+W7oZMTkVpwzKerrN/dzSgnVvqLJzU4Ofuem2V/F9tUnvxftpIU9UeDd9cJGpFfUlXcmkuLXKvlgGAWxneSvkcgi8fvqC7yywa/MbLYMnkDROgpVrmKKBWPvh04jcHXcl1OTfhZDRMDoYfvhz0j0ZbcTvkBXlFBiQh78gR+USOyZhw8p38JJfkqnMZvYwG0evN0aiz7XlO/ono7S9kfcMQ</latexit>

{(�⇤k ,!

⇤k)|k = 1, .., N}

<latexit sha1_base64="M06MiGP3+4XUDHvd7p7EBwnsUa8=">AAACOXicbZBPSxtBGMZn/dPatLbRHnsZDBaVsOyKoB4EoRdPxUKjQiYN786+G4fMn2VmVglrvoGfxqv9Ij16K7326sFJTKHVPjDw43nel5l5slIK55PkRzQ3v7D44uXSq8brN8tv3zVXVk+cqSzHDjfS2LMMHEqhseOFl3hWWgSVSTzNhp8m+ekFWieM/upHJfYUDLQoBAcfrH7zI6vpBhuAUvBtqz9sM6NwMMXNKzo8SNtx3P7Mxv1mK4mTqehzSGfQIjMd95v3LDe8Uqg9l+BcN01K36vBesEljhusclgCH8IAuwE1KHS9evqfMV0PTk4LY8PRnk7dvzdqUM6NVBYmFfhz9zSbmP/LupUv9nq10GXlUfPHi4pKUm/opByaC4vcy1EA4FaEt1J+Dha4DxU21plFjZfchLJ0XrMClJCjHAuopB/XzBV/ONSVPi3nOZxsx+lOvP9lp3W4PStuiXwga2SDpGSXHJIjckw6hJNrckNuyffoNrqLfka/HkfnotnOe/KPot8P+v+smQ==</latexit>

Eg x max(✏a � ✏i)

<latexit sha1_base64="VfkIrO967P2/TvbsIf68htmFGqA=">AAACPnicbZDLSgMxFIYz3q23qks3wSIoYpkRQd0JIrhUsCp0SjmTOVODSWZMMmoZ+hA+jVt9DF/Anbh14cL0ong7EPLx/+dwkj/KBDfW95+8oeGR0bHxicnS1PTM7Fx5fuHUpLlmWGOpSPV5BAYFV1iz3Ao8zzSCjASeRZf7Xf/sGrXhqTqx7QwbElqKJ5yBdVKzvH7QbNFQ4BW97V+hhNvVEDPDhfNh4wv5WrNc8at+r+hfCAZQIYM6apbfwzhluURlmQBj6oGf2UYB2nImsFMKc4MZsEtoYd2hAommUfQ+1aErTolpkmp3lKU99ftEAdKYtoxcpwR7YX57XfE/r57bZKdRcJXlFhXrL0pyQW1KuwnRmGtkVrQdANPcvZWyC9DArMuxtBJqVHjDUilBxUWYgOSiHWMCubCdIjTJJ7u4gt/h/IXTzWqwVd093qrsbQ6CmyBLZJmskoBskz1ySI5IjTByR+7JA3n0Hrxn78V77bcOeYOZRfKjvLcPvuewMg==</latexit>

E(2)c = � 1

8⇡

Z 1

�1d!{�(i!)⌫}2

<latexit sha1_base64="G/8IpZ3llhz0IPw7sv1I6/WfC78=">AAACZXicbZBdaxQxFIazUz/qau1axRsvDC6F7UWXmaVgeyEURPCyitsWNrtDJnOyG5qPIclYhjD/y7/ijbf1R3hh9kPQ1hcSnrznHJK8RSWF82n6vZNs3bv/4OH2o+7jJztPd3vP9s6dqS2DMTPS2MuCOpBCw9gLL+GyskBVIeGiuHq/rF98BeuE0V98U8FU0bkWXDDqo5X3Pn+YhcHooM0ZfocPCbeUhawNx6QSLSZC+1ncuG/ycLiGFpfEKJhTTAImbCEGYn0+ILrGpJ2N8l4/HaYr4buQbaCPNjrLe79IaVitQHsmqXOTLK38NFDrBZPQdkntoKLsis5hElFTBW4aVn9v8X50SsyNjUt7vHL/nghUOdeoInYq6hfudm1p/q82qT0/ngahq9qDZuuLeC2xN3gZJC6FBeZlE4EyK+JbMVvQmJ+PcXf3iQUN18woRXUZCKdKyKYETmvp20Ac/8Mxrux2OHfhfDTMjoYnn476p6NNcNvoFXqDBihDb9Ep+ojO0Bgx9A39QDfoZ+cm2UleJC/XrUlnM/Mc/aPk9W9Vb7tl</latexit>

E(2)c ⇡ � 1

8⇡

NX

k=1

�⇤k{�(i!⇤

k)⌫}2

<latexit sha1_base64="FbYjP+9kJyLKx6LI+pB8wPsroxw=">AAACaXicbZBdaxNBFIYn61eNH031RvRmMBRSwbAbCtYLoSCCV1LBpIVMspydnE2GzMcyM9sahv1n/hFvva0/wQsnaQRtfWHgnfecw5l5ikoK59P0eyu5dfvO3Xs799sPHj56vNvZezJyprYch9xIY88KcCiFxqEXXuJZZRFUIfG0WL5f10/P0Tph9Be/qnCiYK5FKTj4GOWd0Ydp6A0OmpxTBlVlzVf6mpUWeMiacMQq0VDmajX9lIfluyxe5qAUTF/lS8oCZXwheoIZhfNNdsB0TVkzHeSdbtpPN6I3TbY1XbLVSd75xWaG1wq15xKcG2dp5ScBrBdcYtNmtcMK+BLmOI5Wg0I3CZv/N3Q/JjNaGhuP9nST/j0RQDm3UkXsVOAX7nptHf6vNq59eTQJQle1R82vFpW1pN7QNUw6Exa5l6togFsR30r5AiI9H5G395lFjRfcRGJ6FlgJSsjVDEuopW8Cc+UfH3Fl1+HcNKNBPzvsv/182D0ebMHtkBfkJemRjLwhx+QjOSFDwsk38oNckp+ty2QveZY8v2pNWtuZp+QfJd3f7ya8eA==</latexit>

Page 27: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The “minimax” time gridM. Kaltak, J. Klimeš, and G. Kresse, JCTC 10, 2498 (2014)

�µ(=ia) = hi|r|aiha|r0|ii

<latexit sha1_base64="Wu2zQxduoftxDWs3VYfLFH4cljE=">AAACYnicbZBLaxsxFIXladqm7stplu3iEhOabsxMCDRZBALddJcU6iRgGXNHc8cWkTSDpGkw4/lZ+TGl2/RfdBH5Bc3jgOBwvnuRdNJSSefj+Hcrerbx/MXLzVft12/evnvf2fpw7orKCuqLQhX2MkVHShrqe+kVXZaWUKeKLtKrb3N+8Yusk4X56aclDTWOjcylQB+iUeeUi4kc1VxXe8cSvzRwDFyhGSsCCbOapznYZgYI3C7TNUWYwRJ/Dlyu+ajTjXvxQvDYJCvTZSudjTr/eFaISpPxQqFzgyQu/bBG66VQ1LR55ahEcYVjGgRrUJMb1ouPN7AbkgzywoZjPCzS/zdq1M5NdRomNfqJe8jm4VNsUPn8cFhLU1aejFhelFcKfAHzFiGTloRX02BQWBneCmKCFoUPXbd3uSVD16LQGk1W8xy1VNOMcqyUb2ru8rUPdSUPy3lszvd7yUHv6MdB92R/Vdwm+8h22B5L2Fd2wr6zM9Zngt2wP+yW/W3dRu1oK9pejkat1c42u6fo0x2uYbmU</latexit>

xµ(=ia) = ✏a � ✏i

<latexit sha1_base64="GMH5OpI2HEEEise4QHIw6YEFGPM=">AAACOXicbZDLSgMxFIYzXmu9VV26CRZFF5aZIqgLoeDGpYJVoVPKmcwZDSaZIcmoZegb+DRu9UVcuhO3bl2Y1orXA4Ev/38OJ/mjTHBjff/RGxkdG5+YLE2Vp2dm5+YrC4snJs01wyZLRarPIjAouMKm5VbgWaYRZCTwNLrc7/unV6gNT9Wx7WbYlnCueMIZWCd1Kms3nSKU+foeh40e3aMhZoYL5wDd/LrwTqXq1/xB0b8QDKFKhnXYqbyFccpyicoyAca0Aj+z7QK05UxgrxzmBjNgl3COLYcKJJp2MfhPj646JaZJqt1Rlg7U7xMFSGO6MnKdEuyF+e31xf+8Vm6TnXbBVZZbVOxjUZILalPaD4fGXCOzousAmOburZRdgAZmXYTl1VCjwmuWSgkqLsIEJBfdGBPIhe0VoUk+2cUV/A7nL5zUa8FWbfdoq9qoD4MrkWWyQtZJQLZJgxyQQ9IkjNySO3JPHrx778l79l4+Wke84cwS+VHe6ztGWK3w</latexit>

Alternatively the IP polarizability can be written as:

where

Determine a frequency grid and quadrature weights by expressing the“2nd-order direct Møller-Plesset energy”

in the basis !" #$, & ' = 1, … , + in the minimax sense:

Eg x max(✏a � ✏i)

<latexit sha1_base64="VfkIrO967P2/TvbsIf68htmFGqA=">AAACPnicbZDLSgMxFIYz3q23qks3wSIoYpkRQd0JIrhUsCp0SjmTOVODSWZMMmoZ+hA+jVt9DF/Anbh14cL0ong7EPLx/+dwkj/KBDfW95+8oeGR0bHxicnS1PTM7Fx5fuHUpLlmWGOpSPV5BAYFV1iz3Ao8zzSCjASeRZf7Xf/sGrXhqTqx7QwbElqKJ5yBdVKzvH7QbNFQ4BW97V+hhNvVEDPDhfNh4wv5WrNc8at+r+hfCAZQIYM6apbfwzhluURlmQBj6oGf2UYB2nImsFMKc4MZsEtoYd2hAommUfQ+1aErTolpkmp3lKU99ftEAdKYtoxcpwR7YX57XfE/r57bZKdRcJXlFhXrL0pyQW1KuwnRmGtkVrQdANPcvZWyC9DArMuxtBJqVHjDUilBxUWYgOSiHWMCubCdIjTJJ7u4gt/h/IXTzWqwVd093qrsbQ6CmyBLZJmskoBskz1ySI5IjTByR+7JA3n0Hrxn78V77bcOeYOZRfKjvLcPvuewMg==</latexit>

�̂(i⌧) =X

µ

�µ�̂(⌧, xµ)

<latexit sha1_base64="zXe5UiJ+MMQS/aZk4veJxK0+Qos=">AAACU3icbZBRaxQxFIWzY9W6Wrvqoy/BpbAFWWZKQX0QFnzxsYLbFjbLcCdzpxOaZIbkRl2G/Tv+Gl8r+Fv0wcx2BW29EPg451ySnKLVylOa/hgkd3bu3ru/+2D48NHe4/3Rk6envglO4lw2unHnBXjUyuKcFGk8bx2CKTSeFZfvev/sEzqvGvuRVi0uDVxYVSkJFKV8NBM1EBeyVnyiBEHgh/wt58IHk3fChPXGyyPxPinaWk14n3vJv/TqYT4ap9N0M/w2ZFsYs+2c5KNfomxkMGhJavB+kaUtLTtwpKTG9VAEjy3IS7jARUQLBv2y2/x0zQ+iUvKqcfFY4hv1740OjPcrU8SkAar9Ta8X/+ctAlWvl52ybSC08vqiKmhODe9r46VyKEmvIoB0Kr6VyxocSIrlDg+EQ4ufZWMM2LITFRilVyVWEDStO+GrPxzrym6WcxtOj6bZ8fTNh+Px7Ghb3C57zl6wCcvYKzZj79kJmzPJvrJv7Ip9H1wNfiZJsnMdTQbbnWfsn0n2fgOdubRb</latexit>

�̂(⌧, x) = e

�x|⌧ |

<latexit sha1_base64="quUVGVAI5FDkLzkUTKjc+IoY1bc=">AAACNXicbZBPSxtBGMZntbUaq0Y9ehkMgoUadoNQexCEXjwqGBWyMbw7+64ZnJldZt61hjV3P41X+1U8eCu9+gU8dBJTqH8eGPjxPO/LzDxJoaSjMLwPpqY/fJz5NDtXm/+8sLhUX145dnlpBbZFrnJ7moBDJQ22SZLC08Ii6EThSXLxY5SfXKJ1MjdHNCiwq+HcyEwKIG/16utxH4jHRV/yzZig/Hr1he9yPKu2rvj1yLge9uqNsBmOxd9CNIEGm+igV3+K01yUGg0JBc51orCgbgWWpFA4rMWlwwLEBZxjx6MBja5bjf8y5BveSXmWW38M8bH7/0YF2rmBTvykBuq719nIfC/rlJTtdCtpipLQiOeLslJxyvmoGJ5Ki4LUwAMIK/1bueiDBUG+vtpGbNHgT5FrDSat4gy0VIMUMygVDavYZf/Y1xW9LuctHLea0Xbz++F2Y681KW6WrbF1tski9o3tsX12wNpMsBt2y+7Yr+AueAh+B3+eR6eCyc4qe6Hg8S9dAKvx</latexit>

⌘̂(~�,~⌧ , x) =1

2x�

NX

k=1

�k�̂2(⌧k, x)

<latexit sha1_base64="9TXhPAUVj1stXrcIBRweJkYRQXo=">AAACcXicbZDNahsxFIXl6V/q/sRtV6UbERNwqGtmTKDtIhDopquSQp0ELHu4o7lji5E0g6RJbYZ5u75EX6HbdNlF5bELbdILgsM590jiS0oprAvD753gzt179x/sPew+evzk6X7v2fNzW1SG44QXsjCXCViUQuPECSfxsjQIKpF4keQfNvnFFRorCv3FrUucKVhokQkOzltxb86W4Bg6oAN2hZxZsVAwpK12UA3p6oieUJYZ4HXU1ONVQ99QZis1/xTX+UnU0G0lzml7U7kU8/FgU43z4eoo7vXDUdgOvS2ineiT3ZzFvV8sLXilUDsuwdppFJZuVoNxgktsuqyyWALPYYFTLzUotLO65dDQQ++kNCuMP9rR1v27UYOydq0Sv6nALe3NbGP+L5tWLns3q4UuK4eabx/KKkldQTdQaSoMcifXXgA3wv+V8iV4Zs6j7x4ygxq/8kIp0GnNMlBCrlPMoJKuqZnN/miPK7oJ57Y4H4+i49H7z8f90/EO3B55RQ7IgETkLTklH8kZmRBOvpEf5Jr87FwHLwMaHGxXg86u84L8M8Hr347yv3Q=</latexit>

{(�⇤k, ⌧

⇤k )|k = 1, .., N}

<latexit sha1_base64="YgMBv6oX/c06UH3q3yVCokqBZTg=">AAACN3icbZDNahsxFIU16V/i/jntMhtRN5AWM8yEQJNFINBNVyWBOAlYrrmjueMIS5pButNgJn6BPk23yZtk1V3ptvsuKjsOpEkPCD7OuRdJJ6u08pQkV9HSg4ePHj9ZXmk9ffb8xcv26qsjX9ZOYk+WunQnGXjUymKPFGk8qRyCyTQeZ+OPs/z4KzqvSntIkwoHBkZWFUoCBWvYfisaviG8Ghn48n447gqCegbvzvl4N+3GcfezmA7bnSRO5uL3IV1Ahy20P2z/EXkpa4OWpAbv+2lS0aABR0pqnLZE7bECOYYR9gNaMOgHzfw3U74enJwXpQvHEp+7tzcaMN5PTBYmDdCpv5vNzP9l/ZqK7UGjbFUTWnl9UVFrTiWfVcNz5VCSngQA6VR4K5en4EBSKLC1LhxaPJOlMWDzRhRglJ7kWECtadoIX9xwqCu9W859ONqM061452Crs7e5KG6ZrbE3bIOl7APbY5/YPusxyb6x7+yCXUYX0Y/oZ/TrenQpWuy8Zv8o+v0Xbhir1A==</latexit>

E(2)c ⇡ �1

4

NX

k=1

�⇤k{�̂(i⌧⇤k )⌫}2

<latexit sha1_base64="G/Ne2/uKdSbTITysDzcLQsbEAFY=">AAACaXicbZDLihNBFIYr7W2Mt4xuRDeFYSAjGLpDwHEhDIjgSkYwmYFU0pyurk6K1KWpi2Mo+s18Ebdux0dwYXUmgs74Q8FX/zmHU/UXteDWpen3TnLj5q3bd/budu/df/DwUW//8dRqbyibUC20OSvAMsEVmzjuBDurDQNZCHZarN+19dMvzFiu1We3qdlcwlLxilNw0cp70/eLMBgdNjnFBOra6K/4FakM0JA1YdxgYr1cfMzD+m3WXvhSwuJlvsYkYLIChwld8QEnDnxrHxLlMWkWo7zXT4fpVvg6ZDvoo51O8t4vUmrqJVOOCrB2lqW1mwcwjlPBmi7xltVA17Bks4gKJLPzsP1/gw+iU+JKm3iUw1v374kA0tqNLGKnBLeyV2ut+b/azLvqaB64qr1jil4uqrzATuM2TFxyw6gTmwhADY9vxXQFMT0XI+8eEMMUO6daSlBlIBVILjYlq8AL1wRiqz8c48quhnMdpqNhNh6++TTuH492we2h5+gFGqAMvUbH6AM6QRNE0Tf0A12gn52LZD95mjy7bE06u5kn6B8l/d+T7bxH</latexit>

E(2)c = �1

4

Z 1

�1d⌧{�̂(i⌧)⌫}2

<latexit sha1_base64="yIpMA1vR/7NUIq8WKvD1fhOFMPE=">AAACYnicbZDLahsxFIbl6S11L3GaZbsQNQFnETNjDG0XhUAJZNcU6iRg2cMZjSYWkTSDdKZlEPNYfZiSbfIWWUS+FNqkByQ+/v8cjvRnlZIO4/h3J3r0+MnTZ1vPuy9evnq93dt5c+rK2nIx4aUq7XkGTihpxAQlKnFeWQE6U+Isu/yy9M9+COtkab5jU4mZhgsjC8kBg5T2vh7N/WC036acfqYHrLDAfdL6cUuZNDgPV4FN6g/W0NKcIdSUecoWgIwv5EAulX1mgtrOR2mvHw/jVdGHkGygTzZ1kvZuWV7yWguDXIFz0ySucObBouRKtF1WO1EBv4QLMQ1oQAs386uPt3QvKDktShuOQbpS/57woJ1rdBY6NeDC3feW4v+8aY3Fx5mXpqpRGL5eVNSKYkmXKdJcWsFRNQGAWxneSvkCQngYsu7uMSuM+MlLrcHknhWgpWpyUUCtsPXMFX84xJXcD+chnI6GyXj46du4fzjaBLdF3pL3ZEAS8oEckmNyQiaEk1/kilyTm8511I12ot11a9TZzOySfyp6dweo97op</latexit>

E(2)c = �1

4

Z 1

�1d⌧{�̂(i⌧)⌫}2

<latexit sha1_base64="yIpMA1vR/7NUIq8WKvD1fhOFMPE=">AAACYnicbZDLahsxFIbl6S11L3GaZbsQNQFnETNjDG0XhUAJZNcU6iRg2cMZjSYWkTSDdKZlEPNYfZiSbfIWWUS+FNqkByQ+/v8cjvRnlZIO4/h3J3r0+MnTZ1vPuy9evnq93dt5c+rK2nIx4aUq7XkGTihpxAQlKnFeWQE6U+Isu/yy9M9+COtkab5jU4mZhgsjC8kBg5T2vh7N/WC036acfqYHrLDAfdL6cUuZNDgPV4FN6g/W0NKcIdSUecoWgIwv5EAulX1mgtrOR2mvHw/jVdGHkGygTzZ1kvZuWV7yWguDXIFz0ySucObBouRKtF1WO1EBv4QLMQ1oQAs386uPt3QvKDktShuOQbpS/57woJ1rdBY6NeDC3feW4v+8aY3Fx5mXpqpRGL5eVNSKYkmXKdJcWsFRNQGAWxneSvkCQngYsu7uMSuM+MlLrcHknhWgpWpyUUCtsPXMFX84xJXcD+chnI6GyXj46du4fzjaBLdF3pL3ZEAS8oEckmNyQiaEk1/kilyTm8511I12ot11a9TZzOySfyp6dweo97op</latexit>

Page 28: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

�(i!k) =NX

l=1

akl�̂(i⌧l)

<latexit sha1_base64="QjsHRhJkWZzAUZcU+q5XLlTYLxM=">AAACSnicbZDNahRBFIWrx6hx/Bvj0k3hEEg2Q3cIRBeBQDZZSQQnCUyNze3q2zPF1E9TPwlD04/i02QbH8DXcCe6sGbSgiYeKPg4516q6hS1FM6n6bek92Dj4aPHm0/6T589f/Fy8GrrzJlgOY65kcZeFOBQCo1jL7zEi9oiqELiebE4XuXnl2idMPqTX9Y4VTDTohIcfLTywQHjc7EjmFE4g3yxSw8pc0F9/pA38jBrKeTNQraUzcF3kx5CLnfzwTAdpWvR+5B1MCSdTvPBL1YaHhRqzyU4N8nS2k8bsF5wiW2fBYc18AXMcBJRg0I3bdYfbOl2dEpaGRuP9nTt/r3RgHJuqYo4qcDP3d1sZf4vmwRfvZs2QtfBo+a3F1VBUm/oqi1aCovcy2UE4FbEt1I+Bwvcx07728yixitulAJdNqwCJeSyxAqC9G3DXPWHY13Z3XLuw9neKNsfvf+4Pzza64rbJG/IW7JDMnJAjsgJOSVjwskXck1uyNfkJvme/Eh+3o72km7nNflHvY3fK/qzvw==</latexit>

The non-uniform cosine transformM. Kaltak, J. Klimeš, and G. Kresse, JCTC 10, 2498 (2014)

c(~wk, x) = �(!

⇤k, x)�

NX

l=1

wkl cos(!⇤k⌧

⇤l )

ˆ

�(⌧

⇤l , x)

<latexit sha1_base64="Gd52GqemObQngmuo+4bSKm6uSSs=">AAACfHicbVFdaxNBFJ2sXzV+NOqjL4OxkKoNu6X48VAo+OKTVDBtIZMsd2fvJkPmY5mZbQ3L/kaf/SG+SXWSrFBbDwxzOPfce4czWSmF83H8oxPdun3n7r2t+90HDx893u49eXriTGU5jriRxp5l4FAKjSMvvMSz0iKoTOJptvi4qp+eo3XC6K9+WeJEwUyLQnDwQUp7gqGHKacDys6R04t08ebb7iEr52LAjMIZTF+tpT3mKjX9nNbyMGmCrV7IhjJu3BUb81CFW+5SNge/mdFKYULa68fDeA16kyQt6ZMWx2nvF8sNrxRqzyU4N07i0k9qsF5wiU2XVQ5L4AuY4ThQDQrdpF5H0tCdoOS0MDYc7elavdpRg3JuqbLgVODn7nptJf6vNq588X5SC11WHjXfLCoqSb2hq3xpLixyL5eBALcivJXyOVjgPvxCd4dZ1HjBjVKg85oVoIRc5lhAJX1TM1f85SGu5Ho4N8nJ/jA5GH74ctA/2m+D2yLPyQsyIAl5R47IJ3JMRoST7+QnuSS/O5fRy+h1tLexRp225xn5B9HbP+S+w6I=</latexit>

{w⇤kl|k, l = 1, .., N}

<latexit sha1_base64="IyzUD9l+hrTbc/DjlEtFXW8bqPk=">AAACLHicbZBBSxtBGIZnra0a25q2J/EyNARKCctuCNgeCoKXnoqC0UA2Dd/OfpsMmZldZmYrYbv01/Sqf8aLFK/+Cg9OYgSb+MLAw/t+HzPzxrngxgbBtbf2Yv3lq43Nrdr26zdvd+rv3p+arNAMuywTme7FYFBwhV3LrcBerhFkLPAsnhzO8rNfqA3P1Imd5jiQMFI85Qyss4b13aik5z8/D8uJqH7TSUt8C1u+3/oRVcN6I/CDuegqhAtokIWOhvW7KMlYIVFZJsCYfhjkdlCCtpwJrGpRYTAHNoER9h0qkGgG5fwLFW06J6Fppt1Rls7dpxslSGOmMnaTEuzYLGcz87msX9j0y6DkKi8sKvZwUVoIajM664MmXCOzYuoAmOburZSNQQOzrrVaM9Ko8JxlUoJKyigFycU0wRQKYasyMukju7rC5XJW4bTthx3/63GncdBeFLdJ9shH8omEZJ8ckO/kiHQJI3/IX3JBLr0L78r75908jK55i50P5D95t/ehx6f3</latexit>

akl = wkl cos(!⇤k⌧

⇤l )

<latexit sha1_base64="i3wA9e9vS4XGxKVzwYgmfjxWL8Q=">AAACO3icbZBNaxRBEIZ7osa4mmSTHL00LoE1h2VmCUQPgUAuHhNwk8DOOtT01Gya7Y+hu8awDPsX/DVe4//w7E1yzc2DvR+CJhY0/fC+VVT3m1dKeorj79Hak6fP1p9vvGi9fLW5td3e2b3wtnYCB8Iq665y8KikwQFJUnhVOQSdK7zMJ6dz//IzOi+t+UjTCkcaxkaWUgAFKWt3IWsmasaP+c0SUmF9N7Uax/DpIJukBHW41dus3Yl78aL4Y0hW0GGrOsvav9LCilqjIaHA+2ESVzRqwJEUCmettPZYgZjAGIcBDWj0o2bxoxnfD0rBS+vCMcQX6t8TDWjvpzoPnRro2j/05uL/vGFN5btRI01VExqxXFTWipPl83h4IR0KUtMAIJwMb+XiGhwICiG29lOHBm+E1RpM0aQlaKmmBZZQK5o1qS//cIgreRjOY7jo95LD3vvzw85JfxXcBnvN3rAuS9gRO2Ef2BkbMMG+sK/sln2LbqMf0c/obtm6Fq1m9tg/Fd3/BkzurvQ=</latexit>

�̂(i⌧) =1

Z 1

0d!�(i!) cos(!⌧)

<latexit sha1_base64="QLXKyjNiOYnj1NzZxJvaVYpUntk=">AAACb3icbZDLahRBFIZr2lscb6MuXAhSOARmNkN3CBgXQsCNywhOEpgah9PVp2eK1KWpOm1omn4538I3cBvXLqy5KJp4oIr//OdSxZdXWgVK02+95NbtO3fv7d3vP3j46PGTwdNnp8HVXuJUOu38eQ4BtbI4JUUazyuPYHKNZ/nF+3X97Av6oJz9RE2FcwNLq0olgaK1GAixAuJCrhQfKUFQ8zF/x7koPcg261pRqY4LZelzG++Smm6R8kI4g0v4M7bNxjF3YbTN1qvGi8EwnaSb4DdFthNDtouTxeCnKJysDVqSGkKYZWlF8xY8Kamx64s6YAXyApY4i9KCwTBvNxQ6vh+dgpfOx2OJb9y/J1owITQmj50GaBWu19bm/2qzmsqjeatsVRNauX2orDUnx9dIeaE8StJNFCC9in/lcgURIEXw/X3h0eKldMaALVpRglG6KbCEWlMEHMrfOuLKrsO5KU4PJtnh5O3Hw+HxwQ7cHnvJXrMRy9gbdsw+sBM2ZZJ9Zd/ZFfvRu0peJK8Svm1NeruZ5+yfSMa/ALpGvqg=</latexit>

�(i!) = 2

Z 1

0d⌧ �̂(i⌧) cos(!⌧)

<latexit sha1_base64="8SMKajtP7S62SLUDWqSjdSwu/H8=">AAACdHicbVDLahsxFJUnfaTuI5N02S5EjcHemBkTaLsIBLrpqrRQJwHLHe5oNLaIHoN0p2UY/Ff5mXbbf2g3XVRjO9AkvSBxdO4594qTV0p6TJLvvWjv3v0HD/cf9R8/efrsID48OvO2dlzMuFXWXeTghZJGzFCiEheVE6BzJc7zy3dd//yrcF5a8xmbSiw0LI0sJQcMVBZ/YHwl6Ugyq8US6JieUDqlTBr80oa7xGadJbRgCDVlK0B6re+IcXhZP9p6O2acxYNkkmyK3gXpDgzIrrL48MbQblAW/2GF5bUWBrkC7+dpUuGiBYeSK7Hus9qLCvglLMU8QANa+EW7iWJNh4EpaGldOAbphv3X0YL2vtF5UGrAlb/d68j/9eY1lm8WrTRVjcLw7aKyVhQt7XKlhXSCo2oCAO5k+CvlK3DAMaTfHzInjPjGrdZgipaVoKVqClFCrXDdMl9e45Bgejuvu+BsOkmPJ28/HQ9Op7ss98kL8oqMSEpek1PynnwkM8LJFflBfpLfvV/Ry2gQDbfSqLfzPCc3Kpr8BZPnvuE=</latexit>

The cosine transform of ! "# ↔! "% :

is reformulated on the minimax frequency and time grids as

where the coefficients '() are the minimax solution to the following fitting problem:

minimax fit

for fixed #(∗ and %(∗ , and for +, ≤ . ≤ max 23 − 25 .

Page 29: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

How good are the grids: ZnO and Si

• N4 RPA calculations entirely in frequency § N2 calculation of polarizability in time, then transformation to frequency

(200 atoms on 200 cores in about one hour)

M. Kaltak, J. Klimeš, and G. Kresse, JCTC 10, 2498 (2014); PRB 90, 054115 (2014).

Page 30: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Si defect calculations: 64-216 atoms

New RPA code (VASP6):

• Scales linearly in the numberof k-points (as DFT), instead ofquadratically as for conventionalRPA and hybrid functionals

• Scales cubically in system size (as DFT).

Prefactors are much larger than in DFT, but calculations for 200 atoms take lessthan 1 hour (128 cores)

Scaling

Page 31: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

PBE HSE HSE(+vdW) QMC RPA

Dumbbell X 3.56 4.43 4.41 4.4(1) 4.28

Hollow H 3.62 4.49 4.40 4.7(1) 4.44

Tetragonal T 3.79 4.74 4.51 5.1(1) 4.93

Vacancy 3.65 4.19 4.38 4.40

pictures and HSE+vdW:

Gao and Tkatchenko,

PRL 111, 045501 (2013).

QMC:

Parker, Wilkins, and Hennig,

Phys. Status Solidi B 248, 267 (2011).

Defect formation energies in Si

Page 32: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

RPA total energy calculation: flow chart

DFTgroundstate

HFenergy

DFTvirtual orbitals

RPAenergy

EDIFF = 1E-8ISMEAR = 0 ; SIGMA = 0.1

NBANDS = ⩽ maximum # of plane wavesALGO = Exact ; NELM = 1ISMEAR = 0 ; SIGMA = 0.1 LOPTICS = .TRUE. [ ; LPEAD = .TRUE. ]

ALGO = Eigenval ; NELM = 1LWAVE = .FALSE.LHFCALC = .TRUE. ; AEXX= 1.0ISMEAR = 0 ; SIGMA = 0.1

NBANDS = ⩽ maximum # of plane wavesALGO = RPAR | ACFDTRNOMEGA = 12-16[ PRECFOCK = Normal ]

Page 33: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

… or all in one go!

RPAenergy

EDIFF = 1E-8ISMEAR = 0 ; SIGMA = 0.1LOPTICS = .TRUE. ; LPEAD = .TRUE.

ALGO = RPAR | ACFDTRNOMEGA = 12-16

[ PRECFOCK = Normal ]

[ NBANDSEXACT = # of bands in G ]

When one does not specify NBANDS, VASP wil run all consecutive steps in one go:

In this case the number of bands used to compute the Greens function is specifiedby means of the NBANDSEXACT tag (optional).

Page 34: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

An example: SiC

KPOINTS:

Automatically generated mesh0

Gamma3 3 30 0 0

POSCAR:

SiC4.350.5 0.5 0.00.0 0.5 0.50.5 0.0 0.51 1cart0.00 0.00 0.000.25 0.25 0.25

INCAR:

ALGO = ACFDTRNOMEGA = 16NBANDSEXACT = 120PRECFOCK = NORMAL

LOPTICS = .TRUE. ; LPEAD = .TRUE.

ISMEAR = 0 ; SIGMA = 0.05EDIFF = 1E-8

LWAVE = .FALSE.

Page 35: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The GW potentials: *_GW POTCAR files

Page 36: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

stdout

running 8 mpi-ranks, with 1 threads/rankdistrk: each k-point on 8 cores, 1 groupsdistr: one band on 1 cores, 8 groupsusing from now: INCARvasp.6.1.2 22Jul20 (build Jul 22 2020 23:58:52) complex

POSCAR found : 2 types and 2 ionsscaLAPACK will be usedLDA part: xc-table for Pade appr. of PerdewPOSCAR, INCAR and KPOINTS ok, starting setupFFT: planning ...WAVECAR not read

N E dE d eps ncg rms rms(c)DAV: 1 -0.807695689957E+00 -0.80770E+00 -0.25358E+03 80 0.517E+02DAV: 2 -0.160589369121E+02 -0.15251E+02 -0.12187E+02 80 0.986E+01DAV: 3 -0.166458202722E+02 -0.58688E+00 -0.58688E+00 96 0.179E+01DAV: 4 -0.166475623089E+02 -0.17420E-02 -0.17420E-02 64 0.947E-01DAV: 5 -0.166475838631E+02 -0.21554E-04 -0.21554E-04 104 0.120E-01 0.992E+00DAV: 6 -0.146217932388E+02 0.20258E+01 -0.80384E+00 96 0.241E+01 0.883E+00DAV: 7 -0.145343752600E+02 0.87418E-01 -0.37382E-01 88 0.483E+00 0.577E+00DAV: 8 -0.145238445286E+02 0.10531E-01 -0.25946E-02 80 0.163E+00 0.429E-01DAV: 9 -0.145238173443E+02 0.27184E-04 -0.60800E-04 96 0.212E-01 0.972E-02DAV: 10 -0.145240248823E+02 -0.20754E-03 -0.27113E-04 88 0.148E-01 0.118E-02DAV: 11 -0.145240278179E+02 -0.29356E-05 -0.22309E-05 96 0.467E-02 0.104E-02DAV: 12 -0.145240279045E+02 -0.86635E-07 -0.18940E-06 80 0.143E-02 0.134E-03DAV: 13 -0.145240279035E+02 0.10211E-08 -0.32364E-08 88 0.170E-03

The Fermi energy was updated, please check that it is located mid-gapvalues below the HOMO (VB) or above the LUMO (CB) will cause erroneous energiesE-fermi : 9.6656optical routinesimaginary and real dielectric functiondirection 1direction 2direction 3

“DFT groundstatecalculation”

“Exact diagonalizationand LOPTICS step”

Page 37: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

stdout (cont.): set up “minimax” grids

responsefunction array rank= 120

NTAUPAR set to 8 based on available memory per rank (MAXMEM= 2710 MB)

set NWRITE>2 for more details about minimax calculationnumber of imaginary grid points requested: 16number of distinct grids requested: 4quadrature errors minimized for energies in [ 0.250E+01, 0.186E+03 ]time grid (T=0) determined with error: 0.6315E-12fermionic grid (T=0, re) determined with error: 0.1995E-11bosonic grid (T=0, re) determined with error: 0.1995E-11fermionic grid (T=0, im) determined with error: 0.2003E-11bosonic grid (re): 0.1995E-11

0.3979 1.2370 2.2122 3.4344 5.04817.2506 10.3202 14.6578 20.8519 29.7850

42.8243 62.2141 92.0388 141.1698 235.3471502.7281

fermionic grid (re): 0.1995E-110.3979 1.2370 2.2122 3.4344 5.04817.2506 10.3202 14.6578 20.8519 29.7850

42.8243 62.2141 92.0388 141.1698 235.3471502.7281

fermionic grid (im): 0.2003E-110.8065 1.7011 2.7842 4.1811 6.06008.6543 12.2972 17.4731 24.9000 35.6703

51.5185 75.4212 113.2309 179.3773 325.91881022.1852

time grid: 0.6315E-120.0009 0.0048 0.0121 0.0234 0.03980.0628 0.0950 0.1402 0.2039 0.29340.4195 0.5973 0.8486 1.2074 1.73332.5647

“frequency”

“time”

NTAUPAR is set automaticallybased on the available memory:either set manually by means ofthe MAXMEM-tag, or read from/proc/meminfo (MemAvailable)

Page 38: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

stdout (cont.): distribution over ⍵ and "Distributing 16 bosonic points into 8 group(s)Group: 1 has 1 cores and 2 bosonic point(s)Group: 2 has 1 cores and 2 bosonic point(s)Group: 3 has 1 cores and 2 bosonic point(s)Group: 4 has 1 cores and 2 bosonic point(s)Group: 5 has 1 cores and 2 bosonic point(s)Group: 6 has 1 cores and 2 bosonic point(s)Group: 7 has 1 cores and 2 bosonic point(s)Group: 8 has 1 cores and 2 bosonic point(s)

Distributing 16 fermionic points into 8 group(s)Group: 1 has 1 cores and 2 fermionic point(s)Group: 2 has 1 cores and 2 fermionic point(s)Group: 3 has 1 cores and 2 fermionic point(s)Group: 4 has 1 cores and 2 fermionic point(s)Group: 5 has 1 cores and 2 fermionic point(s)Group: 6 has 1 cores and 2 fermionic point(s)Group: 7 has 1 cores and 2 fermionic point(s)Group: 8 has 1 cores and 2 fermionic point(s)

Distributing 16 time points into 8 group(s)Group: 1 has 1 cores and 2 time point(s)Group: 2 has 1 cores and 2 time point(s)Group: 3 has 1 cores and 2 time point(s)Group: 4 has 1 cores and 2 time point(s)Group: 5 has 1 cores and 2 time point(s)Group: 6 has 1 cores and 2 time point(s)Group: 7 has 1 cores and 2 time point(s)Group: 8 has 1 cores and 2 time point(s)

min. memory requirement per mpi rank 448.9 MB, per node 3591.2 MB

NOMEGAPAR = 8

NTAUPAR = 8

(Here running on 8 MPI-ranks)

Performance-wise it is optimal to have NTAUPAR = NOMEGAPAR = NOMEGA.Prerequisite: there has to be enough memory for NTAUPAR = NOMEGA,and the number of MPI-ranks must be a multiple of NOMEGA.

Page 39: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

OUTCAR: plane wave basis set limit

cutoff energy smooth cutoff RPA correlation Hartree contr. to MP2---------------------------------------------------------------------------------

182.607 146.086 -11.6224735165 -18.3767216933173.912 139.129 -11.5729431431 -18.3208811769165.630 132.504 -11.5167771988 -18.2570942952157.743 126.194 -11.4562166727 -18.1878044293150.232 120.185 -11.3922444110 -18.1141897888143.078 114.462 -11.3188094759 -18.0290907645136.264 109.012 -11.2261996896 -17.9208940815129.776 103.821 -11.1299318178 -17.8073101088

linear regressionconverged value -12.3629185205 -19.2342034424

ENCUTGW (= 2/3 ENCUT) ENCUTGWSOFT (= 0.8 ENCUTGW)

“Extrapolated to infinite basis set limit”: Ec(G) = Ec(1) +A

G3

<latexit sha1_base64="rIrLwMqjMYnjy2pJgX2nnSpa9Y0=">AAACOHicbZDNShxBFIWrzZ9O/sZk6abIMDASGLpVSFwEDCHo0kBGhenJcLv6lhZWVTdVtxOapp8gT5OteZLsshO3rrNIzTiC0Rwo+DjnXqrqZKVWnuL4V7R07/6Dh4+WVzqPnzx99ry7+uLAF5UTOBKFLtxRBh61sjgiRRqPSodgMo2H2emHWX74FZ1Xhf1MdYkTA8dWSSWAgjXt9j9OBR/srvN3PNAgVVZSvc5f81Q6EM37ttn9stlOu714GM/F70KygB5baH/a/ZPmhagMWhIavB8ncUmTBhwpobHtpJXHEsQpHOM4oAWDftLMv9PyfnByLgsXjiU+d29uNGC8r00WJg3Qib+dzcz/ZeOK5NtJo2xZEVpxdZGsNKeCz7rhuXIoSNcBQDgV3srFCYQeKDTY6acOLX4ThTFg8yaVYJSuc5RQaWqb1MtrDnUlt8u5Cwcbw2RruP1pq7ezsShuma2xV2zAEvaG7bA9ts9GTLDv7Ac7Yz+js+h3dB5dXI0uRYudl+wfRZd/AZCQq+k=</latexit>

Convergence tests:• Investigate convergence w.r.t. ENCUT (not ENCUTGW or ENCUTGWSOFT).• If possible converge energy differences not absolute correlation energies.

Page 40: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

OUTCAR: RPA total energy

HF energy using frozen KS orbitalsFree energy of the ion-electron system (eV)---------------------------------------------------alpha Z PSCENC = 10.57645478Ewald energy TEWEN = -285.31033112-Hartree energ DENC = -32.94127495-exchange EXHF = 74.67798493-V(xc)+E(xc) XCENC = 0.00000000PAW double counting = 1473.50548166 -1473.60386908entropy T*S EENTRO = -0.00000000eigenvalues EBANDS = -21.25334570atomic energy EATOM = 229.23716772---------------------------------------------------HF-free energy TOTEN = -25.11173175 eVexchange ACFDT corr. = -0.00000000 see jH, gK, PRB 81, 115126HF+correlation energy = -36.73420527HF+E_corr(extrapolated)= -37.47465027

diagrammatic approximations of correlation energy (eV)-----------------------------------------------------direct MP2 EDMP2 = -19.23420344random phase ERPA = -12.36291852GW Galitskii-Migdal EGWGM = 0.00000000-----------------------------------------------------

“Extrapolated to infinitebasis set limit”

Without extrapolation

Page 41: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

RPA: important INCAR tags

• ALGO

• NOMEGA• PRECFOCK• NTAUPAR• NOMEGAPAR• MAXMEM

• NBANDS• NBANDSEXACT

• ENCUTGW

Visit our WIKI!

Especially the parts on:Cubic scaling RPA calculations

Page 42: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Cubic-Scaling GWP. Liu, M. Kaltak, J. Klimeš, and G. Kresse, PRB 94, 165109 (2016)

G0(i⌧)

<latexit sha1_base64="0F/8U/msdwqL5vXL4USdUJ/zIck=">AAACHHicbZDLahtBEEV7HMeR5cRRnKU3TYTA2YgZY4izM2QRL2WwbIFGiJqeGqtRP4buGgcx6DOyVX4mu5BtIP/iRVoPgx+50HC4VUVV36xU0lMc/422Xmy/3HnV2G3uvX6z/7b17uDK28oJ7AurrBtk4FFJg32SpHBQOgSdKbzOpl+W9etbdF5ac0mzEkcabowspAAK1vDrOOZHMiWoPo5b7bgbr8SfQ7KBNtuoN27dpbkVlUZDQoH3wyQuaVSDIykUzptp5bEEMYUbHAY0oNGP6tXJc94JTs4L68IzxFfuw4katPcznYVODTTxT2tL83+1YUXF6aiWpqwIjVgvKirFyfLl/3kuHQpSswAgnAy3cjEBB4JCSs1O6tDgN2G1BpPXaQFaqlmOBVSK5nXqi3sOcSVPw3kOV8fd5KT7+eKkfXa8Ca7BDtkHdsQS9omdsXPWY30mmGXf2YL9iBbRz+hX9HvduhVtZt6zR4r+/APZtaKE</latexit>

�0(i⌧)

<latexit sha1_base64="r1YVGwknZ6xN8WiiLu3/cE7qmto=">AAACH3icbZBLSwMxFIUzvq2vqks3wSLopsyIoO4ENy4VrAqdWu5k7thgkhmSO0oZ+j/c6p9xJ279Ly5MawVfBwIf59xLLicplHQUhm/BxOTU9Mzs3HxtYXFpeaW+unbh8tIKbIlc5fYqAYdKGmyRJIVXhUXQicLL5PZ4mF/eoXUyN+fUL7Cj4cbITAogb13Hoie7Id+WMUG50603wmY4Ev8L0RgabKzTbv09TnNRajQkFDjXjsKCOhVYkkLhoBaXDgsQt3CDbY8GNLpONbp6wLe8k/Ist/4Z4iP3+0YF2rm+TvykBuq539nQ/C9rl5QddCppipLQiM+PslJxyvmwAp5Ki4JU3wMIK/2tXPTAgiBfVG0rtmjwXuRag0mrOAMtVT/FDEpFgyp22Rf7uqLf5fyFi91mtNc8PNtrHO2Oi5tjG2yTbbOI7bMjdsJOWYsJZtkDe2RPwWPwHLwEr5+jE8F4Z539UPD2AYEIo+s=</latexit>

�0(i!)

<latexit sha1_base64="VxZaRVEB/0R1WxmFBBFWDoQfdRY=">AAACI3icbZA7SwNBFIVnfRtfq5Y2g0HQJuxKQO0EG0sFo0I2hLuzd5PBeSwzs0pY8k9s9c/YiY2F/8TCSYzg68DAxzn3MpeTFoJbF0WvwdT0zOzc/MJibWl5ZXUtXN+4tLo0DFtMC22uU7AouMKW407gdWEQZCrwKr05GeVXt2gs1+rCDQrsSOgpnnMGzlvdMExYn3cjussTLbEHe92wHjWisehfiCdQJxOddcP3JNOslKgcE2BtO44K16nAOM4EDmtJabEAdgM9bHtUINF2qvHlQ7rjnYzm2vinHB273zcqkNYOZOonJbi+/Z2NzP+ydunyw07FVVE6VOzzo7wU1Gk6qoFm3CBzYuABmOH+Vsr6YIA5X1ZtJzGo8I5pKUFlVZKD5GKQYQ6lcMMqsfkX+7ri3+X8hcv9RtxsHJ0368f7k+IWyBbZJrskJgfkmJySM9IijNySe/JAHoOH4Cl4Dl4+R6eCyc4m+aHg7QOTNqTv</latexit>

W (i!)

<latexit sha1_base64="J936UEzwywDiNJwYYd5RncUz0Ls=">AAACHHicbZDLSgNBEEV7fBtfUZduGkNAN2EmCOpOcONSwRghE0JNT01s0o+hu0cJQz7Drf6MO3Er+C8u7MQIvi40HG5VUdU3yQW3LgzfgpnZufmFxaXlysrq2vpGdXPryurCMGwxLbS5TsCi4ApbjjuB17lBkInAdjI4Hdfbt2gs1+rSDXPsSugrnnEGzludNt3jsZbYh/1etRY2wonoX4imUCNTnfeq73GqWSFROSbA2k4U5q5bgnGcCRxV4sJiDmwAfex4VCDRdsvJySNa905KM238U45O3O8TJUhrhzLxnRLcjf1dG5v/1TqFy466JVd54VCxz0VZIajTdPx/mnKDzImhB2CG+1spuwEDzPmUKvXYoMI7pqUElZZxBpKLYYoZFMKNythmX+zjin6H8xeumo3ooHF8cVA7aU6DWyI7ZJfskYgckhNyRs5JizCiyT15II/BQ/AUPAcvn60zwXRmm/xQ8PoBRtGixA==</latexit>

W (i⌧)

<latexit sha1_base64="vCCyz+tsW8TJjS7BlpHV4u2iI8I=">AAACGnicbZBNSwMxEIazflu/qh69BIugl7IrgnoTvHhUsFbpFpnNzmowyS7JrFKW/gqv+me8iVcv/hcPprWCXy8EHt6ZYSZvUijpKAzfgrHxicmp6ZnZ2tz8wuJSfXnlzOWlFdgSucrteQIOlTTYIkkKzwuLoBOF7eTmcFBv36J1Mjen1Cuwq+HKyEwKIG9dtPmmjAnKrct6I2yGQ/G/EI2gwUY6vqy/x2kuSo2GhALnOlFYULcCS1Io7Nfi0mEB4gausOPRgEbXrYYH9/mGd1Ke5dY/Q3zofp+oQDvX04nv1EDX7ndtYP5X65SU7XUraYqS0IjPRVmpOOV88HueSouCVM8DCCv9rVxcgwVBPqPaRmzR4J3ItQaTVnEGWqpeihmUivpV7LIv9nFFv8P5C2fbzWinuX+y0zjYHgU3w9bYOttkEdtlB+yIHbMWE0yze/bAHoOH4Cl4Dl4+W8eC0cwq+6Hg9QO1MaHx</latexit>

⌃(i⌧)

<latexit sha1_base64="qmQbQCdBzO4pdJ/yti303jcyWtQ=">AAACH3icbZBLSwMxFIUzvq2vqks3wSLopsyIoO4ENy4VrQqdKncyd2owyQzJHaUM/R9u9c+4E7f+FxemtYKvA4GPc+4ll5MUSjoKw7dgbHxicmp6ZrY2N7+wuFRfXjl3eWkFtkSucnuZgEMlDbZIksLLwiLoROFFcns4yC/u0DqZmzPqFdjR0DUykwLIW1fxqexq4JsyJii3ruuNsBkOxf9CNIIGG+n4uv4ep7koNRoSCpxrR2FBnQosSaGwX4tLhwWIW+hi26MBja5TDa/u8w3vpDzLrX+G+ND9vlGBdq6nEz+pgW7c72xg/pe1S8r2OpU0RUloxOdHWak45XxQAU+lRUGq5wGElf5WLm7AgiBfVG0jtmjwXuRag0mrOAMtVS/FDEpF/Sp22Rf7uqLf5fyF8+1mtNPcP9lpHGyPiptha2ydbbKI7bIDdsSOWYsJZtkDe2RPwWPwHLwEr5+jY8FoZ5X9UPD2Ac+JpBk=</latexit>

⌃(i!)

<latexit sha1_base64="i8pVg44KfMGaaHMHEbBrAn0W0bw=">AAACI3icbZA7SwNBFIVnfRtfq5Y2g0HQJuxKQO0EG0tFo0I2hLuzd+PgPJaZWSUs+Se2+mfsxMbCf2LhJEbwdWDg45x7mctJC8Gti6LXYGJyanpmdm6+trC4tLwSrq5dWF0ahi2mhTZXKVgUXGHLcSfwqjAIMhV4md4cDfPLWzSWa3Xu+gV2JPQUzzkD561uGCZnvCeBbvNES+zBTjesR41oJPoX4jHUyVgn3fA9yTQrJSrHBFjbjqPCdSowjjOBg1pSWiyA3UAP2x4VSLSdanT5gG55J6O5Nv4pR0fu940KpLV9mfpJCe7a/s6G5n9Zu3T5fqfiqigdKvb5UV4K6jQd1kAzbpA50fcAzHB/K2XXYIA5X1ZtKzGo8I5pKUFlVZKD5KKfYQ6lcIMqsfkX+7ri3+X8hYvdRtxsHJw264e74+LmyAbZJNskJnvkkByTE9IijNySe/JAHoOH4Cl4Dl4+RyeC8c46+aHg7QPiE6Ud</latexit>

⌃(!)

<latexit sha1_base64="D5JUFEzjPRNPOLvxU4tWczA2CP8=">AAACInicbZBLSwMxFIUzPmt9VV26CRZBN2VGCupOcONS0arQKeVO5k4N5jEkGaUM/SVu659xJ64Ef4oL01rB14HAxzn3kstJcsGtC8PXYGp6ZnZuvrJQXVxaXlmtra1fWl0Yhi2mhTbXCVgUXGHLcSfwOjcIMhF4ldwej/KrOzSWa3Xh+jl2JPQUzzgD561ubTU+5z0JdCfWEnuw263Vw0Y4Fv0L0QTqZKLTbu09TjUrJCrHBFjbjsLcdUowjjOBg2pcWMyB3UIP2x4VSLSdcnz4gG57J6WZNv4pR8fu940SpLV9mfhJCe7G/s5G5n9Zu3DZQafkKi8cKvb5UVYI6jQdtUBTbpA50fcAzHB/K2U3YIA531V1Ozao8J5pKUGlZZyB5KKfYgaFcIMyttkX+7qi3+X8hcu9RtRsHJ4160d7k+IqZJNskR0SkX1yRE7IKWkRRgryQIbkMRgGT8Fz8PI5OhVMdjbIDwVvHwb4pKo=</latexit>

G(i!)

<latexit sha1_base64="GjblSusOK818FPGPJuX3X5MhbyU=">AAACG3icbZDLSgNBEEV7fMb4irp0MxgCugkzElB3ARe6jGBUzIRQ01MTG/sxdPcoYchfuI0/407cuvBfXNiJEXxdaDjcqqKqb5xxZmwQvHkzs3PzC4ulpfLyyuraemVj88KoXFNsU8WVvorBIGcS25ZZjleZRhAxx8v49nhcv7xDbZiS53aQYVdAX7KUUbDOuj7ZZZES2Ie9XqUa1IOJ/L8QTqFKpmr1Ku9RomguUFrKwZhOGGS2W4C2jHIclqPcYAb0FvrYcShBoOkWk4uHfs05iZ8q7Z60/sT9PlGAMGYgYtcpwN6Y37Wx+V+tk9v0sFswmeUWJf1clObct8off99PmEZq+cABUM3crT69AQ3UupDKtUijxHuqhACZFFEKgvFBgink3A6LyKRf7OIKf4fzFy7262GjfnTWqDb3p8GVyDbZIbskJAekSU5Ji7QJJZI8kBF59Ebek/fsvXy2znjTmS3yQ97rB877ooo=</latexit>

� = �GG

<latexit sha1_base64="3WVnXIguqtGLGgDjbEr/xK15Qf4=">AAACHHicbZDLSgNBEEV7fMb4irp00xgEN4YZCagLQXARlwpGhUyQmp4a09iPobtHCUM+w63+jDtxK/gvLuzECL4uNBxuVVHVN8kFty4M34KJyanpmdnKXHV+YXFpubayem51YRi2mRbaXCZgUXCFbcedwMvcIMhE4EVyczSsX9yisVyrM9fPsSvhWvGMM3De6sSsx+kB3aat1lWtHjbCkehfiMZQJ2OdXNXe41SzQqJyTIC1nSjMXbcE4zgTOKjGhcUc2A1cY8ejAom2W45OHtBN76Q008Y/5ejI/T5RgrS2LxPfKcH17O/a0Pyv1ilcttctucoLh4p9LsoKQZ2mw//TlBtkTvQ9ADPc30pZDwww51OqbsYGFd4xLSWotIwzkFz0U8ygEG5Qxjb7Yh9X9Ducv3C+04iajf3TZv1wZxxchayTDbJFIrJLDskxOSFtwogm9+SBPAYPwVPwHLx8tk4E45k18kPB6wciJaIW</latexit>

W =⌫

1� �⌫

<latexit sha1_base64="5I2dI5qaZhSO+856Rpf6f0FkJ2A=">AAACLHicbZDNSgMxFIUz/lv/qq7ETbAIbiwzIqgLQXDjUsHaQqeUO5k7bWiSGZKMUobi07jVl3Ej4tancGFaK2j1QODjnHtJcqJMcGN9/8Wbmp6ZnZtfWCwtLa+srpXXN25MmmuGNZaKVDciMCi4wprlVmAj0wgyEliPeufDvH6L2vBUXdt+hi0JHcUTzsA6q13eqtNTGiYaWBGqfFAE+yHr8iG2yxW/6o9E/0IwhgoZ67Jd/gjjlOUSlWUCjGkGfmZbBWjLmcBBKcwNZsB60MGmQwUSTasYfWFAd50T0yTV7ihLR+7PjQKkMX0ZuUkJtmsms6H5X9bMbXLcKrjKcouKfV2U5ILalA77oDHXyKzoOwCmuXsrZV1wfVjXWmk31KjwjqVSgoqLMAHJRT/GBHJhB0Vokm92dQWT5fyFm4NqcFg9uTqsnB2Mi1sg22SH7JGAHJEzckEuSY0wck8eyCN58h69Z+/Ve/sanfLGO5vkl7z3T34bqRM=</latexit>

⌃ = GW

<latexit sha1_base64="bxFwPDPLQJI0oVkUfIV6IbGIRe8=">AAACGnicbZBNS8NAEIY3ftb6VfXoJVgETyUpgnoQCh70WNHaSlNkspm0i7ubsLtRSuiv8Fr/jDfx6sX/4sHth6DWFxYe3plhZt8w5Uwbz/tw5uYXFpeWCyvF1bX1jc3S1vaNTjJFsUETnqhWCBo5k9gwzHBspQpBhByb4f3ZqN58QKVZIq9NP8WOgK5kMaNgrHUbXLGugNPz5l2p7FW8sdxZ8KdQJlPV70qfQZTQTKA0lIPWbd9LTScHZRjlOCgGmcYU6D10sW1RgkDdyccHD9x960RunCj7pHHH7s+JHITWfRHaTgGmp//WRuZ/tXZm4uNOzmSaGZR0sijOuGsSd/R7N2IKqeF9C0AVs7e6tAcKqLEZFfcDhRIfaSIEyCgPYhCM9yOMIeNmkAc6/mYbl/83nFm4qVb8w8rJ5WG5Vp0GVyC7ZI8cEJ8ckRq5IHXSIJQI8kSG5NkZOi/Oq/M2aZ1zpjM75Jec9y8/7KJC</latexit>

G =1

G�10 � ⌃

<latexit sha1_base64="8rm3w/f2WDkxkiGXr7ytuMIOsD8=">AAACLnicbZBLSwMxFIUzvq2vqks3g0VwY5mRgroQBBe6VLQqdGq5k7lTg0lmSDJKCbPw17jVPyO4ELf+CBemtYKvA4GPc+4lyYlzzrQJgmdvZHRsfGJyaroyMzs3v1BdXDrTWaEoNmnGM3URg0bOJDYNMxwvcoUgYo7n8fV+Pz+/QaVZJk9NL8e2gK5kKaNgnNWprhzsRqkCasPSHlzajbDsBBvRCesKKDvVWlAPBvL/QjiEGhnqqFN9j5KMFgKloRy0boVBbtoWlGGUY1mJCo050GvoYsuhBIG6bQefKP015yR+mil3pPEH7vcNC0LrnojdpABzpX9nffO/rFWYdLttmcwLg5J+XpQW3DeZ32/ET5hCanjPAVDF3Ft9egWuE+N6q6xFCiXe0kwIkImNUhCM9xJMoeCmtJFOv9jVFf4u5y+cbdbDRn3nuFHb2xwWN0VWyCpZJyHZInvkkByRJqHkjtyTB/LoPXhP3ov3+jk64g13lskPeW8fqeepoA==</latexit>

CT

CT

CT+ST

analyticcontinuation EQP

nk

<latexit sha1_base64="7uie9F+pjMuYOfZt3I7UEfJjxSI=">AAACKHicbZBLSwMxFIUzvq2vqrhyEyyCqzIjgroTRHBZwarQqeVO5o6GJpkhySglzI9xq3/Gnbj1d7gwrRV8HQh8nHMvuZykENzYMHwNJianpmdm5+ZrC4tLyyv11bULk5eaYZvlItdXCRgUXGHbcivwqtAIMhF4mfSPh/nlHWrDc3VuBwV2JdwonnEG1lu9+sbJtYu1pGetqueUi5OM9quqV2+EzXAk+heiMTTIWK1e/T1Oc1ZKVJYJMKYThYXtOtCWM4FVLS4NFsD6cIMdjwokmq4bnV/Rbe+kNMu1f8rSkft9w4E0ZiATPynB3prf2dD8L+uUNjvoOq6K0qJinx9lpaA2p8MuaMo1MisGHoBp7m+l7BY0MOsbq23HGhXes1xKUKmLM5BcDFLMoBS2crHJvtjXFf0u5y9c7Dajvebh2V7jaHdc3BzZJFtkh0RknxyRU9IibcKIIw/kkTwFj8Fz8BK8fo5OBOOddfJDwdsH5Gmnxg==</latexit>

SolveQP-equation

Page 43: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

• Minimax grids:M. Kaltak, J. Klimeš, and G. Kresse, JCTC 10, 2498 (2014); PRB 90, 054115 (2014).

• Cubic-scaling RPA total energies (ACFDT):M. Kaltak, J. Klimeš, and G. Kresse, PRB 90, 054115 (2014).

• Cubic-scaling RPA quasi-particles (GW):P. Liu, M. Kaltak, J. Klimeš, and G. Kresse, PRB 94, 15109 (2016).

• Finite temperature grids (!):M. Kaltak and G. Kresse, PRB 101, 205145 (2020)

Dr. Merzuk Kaltak(VASP Software GmbH)

Page 44: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

@E

@R= h |@H

@R| i+ h @

@R|H| i+ h |H| @

@Ri

Non-Hellmann-Feynman!

h @ @R

|H| i+ h |H| @ @R

i �!✓Z

G0(i!)@ERPA

@G

����i!

G0(i!)d!

◆@VKS

@R

Hellmann-Feynman theorem: when the orbitals are eigenstates of the Hamiltonian,the second and third terms on the RHS are zero.

In the RPA we need to consider ”non-Hellmann-Feynman” contributions!

These take the following form:

@Ec

@G= ⌃

@EH

@G= VH

@EX

@G= VX

“from linear response”

Forces in the RPA

Page 45: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

(Diamond 8 atom super cell)

A test: ”RPA forces” (lines) vs. energy derivatives from finite differences (symbols):

Forces in the RPA

Page 46: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Diamond (128 atom super cell)

Graphite (128 atom super cell)

Page 47: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

Summary

• Beyond DFT: the RPA• Well balanced description of all bond types (metallic, covalent, ionic, vdW)• Unfortunately energy differences can still not be predicted with chemical accuracy• But at the moment the optimal balance between accuracy and computational effort

• Cubic-Scaling RPA• Both for total energies as well as for quasi-particles• Minimax frequency and time grids• Near future: finite temperature RPA

• Forces in the RPA

Page 48: VASP6: total energies beyond DFTCO adsorption on d-metal surfaces. (All energies in eV) Schimkaet al., Nature Materials 9, 741 (2010) • DFT does well for the metallic surface, but

The End

Thank you for your attention!